20,816 research outputs found

    Redefining A in RGBA: Towards a Standard for Graphical 3D Printing

    Full text link
    Advances in multimaterial 3D printing have the potential to reproduce various visual appearance attributes of an object in addition to its shape. Since many existing 3D file formats encode color and translucency by RGBA textures mapped to 3D shapes, RGBA information is particularly important for practical applications. In contrast to color (encoded by RGB), which is specified by the object's reflectance, selected viewing conditions and a standard observer, translucency (encoded by A) is neither linked to any measurable physical nor perceptual quantity. Thus, reproducing translucency encoded by A is open for interpretation. In this paper, we propose a rigorous definition for A suitable for use in graphical 3D printing, which is independent of the 3D printing hardware and software, and which links both optical material properties and perceptual uniformity for human observers. By deriving our definition from the absorption and scattering coefficients of virtual homogeneous reference materials with an isotropic phase function, we achieve two important properties. First, a simple adjustment of A is possible, which preserves the translucency appearance if an object is re-scaled for printing. Second, determining the value of A for a real (potentially non-homogeneous) material, can be achieved by minimizing a distance function between light transport measurements of this material and simulated measurements of the reference materials. Such measurements can be conducted by commercial spectrophotometers used in graphic arts. Finally, we conduct visual experiments employing the method of constant stimuli, and derive from them an embedding of A into a nearly perceptually uniform scale of translucency for the reference materials.Comment: 20 pages (incl. appendices), 20 figures. Version with higher quality images: https://cloud-ext.igd.fraunhofer.de/s/pAMH67XjstaNcrF (main article) and https://cloud-ext.igd.fraunhofer.de/s/4rR5bH3FMfNsS5q (appendix). Supplemental material including code: https://cloud-ext.igd.fraunhofer.de/s/9BrZaj5Uh5d0cOU/downloa

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Color and Spectral Mixings in Printed Surfaces

    No full text
    International audienceThe present paper discusses the concept of subtractive color mixing widely used in color hardcopy applications and shows that a more realistic concept would be " spectral mixing " : the physical description of the coloration of light by printed surfaces comes from the mixing of light components selectively absorbed by inks or dyes during their patch within the printing materials. Some classical reflectance equations for continuous tone and halftone prints are reviewed and considered as spectral mixing laws. The challenge of extending these models to new inkless printing processes based on laser radiation is also addressed. Color mixing is a key-concept in color reproduction, either by painting, printing, or displaying. It refers to the observation that a large panel of colors (the color gamut) can be achieved by varying the amount of a limited set of base colors, called primaries. With light emitting systems, the primaries are light sources, often with red, green and blue color, that are either superposed or juxtaposed with a shorter period than the visual acuity. Since the tristimulus values of the produced colors is a linear, additive combination of the tristimulus values of the three primaries, this type of color mixing has been called additive color mixing. This concept, based on Grassman's additivity law, enabled the color matching experiments at the basis of colorimetry [1]. In opposition to the light emitting systems, paintings and printed hardcopies selectively attenuate the incident white light in different proportions according to the wavelength. Layers of primaries, paints or inks, are coated on a reflecting support and play a role of spectral filtering of light. This type of color mixing is improperly called subtractive color mixing [2], by reference to the fact that part of the incident light is removed by filtering, but the tristimulus values of paint or ink mixtures cannot be obtained by combining the tristimulus values of the primaries; it is therefore not a color mixing in the sense of colorimetry. However, the subtractive color mixing is also related to a physical experience, which consists in producing many colors by mixing nonscattering dyes, usually of cyan, magenta and yellow color. According to the Beer-Lambert-Bouguer law [1], the spectral absorption coefficient of the dye mixture, () K λ , is a linear, additive combi-The final publication is available at http://link.springer.co

    Regularized lattice Boltzmann Multicomponent models for low Capillary and Reynolds microfluidics flows

    Full text link
    We present a regularized version of the color gradient lattice Boltzmann (LB) scheme for the simulation of droplet formation in microfluidic devices of experimental relevance. The regularized version is shown to provide computationally efficient access to Capillary number regimes relevant to droplet generation via microfluidic devices, such as flow-focusers and the more recent microfluidic step emulsifier devices.Comment: 9 pages, 5 figure

    Building a 3D Printer: Motors and Controls

    Get PDF
    3D printers require a reliable and robust control system to provide the proper quality of printed parts. The goal of this project was to design and implement the electronic and software controls for the large scale 3D printer. This system must be able to run all three print heads as well as color mixing in the central diamond print head. The resulting design for the control system utilized a RUMBA control board running with Repetier-Firmware as the printer firmware. A separate system was designed for the heat beds, which used an Arduino Uno to control a set of relays to maintain the set temperature to the heat beds

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials

    Full text link
    Accurate color reproduction is important in many applications of 3D printing, from design prototypes to 3D color copies or portraits. Although full color is available via other technologies, multi-jet printers have greater potential for graphical 3D printing, in terms of reproducing complex appearance properties. However, to date these printers cannot produce full color, and doing so poses substantial technical challenges, from the shear amount of data to the translucency of the available color materials. In this paper, we propose an error diffusion halftoning approach to achieve full color with multi-jet printers, which operates on multiple isosurfaces or layers within the object. We propose a novel traversal algorithm for voxel surfaces, which allows the transfer of existing error diffusion algorithms from 2D printing. The resulting prints faithfully reproduce colors, color gradients and fine-scale details.Comment: 15 pages, 14 figures; includes supplemental figure

    The relevance of material and processing parameters on the thermal conductivity of thermoplastic composites

    Get PDF
    Thermoplastics composites show vast promise as an alternative for thermal management applications in the scope of the development of next-generation electronics and heat exchangers. Their low cost, reduced weight, and corrosion resistance make them an attractive replacer for traditionally used metals, in case their thermal conductivity (TC) can be sufficiently increased by designing the material (e.g., filler type and shape) and processing (e.g., dispersion quality, mixing, and shaping) parameters. In the present contribution, the relevance of both types of parameters is discussed, and guidelines are formulated for future research to increase the TC of thermoplastic polymer composites. POLYM. ENG. SCI., 58:466-474, 2018. (c) 2017 Society of Plastics Engineer
    • …
    corecore