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ABSTRACT 

I’VE (URN)ED THIS: AN APPLICATION AND CRITERION-BASED EVALUATION 

OF THE URNINGS ALGORITHM 

SEPTEMBER 2023 

TED DAISHER, B.A., DEPAUL UNIVERSITY 

M.A., KENT STATE UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Lisa A. Keller 

There is increased interest in personalized learning and making e-learning environments more 

adaptable. Some e-learning systems may use an Item Response Theory (IRT)-based assessment 

system. An important distinction between assessment and learning contexts is that learner proficiency 

is expected to remain constant across an assessment, while it is expected to change over time in a 

learning context. Constant learner proficiency during an assessment enables conventional approaches 

to estimating person and item parameters using IRT. These IRT-based systems could be abandoned 

for alternative approaches to modeling learners and system learning content, but assessments may 

provide more functions than adapting learning material to students. Thus, there is the question, how 

can e-learning systems with IRT-based assessment components more dynamically adapt their learning 

content? Is there a solution that leverages IRT for adapting the learning content of the system? 

A promising solution is the Urnings algorithm. Like other candidate algorithms, it is 

computationally light, but this algorithm has mechanisms for preventing variance inflation and is 

suitable for e-learning contexts. It also provides a measure of uncertainty around estimates. It has 

been studied both through simulations and applications to e-learning systems. Results are promising; 

however, there has not been an application of the Urnings algorithm to an e-learning context where 

there are conventionally estimated person parameters to compare the algorithm estimates to. This 

study addresses this gap by applying the Urnings algorithm to a K–8 reading and mathematics 

learning platform. In data from this platform, we have person parameter estimates across academic 



v 

 

years from an in-system diagnostic assessment. Results from this study will help industry researchers 

understand the feasibility of the Urnings algorithm for large e-learning systems with IRT-based 

assessment components. 
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1 CHAPTER 

INTRODUCTION 

 There is increasing interest in personalized learning because of the benefits it can have for 

students. Personalized learning is when elements of learning are varied to align with a learner’s needs 

and interests. Learning objectives, instructional approaches, instructional content, or the sequence of 

content can all be varied (U.S. Department of Education, 2017). Personalized learning can be 

supported through e-learning systems designed to meet the needs, goals, talents, and interest of 

learners (Klašnja-Milićević et al., 2015). Wolf (2010) stated that technology can enhance 

personalized learning. Alamri et al. (2021) went further in stating it can be challenging to personalize 

learning without the support of information technology platforms. Sturgis et al. (2021) similarly 

argued technology is critical in personalizing learning. As a result of an increasing focus on 

customizing students’ instruction, and the role technology plays in enabling that, there has been a 

drive in developing digital platforms that differentiate instruction (Johnson et al, 2015).  

 There is also increasing interest in making e-learning environments more adaptable. Some e-

learning systems may use an Item Response Theory (IRT)-based assessment system such as IXL 

Learning (IXL Learning, 2020) and the Reading Plus program from DreamBox Learning (Reading 

Plus, 2021). An important distinction between assessment and learning contexts is that learner 

proficiency is expected to remain constant across an assessment, while it is expected to change over 

time in a learning context (Galvez et al., 2016). Constant learner proficiency during an assessment 

enables conventional approaches to estimating person and item parameters using IRT (Galvez et al., 

2016). These IRT-based systems could be abandoned for alternative approaches to modeling learners 

and system learning content, but assessments may provide more functions than adapting learning 

material to students. For example, assessment results could be used for reporting purposes or to help 

instructors plan interventions with students. Thus, there is the question, how can e-learning systems 
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with IRT-based assessment components more dynamically adapt their learning content? Is there a 

solution that leverages IRT for adapting the learning content of the system? 

 Two solutions that have been attempted are progress testing and growth modeling. Progress 

testing is testing with frequent, relatively short formative assessments (e.g., posttests when learners 

finish a unit of learning material). Growth modeling involves extensions of IRT that explicitly model 

for changes in a leaner’s proficiency over time. The disadvantage of progress testing is that it is 

generally considered intrusive, and e-learning designers are moving away from this kind of direct 

form of measuring students (Abyaa et al., 2019; Normadhi et al., 2019). The disadvantage of growth 

modeling is that estimating the parameters of these models is usually a computationally intensive 

process (Papoušek et al., 2014; Pelánek, 2016); thus, it would be difficult to scale this approach up to 

large systems making many on-the-fly estimations. 

 A third possible solution is algorithms that work with IRT. Unlike progress testing, these 

algorithms measure learner characteristics non-intrusively as learners complete learning tasks. Unlike 

growth modeling, these algorithms are computationally light weight, making it easy to scale them up 

to large systems (Brinkhuis et al., 2018). Some candidate algorithms are the Elo Rating System (Elo, 

1978; ERS), Glicko (Glickman, 1999), and TrueSkill (Herbrich et al., 2006); however, the ERS and 

Glicko suffer from variance inflation and deflation, undermining the ability to measure growth over 

time (Bolsinova et al., 2022; Hofman et al., 2020). Being able to measure growth is important in an e-

learning context. The ERS also does not provide a measure of uncertainty around learner and item 

estimates (Bolsinova et al., 2022; Glickman, 1999, Hofman et al., 2020). There is not direct evidence 

that TrueSkill suffers from variance inflation and deflation, and it provides a measure of uncertainty 

around estimates; however, it was built for team-based multiplayer online gaming (Herbrich et al., 

2006); thus, it has features that make it unsuitable for e-learning contexts. For example, along with 

evaluating individual performance, the algorithm also considers the performance of the team each 
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player is on (e.g., Did the player do well, but their team was defeated in the match?). This likely does 

not apply to many individual-focused e-learning contexts. 

 A promising alternative algorithm is the Urnings algorithm. Like the other algorithms, it is 

computationally light, but this algorithm has mechanisms for preventing variance inflation and is 

suitable for e-learning contexts. It also provides a measure of uncertainty around estimates (Bolsinova 

et al., 2022; Hofman et al., 2020). It has been studied both through simulations and applications to e-

learning systems. Results are promising; however, there has not been an application of the Urnings 

algorithm to an e-learning context where there are conventionally estimated person parameters to 

compare the algorithm estimates to. This study addresses this gap by applying the Urnings algorithm 

to a K-8 reading and mathematics learning platform. In data from this platform, we have person 

parameter estimates across academic years from an in–system diagnostic assessment. Results from 

this study will help industry researchers understand the feasibility of the Urnings algorithm for large 

e-learning systems with IRT-based assessment components.  
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2 CHAPTER 

LITERATURE REVIEW 

 The following is a review of research relevant to the problem of dynamically adapting 

content in a learning system with an IRT-based assessment component, with the key pre-requisite to 

doing so being accurately following proficiency as it changes in the system. First, contextualizing 

information is given on adaptive learning systems, the parts of these systems, the different types of 

these systems, and the techniques that have been used to model proficiency within these systems. This 

section is meant to show the broader field of work on adaptive learning systems this IRT-focused 

study is situated within. Second, how IRT has been used in adaptive learning systems is described—

with a focus on the approaches of progress testing, modeling change, and tracking. The organization 

of this section follows how dealing with changing proficiency was, over time, first tackled with 

progress testing, then with attempting to model change directly, and most recently with algorithms 

that track proficiency. The third approach marks a shift from having learning and assessment separate 

to an approach that integrates them, continually measuring proficiency while a learner is learning. 

The tracking section also weighs the advantages and disadvantages of different potential algorithms, 

building the argument for the Urnings algorithm as a promising method for following changing 

proficiency.     

2.1 What is an adaptive learning system?  

 Many e-learning environments are static, meaning each learner gets the same information, 

through the same structure, using the same interface. Some e-learning systems are adaptive, meaning 

they adapt in some way to meet the needs or preferences of learners (Brusilovsky, 1999). These 

systems can be called adaptive learning systems (ALS). These adaptive learning environments are 

part of a new generation of e-learning systems (Normadhi et al., 2019). Adaptation in these systems 

happens with the goal of providing an efficient and enjoyable learning experience (Shute & Towle, 

2003; Shute & Zapata-Rivera, 2007; Vagale & Niedrite, 2012).  
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2.1.1 What are the typical parts of an adaptive learning system? 

 In most cases, ALSs are based on four models (Chrysafiadi & Virvou, 2015; Shute & Towle, 

2003; Vagale & Niedrite 2012; Vandewaetere et al. 2011). The first is the learner model (also called 

the student model), which contains characteristics of the learner. The second is the domain model 

(also called the content model), which contains characteristics of the material in the system. The third 

is the media model (also called the instructional or presentation model), which monitors learners’ 

interaction with content and adjusts the presentation of material to support learning (e.g., providing 

hints to a student when they struggle to solve a problem). The fourth is the adaptation model (also 

called the adaptive engine) which guides the matching of learners to system material (Chrysafiadi & 

Virvou, 2015; Shute & Towle, 2003; Vagale & Niedrite 2012; Vandewaetere et al. 2011).  

 Another part of ALSs is the learner profile. The learner profile is a part of the learner model. 

The learner profile contains static information about the learner that is typically not used by the 

adaptation model (Abyaa et al., 2019). This includes information such as age and name (Abyaa et al., 

2019). The other part of the learner model is what is measured by the ALS and is typically used for 

adaptation (Abyaa et al., 2019; Sani, 2016). This can include characteristics like a learner’s 

proficiency in the domain subject.  

 To illustrate the models of an ALS, a system for teaching algebra may represent a learner 

through their proficiency as measured by Item Response Theory (the learner model). Course material 

or items in the system may be represented by their difficulty, also measured through Item Response 

Theory (the domain model).  As a learner works through algebra problems, the system may provide 

hints when the learner gets a step in a problem wrong (the media model). As the learner’s proficiency 

grows, the system will match them to content appropriate for the learner based on their proficiency 

estimate (the adaptation model).  
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2.1.2 What are the parts and methods for adaptation in an adaptive learning system? 

 Adaptation in these systems, determined by the adaptation model, can happen in different 

ways. Wauters et al. (2010) described three ways: form representation, content representation, and 

curriculum sequencing. Form representation refers to the way material is presented to learners. This 

includes, for example, whether the content contains pictures, video, or text only. Adaptive content 

representation refers to the system giving the learner help as needed in, for example, the steps of a 

problem-solving task. The system helps the learner based on the learner’s knowledge gaps that the 

system has identified. Adaptive curriculum sequencing refers to the system selecting material for a 

learner that is optimal, given some known characteristic of the learner (e.g., their proficiency; 

Wauters et al., 2010). 

 In addition to the ways a system can adapt, Wauters et al. (2010) also described the elements 

that can be used to guide adaptation. They classified them into three categories: course/item features, 

person features, and combinations. Course/item features (which would fall within the domain model) 

refers to characteristics of material in the system, (e.g., the difficulty of items). Person features (which 

would fall within the learner model) refer to characteristics of learners (e.g., proficiency, motivation, 

interests). Combinations refers to using both course/item features and person features together (e.g., 

matching material to learners by the difficulty of material and proficiency of learners; Wauters et al., 

2010). 

2.1.3 What are the ways that adaptive learning systems model learners? 

 To model learner characteristics, ALSs use explicit modeling, implicit modeling, or a 

combination of both (Normadhi et al., 2019). In explicit modeling (also called collaborative 

modeling) information is collected directly from the learner using methods such as questionnaires 

(Abyaa et al., 2019; Normadhi et al., 2019). The learner’s response to the survey reveals their degree 

of the target trait. In implicit modeling, information is collected in an indirect and non-intrusive way 
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(Abyaa et al., 2019). Implicit modeling typically uses some algorithm or program to automatically 

measure the target trait (Normadhi et al., 2019).  

 Some of the most common sources of data for explicit modeling are tests, questionnaires, 

group interactions, peer assessments, and monitoring tools such as face monitoring and eye tracking 

(Abyaa et al., 2019). Some common sources of data for implicit modeling are the learner’s behavior 

in the system (e.g., log data), search terms they used in the system, natural language inputs, and direct 

sensors (e.g., keyboard and mouse; Abyaa et al., 2019).  

 Abyaa et al. (2019) claims that explicit modeling tends to be more reliable. Others consider 

implicit modeling more accurate (Albadvi & Shahbazi, 2009), as the target trait, depending on what it 

is, can sometimes change quickly. Implicit modeling is better equipped to detect these changes 

(Botsios et al., 2008; Graf et al., 2010). Implicit modeling generally seems to be preferred over 

explicit modeling. Explicit modeling is considered intrusive, which is consequential as it can distract 

and demotivate learners (Abyaa et al., 2019). This is reflected in research trends. In their review of 

107 articles from 2013–2017, Abyaa et al. (2019) found that 76% of studies used implicit modeling. 

The only exception to this was when a system only used overlay modeling, in which case explicit 

modeling was more popular. In their review of 78 articles from 2010–2017, Normadhi et al. (2019) 

found 57 studies used implicit modeling, while only 12 studies used explicit modeling (in the form of 

questionnaires). However, Normadhi et al. (2019) noted that several studies used a combination of 

explicit and implicit modeling (about 45% of the reviewed articles). 

2.1.4 What learner characteristics tend to be used in the learner model? 

 Within the four typical models of an ALS, the learner model is considered a central pillar of 

the system (Abyaa et al., 2019). Many leaner characteristics have been used in the learner model over 

time. In their review, Abyaa et al. (2019) identified six categories. The first is the learner profile, 

containing static information about the learner such as name and age. The second is knowledge-
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related information, such as the learner’s proficiency in the domain, the skills they have mastered, and 

their misconceptions. The third is cognitive characteristics, such as learner’s working memory 

capacity. The fourth category is social characteristics such as the learner’s tendency to be 

collaborative. The fifth category is personality traits. The last category is characteristics related to 

motivation, such as the learner’s interests and level of engagement. Normadhi et al. (2019) grouped 

learner characteristics into three main categories based on Bloom’s taxonomy. The first, cognition, 

includes traits like working memory capacity, prior knowledge, and thinking process. The second, 

affective, includes interests, emotions, and attitudes. The third, behavior or psychomotor, includes 

physical movements and coordination.  

 Early work on learner modeling tended to focus on knowledge and related traits (Conati et al., 

1997; Jackson et al. 2003; Tennyson, 1975; Tennyson, 1993; Tennyson & Rothen, 1977). This aligns 

with what Chrysafiadi and Virvou (2013) found in their literature review from 2002 to 2013. They 

found cognitive traits such as knowledge, problem-solving ability, and critical thinking to be the most 

used characteristics in student models. For 2002 to 2008, they found knowledge level to be one of 

most focused on characteristics for student modeling. Nakic et al. (2015), in their review of 98 articles 

published from 2001 to 2013, found that learning styles was the most popular trait used for learner 

modeling (appearing in 27.6% of articles). However, background knowledge was the second most 

frequent (appearing in 16.3% of reviewed articles). Normadhi et al.’s (2019) more recent literature 

review, covering 78 articles from 2010 to 2017 found that learning styles was the most focused on 

trait for learner modeling (appearing in 44.87% of articles). This shows a strong historical focus on 

modeling learner proficiency with a recent shift towards interest in learning styles.  
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2.1.5 What techniques are used to model learners’ traits? 

2.1.5.1  Bayesian Knowledge Tracing. 

 Many techniques have been used to model learners’ traits. One common technique is 

Bayesian Knowledge Tracing (Abyaa et al., 2019). Bayesian Knowledge Tracing was introduced by 

Corbett and Anderson (1995). The model is a Hidden Markov Model in which student knowledge is a 

hidden variable and student performance is an observed variable (Sani et al., 2016). Each piece of 

knowledge or skill is represented with a model and can be represented in two states: learned or not yet 

learned (Abyaa et al., 2019).  The model has four parameters: 

1. The probability the learner already knows a skill (prior knowledge) 

2. The probability the learner will learn the skill after the item (or after each learning 

opportunity), even if they have no prior knowledge (learning rate) 

3. The probability the learner will answer the item correctly even though they have not learned 

the skill (guess) 

4. The probability the learner will answer the item incorrectly even though they have learned the 

skill (slip; Abyaa et al., 2019; Sani et al., 2016) 

 Some limitations of Bayesian Knowledge Tracing are that it cannot account for forgetting 

(Abyaa et al., 2019). The model assumes that a skill can only go from not yet learned to learned. The 

parameters for each skill in Bayesian Knowledge Tracing are also constant for a given skill, meaning 

they do not vary by student (Abyaa et al., 2019). Thus, this model cannot account for individual 

differences in this way (Sani et al. 2016). A third limitation is that each item is assumed to be 

associated with one piece of knowledge or skill. If an item represents multiple skills, for Bayesian 

Knowledge Tracing, it must be decided what one skill the item will represent (Sani et al., 2016).  
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2.1.5.2  Machine Learning 

 Machine learning is another technique for learner modeling. Observations of a learner’s 

behavior in a system can be used as training data for a model. That model can then predict future 

actions of the learner, which can guide the system (Webb et al., 2001). One example technique from 

machine learning that can be used for learner modeling is deep learning, specifically, neural networks 

(Abyaa et al., 2019). Deep learning is a form of machine learning where machines learn from data to 

understand the world as hierarchical concepts (Goodfellow et al., 2016). Neural networks are 

multilayer structures made up of nodes and the connections between nodes. These nodes are divided 

into layers through which input is passed (Schmidhuber, 2015). A disadvantage of machine learning 

to student modeling is that it can be difficult to know how the algorithm arrived at a particular 

outcome based on the predictors (Sani et al., 2016). It is important in the context of learner modeling 

to have clear support for a particular decision (Sani et al., 2016).  

2.1.5.3  Overlay Model 

 Another very common approach to learner modeling is overlay modeling (Abyaa et al., 

2019). This approach was introduced by Stansfield et al. (1976). In the overlay model, knowledge is 

represented in the same way in both the domain and learner model (Sani et al., 2016). Both are 

represented as sets of elements—individual topics and concepts (Chrysafiadi & Virvou, 2013). The 

collection of elements in the domain represents expert-level knowledge of the domain subject 

(Brusilovsky & Millán, 2007; Liu & Wang, 2007). The elements in the learner model are a subset of 

the elements of the domain model (Martins et al., 2008; Vélez et al., 2008). The overlay model 

represents the degree of mastery the learner has (Nguyen & Do, 2008). The difference between the 

learner and domain model represents the learner’s lack of skill (Sani et al., 2016). Figure 1 shows an 

example of a small overlay model. 
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Figure 1 

 

Example Overlay Model 

 

 In this example, three mathematics skills are represented: adding and subtracting with 1-digit 

numbers, adding and subtracting with 2-digit numbers and adding and subtracting within 20.  The 

first two skills are prerequisites for the third. This is represented in the placement of the third skill 

above the others and the lines connecting each of the first two skills to the third. The values in each 

node of the network represent the probability the learner has mastered the represented skill.  

 A benefit of the overlay model is that mastery over the elements in the model can be 

represented in different ways. They can be represented as a binary (i.e., mastered or not mastered), 

qualitative labels such as poor-average-good, or a probability that the learner has mastered the skill 

(Brusilovsky & Millán, 2007). Also, like Bayesian Knowledge Tracing, knowledge of each skill can 

be represented independently (Chrysafiadi & Virvou, 2013). A limitation of the base form of the 

overlay model is it can only represent a lack of knowledge. In its base form, it cannot, for example, 

model misconceptions (Sani et al. 2016).  

 An extension of the overlay model that can represent misconceptions is the perturbation 

model (Mayo & Mitroic, 2001). The perturbation model is built on the overlay model by including 

possible mistakes the learner might make (Martins et al., 2008). Problems are generated based on 
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these possible mistakes. The generated problem a learner gets wrong indicates what misconceptions 

they may have about the concept in the problem (Martins et al., 2008). 

 Another approach that falls within the overlay model category is constraint-based modeling, 

which was introduced by Ohlsson (1994). In this approach, both the learner and domain are 

represented with constraints. A constraint is composed of a relevance clause, indicating when in a 

task the constraint is relevant (e.g., if the task calls for a certain concept or skill), and a satisfaction 

clause, which details what the learner needs to do in their solution to satisfy the constraint (Martin, 

1999). The learner model is the set of constraints the learner does or does not know, and the domain 

model is the full set of constraints that compose the domain subject (Guerra et al. 2015; Vištica et al. 

2016). A benefit of constraint-based modeling is it is computationally simple (Mitrovic et al., 2001). 

A disadvantage of constraint-based modeling is it does not capture the learner’s problem-solving 

strategy for a problem. It cannot, for example, recognize and accept a novel solution if it violates a 

constraint (Sani et al., 2016). 

2.1.5.4  Stereotyping 

 Stereotyping is another common approach to learner modeling. This approach was introduced 

by Rich (1979). Stereotyping involves clustering learners into groups based on some shared 

characteristic (Chrysafiadi & Virvou, 2013). This approach is often a solution when new learners 

enter a system, and there is little information for the system to model them (Tsirigi & Viryou, 2002). 

A benefit of stereotyping is that information about an individual user can be inferred from their 

stereotype membership (Zhang & Han, 2005). A disadvantage of stereotyping is that learners in the 

system have to be divisible into meaningful groups, which may not be possible, and these groups 

have to be defined manually by a system designer (Kass, 1991).  
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2.1.5.5  Ontologies 

 Ontologies are a formal naming and defining of categories and concepts in a domain as well 

as the relationships between those categories and concepts (Abyaa et al., 2019). They provide a 

common vocabulary to share information about a domain that machines can interpret (Noy & 

Mcguinness, 2001). The advantage of ontologies is their ability to be extended, their reusability, and 

their simplicity regarding implementation (Abyaa et al., 2019). 

2.1.5.6   Bayesian Networks 

 There are some techniques in learner modeling used to model uncertainty about traits. 

Bayesian networks are one common approach to this (Abyaa et al., 2019). A Bayesian network is a 

directed acyclic graph. The nodes of the graph represent variables, and the arcs between nodes 

represent the probabilistic dependencies among the variables (Pearl, 1988). In student modeling, the 

nodes of Bayesian networks can represent different dimensions of the learner being modeled, such as 

knowledge, misconceptions, and emotions (Chrysafiadi & Virvou, 2013). Bayesian networks are 

attractive because of their intuitive graphical representation and their strong probability computations 

of unobserved variables from observed variables (Desmarais & Baker, 2012). 

2.1.5.7  Fuzzy Logic 

 Like Bayesian networks, fuzzy logic is a way of handling uncertainty around a learner 

characteristic. Fuzzy logic is essentially representing traits in degrees rather than binaries (e.g., a 

percentage ranging from 0 to 1 rather than just a 0 or 1). Fuzzy logic involves a membership function 

that, based on input, provides as output the probability of membership in a group (Drigas et al., 2009). 

Fuzzy logic can be used with data that is imprecise or incomplete, as well as with subjective human 

judgment (Drigas et al., 2009). A weakness of fuzzy systems is that the rules of the membership 

function are decided using human logic. Fuzzy systems cannot be trained on data like other 
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approaches (Sani et al., 2016); thus, when systems become more complex, and more input is 

considered, building the membership function becomes more difficult (Goel et al., 2012). 

2.2 What techniques are most often used for learner modeling? 

 In their review of articles from 2002 to 2013, Chrysafiadi and Virvou (2013) found that from 

2002 to 2007, the overlay model was the most used approach to learner modeling. They also noted 

that from 2002 to 2007, fuzzy logic was the typical approach to incorporating uncertainty into learner 

modeling. From 2007 to 2013, they saw an increase in probabilistic approaches to incorporating 

uncertainty. Sani et al. (2016) found in their review of articles from 2010 to 2015 that stereotyping, 

fuzzy logic, and Bayesian approaches were the most common. Normadhi et al. (2019) found in their 

review of articles from 2010 to 2017 that machine learning was the most common approach. Abyaa et 

al. (2019) in their review of articles from 2013 to 2017 found that in these more recent years, machine 

learning was the most used learner modeling approach. They note that many researchers used hybrid 

approaches, combining multiple techniques for learner modeling. There is evidence indicating 

Bayesian networks for learner modeling may be more effective than other types of learner modeling 

(Ma et al., 2014).  

2.3 What are common types of adaptive learning systems? 

 The most common types of ALSs are intelligent tutoring systems (ITS) and adaptive 

hypermedia systems, sometimes also called adaptive educational hypermedia systems (AHS; Abyaa 

et al., 2019; Brusilovsky, 1999). ITSs typically provide a limited amount of material and are focused 

on supporting learners in problem solving tasks (Wauters et al., 2010). As Pelánek (2017) explained, 

these systems tend to focus more on learning complex skills than facts. AHSs typically provide a lot 

of material in different formats (text, graphics, animation, audio etc.) connected though a linking 

system (Papadimitriou & Gyftodimos, 2017). 
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2.3.1.1  Intelligent Tutoring Systems. 

 ITSs are typically intended to imitate a one-on-one teaching experience, similar to being 

instructed by a teacher or tutor (du Boulay, 2016). For each learner, an ITS typically 1) presents 

information to be learned, 2) assigns the learner tasks, 3) provides feedback or hints for tasks based 

on how the learner is doing, and 4) offers prompts to promote learning and growth (Ma et al., 2014).  

 ITSs can be divided into two types: task-based and item-based (Wauters et al., 2010). A task-

based ITS presents substantial problems which are typically broken down into learnable chunks. The 

learner tries to form solutions to the tasks and the system provides scaffolding and support (Wauters 

et al., 2010). An item-based ITS is composed of simple questions. The system usually gives hints and 

feedback to learners as they respond to questions (Wauters et al., 2010). Task-based ITSs can be 

further divided into step-based systems and sub-step based systems (VanLehn, 2011). Both types 

provide help at steps in procedural problem solving. The distinction between the two is that a sub-step 

system provides feedback at more granular steps than is conventional. The distinction between the 

two is subjective.  

 Alabdulhadi and Faisal (2021), in their review of 47 articles published from 2010 to 2018, 

found that for STEM-related ITSs, most ITSs focused on computer science and engineering, as well 

as basic computing skills. They also found that these ITSs usually targeted undergraduate students 

(Alabdulhadi & Faisal, 2021).  

 The benefits of ITSs are that they offer convenient and low-cost studying support that is not 

restricted by class time or location (Ding & Cao, 2017). They can also reduce the workload of tutors 

by helping with grading and decisions around student performance (Paravatiet et al., 2017). A 

weakness of ITSs is that they cannot fully emulate the complexity and sophistication of one-to-one 

tutoring with a person (Alabdulhadi & Faisal, 2021). 
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 There is evidence ITSs are effective at helping students learn. VanLehn (2011) reviewed 

experiments comparing the effectiveness of human tutoring, computer tutoring, and no tutoring. Their 

meta-analysis with 95 comparisons indicated that step-based ITSs are around as effective as human 

tutors (d = 0.76 compared to d = 0.79).  Ma et al. (2014) also did a meta-analysis with 107 effect 

sizes and 14,321 extracted participants. They compared the effectiveness of ITSs for different 

outcomes (e.g., declarative and procedural knowledge) and different non-ITS learning environments 

(e.g., traditional classroom instruction, individual computer instruction). The studies reviewed ITSs 

used in different ways. Typically, they were used to provide students feedback on their work, but they 

were also sometimes used as the primary means of instruction. The authors found using an ITS lead 

to greater achievement than large-group teacher-led instruction (g = 0.42), non-ITS computer-based 

instruction (g = 0.57) and workbooks (g = 0.35). They found there was not a significant difference 

between ITS use and one-to-one tutoring (g = .11) or small-group instruction (0.42). They also found 

that regardless of the way an ITS was used (e.g., principal means of instruction, an aid to instruction), 

there was a positive average effect size over not using an ITS (Ma et al., 2014).  

2.3.1.2  Adaptive Hypermedia Systems. 

 AHSs combine hypermedia and ITSs to produce systems whose content, links, and other 

features dynamically adapt to learners based on learner characteristics (Papadimitriou & Gyftodimos, 

2017). Wauters et al. (2010) broadly described how ALSs can adapt through how content is 

presented, providing the learner hints and support as needed, and changing the sequence of material. 

AHSs can adapt in these ways but can also adapt through navigation and meta-adaptive navigation 

(Papadimitriou & Gyftodimos, 2017). Navigation refers to adapting link structures available to the 

learner to guide them towards relevant material (Papadimitriou & Gyftodimos, 2017). An example of 

this would be hiding links to material from the learner based on their performance in the system. 

Meta-adaptive navigation refers to adapting the navigation technique for the learner based on what 

likely suits them best given the context. Examples of navigation techniques are the mentioned 
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approach of hiding links, as well as sorting links the learner can see or offering direct suggestions 

(Papadimitriou & Gyftodimos, 2017).  

 There have been three generations of AHSs over time: first, second, and third. The distinction 

between generations is based on when they were developed and how the system is deployed (Carver, 

et al., 1999). First generation AHSs were not distributed, meaning a system existed entirely on a 

single computer (not across a series of networked computers). These systems had limited adaptability 

based on stereotype models of learners (Böcker, et al., 1990; Boyle & Teh, 1993; Brusilovsky, 1992). 

The second generation was deployed through the Internet. Adaptation in these systems was more 

sophisticated (e.g., more forms of media available) and learners were modeled with more 

characteristics (Brusilovsky & Eklund, 1998; De Bra & Calvi, 1998). The third generation further 

increased the number of characteristics learners could be modeled with and provided a finer grain of 

multimedia adaptation (Colace et al., 2014). 

 In their review of 40 articles, Papadimitriou and Gyftodimos (2017), found that, for AHSs, 

the most used learner characteristic in learner modeling is knowledge level, closely followed by 

learning or cognitive style. Knowledge level was used in 27 out of the 40 articles reviewed. Cognitive 

or learning style was used in 24 out of the 40 articles. They also found for AHSs that the most 

common form of adaption is adaptive navigation. Out of the 40 articles reviewed, 33 systems used 

this form of adaptation. They note that many systems used a combination of different forms of 

adaptation (e.g., adaptive navigation with adaptive curriculum sequencing).  

2.4 How has Item Response Theory been used with adaptive learning systems? 

2.4.1 What is item response theory?  

 Item Response Theory (IRT) is a statistical framework in which examinees can be 

characterized by one or more traits (e.g., their proficiency in a domain). Scores for these traits are 

estimated, through mathematical models, using examinees’ observed performance on test items. 
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Similarly, one or more traits of items are estimated through a group of examinees’ performance on the 

items. The person and central item trait (the item difficulty) are located on the same mathematical 

scale (de Ayala, 2009). The simplest IRT model is the Rasch model (Rasch, 1960), which estimates 

the probability of an examinee getting an item correct (i.e., endorsing the item) based on the distance 

between the person’s score on the trait measured by the item and the item difficulty on their shared 

scale. The following equation shows the Rasch model. The equation shows the probability of 

examinee i endorsing item j given the proficiency of the examinee and the difficulty of the item.  

𝑝(𝑥𝑗 = 1|𝜃𝑖, 𝑏𝑗) =
𝑒(𝜃𝑖−𝑏𝑗)

1 + 𝑒(𝜃𝑖−𝑏𝑗)
 

(1) 

Where: 

𝑝(𝑥𝑗 = 1|𝜃𝑖, 𝑏𝑗) is the probability of student i endorsing item j given the proficiency of the student 

(expressed as a logit value) and the difficulty of the item (also expressed as a logit value). 

𝜃𝑖 is the proficiency of student i. 

𝑏𝑗 is the difficulty of item j. 

 IRT has been used with adaptive learning systems over the last two decades. Unlike 

assessments, in a learning environment, learner proficiency is expected to change over tasks; thus, 

applications of IRT with ALS are typically towards measuring changes in learners over time. Early 

applications typically used progress testing for this (i.e., frequent, relatively short tests). More 

complex modeling that directly models growth is another approach researchers have considered. In 

the last decade, more attention has been paid to combining IRT with algorithms to track learner 

proficiency.  

2.4.2 Progress Testing  

 Progress testing is frequently administering tests to quickly detect changes in proficiency and 

possibly intervene with learners (Wauters et al., 2010). Many applications of IRT with ALSs involve 
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progress testing. Chen et al. (2004) developed a courseware recommendation system that used a 

combination of IRT and fuzzy logic to recommend courseware to learners. After completing a unit of 

learning material, a learner reported the percent of material they understood and rated the difficulty of 

the unit. Their reported degree of understanding was used in a modified proficiency estimation 

approach using the Rasch model to update their proficiency estimate. A learner was then 

recommended the unit in the system with a difficulty parameter closest to the learner’s updated 

proficiency.  

 Chen and Hsieh (2005) developed a similar system to Chen et al. (2004). Rather than report a 

percentage of understanding, at the end of a unit of material, learners reported a “yes” or “no” for if 

they understood the material. They also rated the difficulty of course material on a Likert-type scale 

from “very hard” to “very easy.” In a similar way to Chen et al. (2004), the self-reporting in a distinct 

testing section at the end of course material lends this to be classified as progress testing. Chen et al. 

(2006) developed a learning system that considered courseware difficulty, learner proficiency, and the 

continuity of the concept being studied in recommending course material. IRT was used similarly to 

Chen et al. (2004) and Chen and Hsieh (2005) in a self-reporting section at the end of units of course 

material.  

 Leung and Li (2007) created an adaptive system for a data management course offered in the 

e-school of a University in Japan. In their system, material was divided into compulsory and optional 

material. Pretests and posttests with compulsory material were used to decide if a student should 

receive optional material.  

 Chen and Hsu (2008) applied fuzzy item response theory in a mobile system to recommend 

English news articles to learners based on their vocabulary ability. Like other work by Chen, after a 

learner finished a news article, they were asked to self-report their understanding (from 0 to 100%) 

and how difficult they thought the article was to read (easy, moderate, or hard). Like Chen et al. 
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(2004), a learner’s reported degree of understanding was used with the Rasch model to update their 

proficiency estimate. The system then recommended new English news articles to the learner based 

on the learner’s updated proficiency and the difficulty estimates of the news articles. The 

recommended articles were those with difficulty values closest to the learner’s updated proficiency 

estimate. Chen and Chung (2008) similarly applied IRT in a system for learning English vocabulary; 

however, their application did not involve self-reporting. Their system was also more focused on 

direct vocabulary review rather than reading news articles. Learners took 10-item quizzes at the end 

of a period of learning new words. A learner’s proficiency estimate was updated using their responses 

to quiz items and the Rasch model. The learner was then recommended new vocabulary words to 

learn based on their updated proficiency estimate and the difficulty values of the words. The words 

recommended to the learner were those with difficulty values closest to the updated proficiency 

estimate of the learner.  

 Baylari and Montazer (2009) applied IRT with an artificial neural network in their proposed 

system. Their system involved 10-item pretests, posttests, and review tests interspersed among units 

of learning material. Items were modeled using the 3-parameter model. The artificial neural network 

took as input item characteristics and responses. It used them to diagnose learner problems and then 

recommended appropriate learning material. Yarandi et. al (2012) presented an ontology-based 

system that helped learners select appropriate learning paths within the system. Similar to other 

applications, they used IRT in discrete tests within the system. After learners completed units of 

learning material, they took a test, and the IRT-based results of that test were used by the system to 

guide learners’ choices of what material to select next. Huang and Shiu (2012) proposed a user-

centric adaptive learning system that used sequential pattern mining to build learning paths for 

learners. Their system used IRT in a pretest, posttest set up. Learners took pre-tests that identified 

concepts they were unfamiliar with. The system built a learning path for each learner based on their 

tests results. Once the learner finished their learning path, they were tested again.  
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 Hosseini et al. (2013) implemented an ontology-based adaptive learning system that used 

several learner characteristics to model the learner (proficiency estimates from IRT, learning styles, 

preferences, and prior knowledge). After a learner finished a topic, they took a test, and their 

proficiency was estimated using the 3-parameter model. This estimate was used to move the student 

forward or to suggest an alternative learning path, such as reviewing pre-requisite material. The other 

characteristics of the learner, such as learning style, were used to adapt the presentation and 

navigation support with material.  

 An issue with progress testing is that it is generally considered intrusive; this is important as 

it may distract or demotivate learners (Abyaa et al., 2019). The broad trend in ALSs is towards less 

direct forms of updating learner characteristics. In their review of 107 articles from 2013–2017, 

Abyaa et al. (2019) found 76% of studies used implicit measurement over explicit forms. Progress 

testing is an explicit form of measurement; thus, this is not an ideal long-term solution for making 

IRT-based learning systems more adaptive.  

2.4.3 Modeling Change 

 Along with progress testing, modeling growth directly has been another approach to using 

IRT in learning contexts. In the context of student modeling in ITSs, Pelánek and Jarušek (2015) 

proposed a model estimating the time it takes to successfully complete a problem based on learner 

proficiency and item-related parameters. They also incorporated learning into the model through 

modeling growth with a learning curve. In their proposed model, an increase to a student’s 

proficiency is calculated by multiplying the individual student’s learning rate by the logarithm of the 

serial position of an item or problem (e.g., if the at-hand item is the 50th the student has seen, then 

log(50)). The following is their model. 
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𝑡𝑠𝑝 = 𝑏𝑝 + 𝑎𝑝 (𝜃𝑠 + 𝛿𝑠 ⋅ log(𝑘𝑠𝑝)) + 𝜖 

(2) 

Where: 

𝑡𝑠𝑝 is the time it takes student s to successfully complete problem p. 

𝑏𝑝 is the difficulty parameter for item p. 

𝑎𝑝 is the discrimination parameter for item p. 

𝜃𝑠 is the learner’s proficiency at the start of their session. 

𝛿𝑠 is the learning rate for student s (i.e., how much they learn per item). 

𝑘𝑠𝑝 is the position of problem p in the sequence of items student s has seen. 

𝜖 is error. 

 Abbakumov et al. (2019) proposed two dynamic extensions of the Rasch model for massive 

open online courses. They apply their model to data from three Coursera courses on economics, 

neuroeconomics, and game theory. These are video-lecture based courses where learners are allowed 

multiple attempts at items with hints and feedback between attempts. While these types of courses are 

not adaptive learning systems, this is still an application of IRT to an e-learning context that addresses 

changes to learners’ proficiency. 

 The following is their most granular model. Their other model is the same but does not allow 

for variation of the effects of video and attempt across individual students. This model is based on a 

reformulation of the Rasch model by Van den Noortgate et al. (2003) and follows the approach to 

modeling individual proficiency dynamics presented by Verguts and De Boeck (2000), De Boek et al. 

(2011) and Kadengye et al. (2014,2015).  

𝐿𝑜𝑔𝑖𝑡(𝜋𝑖𝑗) = 𝑏0 + (𝑏10 + 𝑏1𝑖) ∗ 𝑣𝑖𝑑𝑒𝑜𝑖𝑗 + (𝑏20 + 𝑏2𝑖) ∗ 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑖𝑗 + 𝑢1𝑖 + 𝑢2𝑗 

(3) 

Where: 

𝜋𝑖𝑗 is the probability of learner i endorsing item j. 
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𝑏0 is the logit probability of a correct response by an average student on an average item. 

𝑣𝑖𝑑𝑒𝑜𝑖𝑗 is the progressive sum of video lectures that student i watched before responding to item j. 

𝑏10 is the overall effect of the progressive sum of video lectures. 

𝑏1𝑖 is the individual deviation of student i from the overall effect of the progressive sum of video 

lectures. 

𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑖𝑗 takes on values of 0, 1, 2, 3 or 4–representing the first (0) and higher (1 and up) attempts 

student i took to endorse item j. More than 4 attempts is represented as 4. 

𝑏20 represents the overall effect of an extra attempt. 

𝑏2𝑖 represents the deviation of learner i from the overall effect of attempt. 

𝑢1𝑖 is the deviation from the intercept for individual student i. 

𝑢2𝑗 is the deviation from the intercept for individual item j. 

 While not directly modeling growth, Galvez et al. (2016) addressed changing learner 

proficiency without progress testing. Galvez et al. (2016) applied IRT to a constraint-based modeling 

system. Instead of modeling a problem as a single item, they modeled each constraint as an item (in 

constraint-based modeling, each problem is made up of a set of relevant constraints that must be 

satisfied by the learner’s solution). Each constraint had its own equivalent to the item characteristic 

curve, which they referred to as the constraint characteristic curve. An assumption of calibrating item 

parameters is that an examinee’s proficiency remains constant over the entire assessment. Galvez et 

al. (2016) proposed three methods for addressing this in their context: constant knowledge session, 

first time relevant, and problem grouping. All these approaches work by manipulating learner 

response data. 

 In the constant knowledge session approach, we assume that a learner’s knowledge is 

constant for some amount of time. If consecutive sessions are close enough in time, they are grouped. 

The same student, represented across groups, where in each group their knowledge is assumed to be 

different, is, instead, considered a set of separate virtual students with different proficiencies.  
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 The first-time relevant approach is when the response of a learner to a constraint is only 

considered if it is the first time the learner has encountered the constraint. A given constraint can be 

relevant across multiple problems. The second time a learner responds to a problem calling for the 

given constraint, it is possible that some relevant learning happened from their first encounter with 

the constraint. The problem grouping approach involves counting all attempts at a single problem as 

one session, meaning each problem is a single session. This approach assumes learning happens 

between problems (i.e., at the successful completion of a problem). 

 There are some disadvantages to using growth modeling approaches in ALSs. One issue is 

that these approaches often require large samples for parameter calibration and involve 

computationally intensive estimation techniques (Papoušek et al., 2014; Pelánek, 2016). This issue 

applies to other, non-growth IRT-based approaches such as Bayesian Knowledge Tracing. Another 

issue is that, by applying a specific growth model, an assumption is made about how learners will 

grow over time. There may be large individual differences between learners in how they develop over 

time (Bolsinova et al., 2022). There may also be complex feedback loops based on performance in a 

system, such as teacher intervention, that may change the trajectory of proficiency for learners 

(Bolsinova et al., 2022). These limitations make growth modeling a non-ideal choice for large e-

learning systems where many estimations need to be made quickly.  

2.4.4 Tracking 

 A third approach to measuring changes in learner proficiency with IRT is tracking. Tracking 

is using algorithms to trace parameters as they develop over time, rather than model them (Brinkhuis 

& Maris, 2010). With tracking, parameter estimates happen on-the-fly as learners do tasks in the 

learning environment.   
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2.4.4.1  Elo Rating System 

 A popular tracking system that has been applied in e-learning contexts is the Elo rating 

system (Elo, 1978; ERS). This system was developed by Arpad Elo in 1960 and is intended for 

dynamic ratings in contexts where there are large amounts of paired comparison data. Paired 

comparison data are data representing matches between two players or teams (Brinkhuis et al., 2018). 

There are several different forms of the ERS. The following is the Current Rating Formula for 

Continuous Measurement (Elo, 1978, p. 25) 

𝑅𝑛 = 𝑅𝑜 + 𝐾(𝑊 −𝑊𝑒) 

(4) 

Where: 

𝑅𝑛 is the new rating after the event. 

𝑅𝑜 is the pre-event rating. 

𝐾 is the rating point value of a single game score. 

𝑊 is the actual game score, each win counting 1, each draw 1/2. 

𝑊𝑒 is the expected game score based on 𝑅𝑜. 

 In a match between two players, each player has a rating, 𝑅𝑜 , before the match. This rating is 

updated to 𝑅𝑛 based on the weighted difference between the observed outcome of the match 𝑊 and 

the expected outcome of the match 𝑊𝑒. The expected match outcome is based on the players’ ratings 

before the match begins. 𝑊 can be 1, ½, or 0, representing a win, a tie, or a loss. The difference 

between the actual and expected match outcome is weighted by 𝐾.  𝐾 is, thus, a control for how much 

ratings can change between matches.  

 The expected match outcome is calculated using the Bradley Terry Luce (BTL) model, which 

is closely related to the Rasch model in IRT. In the BTL, two people oppose each other, while in the 

Rasch model, a person opposes an item (Rasch, 1960; Bradley & Terry, 1952). Klinkenberg et al. 
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(2011) introduced the ERS to e-learning. They adapted the ERS such that the update for the second 

person in the match is replaced with an update for the item. The following is their adaptation. 

𝜃𝑖̂ = 𝜃𝑖 + 𝐾(𝑆𝑖 − 𝐸(𝑆𝑖)) 

𝜃𝑗̂ = 𝜃𝑗 + 𝐾 (𝑆𝑗 − 𝐸(𝑆𝑗)) 

(5) 

Where: 

𝜃𝑖̂ is the estimated rating for learner i after the match. 

𝜃𝑖 is the estimated rating for learner i before the match. 

𝐾 is a weight controlling how much the difference between the observed and expected match 

outcome can update estimated ratings. 

𝑆𝑖 is the observed outcome of the match for learner i (1 if the learner endorsed the item and 0 if they 

did not). 

𝐸(𝑆𝑖) is the expected outcome of the match for learner i based on the ratings of the learner and item at 

the start of the match. This is expressed as the probability of the learner endorsing the item and comes 

from the Rasch model. 

𝜃𝑗̂ is the estimated rating for item j after the match. 

𝜃𝑗 is the estimated rating for item j before the match. 

𝑆𝑗 is the observed outcome of the match for item j (1 if the learner did not endorse the item and 0 if 

they did). 

𝐸(𝑆𝑗) is the expected outcome of the match for item j based on the ratings of the learner and item at 

the start of the match. This is expressed as the probability of the learner not endorsing the item and 

comes from the Rasch model. 

 There are several desirable properties to the ERS. First, it is self-correcting (Brinkhuis et al., 

2018). For example, if the actual outcome of the match was the learner endorsed the item, and it was 

estimated that they only had a 20% probability of endorsing the item, then they will have a relatively 

large increase to their proficiency estimate (compared to if they had a 70% estimated probability of 

endorsing the item). If this was a moderate overestimate, then in a later match the learner may not 

endorse an item when they had a 60% estimated probability of endorsing the item. Their proficiency 
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estimate would then be lowered by the system closer to its true value. Another benefit of the ERS is 

that it is computationally light (Brinkhuis et al., 2018). The ERS can easily update parameter 

estimates in real-time on very large data. A similar scaling up of more computationally intense 

methods for real-time updates would be more challenging (Brinkhuis et al., 2018; Pelánek et al., 

2017; Reddick, 2019).  

 A problem with the ERS is that it suffers from rating inflation and deflation (Glickman, 

1999). This can also be called scale drift (Klinkenberg et al, 2011). One source of drift is from when 

learners enter and leave a system. When a learner leaves a system, they tend to have higher ratings 

than when they entered the system. This causes a downward drift in item ratings, which in turn lowers 

person ratings (Klinkenberg et al, 2011; Reddick, 2019). Another source of drift, inflation 

specifically, is adaptive matchmaking. This is when a system matches learners to items based on 

learner and item ratings (Hofman et al., 2020). A consequence of this is that ratings at different time 

points cannot be compared, meaning we cannot measure growth (Klinkenberg et al., 2011).  

 There have been several applications and evaluations of the ERS in e-learning contexts. 

Klinkenberg et al. (2011), when they introduced ERS to e-learning, applied it to Math Garden. Math 

Garden is a web-based environment where learners can practice addition, subtraction, multiplication, 

and division. They used an extension of the Rasch model with the ERS that considered response time. 

They also used a function to adjust the weight, K, in the ERS based on recency and frequency. If a 

learner had not been in many matches, and there was a large lapse in time between the last match 

involving the learner and the current match involving the learner, then there was more uncertainty 

around the rating of the learner. The function controlling K accounted for instances of this by 

increasing the weight. This allowed for more changes in learner rating estimates between matches. If 

a learner had been in many matches and was in a match recently, then there was less uncertainty 

around their rating estimate. The function controlling for K accounted for this by decreasing the 
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weight. This restricted the amount the learner rating could change between matches. The same 

applied to items.  

 The authors evaluated how well the ERS estimated learner proficiency by seeing how 

estimates correlated with learner scores from the pupil monitoring system of the National Institute for 

Educational Measurement (CITO). The correlations between the ERS and CITO ranged from 0.78 to 

0.84 for the four domains practiced in Math Gardens. As context, the correlation of mid-year and end-

of-year CITO scores from the 2007 to 2008 academic year was 0.95. They also evaluated item 

difficulty estimates by assessing their reliability. They correlated item difficulties from week 44 of the 

study, which they considered established, to all item ratings in subsequent weeks. Across 32 weeks, 

the correlation stayed above 0.95.  

 Wauters et al. (2011) compared six item parameter estimation techniques to conventional 

IRT-based calibration: learner feedback, proportion correct, expert rating, paired comparison among 

learners, paired comparison with an expert, and the ERS. Using learner feedback to estimate item 

parameters involves asking learners two questions: “Do you understand the content of the course 

material?” and “How do you think about the difficulty of the course material?” Learners respond to 

the second question using a Likert-type scale, and their ratings are averaged. The difficulty level of 

course material is the weighted linear combination of the difficulty from the averaged learner ratings 

and expert ratings. Proportion correct is the number of learners who responded to the item correctly 

over the total number of learners who responded to the item. Paired comparison refers to taking an 

item with an unknown difficulty and locating it in a series of 11 items that are ordered by their 

difficulty. The item is located using human judgment.  

 The data for the study were items on French verb conjugation. Participants were students and 

French teachers from the Flemish region of Belgium. These methods were evaluated by the 

correlation of difficulty estimates with the true difficulties of items. The ERS achieved a correlation 
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of 0.85. For context, conventional IRT-calibration, proportion correct, and learner feedback achieved 

correlations of 0.90, 0.90, and 0.88 respectively. The correlations for the other methods were lower 

than the ERS.  

 Papoušek et al. (2014) applied the ERS to a system for learning geography facts, specifically 

the names of countries (slepemapy.cz). In the system, learners responded to a series of questions 

(“Where is country X?”, “What is the name of country X?”). They responded to questions using an 

interactive map, and learners received feedback on their responses. The authors used both the Rasch 

model and the ERS to estimate item difficulties. They found that the results from joint maximum 

likelihood estimation, a conventional approach for estimating item parameters with IRT, and the 

estimates from the ERS were nearly identical (a correlation of 0.97).  

 Nižnan et al. (2015) applied the ERS to the same online system for learning geography facts 

(slepemapy.cz) to model learner prior knowledge. Their use of the system covered the names and 

locations of countries, but also included such geographic structures as cities and mountains. They 

compared several extensions of the Rasch model (e.g., Bayesian, hierarchical, networked) including 

the ERS. The ERS used the Rasch model to get expected match outcomes. Models were evaluated by 

the discrepancy between their predicted probability of a learner endorsing an item and the observed 

response of the learner. Across metrics—root-mean-square error, log-likelihood, and area under the 

ROC curve—the ERS was very close in performance to the other models, which were themselves 

very close in performance.  

 Pelánek (2016) compared conventional IRT item parameter estimation, the ERS, and 

proportion correct using simulated data. The simulated data had learners responding to items across 

degrees of adaptive matching between items and learners. At one extreme, items were matched to 

learners completely at random. At the other extreme, items were matched to learners based on what 

item had a difficulty closest to the learner’s proficiency. Learners’ proficiencies were made constant 
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across the items they responded to. The author found that when items were selected randomly, joint 

maximum likelihood estimation, the ERS, and proportion correct performed similarly, achieving 

correlations between the estimates and true item parameters around 0.90. As matching became less 

random, proportion correct performed worse, while the estimates from the ERS and joint maximum 

likelihood estimation were very similar. They also found that once the ERS had stable item difficulty 

estimates, it could estimate learner proficiency quickly. After 10 items, the ERS was able to achieve a 

0.80 correlation of proficiency estimates with their true values.  

 Pelánek et al. (2017) built on the work of Papoušek et al. (2014) in their application of the 

ERS to a system for learning geography facts. Pelánek et al. (2017) applied the ERS to the system 

outlinemaps.org. This site let learners choose specific maps and types of places (e.g., a map of Africa, 

focusing on rivers). Learners were asked two types of questions: the first about the location of places 

(e.g., “Where is France?”) and the second about the name of places (“What is the name of the 

highlighted country?”). Learners responded to questions through working with an interactive map or 

through selecting from multiple response options. The authors compared several extensions of the 

Rasch model (e.g., Bayesian, hierarchical, networked) and the ERS model to see how well they 

estimated learner prior knowledge. They found that all approaches, including the ERS performed 

similarly across metrics (root mean square error, log-likelihood, and area under the ROC). They also 

found that joint maximum likelihood estimation of item parameters and ERS estimates were very 

similar (a correlation of 0.97).  

 Park et al. (2019) proposed a multidimensional extension of the ERS in which multiple 

learner proficiencies are updated after each item. The authors conducted a simulation study using two 

item banks, one in which items loaded on a single latent dimension and another in which items were 

allowed to load on multiple dimensions. They had 250 simulated learners each with three latent traits 
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being measured. They also had conditions in which the latent traits were not correlated, weakly 

correlated, and moderately correlated. This resulted in 6 sets of data.  

 They evaluated how well their multidimensional ERS estimated the latent traits using the 

mean square error of estimated and true learner proficiency values at different numbers of item 

responded to. They also compared ERS learner proficiency estimates to expected a posteriori 

estimates from a fitted compensatory IRT model. In the first evaluation, they found that mean square 

error decreased as the number of items increased across all 6 data sets, though the type of item bank 

used moderated this effect. More revealing, they found that the learner proficiency estimates from the 

ERS, after 200 item responses, were highly correlated with expected a posteriori estimates across all 

data sets. The correlations ranged from 0.97 to 0.99. 

2.4.4.2  Glicko. 

 Glicko is a Bayesian generalization of the ERS developed by Glickman (1999). Like the 

original purpose of the ERS, Glicko was developed for working with large paired-comparison data, 

such as in chess player rankings (Glickman, 1999). Glicko builds on the ERS by incorporating the 

variability of parameter estimates (Glickman, 1999). The ERS provides point estimates of parameters 

but does not give a measure of the uncertainty around those estimates (Goldowsky, 2006). The Glicko 

system does provide a measure of estimate uncertainty.  

 As explained by Glickman (1999, 2022), the algorithm works by conceptualizing player 

ratings as probability distributions rather than only point estimates. For a player, we initialize them 

with a prior distribution for their rating. The distribution is normal with a known mean and variance 

(decided on rather than estimated from data). The player then enters a rating period of a certain 

number of matches. Glickman recommends 5–10 matches. The player’s rating/proficiency is assumed 

to be constant across the rating period. At the end of a rating period, the player’s prior distribution is 

updated with the results from the matches in the rating period. This updated distribution then becomes 
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the prior for the next rating period (Glickman, 1999). The time elapsed within rating periods is taken 

into consideration. As the rating periods get longer, it is assumed that accuracy of the rating estimate 

becomes less certain, so the variance of the distribution modeling a player’s rating increases. 

Uncertainty around an estimate can be represented as a 95% confidence interval, formed by adding 

and subtracting two standard deviations of the player rating distribution from its mean.  

 In 2001, Glickman (2001), developed the Glicko-2 system, which incorporates stochastic 

volatility into the system. This took the form of a rating volatility parameter, which indicates the 

expected fluctuation in a player’s performance. This parameter has a high value when the player has 

unexpected performances based on their past performance (e.g., unexpectedly winning against several 

other players with higher ratings) and a low value when they are playing consistently (Glickman, 

2022). A greater rating volatility is considered in calculating the variance of a player’s rating 

distribution to reflect the greater uncertainty around the player’s true rating (Goldowsky, 2006). In the 

Glicko-2 system, a parameter is set using human judgment to constrain how much the rating volatility 

parameter can change over time.   

 There have been two applications of the Glicko system to an e-learning context. Reddick 

(2019) applied the Glicko system to data from the online learning platform Coursera to estimate 

learner skill proficiency and item difficulty. They counted exams with multiple-choice or text 

answers, programming assignments, and peer review assignments as items. Their data came from 

courses on business, computer science, and data science. Learners could retake many items. The 

authors only used data from learners’ first attempts at items or first and later attempts when the later 

attempt had a different outcome from the first attempt (e.g., they did not get the item correct on the 

first attempt but did get the item correct on the second attempt). The authors adapted the Glicko 

system to have a rating period of one “match” long, meaning learner estimates were updated after 

each item.   
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 The results were evaluated based on if results made sense with the design of courses. The 

authors found that difficulty estimates for programming assignments tended to be more difficult than 

exams, which is what they expected. The authors also found that within courses, later items in the 

course tended to have higher difficulty estimates than items earlier in the course. Specifically, across 

skills, they found a 0.25 correlation between item order within a course and item difficulty estimates. 

The authors also found that courses had median item difficulties that made sense. For example, 

courses considered fundamental tended to have lower median item difficulties than more advanced 

courses located towards the end of series of courses on a particular topic. 

 Park (2021) also applied the Glicko system, specifically the Glicko-2 system, to an e-learning 

context. Their data was from K–12 math learning software in which students were given problems to 

practice based on their grade and content areas they struggled with. Their data was stratified, meaning 

learners only saw items within their grade strata. Learners were allowed multiple attempts at items. 

For their analysis, the author only considered the first attempt at the item. They drew data from 

January 2016 to December 2019 from learners in the United States. 

 Like Reddick (2019), Park (2021) adapted the Glicko-2 system to remove the need for rating 

periods. Their reformulation allowed the system to consider the time elapsed between the current 

match involving a learner or item and the last match involving that learner or item. As the elapsed 

time increased, the variability around the estimate for the learner or item increased. 

 To evaluate their application, they looked at the root-mean-square error between the system 

estimated outcome of matches and the observed outcomes. They found that as the system calibrated 

learner proficiency estimates, the root-mean-square error across the entire system decreased. They 

also looked at the distribution of item difficulties within curricular units. They showed that with 

graph-based rating initialization the distributions of item difficulties moved higher across sequential, 

increasingly difficult curricular units.  
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2.4.4.3  TrueSkill. 

 Like Glicko, TrueSkill is also a Bayesian generalization of the ERS. This system was 

developed by Herbrich et al. (2006) for multiplayer online game environments. There are no instances 

of TrueSkill being applied in an e-learning context. The authors developed TrueSkill to tackle two 

main issues in multiplayer online gaming environments: 1) game outcomes are often for teams of 

players, but skill ratings for individual players will be needed for future matchmaking. 2) Sometimes 

more than two teams compete, such that the game outcome is not a simple designation of a winner 

and a loser.  

 The algorithm involves four variables: the skill estimates of all players, the performances of 

all players, the performances of all teams, and the differences in performances across teams. Similar 

to Glicko, each player has a prior distribution representing their skill estimate. After a game, these 

skill distributions are updated using the performance of the individual players, the performances of 

their respective teams, and the difference in those team performances. These updated individual 

player skill distributions then become the priors for those players in subsequent games. 

 Minka et al. (2018) developed a second version of TrueSkill, TrueSkill 2. This iteration of the 

algorithm improved on the first in several ways. For example, TrueSkill 2 uses more information to 

estimate a player’s skill, such as their number of kills, death count, tendency to quit, and skill rating 

in other modes of the game. Another improvement was the random walk representing an individual 

player’s skill rating was biased towards the skill increasing. In the original TrueSkill, it was equally 

probable that a player’s skill rating increased or decreased.  

 Glicko suffers from the same scale drift issue as the Elo Rating System (Goldowsky, 2006; 

Hofman et al., 2020; Redick, 2019). While scale drift is not explicitly stated as an issue with 

TrueSkill, its focus on team-based gameplay does not map well to more individual-focused e-learning 

contexts. While Glicko and TrueSkill improve on the ERS by providing a measure of uncertainty 
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around skill estimates, they achieve this by making distributional assumptions of normality of skills 

(Bolsinova et al, 2022). This assumption may not be accurate to reality  

2.4.4.4  Urnings. 

 Hofman et al. (2020) proposed a tracking algorithm that addresses the scale drift issue that 

concerns the ERS and extensions of the ERS (i.e., Glicko and possibly TrueSkill). Their proposed 

algorithm is called Urnings. Like the ERS, it is self-correcting, easily scalable to large paired-

comparison data, capable of tracking dynamically changing parameters, and does not require a 

specified model for growth (Hofman et al., 2020). Like Glicko and TrueSkill, Urnings provides 

standard errors for parameter estimates, given that the parameter is stable for long enough (Hofman et 

al., 2020). 

 Urnings reconceptualizes a match between a learner and item as a game of chance involving 

urns. The urns are each filled with green and red marbles. The proportion of green marbles in the 

learner’s urn represents their proficiency. The proportion of green marbles in the item urn represents 

its difficulty. In a match between a learner and item, a marble is drawn from the learner urn, and a 

marble is drawn from the item urn. If the marbles are the same color (e.g., both marbles are green), 

the marbles are returned to their respective urns, and another marble is drawn from each urn. This 

process goes until the two marbles are different colors. When the marble from the learner’s urn is 

green and the marble from the item urn is red, the learner wins the match (i.e., the learner endorsed 

the item). When the marble from the learner’s urn is red, and the marble from the item urn is green, 

the item won the match (i.e., the learner did not endorse the item).  

 The probability of the learner winning in this game of chance can be represented with a re-

parameterization of the Bradley-Luce/Rasch model.  



36 

 
 

𝑝(𝑋𝑖𝑗 = 1|𝜋𝑖, 𝜋𝑗) =
𝜋𝑖(1 − 𝜋𝑗)

𝜋𝑖(1 − 𝜋𝑗) + (1 − 𝜋𝑖)𝜋𝑗
 

(6) 

Where: 

𝜋𝑖 =
𝑒𝑥𝑝(𝜃𝑖)

1 + 𝑒𝑥𝑝(𝜃𝑖)
 

(7) 

𝜋𝑖 is the proportion of green marbles in the urn of learner i (representing their proficiency/rating 

estimate). 

𝜃𝑖 is the logit value for learner i (representing their proficiency/rating estimate on the logit scale). 

𝜋𝑗 =
𝑒𝑥𝑝(𝑏𝑗)

1 + 𝑒𝑥𝑝(𝑏𝑗)
 

(8) 

𝜋𝑗 is the proportion of green marbles in the urn of item j (representing its difficulty/rating estimate). 

𝑏𝑗 is the item difficulty of item j (expressed on the logit scale) 

 For a learner, the proportion of green marbles in their urn will change over their time in the 

system as they learn. The proportion of green marbles in the urn of an item will change as the 

proportion converges on the true difficulty of the item or if the difficulty of the item drifts for some 

reason. 

 Updating the proportion of marbles in urns first involves setting an urn size for both learners 

and items. The urn size can differ for learners and items. The size of the urn controls how much 

learner or item proportions can change between matches. A larger urn size will lessen the change in 

proportion that adding or removing a single green marble causes, meaning the learner or item rating 

(represented by the proportion) will change less between matches. A smaller urn size will increase the 

change in proportion that adding or removing a single green marble causes, meaning the learner or 

item rating can change more between matches (Hofman et al., 2020).  
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 Proposed updates to urns come from comparing observed match outcomes to expected match 

outcomes based on learner and item ratings. In the following, observed match outcomes are 

represented on the left and expected match outcomes are represented on the right.  

Modeled reality:  

repeat 

𝑌𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑖)  

𝑌𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑗)  

until 𝑌𝑖 ≠ 𝑌𝑗  

return (𝑌𝑖, 𝑌𝑗) 

 

Rating system:  

repeat 

𝑌𝑖
∗ ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑟𝑖/𝑛𝑖)  

𝑌𝑗
∗ ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑟𝑗/𝑛𝑗)  

until 𝑌𝑖
∗ ≠ 𝑌𝑗

∗  

return (𝑌𝑖
∗, 𝑌𝑗

∗) 

 

Where: 

𝑟𝑖 is the current number of green balls in the urn of learner i. 

𝑟𝑗 is the current number of green balls in the urn of item j. 

𝑛𝑖 is the urn size for leaner i (this is the same across all learners). 

𝑛𝑗 is the urn size for item j (this is the same across all items and can vary from the urn size for 

learners). 

𝑌𝑖 is the observed outcome of the match for learner i (1 if they endorsed the item, 0 if they did not). 

𝑌𝑗 is the observed outcome of the match for item j (0 if the learner endorsed the item, 1 if they did 

not). 

𝑌𝑖
∗ is the expected outcome of the match for learner i (expressed as 1 or 0 based on the probability of 

the learner endorsing the item given the current learner and item rating estimates). 

𝑌𝑗
∗ is the expected outcome of the match for item j (expressed as a 1 or 0 based on the probability of 

the learner endorsing the item given the current learner and item rating estimates). 

 The following is the formula for the proposed update to the number of green balls in the 

learner urn and item urn. 
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𝑟𝑖̃ = 𝑟𝑖 + 𝑌𝑖 − 𝑌𝑖
∗ 

𝑟𝑗̃ = 𝑟𝑗 + 𝑌𝑗 − 𝑌𝑗
∗ 

( 9) 

Where: 

𝑟𝑖̃ is the proposed new number of green balls in the urn of learner i based on the difference between 

the observed and expected outcome of the match. 

𝑟𝑗̃ is the proposed new number of green balls in the urn of item j based on the difference between the 

observed and expected outcome of the match. 

 This update is only a proposed update. There is a final Metropolis-Hastings step that 

determines if the proposed change is accepted.  

𝑚𝑖𝑛 (1,
𝑟𝑖(𝑛 − 𝑟𝑗) + (𝑛 − 𝑟𝑖)𝑟𝑗

𝑟𝑖̃(𝑛 − 𝑟𝑗̃) + (𝑛 − 𝑟𝑖̃)𝑟𝑗̃
×
𝑝×(𝑖, 𝑗|𝐫̃)

𝑝×(𝑖, 𝑗|𝐫)
) 

(10) 

Where: 

𝐫̃ is the vector of the proposed new number of green balls for the learner and the item urns. 

𝐫 is the vector of the current number of green balls in the learner and item urns. 

𝑝×(𝑖, 𝑗|𝐫̃) is the probability of learner i and item j matching based on the matching mechanism in the 

system and the proposed update to their rating estimates. 

𝑝×(𝑖, 𝑗|𝐫) is the probability of learner i and item j matching based on the matching mechanism in the 

system and their current rating estimates. 

 If the proposed update makes future matches between player i and item j less likely, it is less 

likely to be accepted (Bolsinova et al., 2022). This component is only needed when the system is 

adaptively matching learners to items based on learner and item ratings. This step is a part of what 

prevents scale drift with the Urnings algorithm when there is adaptive matchmaking (Bolsinova et al., 

2020). It also prevents a distortion of the invariant distribution for parameters we get when they are 

stable for long enough (Bolsinova et al., 2022).  

 Another part of anchoring the scale is choosing a core subset of items. Whenever one of these 

items loses or gains a green ball, a green ball is taken or given to another randomly chosen item in the 
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system. This keeps the number of green balls for this subset constant. The ratings of learners and 

items can then always be interpreted in relation to this core subset of items (Hofman et al., 2020). The 

following is the entire algorithm  

Select players i and j according to 𝑝×(𝑖, 𝑗|𝐫) 

Modeled reality:  

repeat 

𝑌𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑖)  

𝑌𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑗)  

until 𝑌𝑖 ≠ 𝑌𝑗  

return (𝑌𝑖, 𝑌𝑗) 

 

Rating system:  

repeat 

𝑌𝑖
∗ ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑟𝑖/𝑛𝑖)  

𝑌𝑗
∗ ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑟𝑗/𝑛𝑗)  

until 𝑌𝑖
∗ ≠ 𝑌𝑗

∗  

return (𝑌𝑖
∗, 𝑌𝑗

∗) 

 

Proposed update: 

𝑟𝑖̃ = 𝑟𝑖 + 𝑌𝑖 − 𝑌𝑖
∗ 

𝑟𝑗̃ = 𝑟𝑗 + 𝑌𝑗 − 𝑌𝑗
∗ 

Metropolis-Hastings: accept 𝐫̃ with probability: 

𝑚𝑖𝑛 (1,
𝑟𝑖(𝑛 − 𝑟𝑗) + (𝑛 − 𝑟𝑖)𝑟𝑗

𝑟𝑖̃(𝑛 − 𝑟𝑗̃) + (𝑛 − 𝑟𝑖̃)𝑟𝑗̃
×
𝑝×(𝑖, 𝑗|𝐫̃)

𝑝×(𝑖, 𝑗|𝐫)
) 

 

(Bolsinova et al., 2022, p. 99) 

 Urnings generates a Markov chain for the rating parameters of learners and items. Given the 

parameters are sufficiently stable over time, the invariant distributions of the Markov chains are 

binomial distributions with parameters π and n, with n being the total number of marbles in the urn. 

These distributions can be used to form confidence intervals around rating estimates as a measure of 

uncertainty. The following formula can be used to form 95% confidence intervals around rating 

estimates (Bolsinova et al., 2022). 
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𝜋𝑖 ± 1.96√𝜋𝑖(1 − 𝜋𝑖)/√𝑛𝑖 

( 11) 

 Here, we can see that the size of the confidence interval can be controlled through the urn 

size. Larger urn sizes will reduce the width of the confidence interval, while smaller urn sizes will 

increase it.  

 Hofman et al. (2020) and Bolsinova et al. (2022) evaluated Urnings with simulations and 

applications to real e-learning data. Hofman et al. (2020) simulated 500 learners responding to 100 

items. Items were adaptively selected based on a learner’s rating estimate such that the learner had a 

50% estimated probability of endorsing the item. The urn size was 60 for learners and 200 for items. 

As starting values, all urns had a 0.50 proportion of green marbles. Both learner and item true ratings 

were held constant across all matches in the system, except for one learner to demonstrate how the 

algorithm recovered. The final ratings for learners had a 0.96 correlation with true values. The final 

ratings for items had a 0.98 correlation with true values. For the one learner with the non-constant 

true rating, their rating jumped suddenly at about halfway through their time in the system. After 93 

matches, the rating estimate from Urnings fell within the 95% confidence interval of the true rating.  

 Bolsinova et al. (2022) simulated 1,000 players playing 100,000,000 matches. Unlike 

Hofman et al. (2020), this simulation did not make a distinction between learners and items among 

simulees. Player true ratings were held constant across matches. The correlation between true values 

and final Urnings rating estimates was 0.98.  

 Hofman et al. (2020) also applied Urnings to two games from the Math Garden system, an 

online e-learning system where children play games to practice different mathematical and cognitive 

skills. The first of the two games was a logical reasoning task, and the second was a subtraction task. 

Data for the logical task were collected from January 1, 2015 to June 3, 2019. Data for the subtraction 

task were collected from January 1, 2013 to June 30, 2017. For the logical task, this data consisted of 
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8,616 learners with 4,556,884 responses to 725 items. For the subtraction task, data consisted of 

4,310 learners with 1,784,457 responses to 508 items. The authors set the urn size for learners to 30 

and the urn size for items to 80. The authors found that for binned differences between learner and 

item ratings, represented in logits (e.g., the learner rating logit being 1 unit higher than the item 

rating) the Urnings algorithm predicted probability of the learner getting the item correct was very 

close to the observed proportion of correct responses for matches also in that bin (e.g., matches where 

the learner rating was 1 logit higher than the item rating).  

 Bolsinova et al. (2022) also applied the Urnings algorithm to Math Garden. They used data 

from 100 multiplication exercises. They followed a cohort of 14,175 learners over 3 years, gathering 

1,696,112 responses. They used an urn size of 200 for items and 20 for leaners. Each player (learner 

or item) was given a random number of green marbles in their urn to start, ranging from 0 to the size 

of the urn for their group (either 200 or 20). Bolsinova et al. (2022) evaluated their application in the 

same way as Hofman et al. (2020) and achieved a similarly good match between expected and 

observed match outcomes.  

 The Urnings algorithm is similar to the ERS in some ways, such as being computationally 

light and self-correcting. In other ways, Urnings is different. Urnings provides unbiased estimates 

with a known error variance if there is no change in the rating estimate for some time (Bolsinova et 

al., 2022). The ERS provides no measure of uncertainty around rating estimates. Other systems, 

Glicko and TrueSkill, provide measures of uncertainty around estimates; however, these systems do 

this by approximating rating variance with an assumption of normality. The measure of uncertainty in 

Urnings is not an approximation, but a known invariant distribution.  

 Both the ERS and Glicko also suffer from variance inflation. The Urnings algorithm accounts 

for this, in part, by taking the adaptive matchmaking mechanism into account when considering 

proposed urn updates. This allows comparisons of learner and item ratings over time. This desirable 
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property comes at the price of discarding some proposed rating updates, but this is not problematic in 

a low-stakes e-learning context in which there are a lot of match data (Bolsinova et al., 2022).  The 

desirable properties of the Urnings algorithm make it a promising solution for ALSs, especially those 

that already have an IRT-based assessment component. Proficiency estimates from Urnings could, for 

example, be used as starting values during interim assessments. The results of those assessments 

could then be handed back to the algorithm as learners continue working through learning material.  

 A gap in the literature is that the Urnings algorithm has not been evaluated using a criterion 

of learner rating estimates. The algorithm has been used in simulations and has been applied to e-

learning data (specifically Math Garden). While results from these studies are promising, the 

algorithm estimates have not been compared to person estimates from conventional IRT approaches. 

Such a comparison would be valuable to industry researchers for assessing the accuracy of Urnings 

for large, complicated learning systems with IRT-based assessment components.  
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3 CHAPTER 

METHOD 

 This section describes the research questions, sample, procedure, and evaluation of results in 

this study. For the sample, the source of the data and filtering process are described. Descriptive 

summaries of relevant characteristics of the sample are also provided. For the procedure, the steps for 

implementing the Urnings algorithm are described. Last, for the evaluation, the metrics and 

visualizations for evaluating and understanding the performance of the Urnings algorithm are 

detailed.  

3.1 Research Questions 

1. How well does the Urnings algorithm track the growth trajectory of students as measured by 

a conventional Item Response Theory (IRT)-based assessment? 

a. Where there is error between the Urnings algorithm and the IRT-based assessment, 

for what students does the error occur, when does the error occur (winter or spring), 

and what is the direction of the error? 

b. Is error associated with the number of items a student responded to, the amount the 

student grew, or the distribution of estimated b-parameters? 

3.2 Sample 

Mathematics data from the i-Ready Diagnostic (hereafter referred to as the Diagnostic) and 

the i-Ready platform were used for this study. The Diagnostic is a fixed-length, vertically scaled 

computer-adaptive interim assessment in reading and mathematics for students in kindergarten 

through high school (Curriculum Associates, 2017). The Diagnostic is intended to be taken three 

times a year—in fall, winter, and spring. The Diagnostic provides an overall subject score as well as 

scores for each of the domains within a subject. For the mathematics assessment, kindergarten 

through Grade 8 examinees responded to items for the following domains in the following sequence: 
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algebra and algebraic thinking, number and operations, geometry, and measurement and data. 

Examinees see 18 algebra and algebraic thinking items, 20 number and operations items, 14 geometry 

items, and 14 measurement and data items.  

The domain-level performance from the Diagnostic is used to place students in the sequence 

of lessons within i-Ready. i-Ready is a digital learning platform for students in kindergarten through 

Grade 8 with a lesson sequence intended to support students’ growth. Teachers may also assign 

specific lessons as desired. Each lesson within i-Ready is written for one of the domains assessed in 

the Diagnostic.  

Students in the sample completed Diagnostics for the fall, winter, and spring in the 2021–

2022 school year. Only students in kindergarten through Grade 5 were included in the sample. Items 

were taken from the quiz section of all system-assigned lessons a student completed. Lessons 

assigned to students by their teacher were not included. All quiz items in the sample were scored 

dichotomously. Students were divided into groups based on the number of items they responded to 

during the school year. These item groups were 10–49 items, 50–99 items, 100–149 items, 150–199 

items, and 200–250 items.  A minimum of 10 items was chosen to have enough data for the analysis 

method to work. These groups were chosen based on their coverage of the distributions of total items 

responded to by each student for the grades included in the study (See Figure 1). The lines in Figure 1 

show how the item groupings cover these distributions. For Grades K–2, there is a noticeable portion 

of the distribution that responded to more than 250 items. This upper limit of 250 items was decided 

on as a compromise between adequately covering the distributions for Grades K–2 and having 

enough students in higher item groups for Grades 3–5 where there are fewer students who responded 

to more than 250 items. 
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Figure 2 

 

Distribution of Total Items Responded to By Grade 

 

Note. The x-axis shows the number of items students responded to. The y-axis shows frequency. Each 

square of the plot represents a grade. The lines mark, from left to right, 10, 50, 100, 150, 200, and 250 

items. Each square shows the frequency distribution of how many items students in that grade 

responded to.  

From each grade and item grouping combination, 500 students were randomly sampled. As a 

result, the sample contains 2,500 students per grade and 15,000 unique students in total. Figure 2 

shows the distribution of student Diagnostic scores for fall, winter, and spring by grade and item 

group. Table 1 in the Appendix shows means and standard deviations for student Diagnostic scores 

by season, grade, and item group.  
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Figure 3 

 

Distribution of Diagnostic Scores for Fall, Winter, and Spring by Grade and Item Groups 

 

Note. The x-axis represents Diagnostic proficiency estimates in logits. The y-axis shows frequency. 

The columns of the plot represent student grade. The rows of the plot represent item groups (i.e., 

groupings by the number of items students responded to). Within a square, the darkest distribution is 

the frequency distribution of proficiency estimates from the fall Diagnostic. The medium gray 

distribution is for proficiency estimates from the winter Diagnostic. The lightest gray represents the 

spring Diagnostic. The line in each square marks a logit value of 0. 

 

It can be seen in Figure 2 that, within grade, the score distributions are about the same across 

item groups for Grades K–2. For Grades 3–5, it appears that students who saw fewer items tended to 

have higher scores. This is most pronounced in Grade 5. The sample for this study contains 1,909,971 

responses to items from students. Figure 3 shows the number of unique items in the sample by the 

domain and grade they were written for. Figure 4 shows, for each grade and item group, the 

distribution of responses to items across domains. Table 2 in the Appendix shows means and standard 

deviations for the number of items responded to by grade and item group. 
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Figure 4 

 

Distribution of Unique Items across Grade and Domain Written for 

 

Note. The x-axis shows the domains of mathematics in i-Ready. The abbreviations are AL for Algebra 

and Algebraic Thinking, NO for Number and Operations, GEO for Geometry, and MS for 

Measurement and Data. The y-axis shows frequency. Each square in the plot represents a student 

grade. Within a square, the gray shade of a bar shows what domain it represents. The number above a 

bar shows the exact frequency for that grade and domain.   

There were 927 unique items in the sample. It can be seen in Figure 4 that most items in the 

sample were written for Number and Operations and for kindergarten to Grade 2. Many items were 

also written for Algebra and Algebraic Thinking for these same grades. The lack of items written for 

Grades 3 and 4, and the almost absence of items written for Grade 5 is likely due to the placement of 

students. Students in higher grades can be routed to material intended for students in lower grades if 

they have a low score on a given domain in their Diagnostic. It is likely that many students in Grades 

3, 4, and 5 placed in kindergarten, Grade 1, and Grade 2 lessons. It is also possible for students in 

lower grades to be routed to material written for higher grades if they score within a certain range in a 
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given domain; however, given the distribution of unique items in the sample, this does not seem to be 

prevalent.  

Figure 5 

 

Distribution of Responses to Items by Domain, Grade, and Item Group 

 

Note. The x-axis shows the domains of mathematics in i-Ready. The abbreviations are AL for Algebra 

and Algebraic Thinking, NO for Number and Operations, GEO for Geometry, and MS for 

Measurement and Data. The y-axis shows percentage. The columns of the plot represent student 

grade. The rows of the plot represent item groups (i.e., groupings by the number of items students 

responded to). Within a square, the shade of the bar shows the domain it represents. The value above 

each bar is the percentage of responses from the represented grade and item group that were for items 

belonging to the represented domain (e.g., for Grade K students in item group 10–49, 89% of all 

responses to items from this group were to Number and Operations items). 

It can be seen in Figure 5 that most responses to items are for Number and Operation items, 

except for Grade 3, for which most responses were for Algebra and Algebraic Thinking. It also 

appears Grade 5 students did not respond to any Measurement and Data items. Figure 6 shows the 

distribution of growth from fall to winter, winter to spring, and spring to winter by grade and item 

group. It can be seen in the figure that both across grade and item group, the distribution of growth is 
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generally similar. It seems for Grades 4 and 5 that growth is less spread for smaller item groups than 

larger item groups. Table 3 in the Appendix shows means and standard deviations for growth by 

growth period, grade, and item group.  

Figure 6 

 

Distribution of Growth for Fall to Winter, Winter to Spring, and Fall to Spring by Grade and Item 

Groups 

 
Note. The x-axis shows growth in logits. The y-axis shows frequency. The columns of the plot 

represent student grade. The rows of the plot represent item groups (i.e., groupings by the number of 

items students responded to). Within a square, the darkest distribution is the frequency distribution of 

growth from fall to winter (i.e., the winter Diagnostic estimate minus the fall Diagnostic estimate). 

The medium gray distribution is for growth from winter to spring. The lightest gray represents growth 

from fall to spring. The line in each square marks 0 growth. 

Figure 7 shows the distribution of number of items responded to within item group. It can be 

seen in the figure that, across grade and item group, the distribution of items students responded to is 

relatively even about the group average. This indicates that there is not a skewed distribution of items 

responded to within any item group. 
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Figure 7 

 

Distribution of Number of Items within Item Group by Grade and Item Group 

 

Note. The x-axis shows the number of items students responded to. The y-axis shows frequency. The 

columns of the plot represent student grade. The rows of the plot represent item groups (i.e., 

groupings by the number of items students responded to). The lines mark the average number of items 

responded to for the represented grade and item group.  

3.3 Procedure 

The Urnings algorithm was applied to student response data, and proficiency estimates from 

the algorithm were compared to the proficiency estimates from student winter and spring Diagnostics 

to evaluate how well the Urnings algorithm tracked the growth of students over time. The algorithm 

was run under nine conditions. Each condition was a different combination of a person urn size and 

an item urn size with the urn sizes 50, 125, and 200 being possible for person and item urns.  

The fall Diagnostic was used as the starting student proficiency estimate for the algorithm. 

All items were started with a number of green balls equal to half the urn size for the condition (e.g., 

25 for a condition in which the item urn size is 50). For winter and spring, the algorithm estimate 
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closest in time to the completion of the Diagnostic was compared to the estimate from the Diagnostic. 

The algorithm estimate had to be within a week, either before or after, of the completion time of the 

Diagnostic for the comparison to be included in the analysis.  

3.4 Evaluation Criteria 

The performance of the Urnings algorithm was evaluated in three ways. For the first, root-

mean-square error (RMSE) was calculated for each season (winter and spring), grade, and item group 

across the nine conditions. The following is the equation for RMSE. 

𝑅𝑀𝑆𝐸 = √∑ (𝜃𝑖̂ − 𝜃𝑖)
2𝑁

𝑖=1

𝑁
 

( 12) 

Where: 

𝜃𝑖̂ is the proficiency estimate from the Urnings algorithm for student i. 

𝜃𝑖 is the proficiency estimate from the Diagnostic for student i. 

𝑁 is the total number of students. 

RMSE provided a summary of how close algorithm estimates were to Diagnostic estimates 

across students. Comparing RMSE values across winter and spring can also possibly show how the 

performance of the algorithm differed with time. For the second way the algorithm was evaluated, the 

proportion of the sample that had their algorithm estimate within 1 and 2 standard errors of the 

Diagnostic estimate was calculated across season, grade, item group, and condition. This provided 

another way of evaluating how close the algorithm estimates were to the Diagnostic estimates, 

considering the error in the Diagnostic estimates.  

The third way the algorithm was evaluated was by classification consistency. This was done 

for each season, grade, and item group across the nine conditions. Based on their Diagnostic scale 

scores, students were classified into grade- and within-grade-placement levels. The possible grade-

level placements were kindergarten through Grade 12. The possible within-grade-placements were 
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early, mid, and late. There was an additional within-grade-placement level of emerging for 

kindergarten. Estimates from the Urnings algorithm were transformed using the linear transformation 

that transforms Diagnostic logit values to scale scores. Classifications were determined for the 

Diagnostic scale score and Urnings scale score using score ranges internal to Curriculum Associates. 

Classification consistency was calculated for both grade-level placements alone and for grade and 

within-grade placements together. Across organizations and systems, classifications are sometimes 

used instead of scores for operational decisions (e.g., if a learner can advance to new material). 

Classification consistency provides a way to assess the algorithm that allows a range of tolerable 

error. For example, while a point estimate comparison like RMSE may show error, if decisions about 

learners are made with classifications, and two methods classify the same, then that point estimate 

discrepancy may not matter in practice.  

To better understand the direction of error detected through the RMSE, proportions, and 

classification consistency, the distribution of error was examined across season, grade, and condition. 

The spread of error around 0 provided a sense of if algorithm estimates tended to be positively or 

negatively biased. For example, an error distribution that largely sits above 0 indicates that the 

algorithm is consistently overestimating student proficiency.  

To better understand possible causes of error both the correlation between growth and 

squared error and the correlation between number of items responded to and squared error were 

calculated by season, grade, and condition. The correlation between growth and squared error may 

help show if the algorithm is less accurate for students with more or less growth. For example, if the 

correlation is positive, it may indicate the algorithm is struggling to keep up with students who grew a 

lot over the time period in the data. How this differs across conditions could have implications for 

how urn sizes may influence the effectiveness of the algorithm. The correlation between the number 

of items responded to and squared error may help show how the algorithm performs with more items. 
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If the correlation is negative, it would support the expectation that as the algorithm is given more 

information, it performs better. To help interpret the correlation between growth and squared error 

and the correlation between number of items responded to and squared error, the correlation between 

number of items responded to and growth was also calculated.  

Last, the distribution of b-parameter estimates was compared to the student proficiency 

distributions by season, grade the item was written for, and condition. B-parameters were calculated 

by taking the average estimated proportion of green balls in the item urn over student responses after 

dropping the first 500 responses. Items with fewer than 1,000 responses were not included in the 

examined distribution. The 1,000 responses criterion was applied before dropping the first 500 

responses for each item. This resulted in 724 items (out of 927) being included in the distribution. The 

overlap of the b-parameter estimates distribution and the student proficiency distributions could help 

understand error. For example, if the b-parameter distribution is generally lower than the winter and 

spring proficiency distributions, it would indicate that students with higher proficiency may have 

more error in their algorithm estimates.  
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4 CHAPTER 

RESULTS 

This chapter describes the results of the analyses explained in the method section. Results are 

organized under the following sections: Assessing the Degree of Error, Assessing the Direction of 

Error, and Assessing Possible Causes of Error.  

4.1 Assessing the Degree of Error 

Assessing the degree of error in the algorithm estimates was done by calculating root-mean-

square error (RMSE), the proportion of the sample with an algorithm estimate within 1 and 2 standard 

errors of the Diagnostic estimate, and classification consistency. Each of these metrics was calculated 

for each season (winter and spring), grade, and item group (i.e., the grouping of students by the 

number of items they responded to) across the nine study conditions.  

4.1.1 Root-mean-square error 

Figures 8 and 9 show the RMSE value calculated for each item group, grade, and condition 

for the winter and spring Diagnostic respectively. 
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Figure 8 

 

Root-Mean-Square Error for Winter by Item Group, Grade, and Condition 

 
Note. The x-axis is item group (i.e., groupings by the total number of items students responded to). 

The y-axis is RMSE value. The columns of the plot are student grade. The rows of the plot are study 

conditions (person urn size by item urn size). Within each square, the shade of the bar shows the item 

group it represents. The value above each bar is the RMSE value for the represented item group, 

grade, and condition. 
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Figure 9 

 

Root-Mean-Square Error for Spring by Item Group, Grade, and Condition 

 
Note. The x-axis is item group (i.e., groupings by the total number of items students responded to). 

The y-axis is RMSE value. The columns of the plot are student grade. The rows of the plot are study 

conditions (person urn size by item urn size). Within each square, the shade of the bar shows the item 

group it represents. The value above each bar is the RMSE value for the represented item group, 

grade, and condition. 

 Across grades and conditions, the larger item groups tend to have higher RMSE values than 

smaller item groups. An exception to this is kindergarten. For conditions with smaller person urn 

sizes, the smaller item groups in kindergarten have higher RMSE values. This flips as person urn size 

gets larger across conditions. As the person urn size gets larger, RMSE values tend to decrease. As 

the item urn size gets larger, RMSE values tend to increase; however, this pattern appears mostly for 
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larger item groups (e.g., 100–149, 150–199, and 200–250). For the smaller item groups (i.e., 10–49 

and 50–99), sometimes, as the item urn size gets larger, RMSE values decrease (e.g., Grade 3, item 

group 10–49, the conditions in which person urn size is 125, in winter and spring). Other times, the 

RMSE value increases (e.g., Grade 1, item group 50–99, conditions in which person urn size is 50, in 

winter). And, in other instances, the RMSE value stays about the same (e.g., Grade 2, item group 10–

49, conditions in which person urn size is 200, in winter and spring).  Overall, spring RMSE values 

are slightly higher than winter RMSE values; however, the range for winter RMSE values is larger 

than the range of spring RMSE values. The largest RMSE values in Figure 8 are around 1.8 while the 

smallest values are around 0.6. In Figure 9, most values are around 1.0. 

4.1.2 Proportion Within 1 and 2 Standard Errors 

Figures 10 and 11 show the proportion of the sample that has their algorithm estimate within 

plus and minus 1 standard error of the Diagnostic estimate for winter and spring respectively.  
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Figure 10 

 

Proportion within 1 Standard Error of Winter Diagnostic by Item Group, Grade, and Condition 

 
Note. The x-axis is item group. The y-axis is proportion. The columns of the plot are student grade. 

The rows of the plot are study condition (person urn size by item urn size). Within each square, the 

shade of the bar shows the item group it represents. The value above each bar is the proportion for the 

represented item group, grade, and condition. 
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Figure 11 

 

Proportion within 1 Standard Error of Spring Diagnostic by Item Group, Grade, and Condition 

 
Note. The x-axis is item group. The y-axis is proportion. The columns of the plot are student grade. 

The rows of the plot are study condition (person urn size by item urn size). Within each square, the 

shade of the bar shows the item group it represents. The value above each bar is the proportion for the 

represented item group, grade, and condition. 

 Overall, a greater proportion of the sample has their algorithm estimate within 1 standard 

error of the Diagnostic estimate for winter compared to spring; however, the highest proportions for 

winter are around 0.37. In neither winter nor spring were a majority of the sample within 1 standard 

error of the Diagnostic estimate. For winter, Figure 10, Grades 4 and 5 have larger proportions for 

smaller item groups compared to larger item groups for conditions in which the person urn size is 50. 

This trend is reduced for conditions in which the person urn size is 125 and disappears for conditions 

in which the person urn size is 200. For the spring, Figure 11, proportions decrease across grades as 

person urn size increases. Overall, larger item groups tend to have larger proportions in the spring. 
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Figures 12 and 13 show the proportion of the sample with their Urnings algorithm estimate within 2 

standard errors of the Diagnostic estimate for winter and spring respectively.  

Figure 12 

 

Proportion within 2 Standard Errors of Winter Diagnostic by Item Group, Grade, and Condition 

 
Note. The x-axis is item group. The y-axis is proportion. The columns of the plot are student grade. 

The rows of the plot are study condition (person urn size by item urn size). Within each square, the 

shade of the bar shows the item group it represents. The value above each bar is the proportion for the 

represented item group, grade, and condition.  
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Figure 13 

 

Proportion within 2 Standard Errors of Spring Diagnostic by Item Group, Grade, and Condition 

 
Note. The x-axis is item group. The y-axis is proportion. The columns of the plot are student grade. 

The rows of the plot are study condition (person urn size by item urn size). Within each square, the 

shade of the bar shows the item group it represents. The value above each bar is the proportion for the 

represented item group, grade, and condition. 

For winter, Figure 12, for Grades 4 and 5, for conditions in which the person urn size is 50, 

larger item groups tend to have smaller proportions than smaller item groups. This pattern disappears 

as person urn size increases across conditions. Kindergarten tends to have the opposite pattern but 

that also disappears as person urn size increases. For spring, Figure 13, proportions are lower overall. 

There are also the same patterns as Figure 11, showing the proportion of the sample within 1 standard 

error for spring. Comparing Figures 12 and 13, proportions tend to be larger for winter than spring. 

The largest proportions in the spring data are around 0.5. For the winter, the largest values are around 

0.6. 
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4.1.3 Classification Consistency 

Figures 14 and 15 show the scale score distributions for the Diagnostic and the Urnings 

algorithm by grade and study conditions for winter and spring respectively. These scale scores were 

used to determine classification consistency.  

Figure 14 

 

Scale Score Distribution for Winter by Grade and Item Group 

 
Note. The x-axis is scale score. The y-axis is frequency. The columns of the plot are student grade. 

The rows of the plot are item group. Within a square, the darker distribution is the distribution of 

scale scores from the Diagnostic. The lighter distribution is the distribution of scale scores from the 

Urnings algorithm. The lines are the average scale score for the Diagnostic and Urnings respectively. 

The shading of the lines corresponds to the shading of the distributions. 
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Figure 15 

 

Scale Score Distribution for Spring by Grade and Item Group 

 
Note. The x-axis is scale score. The y-axis is frequency. The columns of the plot are student grade. 

The rows of the plot are item group. Within a square, the darker distribution is the distribution of 

scale scores from the Diagnostic. The lighter distribution is the distribution of scale scores from the 

Urnings algorithm. The lines are the average scale score for the Diagnostic and Urnings respectively. 

The shading of the lines corresponds to the shading of the distributions. 

It can be seen for both winter, Figure 14, and spring, Figure 15, that conditions with smaller 

person urn sizes have fewer unique Urnings algorithm scale scores. This is particularly true for 

kindergarten and Grade 1. When the person urn size is smaller, there are fewer unique estimates 

possible for students. Smaller person urn sizes also set a floor and ceiling for possible estimates. Both 

these effects of urn size are likely contributing to the fewer unique values seen for students in lower 

grades. For example, under conditions in which the person urn size is 50, both kindergarten and 

Grade 1 students have a median logit proficiency estimate from the algorithm of -3.89, which is the 
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lower possible logit estimate for that urn size. Similarly, for kindergarten students under conditions in 

which the person urn size is 125, the median logit proficiency estimate is -4.82, which is the lowest 

possible logit estimate for that person urn size.   

Figures 16 and 17 show classification consistency between the grade-level placement of the 

Urnings algorithm and the Diagnostic by item group, grade, and study condition for winter and spring 

respectively. 

Figure 16 

 

Grade-level Classification Consistency for Winter by Item Group, Grade, and Condition 

 
Note. The x-axis is item group. The y-axis is proportion. The columns of the plot are student grade. 

The rows of the plot are study condition (person urn size by item urn size). Within each square, the 

shade of the bar shows the item group it represents. The value above each bar is the proportion for the 

represented item group, grade, and condition. 
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Figure 17 

 

Grade-level Classification Consistency for Spring by Item Group, Grade, and Condition 

 
Note. The x-axis is item group. The y-axis is proportion. The columns of the plot are student grade. 

The rows of the plot are study condition (person urn size by item urn size). Within each square, the 

shade of the bar shows the item group it represents. The value above each bar is the proportion for the 

represented item group, grade, and condition. 

 The patterns in grade-level classification consistency are consistent across winter, Figure 16, 

and spring, Figure 17.  Kindergarten students have almost perfect grade-level classification 

consistency for both winter and spring. Grade 1 students also have relatively high consistency. From 

Grade 2 to 5, as grade increases, classification consistency tends to decrease. For Grades 1 to 5, 

consistency is higher for winter than spring. Consistency does not seem to be substantially influenced 

by study condition.  
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Figures 18 and 19 show classification consistency between the sub-level placement (early, 

mid, late—and emerging for kindergarten) of the Urnings algorithm and the Diagnostic by item 

group, grade, and study condition for winter and spring respectively 

Figure 18 

 

Sub-level Classification Consistency for Winter by Item Group, Grade, and Condition 

Note. The x-axis is item group. The y-axis is proportion. The columns of the plot are student grade. 

The rows of the plot are study condition (person urn size by item urn size). Within each square, the 

shade of the bar shows the item group it represents. The value above each bar is the proportion for the 

represented item group, grade, and condition. 
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Figure 19 

 

Sub-level Classification Consistency for Spring by Item Group, Grade, and Condition 

Note. The x-axis is item group. The y-axis is proportion. The columns of the plot are student grade. 

The rows of the plot are study condition (person urn size by item urn size). Within each square, the 

shade of the bar shows the item group it represents. The value above each bar is the proportion for the 

represented item group, grade, and condition. 

 For both winter, Figure 18, and spring, Figure 19, for conditions in which the person urn is 

size 50, the proportion of the sample with consistent classification is strikingly lower in kindergarten 

than other grades. This is because the Diagnostic placement for many kindergarten students was the 

lowest possible—emerging. All scale score estimates from the Urnings algorithm were above the 

score range for this classification. This is because of the urn size of 50. The urn size controls the 

range of possible estimates. As the urn size gets larger, higher and lower estimates are possible. With 

an urn size of 50, the lowest and highest possible logit proficiency estimates are -3.89 and 3.89. With 

an urn size of 125, the lowest and highest possible logit proficiency estimates are -4.82 and 4.82. 
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Classifications are more consistent among Kindergarteners for conditions with person urn sizes of 

125 and higher because they allow scores that fall within the emerging sub-classification level.  

Classification consistency is more similar across item groups for winter compared to spring. 

Across both winter and spring, for Grade 5, at lower person urn sizes, larger item groups tend to have 

lower classification consistency. This pattern decreases as person urn size increases across conditions. 

This pattern also occurs for Grade 1 students (except for conditions in which the person urn size is 

50), but it does not decrease as person urn size increases. Also across winter and spring, for Grade 3, 

larger item groups tend to have greater consistency than lower item groups. This pattern holds across 

study conditions. Overall, sub-level classification consistency is higher for winter than spring.  

4.2 Assessing the Direction of Error 

The direction of error was assessed by examining the distribution of error across season, grade, 

and condition.  Figures 20 and 21 show the distributions of error across grade and study conditions 

across winter and spring respectively. Error was calculated by subtracting the Diagnostic estimate 

from the Urnings estimate. 
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Figure 20 

 

Distribution of Error for Winter by Grade and Condition 

 
Note. The x-axis is error (the difference between the Urnings estimate and the Diagnostic estimate) in 

logits. The y-axis is frequency. The columns of the plot are student grade. The rows of the plot are 

study condition (person urn size by item urn size). The line within each square marks 0 on the x-axis.  
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Figure 21 

 

Distribution of Error for Spring by Grade and Condition 

 
Note. The x-axis is error (the difference between the Urnings estimate and the Diagnostic estimate) in 

logits. The y-axis is frequency. The columns of the plot are student grade. The rows of the plot are 

study condition (person urn size by item urn size). The line within each square marks 0 on the x-axis.  

 Across winter, Figure 20, and spring, Figure 21, error tends to be more negative as person urn 

size increases across study conditions. Within each person urn size, as item urn size increases, error 

tends to become more positive. Comparing the two effects, the negative influence of person urn size 

is greater than the positive influence of item urn size. Error also tends to be more negative for higher 

grades. Overall, error tends to be more negative than positive, indicating the Urnings algorithm 

tended to underestimate.  
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4.3 Assessing Possible Causes of Error 

Assessing possible causes of error was done by examining the correlation between growth and 

squared error, the correlation between number of items responded to and squared error, the 

correlation between growth and the number of items responded to, and the distribution of b-parameter 

estimates relative to the distribution of student proficiency estimates from the Diagnostic.  

4.3.1 Correlation between Growth and Squared Error 

Figures 22 and 23 show scatterplots and the correlation between growth and squared error, by 

grade and study condition, for winter and spring respectively.  

  



72 

 
 

Figure 22 

 

Scatterplot for Growth and Squared Error for Winter by Grade and Condition 

 
Note. The x-axis is growth in logits. The y-axis is squared error. The columns of the plot are student 

grade. The rows of the plot are study condition (person urn size by item urn size). The values in each 

square are the correlation estimate and p-value for the represented grade and condition. 
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Figure 23 

 

Scatterplot for Growth and Squared Error for Spring by Grade and Condition 

 
Note. The x-axis is growth in logits. The y-axis is squared error. The columns of the plot are student 

grade. The rows of the plot are study condition (person urn size by item urn size). The values in each 

square are the correlation estimate and p-value for the represented grade and condition. 

For winter, Figure 22, there does not appear to be a strong or consistent relationship between 

growth and squared error. Even for instances in which the correlation is significant, it is usually 

relatively small. The scatterplots also do not indicate strong positive or negative relationships. For 

spring, Figure 23, there does appear to be a pattern based on person urn size. For conditions in which 

the person urn size is 50, there tends to be smaller or negative correlations. Some of these scatterplots 

also indicate a possible inverse relationship (e.g., kindergarten and Grade 1, conditions 50 x 125 and 
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50 x 200). For conditions in which the person urn size is 125 or 200, the correlations tend to be larger 

and positive. The scatterplots for conditions in which the item urn size is 200 also indicate a positive 

relationship. It appears that, within conditions with a given person urn size, as item urn size increases, 

the correlation decreases. For example, For Grade 5 students, the correlations for conditions 200 x 50, 

200 x 125, and 200 x 200 are 0.45, 0.33, and 0.20 respectively. The scatterplots also seem to indicate 

stronger, positive relationships when the item urn size is smaller.  

4.3.2 Correlation between Number of Items Responded to and Squared Error 

Figures 24 shows scatterplots and correlations between number of items responded to and 

squared error, by grade and study condition, for spring. 
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Figure 24 

 

Scatterplot for Items Responded to and Squared Error for Spring by Grade and Condition 

 
Note. The x-axis is total items responded to. The y-axis is squared error. The columns of the plot are 

student grade. The rows of the plot are study condition (person urn size by item urn size). The values 

in each square are the correlation estimate and p-value for the represented grade and condition. 

 All correlations in Figure 24 are small. Many correlations are negative. The scatterplots 

generally do not indicate a relationship between the number of items responded to and squared error; 

however, there are some instances of students who responded to a large number of items having 

greater squared error. These students seem to be outliers compared to the general pattern in the plots.  
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4.3.3 Correlation between Number of Items Responded to and Growth 

Figures 25 and 26 show scatterplots and correlations between number of items responded to 

and growth by grade, for winter and spring respectively. 

Figure 25 

 

Scatterplot for Items Responded to and Growth for Winter by Grade 

 
Note. The x-axis is total items responded to. The y-axis is growth in logits. Each square is a student 

grade. Within a square, the values are the correlation estimate for the represented grade and the 

corresponding p-value.   
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Figure 26 

 

Scatterplot for Items Responded to and Growth for Spring by Grade 

 
Note. The x-axis is total items responded to. The y-axis is growth in logits. Each square is a student 

grade. Within a square, the values are the correlation estimate for the represented grade and the 

corresponding p-value. 

 Based on Figures 25 and 26, there does not appear to be a relationship between the number of 

items responded to and growth. Neither the correlations nor the scatterplots indicate a strong or 

consistent relationship. 
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4.3.4 Distribution of b-parameters 

Figure 27 shows the distributions of b-parameter estimates, proficiency estimates from the 

winter Diagnostic, and proficiency estimates from the spring Diagnostic by condition. Figure 28 

shows the same distributions by condition and grade. 

Figure 27 

 

Distribution of b-parameter Estimates by Condition 

 
Note. The x-axis is logits. The y-axis is proportion of the sample (with b-parameter, winter 

proficiency, and spring proficiency estimates treated separately). Each square is a condition (person 

urn size by item urn size). The line in each square marks 0 on the logit scale.  

 Across conditions, the b-parameter distribution covers, but not entirely, the lower end of both 

the winter and spring proficiency distributions. Also, within each condition, there seems to be a floor 

effect. Many b-parameter estimates tend to be at the lower limit created by the item urn size. As item 

urn size increases, the distribution of b-parameter estimates becomes more spread, but largely towards 

more positive values.   
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Figure 28 

 

Distribution of b-parameter Estimates by Grade and Condition 

 
Note. The x-axis is logits. The y-axis is proportion of the sample (with b-parameter, winter 

proficiency, and spring proficiency estimates treated separately). The columns of the plot are grade 

for both the students and items (e.g., the students in column 4 are Grade 4 students, and items in 

column 4 are items written for Grade 4 material). The rows of the plot are study condition (person urn 

size by item urn size). The line in each square marks 0 on the logit scale. 

 Across conditions, as grade increases, b-parameter estimates tend to be more positive. Across 

grades and conditions, like Figure 27, the b-parameter estimate distribution tends to cover, but not 

fully, the lower end of the winter and spring proficiency estimate distributions. From kindergarten to 

Grade 3, as grade increases, the distribution of b-parameter estimates becomes more spread. The b-

parameter distributions for Grade 4 are likely peaked in two places because there were very few items 
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in the data written for Grade 4. Similarly, there are likely no b-parameter estimate distributions visible 

in the column for Grade 5 because there were almost no items in the data written for Grade 5.  
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5 CHAPTER 

DISCUSSION 

This chapter details responses to the research questions of this study based on analyses results. 

The chapter is organized by the research questions of this study.  

5.1 How well does the Urnings algorithm track student growth trajectories? 

The response to this question is based on RMSE values, the proportion of the sample with an 

Urnings estimate within 1 and 2 standard errors of the Diagnostic estimate, and classification 

consistency. For some season, grade, and study condition combinations the algorithm performed well; 

however, the performance of the algorithm was inconsistent, and, overall, there was substantial error 

across metrics. RMSE values were generally around 1.0 in the spring. In the winter, some of the 

values were as high as 1.8. For the proportion of the sample with a Urnings estimate within 2 standard 

errors of the Diagnostic estimate, some of the highest values were only around 0.5. For classification 

consistency, at the grade level, the algorithm performed well for kindergarten but had values around 

0.3 and 0.4 for higher grades. At the sub level, many of the values were below 0.5 in both winter and 

spring. Also concerning is that the algorithm tended to have more error in spring compared to winter. 

Ideally, the algorithm would perform consistently across time in tracing student growth.  

Furthermore, while it seems that increasing person urn size for this sample decreases error in 

certain ways (e.g., tends to lower RMSE) the effect is likely not strong enough to substantially 

increase the performance of the algorithm. For example, in the spring, while person urn sizes of 200 

tend to have lower RMSE values than person urn sizes of 50, all RMSE values were relatively close 

to 1.0. 

5.2 For Whom and When does Error Occur and What is the Direction of Error? 

For RMSE values, there tended to be more error in spring compared to winter. There does not 

seem to be a difference in error across item groups in spring, but, in winter, for conditions with lower 

person urn sizes, larger item groups seem to have more error. RMSE also seems to generally decrease 
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as person urn size increases. For the proportion of the sample within 1 and 2 standard errors of the 

Diagnostic estimate, there seems to be more error in spring. Also in spring, larger item groups tend to 

have less error. There does not seem to be a consistent pattern across grade or study condition for this 

metric. For classification consistency, there seems to be more error (i.e., inconsistency) in spring and 

in higher grades. It also appears that, for winter, smaller item groups have less error in conditions in 

which the person urn size is 50. Overall, students in higher grades tend to have more error, and there 

tends to be more error in the spring.  

The pattern of more error in spring compared to winter suggests that the algorithm performs 

worse over time—i.e., it is diverging from students’ growth trajectories as estimated from the 

Diagnostic. The overall negative direction of error suggests the algorithm is diverging from students’ 

Diagnostic growth trajectories by lagging below it. This is supported by how error tends to be more 

negative in spring compared to winter. The pattern of students in higher grades having more error 

may have to do with the placement of students and the coverage of the scale by items. Higher-grade 

students, even if they did not place at their chronological grade, likely placed higher on the 

proficiency scale from the Diagnostic than lower-grade students. Many of the items students 

responded to were clustered towards the lower end of the scale (bounded by the floor created from the 

item urn size in the condition). This may have provided better coverage of the area of the scale where 

lower-grade students placed, thus giving them more accurate proficiency estimates than higher-grade 

students. 

Also, for grade-level and sub-level classification consistency, lower grades have fewer or no 

lower-grade levels. The algorithm seems to underestimate proficiency. Higher-grade students may 

have worse results for this metric because there are more lower grades for them to be misplaced into. 

For example, kindergarten likely has perfect Grade-level classification consistency because there is 
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no lower grade to place the students into; thus, as the Urnings algorithm underestimates, it hits a 

classification floor.  

5.3 What are Possible Causes of Error? 

For the correlation between growth and squared error, for spring, as person urn size increases 

across condition, a positive relationship tends to emerge. A stronger, positive relationship emerging 

for larger person urn sizes may be because a larger urn size restricts how much the algorithm can 

adjust a proficiency estimate between items. If the algorithm tends to lag below growth as estimated 

from the Diagnostic, then restricting how much it can adjust a proficiency estimate may exacerbate 

the discrepancy. Holding person urn size constant, as item urn size increases, correlations tend to 

become more negative. All items start at the middle of the scale range defined by the item urn size in 

a condition. Most item difficulty estimates seem to decrease as learners respond to items. A larger 

item urn size slows down the decrease in estimated item difficulty across learner responses; thus, the 

algorithm records learners responding to more items that, at the time of the response, are estimated to 

have a higher difficulty. This likely causes the algorithm to increase student proficiency estimates 

bringing algorithm estimates closer to Diagnostic estimates.  

For the correlation between number of items responded to and squared error, results do not 

indicate a strong or consistent relationship, though there are instances of students who responded to 

more items having higher squared error. Given the weak relationship between number of items 

responded to and squared error, error for students in larger item groups may be from some variable 

not incorporated into this study. Based on the correlation between number of items responded to and 

growth, it seems that number of items responded to is not a potential strong driver of growth. This 

indicates that any differences in error among learners in different item groups is likely not driven by 

differences in growth.  
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Concerning the distribution of b-parameter estimates, it seems that error may be coming from 

the limited range of item difficulties. Across conditions and grades, item difficulty estimate 

distributions only cover a section of the lower portion of winter and spring proficiency estimate 

distributions from the Diagnostic. Without more difficult items, the algorithm may not be able to 

increase learner proficiency estimates much beyond a limited area of the scale. In contrast, on the 

Diagnostic, learners have opportunities to endorse items of greater difficulty and, thus, their 

proficiency estimates can reach higher areas of the scale.  

Another possible cause of error are the limits of the scale created by the urn size for proficiency 

estimates. None of the conditions in this study fully cover the scale range of the Diagnostic; thus, 

there are likely some learners with proficiency estimates that are beyond the range the algorithm can 

estimate. Increasing the urn size to better approximate the Diagnostic scale would also restrict how 

much the algorithm could adjust proficiency estimates. It may be that to reach a range that adequately 

approximates the Diagnostic scale, the urn size would need to be so large that it would paralyze 

proficiency estimates.   

5.4 Limitations and Future Research 

While this study provides an evaluation of the Urnings algorithm, it has limitations. The 

sample was only kindergarten to Grade 5 students. Also, students in higher grades likely placed in 

lower grade levels in the fall; thus, this sample had a particular proficiency profile. Additionally, i-

Ready is a complex system with design and internal logic that may differ substantially from other 

digital learning platforms. All these elements limit the generalizability of these findings to students in 

higher grades, groups of students with different proficiency profiles, and different online learning 

platforms. Further, while this study used different person and item urn sizes across conditions, the urn 

sizes used may not have been optimal given characteristics of the sample or the material in i-Ready. 

The algorithm was also only evaluated at two time points; thus, all other estimates from the algorithm 

were not considered. 
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Considering these limitations, it would be beneficial to have additional studies evaluating the 

Urnings algorithm. Seeing the performance of the algorithm across students of different grades, 

proficiencies, and within different systems could help the field assess the viability of implementing 

this algorithm to make systems more adaptable. Additional work on optimal urn sizes would also be 

beneficial, as this element of implementing the algorithm may be important to its success. While there 

may be no urn size that is optimal across a wide range of student groups or systems, better 

understanding how the urn sizes of people and items could be adjusted based on sample or system 

characteristics would be beneficial. Last, an evaluation of the algorithm that considers more than two 

time points would help better evaluate its performance. If, for example, another system uses IRT-

based progress tests, and, thus, has criterion measurements across many time points, comparing the 

Urnings algorithm estimates to those many criterion estimates could provide a more comprehensive 

evaluation of the algorithm.  
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6 CHAPTER 

CONCLUSION 

The goal of this study was to evaluate the accuracy of the Urnings algorithm in tracing student 

growth trajectories within a digital learning platform using proficiency estimates from an IRT-based 

assessment as a criterion. The core research question of this study was, how well does the Urnings 

algorithm track student growth trajectories? In past research, the algorithm has done well in tracking 

student proficiency, but it has not been evaluated against a criterion measure of proficiency. If the 

algorithm performed well, it would support the use of the algorithm for making digital learning 

systems more adaptive—particularly for systems that have an IRT-based assessment component.  

Based on results of this study, the Urnings algorithm does not seem to perform consistently well 

enough to be used for the aforementioned application. The threshold for performing well enough will 

depend on individual systems and the intended uses of estimates from the algorithm. Much like 

building a validity argument for the use of a score from an assessment, if the use of the algorithm 

estimate is relatively low stakes, then a degree of inconsistency in performance may be acceptable; 

however, the inconsistency found in this study is to such a degree that it would be worthwhile to 

investigate alternatives. For example, while progress testing may be intrusive, the accuracy and 

consistency of performance may be worth this cost. Progress testing could also be modified to be less 

intrusive. For example, if instruction and practice items exist within units of learning material, they 

could be psychometrically modeled. Proficiency could be estimated after lessons without the need for 

a separate quiz component. Bayesian estimation could also be used to carry forward information 

about proficiency estimates from past units of material.  

Other algorithms could also be considered. A core advantage of the Urnings algorithm is it has 

mechanisms for preventing scale drift. Scale drift is an issue for the Elo Rating System and Glicko; 

however, this may not be an issue if items are modeled using conventional psychometric methods and 

are held constant across matches. This modification could also help the Urnings algorithm perform 
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better. How this adjustment might affect the known properties of these algorithms is unknown but 

could be investigated in future research.  

In summary, this dissertation evaluated the Urnings algorithm against a criterion measure of 

student proficiency. Results suggest the Urnings algorithm may not be the best solution for making 

digital learning systems more adaptable. Additional research should be done on the Urnings 

algorithm, given its promising results in past research and the limited work thus far with the 

algorithm—but alternatives should also be investigated for helping make digital learning systems 

with IRT-based assessment components more adaptable.  
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APPENDIX 

DESCRIPTIVE SUMMARIES OF SAMPLE 

  



89 

 
 

Table 1 

 

Means and Standard Deviation for Diagnostic Score by Grade, Season, and Item Group 

 

Note. Means and standard deviations are in logits. 
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Table 2 

 

Means and Standard Deviations for Number of Items Responded to by Grade and Item Group 

 

Note. Values are rounded to the nearest integer.  
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Table 3 

 

Means and Standard Deviations for Growth by Grade, Growth Period, and Item Group 

 

Note. Means and standard deviations are in logits. 
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