503 research outputs found

    Smart Palm: An IoT Framework for Red Palm Weevil Early Detection

    Full text link
    Smart agriculture is an evolving trend in agriculture industry, where sensors are embedded into plants to collect vital data and help in decision making to ensure higher quality of crops and prevent pests, disease, and other possible threats. In Saudi Arabia, growing palms is the most important agricultural activity, and there is an increasing need to leverage smart agriculture technology to improve the production of dates and prevent diseases. One of the most critical diseases of palms if the red palm weevil, which is an insect that causes a lot of damage to palm trees and can devast large areas of palm trees. The most challenging problem is that the effect of the weevil is not visible by humans until the palm reaches an advanced infestation state. For this reason, there is a need to use advanced technology for early detection and prevention of infestation propagation. In this project, we have developed am IoT based smart palm monitoring prototype as a proof-of-concept that (1) allows to monitor palms remotely using smart agriculture sensors, (2) contribute to the early detection of red palm weevil. Users can use web/mobile application to interact with their palm farms and help them in getting early detection of possible infestations. We used Elm company IoT platform to interface between the sensor layer and the user layer. In addition, we have collected data using accelerometer sensors and we applied signal processing and statistical techniques to analyze collected data and determine a fingerprint of the infestation

    Automatic Large Scale Detection of Red Palm Weevil Infestation using Aerial and Street View Images

    Full text link
    The spread of the Red Palm Weevil has dramatically affected date growers, homeowners and governments, forcing them to deal with a constant threat to their palm trees. Early detection of palm tree infestation has been proven to be critical in order to allow treatment that may save trees from irreversible damage, and is most commonly performed by local physical access for individual tree monitoring. Here, we present a novel method for surveillance of Red Palm Weevil infested palm trees utilizing state-of-the-art deep learning algorithms, with aerial and street-level imagery data. To detect infested palm trees we analyzed over 100,000 aerial and street-images, mapping the location of palm trees in urban areas. Using this procedure, we discovered and verified infested palm trees at various locations

    Recent Trends in the Early Detection of the Invasive Red Palm Weevil, <em>Rhynchophorus ferrugineus</em> (Olivier)

    Get PDF
    Red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), is one of the most invasive pest species that poses a serious threat to date palm and coconut palm cultivation as well as the ornamental Canary Island palm. RPW causes massive economic losses in the date palm production sector worldwide. The most important challenge of RPW detection in the early stages of an infestation is the presence of a few externally visible signs. Infested palm shows visible signs when the infestation is more advanced; in this case, the rescuing of infested palms is more complicated. Early detection is a useful tool to eradicate and control RPW successfully. Until now, the early detection techniques of RPW rely mainly on visual inspection and pheromone trapping. Several methods to detect RPW infestation have recently emerged. These include remote sensing, highly sensitive microphones, thermal sensors, drones, acoustic sensors, and sniffer dogs. The main objective of this chapter is to provide an overview of the modern methods for early detection of the RPW and discuss the most important RPW detection technologies that are field applicable

    CURRENT STATUS, CHALLENGES, MANAGEMENT AND FUTURE PERSPECTIVES OF THE RED PALM WEEVIL Rhynchophorus ferrugineus OLIVIER (COLEOPTERA, CURCULIONIDAE) ERADICATION - A REVIEW

    Get PDF
    The date palm is a cultural and economic heritage of many nations. The red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera, Curculionidae) is among the world’s most serious insect pests of palms that have rapidly expanded its geographical distribution and host plant range during the last decades. Integrated pest management (IPM) is followed to suppress the pest using the most economical and least hazardous methods to humans and the environment. Since R. ferrugineus is a serious pest of date palm production worldwide, farmers, researchers, and scientists have developed many tactics to eradicate this pest. However, there was no published article covering and integrating the current status, biology, ecology, and future control tactics of R. ferrugineus and proposes an IPM program. Therefore, in this review, R. ferrugineus geographical distribution, host plant range, economic importance, infestation symptoms, morphology, biology, and its management tactics were thoroughly discussed. These tactics include early detection of R. ferrugineus infestation, trapping, chemical applications, use of bio-agents, bioinsecticides (plant extracts), resistance cultivars, cultural practices, sterile insect technique, gene silencing technology, quarantine, and geographical information system. In conclusion, all available control tactics suggest that R. ferrugineus could be successfully managed by developing IPM programs comprising several means of control. It is hoped that this review will highlight some aspects of date palm management and raise research gaps and directions deserving further investigations to develop a better understanding of R. ferrugineus management and therefore contributes to the sustainability of date palm cultivation worldwide

    A Review of Non-Destructive Methods for Detection of Insect Infestation in Fruits and Vegetables

    Get PDF
    Insect damage in fruits and vegetables cause major production and economic losses in the agriculture and food industry worldwide. Monitoring of internal quality and detection of insect infestation in fruits and vegetables is critical for sustainable agriculture. Early detection of an infestation in fruits can facilitate the control of insects and the quarantine operations through proper post-harvest management strategies and can improve productivity. The present review recognizes the need for developing a rapid, cost-effective, and reliable insect infestation monitoring system that would lead to advancements in agriculture and food industry. In this paper, an overview of non-destructive detection insect damages in fruits and vegetables was presented, and the research and applications were discussed. This paper elaborated all of the post-harvest fruit infestation detection methods which are based on the following technologies: optical properties, machine vision technique, sonic properties, magnetic resonance imaging (MRI), thermal imaging, x-ray computed tomography and chemical chromatography. Also, the main challenges and limitations of non-destructive detection methods in the agricultural products quality assessment were also elucidated

    Non-Destructive Technologies for Detecting Insect Infestation in Fruits and Vegetables under Postharvest Conditions: A Critical Review

    Get PDF
    In the last two decades, food scientists have attempted to develop new technologies that can improve the detection of insect infestation in fruits and vegetables under postharvest conditions using a multitude of non-destructive technologies. While consumers\u27 expectations for higher nutritive and sensorial value of fresh produce has increased over time, they have also become more critical on using insecticides or synthetic chemicals to preserve food quality from insects\u27 attacks or enhance the quality attributes of minimally processed fresh produce. In addition, the increasingly stringent quarantine measures by regulatory agencies for commercial import-export of fresh produce needs more reliable technologies for quickly detecting insect infestation in fruits and vegetables before their commercialization. For these reasons, the food industry investigates alternative and non-destructive means to improve food quality. Several studies have been conducted on the development of rapid, accurate, and reliable insect infestation monitoring systems to replace invasive and subjective methods that are often inefficient. There are still major limitations to the effective in-field, as well as postharvest on-line, monitoring applications. This review presents a general overview of current non-destructive techniques for the detection of insect damage in fruits and vegetables and discusses basic principles and applications. The paper also elaborates on the specific post-harvest fruit infestation detection methods, which include principles, protocols, specific application examples, merits, and limitations. The methods reviewed include those based on spectroscopy, imaging, acoustic sensing, and chemical interactions, with greater emphasis on the noninvasive methods. This review also discusses the current research gaps as well as the future research directions for non-destructive methods\u27 application in the detection and classification of insect infestation in fruits and vegetables

    Semiochemicals and Their Potential Use in Pest Management

    Get PDF
    This chapter gives an account on the general concept of insect semiochemicals, their definitions, classification, formulation, utilization in integrated pest management programs, and the shortcomings of their application. The different semiochemically based insect management techniques, such as mass trapping, mating disruption, and attract-and-kill, are highlighted. The chapter also summarizes a case study from 7-year research on semiochemicals of the invasive red palm weevil, Rhynchophorus ferrugineus

    Acoustic Signal Applications in Detection and Management of Rhynchophorus spp. in Fruit-Crops and Ornamental Palms

    Get PDF
    Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) is an economically important, internally feeding pest of ornamental and fruit-producing palms in many subtropical regions. A related weevil, Rhynchophorus cruentatus (Fabricius) (Coleoptera: Dryophthoridae), is an internally feeding palm pest in the southeastern USA. Acoustic methods for detection of early instars hidden in palms in field environments have been investigated for both species. Acoustic methods also have been used to examine the effectiveness of physical, biological, and other control treatments. This report addresses several physical, physiological, and behavioral factors that influence the spectral and temporal patterns of sounds produced by palm weevil larvae under different laboratory and field experiment conditions, which must be considered carefully in interpreting larval sound production. Such factors include the leakage of fluid from the palm tree tissues into tunnels scraped out by larvae as they move and feed within the tree trunk, as well as occurrences of molting between periods of feeding activity, and frequency-dependent damping that distorts signals as the distance between insects and sensors increases. Methods are discussed that combine effects of environmental, physiological, and behavioral variability to facilitate reliable interpretations of Rhynchophorus and other insect larval acoustic activity in hidden environments.Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) es una plaga económicamente importante que se alimenta internamente de palmeras ornamentales y frutícolas en muchas regiones subtropicales. Un gorgojo relacionado, Rhynchophorus cruentatus (Fabricius) (Coleoptera: Dryophthoridae), es una plaga de la palma que se alimenta internamente en el sureste de los EE. UU. Métodos acústicos para la detección de estadios tempranos escondidos en palmas en ambientes de campo han sido investigados para ambas especies. Los métodos acústicos también se han utilizado para examinar la efectividad de los tratamientos físicos, biológicos y otros tratamientos de control. Este informe aborda varios factores físicos, fisiológicos y de comportamiento que influyen en los patrones espectrales y temporales de los sonidos producidos por las larvas del gorgojo de la palma en diferentes condiciones de laboratorio y experimentos de campo, que deben considerarse cuidadosamente al interpretar la producción del sonido larval. Tales factores incluyen la fuga de líquido de los tejidos de la palmera hacia túneles raspados por las larvas a medida que se mueven y se alimentan dentro del tronco del árbol, así como las ocurrencias de las mudas entre los períodos de actividad de alimentación y la amortiguación dependiente de la frecuencia que distorsiona las señales al aumentar la distancia entre los insectos y los sensores aumenta. Se discuten los métodos que combinan los efectos de la variabilidad ambiental, fisiológica y de comportamiento para facilitar interpretaciones confiables de la actividad acústica de larvas de Rhynchophorus y otros insectos en ambientes ocultos.We thank the Laboratory of Plant Pathology, University of Alicante, Glen Biotech S. L., the Spanish Ministry of Science and Innovation, the Municipality of Elche, The Universiti Kebangsaan Malaysia, and the Malaysia Ministry of Higher Education for funding assistance
    corecore