5 research outputs found

    An iterative statistical tolerance analysis procedure to deal with linearized behavior models

    Get PDF
    Tolerance analysis consists of analyzing the impact of variations on the mechanism behavior due to the manufacturing process. The goal is to predict its quality level at the design stage. The technique involves computing probabilities of failure of the mechanism in a mass production process. The various analysis methods have to consider the component’s variations as random variables and the worst configuration of gaps for over-constrained systems. This consideration varies in function by the type of mechanism behavior and is realized by an optimization scheme combined with a Monte Carlo simulation. To simplify the optimization step, it is necessary to linearize the mechanism behavior into several parts. This study aims at analyzing the impact of the linearization strategy on the probability of failure estimation; a highly over-constrained mechanism with two pins and five cotters is used as an illustration for this study. The purpose is to strike a balance among model error caused by the linearization, computing time, and result accuracy. In addition, an iterative procedure is proposed for the assembly requirement to provide accurate results without using the entire Monte Carlo simulation

    Tolerance analysis and synthesis of assemblies subject to loading with process integration and design optimization tools

    Get PDF
    Manufacturing variation results in uncertainty in the functionality and performance of mechanical assemblies. Management of this uncertainty is of paramount importance for manufacturing efficiency. Methods focused on the management of uncertainty and variation in the design of mechanical assemblies, such as tolerance analysis and synthesis, have been subject to extensive research and development to date. However, due to the challenges involved, limitations in the capability of these methods remain. These limitations are associated with the following problems: The identification of Key Product Characteristics (KPCs) in mechanical assemblies (which are required for measuring functional performance) without imposing significant modelling demands.  Accommodation of the high computational cost of traditional statistical tolerance analysis in early design where analysis budgets are limited. Efficient identification of feasible regions and optimum performance within the large design spaces associated with early design stages.  The ability to comprehensively accommodate tolerance analysis problems in which assembly functionality is dependent on the effects of loading (such as compliance or multi‐body dynamics). Current Computer Aided Tolerancing (CAT) is limited by: the ability to accommodate only specific loading effects; reliance on custom simulation codes with limited practical implementation in accessible software tools; and, the need for additional expertise in formulating specific assembly tolerance models and interpreting results. Accommodation of the often impractically high computational cost of tolerance synthesis involving demanding assembly models (particularly assemblies under loading). The high computational cost is associated with traditional statistical tolerancing Uncertainty Quantification (UQ) methods reliant on low‐efficiency Monte Carlo (MC) sampling. This research is focused on addressing these limitations, by developing novel methods for enhancing the engineering design of mechanical assemblies involving uncertainty or variation in design parameters. This is achieved by utilising the emerging design analysis and refinement capabilities of Process Integration and Design Optimization (PIDO) tools. ii The main contributions of this research are in three main themes:  Design analysis and refinement accommodating uncertainty in early design;  Tolerancing of assemblies subject to loading; and, efficient Uncertainty Quantification (UQ) in tolerance analysis and synthesis. The research outcomes present a number of contributions within each research theme, as outlined below. Design analysis and refinement accommodating uncertainty in early design: A PIDO tool based visualization method to aid designers in identifying assembly KPCs in early design stages. The developed method integrates CAD software functionally with the process integration, UQ, data logging and statistical analysis capabilities of PIDO tools, to simulate manufacturing variation in an assembly and visualise assembly clearances, contacts or interferences. The visualization capability subsequently assists the designer in specifying critical assembly dimensions as KPCs.  Computationally efficient method for manufacturing sensitivity analysis of assemblies with linear‐compliant elements. Reduction in computational cost are achieved by utilising linear‐compliant assembly stiffness measures, reuse of CAD models created in early design stages, and PIDO tool based tolerance analysis. The associated increase in computational efficiency, allows an estimate of sensitivity to manufacturing variation to be made earlier in the design process with low effort.  Refinement of concept design embodiments through PIDO based DOE analysis and optimization. PIDO tools are utilised to allow CAE tool integration, and efficient reuse of models created in early design stages, to rapidly identify feasible and optimal regions in the design space. A case study focused on the conceptual design of automotive seat kinematics is presented, in which an optimal design is identified and subsequently selected for commercialisation in the Tesla Motors Model S full‐sized electric sedan. These contributions can be directly applied to improve the design of mechanical assemblies involving uncertainty or variation in design parameters in the early stages of design. The use of native CAD/E models developed as part of an established design modelling procedure imposes low additional modelling effort. Tolerancing of assemblies subject to loading:  A novel tolerance analysis platform is developed which integrates CAD/E and statistical analysis tools using PIDO tool capabilities to facilitate tolerance analysis of assemblies subject to loading. The proposed platform extends the capabilities of traditional CAT tools and methods by enabling tolerance analysis of assemblies which are dependent on iii the effects of loads. The ability to accommodate the effects of loading in tolerance analysis allows for an increased level of capability in estimating the effects of variation on functionality.  The interdisciplinary integration capabilities of the PIDO based platform allow for CAD/E models created as part of the standard design process to be used for tolerance analysis. The need for additional modelling tools and expertise is subsequently reduced.  Application of the developed platform resulted in effective solutions to practical, industry based tolerance analysis problems, including: an automotive actuator mechanism assembly consisting of rigid and compliant components subject to external forces; and a rotary switch and spring loaded radial detent assembly in which functionality is defined by external forces and internal multi‐body dynamics. In both case studies the tolerance analysis platform was applied to specify nominal dimensions and required tolerances to achieve the desired assembly yield. The computational platform offers an accessible tolerance analysis approach for accommodating assemblies subject to loading with low implementation demands. Efficient Uncertainty Quantification (UQ) in tolerance analysis and synthesis:  A novel approach is developed for addressing the high computational cost of Monte Carlo (MC) sampling in statistical tolerance analysis and synthesis, with Polynomial Chaos Expansion (PCE) uncertainty quantification. Compared to MC sampling, PCE offers significantly higher efficiency. The feasibility of PCE based UQ in tolerance synthesis is established through: theoretical analysis of the PCE method identifying working principles, implementation requirements, advantages and limitations; identification of a preferred method for determining PCE expansion coefficients in tolerance analysis; and, formulation of an approach for the validation of PCE statistical moment estimates.  PCE based UQ is subsequently implemented in a PIDO based tolerance synthesis platform for assemblies subject to loading. The resultant PIDO based tolerance synthesis platform integrates: highly efficient sparse grid based PCE UQ, parametric CAD/E models accommodating the effects of loading, cost‐tolerance modelling, yield quantification with Process Capability Indices (PCI), optimization of tolerance cost and yield with multiobjective Genetic Algorithm (GA).  To demonstrate the capabilities of the developed platform, two industry based case studies are used for validation, including: an automotive seat rail assembly consisting of compliant components subject to loading; and an automotive switch in assembly in which functionality is defined by external forces and multi‐body dynamics. In both case studies optimal tolerances were identified which satisfied desired yield and tolerance cost objectives. The addition of PCE to the tolerance synthesis platform resulted in large computational cost reductions without compromising accuracy compared to traditional MC methods. With traditional MC sampling UQ the required computational expense is impractically high. The resulting tolerance synthesis platform can be applied to tolerance analysis and synthesis with significantly reduced computation time while maintaining accurac

    Self-resilient production systems : framework for design synthesis of multi-station assembly systems

    Get PDF
    Product design changes are inevitable in the current trend of time-based competition where product models such as automotive bodies and aircraft fuselages are frequently upgraded and cause assembly process design changes. In recent years, several studies in engineering change management and reconfigurable systems have been conducted to address the challenges of frequent product and process design changes. However, the results of these studies are limited in their applications due to shortcomings in three aspects which are: (i) They rely heavily on past records which might only be a few relevant cases and insufficient to perform a reliable analysis; (ii) They focus mainly on managing design changes in product architecture instead of both product and process architecture; and (iii) They consider design changes at a station-level instead of a multistation level. To address the aforementioned challenges, this thesis proposes three interrelated research areas to simulate the design adjustments of the existing process architecture. These research areas involve: (i) the methodologies to model the existing process architecture design in order to use the developed models as assembly response functions for assessing Key Performance Indices (KPIs); (ii) the KPIs to assess quality, cost, and design complexity of the existing process architecture design which are used when making decisions to change the existing process architecture design; and (iii) the methodology to change the process architecture design to new optimal design solutions at a multi-station level. In the first research area, the methodology in modeling the functional dependence of process variables within the process architecture design are presented as well as the relations from process variables and product architecture design. To understand the engineering change propagation chain among process variables within the process architecture design, a functional dependence model is introduced to represent the design dependency among process variables by cascading relationships from customer requirements, product architecture, process architecture, and design tasks to optimise process variable design. This model is used to estimate the level of process variable design change propagation in the existing process architecture design Next, process yield, cost, and complexity indices are introduced and used as KPIs in this thesis to measure product quality, cost in changing the current process design, and dependency of process variables (i.e, change propagation), respectively. The process yield and complexity indices are obtained by using the Stream-of-Variation (SOVA) model and functional dependence model, respectively. The costing KPI is obtained by determining the cost in optimizing tolerances of process variables. The implication of the costing KPI on the overall cost in changing process architecture design is also discussed. These three comprehensive indices are used to support decision-making when redesigning the existing process architecture. Finally, the framework driven by functional optimisation is proposed to adjust the existing process architecture to meet the engineering change requirements. The framework provides a platform to integrate and analyze several individual design synthesis tasks which are necessary to optimise the multi-stage assembly processes such as tolerance of process variables, fixture layouts, or part-to-part joints. The developed framework based on transversal of hypergraph and task connectivity matrix which lead to the optimal sequence of these design tasks. In order to enhance visibility on the dependencies and hierarchy of design tasks, Design Structure Matrix and Task Flow Chain are also adopted. Three scenarios of engineering changes in industrial automotive design are used to illustrate the application of the proposed redesign methodology. The thesis concludes that it is not necessary to optimise all functional designs of process variables to accommodate the engineering changes. The selection of only relevant functional designs is sufficient, but the design optimisation of the process variables has to be conducted at the system level with consideration of dependency between selected functional designs

    Interaktion mit Medienfassaden : Design und Implementierung interaktiver Systeme fĂŒr große urbane Displays

    Get PDF
    Media facades are a prominent example of the digital augmentation of urban spaces. They denote the concept of turning the surface of a building into a large-scale urban screen. Due to their enormous size, they require interaction at a distance and they have a high level of visibility. Additionally, they are situated in a highly dynamic urban environment with rapidly changing conditions, which results in settings that are neither comparable, nor reproducible. Altogether, this makes the development of interactive media facade installations a challenging task. This thesis investigates the design of interactive installations for media facades holistically. A theoretical analysis of the design space for interactive installations for media facades is conducted to derive taxonomies to put media facade installations into context. Along with this, a set of observations and guidelines is provided to derive properties of the interaction from the technical characteristics of an interactive media facade installation. This thesis further provides three novel interaction techniques addressing the form factor and resolution of the facade, without the need for additionally instrumenting the space around the facades. The thesis contributes to the design of interactive media facade installations by providing a generalized media facade toolkit for rapid prototyping and simulating interactive media facade installations, independent of the media facade’s size, form factor, technology and underlying hardware.Die wachsende Zahl an Medienfassenden ist ein eindrucksvolles Beispiel fĂŒr die digitale Erweiterung des öffentlichen Raums. Medienfassaden beschreiben die Möglichkeit, die OberflĂ€che eines GebĂ€udes in ein digitales Display zu wandeln. Ihre GrĂ¶ĂŸe erfordert Interaktion aus einer gewissen Distanz und fĂŒhrt zu einer großen Sichtbarkeit der dargestellten Inhalte. Medienfassaden-Installationen sind bedingt durch ihre dynamische Umgebung nur schwerlich vergleich- und reproduzierbar. All dies macht die Entwicklung von Installationen fĂŒr Medienfassaden zu einer großen Herausforderung. Diese Arbeit beschĂ€ftigt sich mit der Entwicklung interaktiver Installationen fĂŒr Medienfassaden. Es wird eine theoretische Analyse des Design-Spaces interaktiver Medienfassaden-Installationen durchgefĂŒhrt und es werden Taxonomien entwickelt, die Medienfassaden-Installationen in Bezug zueinander setzen. In diesem Zusammenhang werden ausgehend von den technischen Charakteristika Eigenschaften der Interaktion erarbeitet. Zur Interaktion mit Medienfassaden werden drei neue Interaktionstechniken vorgestellt, die Form und Auflösung der Fassade berĂŒcksichtigen, ohne notwendigerweise die Umgebung der Fassade zu instrumentieren. Die Ergebnisse dieser Arbeit verbessern darĂŒber hinaus die Entwicklung von Installationen fĂŒr Medienfassaden, indem ein einheitliches Medienfassaden-Toolkit zum Rapid-Prototyping und zur Simulation interaktiver Installationen vorgestellt wird, das unabhĂ€ngig von GrĂ¶ĂŸe und Form der Medienfassade sowie unabhĂ€ngig von der verwendeten Technologie und der zugrunde liegenden Hardware ist

    Applications of the GapSpace Model for Multidimensional Mechanical Assemblies

    No full text
    corecore