5,237 research outputs found

    Grounding Mental Representations in a Virtual Multi-Level Functional Framework

    Get PDF
    According to the associative theory of learning, reactive behaviors described by stimulus-response pairs result in the progressive wiring of a plastic brain. In contrast, flexible behaviors are supposedly driven by neurologically grounded mental states that involve computations on informational contents. These theories appear complementary, but are generally opposed to each other. The former is favored by neuro-scientists who explore the low-level biological processes supporting cognition, and the later by cognitive psychologists who look for higher-level structures. This situation can be clarified through an analysis that independently defines abstract neurological and informational functionalities, and then relate them through a virtual interface. This framework is validated through a modeling of the first stage of Piaget’s cognitive development theory, whose reported end experiments demonstrate the emergence of mental representations of object displacements. The neural correlates grounding this emergence are given in the isomorphic format of an associative memory. As a child’s exploration of the world progresses, his mental models will eventually include representations of space, time and causality. Only then epistemological concepts, such as beliefs, will give rise to higher level mental representations in a possibly richer propositional format. This raises the question of which additional neurological functionalities, if any, would be required in order to include these extensions into a comprehensive grounded model. We relay previously expressed views, which in summary hypothesize that the ability to learn has evolved from associative reflexes and memories, to suggest that the functionality of associative memories could well provide the sufficient means for grounding cognitive capacities

    Intelligent flight control systems

    Get PDF
    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms

    Coordination dynamics in the sensorimotor loop

    Get PDF
    The last two decades have witnessed radical changes of perspective about the nature of intelligence and cognition, leaving behind some of the assumptions of computational functionalism. From the myriad of approaches seeking to substitute the old rule-based symbolic perception of mind, we are especially interested in two of them. The first is Embodied and Situated Cognition, where the advances in modeling complex adaptive systems through computer simulations have reconfigured the way in which mechanistic, embodied and interactive explanations can conceptualize the mind. We are particularly interested in the concept of sensorimotor loop, which brings a new perspective about what is needed for a meaningful interaction with the environment, emphasizing the role of the coordination of effector and sensor activities while performing a concrete task. The second one is the framework of Coordination Dynamics, which has been developed as a result of the increasing focus of neuroscience on self-organized oscillatory brain dynamics. It provides formal tools to study the mechanisms through which complex biological systems stabilize coordination states under conditions in which they would otherwise become unstable. We will merge both approaches and define coordination in the sensorimotor loop as the main phenomena behind the emergence of cognitive behavior. At the same time, we will provide methodological tools and concepts to address this hypothesis. Finally, we will present two case studies based on the proposed approach: 1. We will study the phenomenon known as “intermittent behavior”, which is observed in organisms at different levels (from microorganisms to higher animals). We will propose a model that understands intermittent behavior as a general strategy of biologica organization when an organism has to adapt to complex changing environments, and would allow to establish effective sensorimotor loops even in situations of instable engagement with the world. 2. We will perform a simulation of a phonotaxis task performed by an agent with an oscillator network as neural controller. The objective will be to characterize robust adaptive coupling between perceptive activity and the environmental dynamics just through phase information processing. We will observe how the robustness of the coupling crucially depends of how the sensorimotor loop structures and constrains both the emergent neural and behavioral patterns. We will hypothesize that this structuration of the sensorimotor space, in which only meaningful behavioral patterns can be stabilized, is a key ingredient for the emergence of higher cognitive abilities

    What does semantic tiling of the cortex tell us about semantics?

    Get PDF
    Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) features and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions

    Interaction dynamics and autonomy in cognitive systems

    Get PDF
    The concept of autonomy is of crucial importance for understanding life and cognition. Whereas cellular and organismic autonomy is based in the self-production of the material infrastructure sustaining the existence of living beings as such, we are interested in how biological autonomy can be expanded into forms of autonomous agency, where autonomy as a form of organization is extended into the behaviour of an agent in interaction with its environment (and not its material self-production). In this thesis, we focus on the development of operational models of sensorimotor agency, exploring the construction of a domain of interactions creating a dynamical interface between agent and environment. We present two main contributions to the study of autonomous agency: First, we contribute to the development of a modelling route for testing, comparing and validating hypotheses about neurocognitive autonomy. Through the design and analysis of specific neurodynamical models embedded in robotic agents, we explore how an agent is constituted in a sensorimotor space as an autonomous entity able to adaptively sustain its own organization. Using two simulation models and different dynamical analysis and measurement of complex patterns in their behaviour, we are able to tackle some theoretical obstacles preventing the understanding of sensorimotor autonomy, and to generate new predictions about the nature of autonomous agency in the neurocognitive domain. Second, we explore the extension of sensorimotor forms of autonomy into the social realm. We analyse two cases from an experimental perspective: the constitution of a collective subject in a sensorimotor social interactive task, and the emergence of an autonomous social identity in a large-scale technologically-mediated social system. Through the analysis of coordination mechanisms and emergent complex patterns, we are able to gather experimental evidence indicating that in some cases social autonomy might emerge based on mechanisms of coordinated sensorimotor activity and interaction, constituting forms of collective autonomous agency

    Recursive Behavior Recording: Complex Motor Stereotypies and Anatomical Behavior Descriptions

    Get PDF
    A novel anatomical behavioral descriptive taxonomy improves motion capture in complex motor stereotypies (CMS) by indexing precise time data without degradation in the complexity of whole body movement in CMS. The absence of etiological explanation of complex motor stereotypies warrants the aggregation of a core CMS dataset to compare regulation of repetitive behaviors in the time domain. A set of visual formalisms trap configurations of behavioral markers (lateralized movements) for behavioral phenotype discovery as paired transitions (from, to) and asymmetries within repetitive restrictive behaviors. This translational project integrates NIH MeSH (medical subject headings) taxonomy with direct biological interface (wearable sensors and nanoscience in vitro assays) to design the architecture for exploratory diagnostic instruments. Motion capture technology when calibrated to multi-resolution indexing system (MeSH based) quantifies potential diagnostic criteria for comparing severity of CMS within behavioral plasticity and switching (sustained repetition or cyclic repetition) time-signatures. Diagnostic instruments sensitive to high behavioral resolution promote measurement to maximize behavioral activity while minimizing biological uncertainty. A novel protocol advances CMS research through instruments with recursive design

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc
    corecore