129,235 research outputs found

    Canonical Maps

    Get PDF
    Categorical foundations and set-theoretical foundations are sometimes presented as alternative foundational schemes. So far, the literature has mostly focused on the weaknesses of the categorical foundations. We want here to concentrate on what we take to be one of its strengths: the explicit identification of so-called canonical maps and their role in mathematics. Canonical maps play a central role in contemporary mathematics and although some are easily defined by set-theoretical tools, they all appear systematically in a categorical framework. The key element here is the systematic nature of these maps in a categorical framework and I suggest that, from that point of view, one can see an architectonic of mathematics emerging clearly. Moreover, they force us to reconsider the nature of mathematical knowledge itself. Thus, to understand certain fundamental aspects of mathematics, category theory is necessary (at least, in the present state of mathematics)

    Pictures of complete positivity in arbitrary dimension

    Get PDF
    Two fundamental contributions to categorical quantum mechanics are presented. First, we generalize the CP-construction, that turns any dagger compact category into one with completely positive maps, to arbitrary dimension. Second, we axiomatize when a given category is the result of this construction.Comment: Final versio

    Lambek vs. Lambek: Functorial Vector Space Semantics and String Diagrams for Lambek Calculus

    Full text link
    The Distributional Compositional Categorical (DisCoCat) model is a mathematical framework that provides compositional semantics for meanings of natural language sentences. It consists of a computational procedure for constructing meanings of sentences, given their grammatical structure in terms of compositional type-logic, and given the empirically derived meanings of their words. For the particular case that the meaning of words is modelled within a distributional vector space model, its experimental predictions, derived from real large scale data, have outperformed other empirically validated methods that could build vectors for a full sentence. This success can be attributed to a conceptually motivated mathematical underpinning, by integrating qualitative compositional type-logic and quantitative modelling of meaning within a category-theoretic mathematical framework. The type-logic used in the DisCoCat model is Lambek's pregroup grammar. Pregroup types form a posetal compact closed category, which can be passed, in a functorial manner, on to the compact closed structure of vector spaces, linear maps and tensor product. The diagrammatic versions of the equational reasoning in compact closed categories can be interpreted as the flow of word meanings within sentences. Pregroups simplify Lambek's previous type-logic, the Lambek calculus, which has been extensively used to formalise and reason about various linguistic phenomena. The apparent reliance of the DisCoCat on pregroups has been seen as a shortcoming. This paper addresses this concern, by pointing out that one may as well realise a functorial passage from the original type-logic of Lambek, a monoidal bi-closed category, to vector spaces, or to any other model of meaning organised within a monoidal bi-closed category. The corresponding string diagram calculus, due to Baez and Stay, now depicts the flow of word meanings.Comment: 29 pages, pending publication in Annals of Pure and Applied Logi

    Globular: an online proof assistant for higher-dimensional rewriting

    Get PDF
    This article introduces Globular, an online proof assistant for the formalization and verification of proofs in higher-dimensional category theory. The tool produces graphical visualizations of higher-dimensional proofs, assists in their construction with a point-and- click interface, and performs type checking to prevent incorrect rewrites. Hosted on the web, it has a low barrier to use, and allows hyperlinking of formalized proofs directly from research papers. It allows the formalization of proofs from logic, topology and algebra which are not formalizable by other methods, and we give several examples

    Types and forgetfulness in categorical linguistics and quantum mechanics

    Full text link
    The role of types in categorical models of meaning is investigated. A general scheme for how typed models of meaning may be used to compare sentences, regardless of their grammatical structure is described, and a toy example is used as an illustration. Taking as a starting point the question of whether the evaluation of such a type system 'loses information', we consider the parametrized typing associated with connectives from this viewpoint. The answer to this question implies that, within full categorical models of meaning, the objects associated with types must exhibit a simple but subtle categorical property known as self-similarity. We investigate the category theory behind this, with explicit reference to typed systems, and their monoidal closed structure. We then demonstrate close connections between such self-similar structures and dagger Frobenius algebras. In particular, we demonstrate that the categorical structures implied by the polymorphically typed connectives give rise to a (lax unitless) form of the special forms of Frobenius algebras known as classical structures, used heavily in abstract categorical approaches to quantum mechanics.Comment: 37 pages, 4 figure

    Convergence and quantale-enriched categories

    Get PDF
    Generalising Nachbin's theory of "topology and order", in this paper we continue the study of quantale-enriched categories equipped with a compact Hausdorff topology. We compare these V\mathcal{V}-categorical compact Hausdorff spaces with ultrafilter-quantale-enriched categories, and show that the presence of a compact Hausdorff topology guarantees Cauchy completeness and (suitably defined) codirected completeness of the underlying quantale enriched category

    Geometry of abstraction in quantum computation

    Get PDF
    Quantum algorithms are sequences of abstract operations, performed on non-existent computers. They are in obvious need of categorical semantics. We present some steps in this direction, following earlier contributions of Abramsky, Coecke and Selinger. In particular, we analyze function abstraction in quantum computation, which turns out to characterize its classical interfaces. Some quantum algorithms provide feasible solutions of important hard problems, such as factoring and discrete log (which are the building blocks of modern cryptography). It is of a great practical interest to precisely characterize the computational resources needed to execute such quantum algorithms. There are many ideas how to build a quantum computer. Can we prove some necessary conditions? Categorical semantics help with such questions. We show how to implement an important family of quantum algorithms using just abelian groups and relations.Comment: 29 pages, 42 figures; Clifford Lectures 2008 (main speaker Samson Abramsky); this version fixes a pstricks problem in a diagra
    • ā€¦
    corecore