23 research outputs found

    JTP: An Energy-conscious Transport Protocol for Wireless Ad Hoc Networks

    Full text link
    Within a recently developed low-power ad hoc network system, we present a transport protocol (JTP) whose goal is to reduce power consumption without trading off delivery requirements of applications. JTP has the following features: it is lightweight whereby end-nodes control in-network actions by encoding delivery requirements in packet headers; JTP enables applications to specify a range of reliability requirements, thus allocating the right energy budget to packets; JTP minimizes feedback control traffic from the destination by varying its frequency based on delivery requirements and stability of the network; JTP minimizes energy consumption by implementing in-network caching and increasing the chances that data retransmission requests from destinations "hit" these caches, thus avoiding costly source retransmissions; and JTP fairly allocates bandwidth among flows by backing off the sending rate of a source to account for in-network retransmissions on its behalf. Analysis and extensive simulations demonstrate the energy gains of JTP over one-size-fits-all transport protocols.Defense Advanced Research Projects Agency (AFRL FA8750-06-C-0199

    An Energy-conscious Transport Protocol for Multi-hop Wireless Networks

    Full text link
    We present a transport protocol whose goal is to reduce power consumption without compromising delivery requirements of applications. To meet its goal of energy efficiency, our transport protocol (1) contains mechanisms to balance end-to-end vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgements and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within a recently developed ultra low-power multi-hop wireless network system, extensive simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network.Defense Advanced Research Projects Agency (NBCHC050053

    Link Quality Based Power Efficient Routing Protocol (LQ-PERP)

    Get PDF
    Recent years have witnessed a growing interest in deploying infrastructure-less, self configurable, distributed networks such as Mobile AdHoc Networks (MANET) and Wireless Sensor Networks (WSN) for applications like emergency management and physical variables monitoring respectively. However, nodes in these networks are susceptible to high failure rate due to battery depletion, environmental changes and malicious destruction. Since each node operates with limited sources of power, energy efficiency is an important metric to be considered for designing communication schemes for MANET and WSN. Energy consumed by nodes in MANET or WSN can be reduced by optimizing the internode transmission power which is uniform even with dynamic routing protocols like AODV. However, the transmission power required for internode communication depends on the wireless link quality which inturn depends on various factors like received signal power, propagation path loss, fading, multi-user interference and topological changes. In this paper, link quality based power efficient routing protocol (LQ-PERP) is proposed which saves the battery power of nodes by optimizing the power during data transmission. The performance of the proposed algorithm is evaluated using QualNet network simulator by considering metrics like total energy consumed in nodes, throughput, packet delivery ratio, end-to-end delay and jitter

    An energy-aware and QOS assured wireless multi-hop transmission protocol

    Get PDF
    A thesis submitted in fulfillment of the requirements for the degree of Master of Science by researchThe Ad-hoc network is set up with multiple wireless devices without any pre-existing infrastructure. It usually supports best-effort traffic and occasionally some kinds of Quality of Service (QoS). However, there are some applications with real-time traffic requirements where deadlines must be met. To meet deadlines, the communication network has to support the timely delivery of inter-task messages. Furthermore, energy efficiency is a critical issue for battery-powered mobile devices in ad-hoc networks. Thus, A QoS guaranteed and energy-aware transmission scheme is one hot of research topics in the research area. The MSc research work is based on the idea of Real-Time Wireless Multi-hop Protocol (RT-WMP). RT-WMP is a well known protocol originally used in the robots control area. It allows wireless real-time traffic in relatively small mobile ad-hoc networks using the low-cost commercial IEEE 802.11 technology. The proposed scheme is based on a token-passing approach and message exchange is priority based. The idea of energy-aware routing mechanism is based on the AODV protocol. This energy-saving mechanism is analysed and simulated in our study as an extension of the RT-WMP. From the simulation results and analysis, it has been shown that adding energy-aware mechanism to RT-WMP is meaningful to optimise the performance of traffic on the network

    System for improving the efficiency of wireless networks

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (p. 30-31).Wireless data networks are widespread and growing quickly. As their use increases, many wireless networks are becoming congested. In addition, as wireless data capability moves into ever-smaller devices, power becomes a significant issue. This thesis presents a system that increases network bandwidth and decreases energy use without changing existing network hardware or protocols. We use specialized proxy servers to transparently modify the traffic sent over the mobile link such that the total energy used by the receiver is reduced and the effective bandwidth is increased. Our techniques include optimizing packet size, eliminating unnecessary traffic, and masking wireless packet losses. We design and implement two proxies--one for access points and one for mobile devices--which when used together, achieve up to a 20% decrease in energy and 38% increase in throughput.by Hans Robertson.M.Eng

    Comparing the Routing Energy Overheads of Ad-Hoc Routing Protocols

    Get PDF

    Optimized query routing trees for wireless sensor networks

    Get PDF
    In order to process continuous queries over Wireless Sensor Networks (WSNs), sensors are typically organized in a Query Routing Tree (denoted as T) that provides each sensor with a path over which query results can be transmitted to the querying node. We found that current methods deployed in predominant data acquisition systems construct T in a sub-optimal manner which leads to significant waste of energy. In particular, since T is constructed in an ad hoc manner there is no guarantee that a given query workload will be distributed equally among all sensors. That leads to data collisions which represent a major source of energy waste. Additionally, current methods only provide a topological-based method, rather than a query-based method, to define the interval during which a sensing device should enable its transceiver in order to collect the query results from its children. We found that this imposes an order of magnitude increase in energy consumption. In this paper we present MicroPulse+, a novel framework for minimizing the consumption of energy during data acquisition in WSNs. MicroPulse+ continuously optimizes the operation of T by eliminating data transmission and data reception inefficiencies using a collection of in-network algorithms. In particular, MicroPulse+ introduces: (i) the Workload-Aware Routing Tree (WART) algorithm, which is established on profiling recent data acquisition activity and on identifying the bottlenecks using an in-network execution of the critical path method; and (ii) the Energy-driven Tree Construction (ETC) algorithm, which balances the workload among nodes and minimizes data collisions. We show through micro-benchmarks on the CC2420 radio chip and trace-driven experimentation with real datasets from Intel Research and UC-Berkeley that MicroPulse+ provides significant energy reductions under a variety of conditions thus prolonging the longevity of a wireless sensor network
    corecore