87,111 research outputs found

    Applications of semantic similarity measures

    Get PDF
    There has been much interest in uncovering protein-protein interactions and their underlying domain-domain interactions. Many experimental techniques have been developed, for example yeast-two-hybrid screening and tandem affinity purification. Since it is time consuming and expensive to perform exhaustive experimental screens, in silico methods are used for predicting interactions. However, all experimental and computational methods have considerable false positive and false negative rates. Therefore, it is necessary to validate experimentally determined and predicted interactions. One possibility for the validation of interactions is the comparison of the functions of the proteins or domains. Gene Ontology (GO) is widely accepted as a standard vocabulary for functional terms, and is used for annotating proteins and protein families with biological processes and their molecular functions. This annotation can be used for a functional comparison of interacting proteins or domains using semantic similarity measures. Another application of semantic similarity measures is the prioritization of disease genes. It is know that functionally similar proteins are often involved in the same or similar diseases. Therefore, functional similarity is used for predicting disease associations of proteins. In the first part of my talk, I will introduce some semantic and functional similarity measures that can be used for comparison of GO terms and proteins or protein families. Then, I will show their application for determining a confidence threshold for domain-domain interaction predictions. Additionally, I will present FunSimMat (http://www.funsimmat.de/), a comprehensive resource of functional similarity values available on the web. In the last part, I will introduce the problem of comparing diseases, and a first attempt to apply functional similarity measures based on GO to this problem

    Distributional Measures of Semantic Distance: A Survey

    Full text link
    The ability to mimic human notions of semantic distance has widespread applications. Some measures rely only on raw text (distributional measures) and some rely on knowledge sources such as WordNet. Although extensive studies have been performed to compare WordNet-based measures with human judgment, the use of distributional measures as proxies to estimate semantic distance has received little attention. Even though they have traditionally performed poorly when compared to WordNet-based measures, they lay claim to certain uniquely attractive features, such as their applicability in resource-poor languages and their ability to mimic both semantic similarity and semantic relatedness. Therefore, this paper presents a detailed study of distributional measures. Particular attention is paid to flesh out the strengths and limitations of both WordNet-based and distributional measures, and how distributional measures of distance can be brought more in line with human notions of semantic distance. We conclude with a brief discussion of recent work on hybrid measures

    Measuring Semantic Similarity among Text Snippets and Page Counts in Data Mining

    Get PDF
    Measuring the semantic similarity between words is an important component in various tasks on the web such as relation extraction, community mining, document clustering, and automatic metadata extraction. Despite the usefulness of semantic similarity measures in these applications, accurately measuring semantic similarity between two words (or entities) remains a challenging task. We propose an empirical method to estimate semantic similarity using page counts and text snippets retrieved from a web search engine for two words. Specifically, we define various word co-occurrence measures using page counts and integrate those with lexical patterns extracted from text snippets. To identify the numerous semantic relations that exist between two given words, we propose a novel pattern extraction algorithm and a pattern clustering algorithm. The optimal combination of page counts-based co-occurrence measures and lexical pattern clusters is learned using support vector machines. The proposed method outperforms various baselines and previously proposed web-based semantic similarity measures on three benchmark data sets showing a high correlation with human ratings. Moreover, the proposed method significantly improves the accuracy in a community mining task

    Information content-based gene ontology functional similarity measures: which one to use for a given biological data type?

    Get PDF
    The current increase in Gene Ontology (GO) annotations of proteins in the existing genome databases and their use in different analyses have fostered the improvement of several biomedical and biological applications. To integrate this functional data into different analyses, several protein functional similarity measures based on GO term information content (IC) have been proposed and evaluated, especially in the context of annotation-based measures. In the case of topology-based measures, each approach was set with a specific functional similarity measure depending on its conception and applications for which it was designed. However, it is not clear whether a specific functional similarity measure associated with a given approach is the most appropriate, given a biological data set or an application, i.e., achieving the best performance compared to other functional similarity measures for the biological application under consideration. We show that, in general, a specific functional similarity measure often used with a given term IC or term semantic similarity approach is not always the best for different biological data and applications. We have conducted a performance evaluation of a number of different functional similarity measures using different types of biological data in order to infer the best functional similarity measure for each different term IC and semantic similarity approach. The comparisons of different protein functional similarity measures should help researchers choose the most appropriate measure for the biological application under consideration

    Evaluation of taxonomic and neural embedding methods for calculating semantic similarity

    Full text link
    Modelling semantic similarity plays a fundamental role in lexical semantic applications. A natural way of calculating semantic similarity is to access handcrafted semantic networks, but similarity prediction can also be anticipated in a distributional vector space. Similarity calculation continues to be a challenging task, even with the latest breakthroughs in deep neural language models. We first examined popular methodologies in measuring taxonomic similarity, including edge-counting that solely employs semantic relations in a taxonomy, as well as the complex methods that estimate concept specificity. We further extrapolated three weighting factors in modelling taxonomic similarity. To study the distinct mechanisms between taxonomic and distributional similarity measures, we ran head-to-head comparisons of each measure with human similarity judgements from the perspectives of word frequency, polysemy degree and similarity intensity. Our findings suggest that without fine-tuning the uniform distance, taxonomic similarity measures can depend on the shortest path length as a prime factor to predict semantic similarity; in contrast to distributional semantics, edge-counting is free from sense distribution bias in use and can measure word similarity both literally and metaphorically; the synergy of retrofitting neural embeddings with concept relations in similarity prediction may indicate a new trend to leverage knowledge bases on transfer learning. It appears that a large gap still exists on computing semantic similarity among different ranges of word frequency, polysemous degree and similarity intensity

    FunSimMat: a comprehensive functional similarity database

    Get PDF
    Functional similarity based on Gene Ontology (GO) annotation is used in diverse applications like gene clustering, gene expression data analysis, protein interaction prediction and evaluation. However, there exists no comprehensive resource of functional similarity values although such a database would facilitate the use of functional similarity measures in different applications. Here, we describe FunSimMat (Functional Similarity Matrix, http://funsimmat.bioinf.mpi-inf.mpg.de/), a large new database that provides several different semantic similarity measures for GO terms. It offers various precomputed functional similarity values for proteins contained in UniProtKB and for protein families in Pfam and SMART. The web interface allows users to efficiently perform both semantic similarity searches with GO terms and functional similarity searches with proteins or protein families. All results can be downloaded in tab-delimited files for use with other tools. An additional XML–RPC interface gives automatic online access to FunSimMat for programs and remote services

    Semantic relatedness based re-ranker for text spotting

    Get PDF
    Applications such as textual entailment, plagiarism detection or document clustering rely on the notion of semantic similarity, and are usually approached with dimension reduction techniques like LDA or with embedding-based neural approaches. We present a scenario where semantic similarity is not enough, and we devise a neural approach to learn semantic relatedness. The scenario is text spotting in the wild, where a text in an image (e.g. street sign, advertisement or bus destination) must be identified and recognized. Our goal is to improve the performance of vision systems by leveraging semantic information. Our rationale is that the text to be spotted is often related to the image context in which it appears (word pairs such as Delta–airplane, or quarters–parking are not similar, but are clearly related). We show how learning a word-to-word or word-to-sentence relatedness score can improve the performance of text spotting systems up to 2.9 points, outperforming other measures in a benchmark dataset.Peer ReviewedPostprint (author's final draft
    • …
    corecore