1,722 research outputs found

    Adaptive formative assessment system based on computerized adaptive testing and the learning memory cycle for personalized learning

    Get PDF
    Computerized adaptive testing (CAT) can effectively facilitate student assessment by dynamically selecting questions on the basis of learner knowledge and item difficulty. However, most CAT models are designed for one-time evaluation rather than improving learning through formative assessment. Since students cannot remember everything, encouraging them to repeatedly evaluate their knowledge state and identify their weaknesses is critical when developing an adaptive formative assessment system in real educational contexts. This study aims to achieve this goal by proposing an adaptive formative assessment system based on CAT and the learning memory cycle to enable the repeated evaluation of students' knowledge. The CAT model measures student knowledge and item difficulty, and the learning memory cycle component of the system accounts for studentsā€™ retention of information learned from each item. The proposed system was compared with an adaptive assessment system based on CAT only and a traditional nonadaptive assessment system. A 7-week experiment was conducted among students in a university programming course. The experimental results indicated that the students who used the proposed assessment system outperformed the students who used the other two systems in terms of learning performance and engagement in practice tests and reading materials. The present study provides insights for researchers who wish to develop formative assessment systems that can adaptively generate practice tests

    Urnings:A new method for tracking dynamically changing parameters in paired comparison systems

    Get PDF
    We introduce a new rating system for tracking the development of parameters based on a stream of observations that can be viewed as paired comparisons. Rating systems are applied in competitive games, adaptive learning systems and platforms for product and service reviews. We model each observation as an outcome of a game of chance that depends on the parameters of interest (e.g. the outcome of a chess game depends on the abilities of the two players). Determining the probabilities of the different game outcomes is conceptualized as an urn problem, where a rating is represented by a probability (i.e. proportion of balls in the urn). This setup allows for evaluating the standard errors of the ratings and performing statistical inferences about the development of, and relations between, parameters. Theoretical properties of the system in terms of the invariant distributions of the ratings and their convergence are derived. The properties of the rating system are illustrated with simulated examples and its potential for answering research questions is illustrated using data from competitive chess, a movie review system, and an adaptive learning system for math

    Modeling language learning using specialized Elo ratings

    Get PDF
    Automatic assessment of the proficiency levels of the learner is a critical part of Intelligent Tutoring Systems. We present methods for assessment in the context of language learning. We use a specialized Elo formula used in conjunction with educational data mining. We simultaneously obtain ratings for the proficiency of the learners and for the difficulty of the linguistic concepts that the learners are trying to master. From the same data we also learn a graph structure representing a domain model capturing the relations among the concepts. This application of Elo provides ratings for learners and concepts which correlate well with subjective proficiency levels of the learners and difficulty levels of the concepts
    • ā€¦
    corecore