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Abstract  

According to the associative theory of learning, reactive behaviors described by 

stimulus-response pairs result in the wiring of a plastic brain. In contrast, flexible 

behaviors are driven by neurologically grounded mental states that supposedly 

involve computations on informational contents. These theories appear 

complementary, but are generally opposed to each other. The former is favored by 

neuro-scientists who explore the low-level biological processes supporting 

cognition, and the later by cognitive psychologists who look for higher-level 

causal structures. This situation is clarified through an analysis which first 

independently defines abstract neurological and informational functionalities, and 

then relates them through a virtual interface. 

This framework is validated through a modeling of the first stage of Piaget‟s 

cognitive development theory, whose reported end experiments demonstrate the 

emergence of mental representations of object displacements. The neural 

correlates grounding this emergence are given in the isomorphic format of an 

associative memory. As a child‟s exploration of the world progresses, his mental 

models will eventually include representations of space, time and causality. Only 

then epistemological concepts, such as beliefs, will give rise to higher level mental 

representations in a possibly richer propositional format. This raises the question 

of which additional neurological functionalities, if any, would be required in order 

to include these extensions into a comprehensive grounded model. We relay 

previously expressed views, which in summary hypothesize that the ability to 

learn has evolved from associative reflexes and memories, to suggest that the 

functionality of associative memories could well provide the sufficient means for 

grounding cognitive capacities. 

Keywords: cognitive development, mental representation, representational 

vehicle, representational contents, associative memory, virtual machine. 
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1. Introduction  

Following the advent of cognitive science, psychology has come to be described as the study 

of mental representations, how they are computed, and how they affect behavior (Gallistel, 

2001). According to widely accepted views, mental representations are internal brain states 

and mechanisms that drive flexible behaviors i.e., behaviors that cannot be explained in terms 

of stimulus-responses only. There is still no consensus however on how mental 

representations are grounded in the brain, and especially about the nature of the computation 

they involve (Gallistel, 2017; Smortchkova & al., 2020).  

Recent significant contributions in this domain go back to Haugeland (1991), who did 

characterize a representational system as encompassing substitutes for environmental signals. 

In the same vein, Vosgerau (2010) calls for a “functionalistic core” in which representations 

are substituted as arguments in templates that are stored in memory. Bechtel (2016) focuses 

on the neural processes in which mental representations could be grounded and describes 

them as vehicles carrying contents e.g., spatial information that can be processed. Ramsey 

(2016) emphasizes their functional role and specific content, which are related to each other 

by virtue of causal links. To the contrary, Egan (2020) advocates a “deflationary” account of 

mental representation, which in summary denies them any intrinsic or naturalistically 

determinate content, their representational capacity being then defined by a function 

projecting from the level of neural structures to that of behaviors. Consensually, Orlandi 

(2020) presents a set of necessary and sufficient conditions for internal states or structures to 

qualify as mental representations, their role being then essentially to serve as isomorphic 

stand-ins that produce stimulus-free behavior. To wrap things together, Newen & Vosgerau 

(2020) first develop a “functionalist framework” in which behaviors are defined as mappings 

from stimulus/state to state/response pairs; mental representations are then viewed as 

substitutes for arguments, their coarse grained contents being determined by their functional 

role, and their vehicle standing as neural correlates; in order to reflect different cognitive 

explanatory levels, they finally introduce a mental representation‟s third dimension i.e., its 

“fine-grained structure”, which could be either in a correlational, isomorphic, or 

propositional format. 

In summary, mental representation can be characterized by distinguishing their vehicles from 

their contents. Whereas it is commonly agreed that these vehicles, which carry some 

informational contents, are constituted by neural correlates, the true nature of these contents 

themselves is still a subject of controversy (Egan 2014; Ramsey 2020). Without grounding 

them, theories of mental representation postulate the existence of causal structures and 

processes, which the brain actually progressively constructs in its interaction with the world. 

The shortcomings of this approach might thus well be to put the cart before the horse. What is 

needed in contrast is a analysis that allows first for independently abstracting low-level 

functionalities of the brain, on one hand, and higher-level informational links between these 

functionalities and behaviors, on the other, and then for relating them through a meso-scale 

level interface. 

2. Goals and results  

This work has the following three goals: 

1) clarify the status of mental representations through a model relating  their neurological 

and informational functionalities;  

2) validate this model through an effective simulation of reported experiments 

demonstrating the early emergence of mental representations; 

3) address the question of which low-level brain functionalities would be required for 

grounding this model into biological structures and processes. 



Concerning goal 1), we shall argue that the controversy about deflationary accounts of mental 

representations (Egan 2020; Hutto & Myin 2020; Ramsey 2020) can be clarified by providing 

a multi-level analysis of foundational concepts. Firstly, the vehicles of mental representations 

have a physical support constituted by neural correlates that supposedly carry some 

informational contents. Secondly, these contents have a functional role, which is to serve as 

substitutes for arguments in the processes that support cognition. Finally, these cognitive 

processes themselves are meant to support flexible behaviors. To formalize this procedural 

hierarchy, the relation between the brain substrate and cognitive processes on one hand, and 

between cognitive processes and behaviors, on the other, will be abstracted using tools from 

the domain of computer science, namely concurrent communicating systems and virtual 

machines. Concurrent communicating systems model the interaction of objects obeying 

various communication protocols, and thus reflect a high level view of a neural network i.e., 

of the brain substrate. The concept of a virtual machine interpreting a compiled code that 

differs from a processor's native code constitutes the key mechanism that allows for 

interfacing high level abstract objects i.e., software, with their low level physical support i.e., 

hardware. Following classical results of computer science, symbolic expressions that have 

been compiled and then interpreted by a virtual machine get their operational semantics from 

the transitions they induce on the state of this machine. In the context of a multi-level model 

of brain structures and processes, this means that low levels physiological details can be 

ignored, and grounded models of cognition can be formulated by relating input and output 

(i.e., perception and behavior) at a symbolic level. Furthermore, as a program can modify 

itself as well as the virtual machine, the whole system is evolutive by virtue of its very nature. 

As a result, and similarly to software made of successive layers of programs that are 

dynamically interpreted and ultimately executed on hardware, this formalism allows for 

modeling behaviors driven by successive layers of cognitive processes that are ultimately 

grounded in the brain. 

To validate this proposition and satisfy goal 2), we shall draw on an implementation of 

Newen & Vosgerau (2020) overall functionalist framework. Behaviors, which in this 

framework are defined as mappings from one augmented state of mind to another, explicitly 

interacts with the environment, and thus allow for dynamically constructing mental 

representations on the fly. A simulation of the initial sensory-motor stage of Piaget (1937) 

cognitive development theory is proposed as an illustrative case study. It must be stressed 

from the onset that this simulation is not meant to be a comprehensive model of the Piagetian 

theory. The storage and retrieval mechanisms involved in the process demonstrate how, at this 

stage of cognitive development, neural correlates of representational vehicles implement the 

functionalities of an associative memory. This supports the hypothesis that, still at this  initial 

stage, “mental models are structures partially isomorphic to what they represent and that they 

contain exclusively perceptual relations” (Vosgerau 2006). As a child‟s exploration of the 

world progresses, his mental models will eventually include representations of space, time 

and causality. Only then epistemological concepts, such as beliefs, will give rise to higher 

level mental representations in a possibly richer format. This directly leads to the question 

raised in goal 3) i.e., which additional low level brain functionality, if any, would be needed 

in order to accommodate these extensions in a simulation, and thus achieve a comprehensive 

model of cognitive development. Our answer to this question relays prospective views 

previously suggested by some authors, and which essentially amount to hypothesize that 

evolution might have been satisfied with the first and simple solution it did encounter for 

grounding emergent mental representations. 

  



3. Defining mental representations in a functionalist framework 

In order to situate our solution to goal 1), we shall first provide an historical survey of past 

developments that occurred in related research domains. This will then lead us to formulate in 

turn two questions related to fundamental methodological issues. 

3.1 Historical background 

As a result of its cognitive revolution, psychology has moved away from behaviorist 

explanations towards the study of the mind as a computational device. Behaviorism was 

founded on the idea that the minds of humans and non-human animals alike have to be 

considered as black boxes i.e., as systems for which one does not postulate anything about the 

processes that control them. Behaviors were then defined solely by the input-output relations 

that associate perceptions and actions, with observed behaviors giving rise to behavioral rules 

i.e., synthetic ways of expressing specific input/output relations. Behaviorist studies 

culminated in the throughout exploration of operant conditioning. In contrast, according to 

cognitivist views, behaviors are driven by mental states, which are themselves defined by 

brain internal structures and processes. At first sight, these two approaches seem 

complementary; however, behaviorism was eventually felt incompatible with the concept of a 

mental state e.g., by arguing that different sets of successive mental states could produce the 

same input-output relation i.e., would be equivalent without being equal.  

In order to reconcile these two approaches, one could try and ground them both in a common 

abstract biological substrate. This would then allow for answering the question of which 

neural structure could possibly drive an observed behavior, or other words, which neural 

structure could possibly be associated with a given behavioral rule. Associate learning has 

been linked to the neural processes of long term potentiation/depreciation (Bliss & Lomo 

1973; Markram et al. 1997; Brette et al. 2007). This provides cues of what cognitive states 

could be made of, and constitutes a possible starting point for theoretically grounding 

cognitive computations. It raises in turn two related questions i.e.: 

1) what is the right level of analysis for grounding cognitive computations? 

2) what might be a suitable formalism for interfacing cognition and behaviors? 

 

3.2 What is the right level of analysis for grounding cognitive computations? 

As argued by Marr (1982) in his “tri-level” hypothesis, the “what” and “how” of cognitive 

science can be described in computational, algorithmic and implementation terms. An 

exploration of this hypothesis and of its relation to Cognitive Science has been intensively 

studied (see e.g., Cooper & Peebles 2015; Love 2015).  

The early computational models of cognition (see e.g., Newell et al. 1989; Anderson et al. 

2004) were symbolic information processors originating from the research in Artificial 

Intelligence. Based on hypotheses about how humans are supposed to behave, these top down 

approaches did allow for performing simulations regardless (at least at an earlier stage) of any 

grounding issues i.e., they did not address the problem of binding behavior to the brain. In 

parallel, another field of research focused on brain structures and processes. Numerous 

computational platforms aiming at simulating networks of neurons and ranging from artificial 

neural networks (see e.g., Rummelhart & McLelland 1986; Hinton et al. 2006) based on a 

threshold logic (McCulloch & Pitts 1943) to analytical neuron simulations (see e.g., Hines 

and Carnevale 1997; Markram et al. 2015) based on differential equations (Hodgkin & 

Huxley 1952) to simulate currents have been proposed. These constitute bottom up 

approaches detailing the ground level constituents of the brain (i.e., the neuronal cells and 

their connections), and as such are not explicitly related to the cognitive tasks they support. 



So-called “neurally plausible cognitive architectures” later tried to associate cognitive models 

with some form of brain modeling. Designated as hybrid symbolic connectionist models (see 

e.g., Shastri & Ajjanagadde 1993; Hummel & Holyoak 2005; Doumas et al. 2008), they 

constitute an attempt to combine the conceptual simplicity and the computing power  of 

artificial neural networks with the expressive capabilities of the models of Artificial 

Intelligence, and allow in particular for dealing with symbols. According however to a notable 

attempt using an analytic neuron model (Jilk et al. 2008), "the incommensurable categories at 

the various levels of description will remain necessary to explain the full range of 

phenomena”, meaning that it is illusory to try and reduce the complexity of the brain to a 

single level of description. As pointed by many authors (Carandini 2012; Love 2015; 

Forstmann & Wagenmakers 2015; Cooper & Peebles 2015), formal models are needed to 

provide links between the brain substrate and cognitive processes.  

The growing availability of neural data from brain imaging techniques has given rise to a new 

interdisciplinary field i.e., model-based cognitive neuroscience (Mulder et al. 2014; 

Forstmann & Wagenmakers 2015; Palmieri et al. 2017). Very broadly, these approaches rely 

on statistical methods to relate data to patterns of neural activity. As an example Seth et al. 

(2004) study causal interactions in neural populations by applying a combination of time 

series analysis and graph theory; Borst & Anderson (2017) use ACT-R with fMRI data to 

predict the neural correlates of constrained model processes. In order to characterize different 

such approaches Turner et al. (2017) consider two data domains, namely neural data denoted 

by N and behavioral data, denoted by B, and distinguish three ways these two domains can 

interact i.e., 

(1) using the neural data to constrain a behavioral model 

(2) using the behavioral model to predict neural data 

(3) modeling both neural and behavioral data simultaneously. 

All these approaches rely on statistical methods to relate data to patterns of neural activity. 

Whereas the first two cases use unidirectional statistical influence, the third one relies on a 

bidirectional link between measures of different modes to formalize a connection between N 

and B through a cognitive model. As a further characterization of this third case, Turner et al. 

(2017) distinguish two sub cases, namely the joint modeling and the integrative approaches. 

In order to relate model parameters, the joint modeling approach considers a hierarchical 

Bayesian structure connecting the neural and behavioral levels (Turner 2015). In contrast, the 

integrative approach relies on a single set of parameters e.g., the sequence of module 

activations in the ACT-R framework that assumes a predefined set of modules.  

At first sight, the joint modeling approach allows for a projection into Marr‟s three-level 

analysis concepts i.e., the computational and algorithmic levels being constituted respectively 

by a Bayesian probabilistic model and an inference rule. The mere existence of a 

corresponding neuronal implementation is however highly hypothetical. The complexity of 

the corresponding neural phenomena has so far prevented the definition of models directly 

relating single neuron dynamics to global brain states (see e.g., Goldman et al. 2019). As an 

example, whereas neurological measurements (Tomov et al 2018) have validated a 

computational Bayesian model positing a dedicated neural mechanism for causal learning 

(Gershman 2017), nothing is known about the corresponding basic neuronal processes.  

In any case, as argued thoroughly by Frégnac (2017), “big data is not knowledge”. The causal 

link between sub-cellular/cellular mechanisms and behavior should be achieved through 

successive levels of analysis, as exemplified by Marr‟s hypothesis. This means that mappings 

need to be expressed in algorithmic terms and not just in a correlative way. In order to take 

into account intermediate levels of circuit integration, canonical operations should be defined 

as invariant computations. As discussed in (Frégnac & Bathellier, 2015), top-down 



approaches via analytical and/or abstract mathematical tools such as Bayesian inference rules 

(see e.g., Ma and Pouget 2008), and for that matter we may add the bottom-up approaches of 

the classical theories based on artificial neural networks (Kohonen 1982; Hopfield 1982) as 

well as methods related to dynamical systems theory and neural fields (Thelen & Smith 1994; 

van Gelder 1998), are well suited for describing computations in Marr‟s sense, but “fail to 

identify algorithms and underlying circuits”. What is then needed, they conclude, is a 

„„middle-out‟‟ approach that can identify plausible structures and processes linking biology 

and cognition across successive levels of integration distinguishing micro-scale and meso-

scale functions. Analogous conclusions can be found in the insightful review of van der Velde 

and de Kamps (2015), who argue that cognitive processes are executed in connection 

structures that link sensory circuits ( i.e., perception) with motor (i.e., action). What is needed, 

they add, is “a mechanism that shows how the information (synchrony of activation in this 

case) can be used by the brain”.  

In conclusion, there does not seem to be a single level for grounding cognition, and the 

problem is rather to design an interface between different levels of study. 

3.3 What might be a suitable formalism for interfacing cognition and behaviors? 

Looking at the brain as a computing device linking neural dynamics to actions has led to the 

emergence of quite a few related research domains. Whereas computational neuroscience 

addresses low level neural mechanisms that give rise to higher level processes representing 

computations, cognitive neuroscience attempts to relate brain and behavior by linking latent 

cognitive processes to the neural mechanisms that generate them (Frank and Badre 2015). 

These two disciplines, when taken together, form the computational cognitive neuroscience 

(or CCN) paradigm (O'Reilly and Munakata 2000; Ashby and Helie 2011; Kriegeskorte & 

Douglas 2018), in which artificial neural network models and methods serve both to specify 

and to concretize theories (Herd et al. 2013). A cognitive model however doesn't have to 

represent its underlying neuronal processes itself, as the present approach to CCN does, but 

could rather adds an intermediate layer between the neuronal and behavioral layer (Mulder et 

al. 2014; Frank 2015), using formal models to connect findings from neuroscience to the 

cognitive processes at hand (Forstmann and Wagenmakers 2015).  

The interface between these various layers could be described using computer science 

methods that allow for a delineation and implementation of successive levels of complexity. 

Present day computer software methodology follows a two levels approach: application 

source programs written in a high level language (e.g., Java) get interpreted by an 

intermediate program constituting a virtual machine, which itself gets executed as an object 

program written in a processor native code. This mechanism constitutes the key mechanism 

that allows for interfacing two independent objects i.e., software and  hardware. In the context 

of a multi-level model of brain structures and processes, this means that low levels 

physiological details could be ignored, and grounded models of cognition be formulated by 

relating input and output (i.e., perception and behavior) at a symbolic level. 

This is the approach that will be illustrated here.  As computer applications can be first 

programmed, then compiled and finally interpreted by a virtual machine running as a native 

program, cognitive processes will be similarly encoded, compiled and then interpreted by 

virtual neurological microcircuits representing a brain's innate processes. As a consequence, 

there will be no reference to any specific neural network model. In contrast to the usual 

approach of creating neural models of interactive brain areas to by quantitatively fitting data 

(i.e., where latent estimated parameters are being correlated with neural measures), the goal 

here is to construct a model of how behaviors can be interfaced with neural dynamics in order 

to try and discover the learning processes involved in the emergence of cognition. 



4. Abstracting neuronal functionalities: a virtual brain formalism  

In the formalism presented in (Bonzon 2017), brain processes representing synaptic plasticity 

are abstracted through asynchronous communication protocols and implemented as virtual 

microcircuits. The basic units of these micro-circuits are constituted by threads, which 

correspond either to a single or to a cluster of connected neurons. Contrary to traditional 

neuron models in which incoming signals are summed in some integrated value, thread inputs 

can be processed individually, thus allowing for threads to maintain parallel asynchronous 

communications reflecting a massively asynchronous organ (Zeki 2015). Threads can be 

grouped into disjoint sets, or streams to model neural assemblies (Gerstner & Kisler 2002; 

Huyck & Passmore 2013) and discrete weights (e.g., integer numbers) can be attached to pairs 

of threads that communicate within the same stream. Meso-scale virtual circuits linking 

perceptions and actions are built out of microcircuits. Circuits can be compiled into virtual 

code implications that are used just in time to deduce instructions to be finally interpreted by 

the virtual machine performing contextual deductions. 

4.1 Basic concepts 

To introduce this formalism, let us consider a simple case of synaptic transmission between 

any two threads P and Q. This can be represented by the microcircuit given in Figure 1, 

where the symbol ->=>- represents a synapse. 

 

 …-P->=>-Q-… 

 

Figure 1. Microcircuit implementing a synaptic transmission. 

When compiled, this microcircuit will give rise to the execution of virtual machine 

instructions implementing the communication protocol given in Fig. 2. 

 

 P:  … 

   send(Q)    activate Q if Q is not active and post a signal for Q 

 

 Q:  receive(P)    wait for a signal from P and weight(P,Q)>0 

   … 
 

Figure 2.  Virtual machine instructions for an asynchronous communication. 

This protocol corresponds to an asynchronous communication, where a predefined weight 

between the sender P and the receiver Q that can be either incremented or decremented. On 

one side, thread P fires thread Q  and sends it a signal. On the other side, Q waits for the 

reception of a signal from P and proceeds only if the weight between P and Q stands above a 

given threshold. The overall process allows for passing data through variable parameters. 

As a first example, let us consider the classical conditioning of aplysia californica (Kandel & 

Tauc, 1965). In this experiment, a tactile conditioned stimulus cs elicits a weak defensive 

reflex, and an electrical unconditioned stimulus us produces a massive withdrawal reflex. 

After a few pairings of cs and us with cs slightly preceding us, cs alone triggers a 

significantly enhanced withdrawal reflex. The corresponding circuit, adapted from Carew et 

al. (1981), is represented in Fig. 3. In this circuit, the symbol /|\ represents the modulation of a 

synaptic transmission, the sign * indicates the conjunction of converging signals, and the sign 

+ either the splitting of a diverging signal, or a choice between converging signals. The 

variable parameter X in thread motor(X) gets instantiated into either cs or us. 



 

sense(cs)-*->=>- 

      /|\    |   

      ltp    +-motor(X) 

       |     | 

sense(us)-+->=>- 

 

Figure 3. A circuit implementing classical conditioning. 

Thread ltp (standing for long term potentiation) acts as an interneuron reinforcing the pathway between 

sense(cs) and motor(X). 

Classical conditioning follows from the application of hebbian learning
 
i.e., “neurons that fire 

together wire together”. Though it is admitted today that classical conditioning in aplysia is 

mediated by multiple neuronal mechanisms including a postsynaptic retroaction on a 

presynaptic site (Glanzman et al, 1995; Antonov et al, 2003), the important issue is that this 

activity depends on the temporal pairing of the conditioned and unconditioned stimuli, which 

leads to implement the thread ltp as a detector of coincidence.  

4.2 A mechanism for simulating long term potentiation  

The microcircuit abstracting the mechanism of long term potentiation is given in Fig. 4. As a 

further theoretical abstraction, our formalism allows to distinguish between a hypothetical 

weak and a strong synaptic plasticity reflecting brain maturation (Bolton et al 2017).  Whereas 

weak plasticity binds a given sensory input with a unique reaction, a strong synaptic plasticity 

allows for associating the same input with successive different reactions.  

N.B.  In our implementation, this abstraction follows from the underlying logical programming framework that 

distinguishes between the so-called anonymous variables, denoted by the character “ _”, and named variables, 

such as X, Y, Z.  Whereas anonymous variables, once they get bound, do not retain their value and thus cannot 

create successive associations, named variables do. 

 
 Q---*->=>-R 

    /|\ 

    ltp 

     | 

 P---+… 

 

 P:   fire(ltp(Q,R))   fire thread ltp(Q,R) 
    … 

 ltp(Q,R):  join(Q)   wait for a signal from Q 

   increment(weight(Q,R)) increment weight between Q and R 

 Q:   merge(ltp(Q,R))   post a signal for ltp(Q,R) 

  send(R)    fire thread R and post a signal for R 

 R:   receive(Q)    wait for a signal from Q and w eight(Q,R)>0 

.  

Figure 4. Micro-circuit and virtual machine instructions for ltp. 

In order to detect the coincidence of P and Q,  P fires an ltp thread that calls on join to wait for a signal from 

Q. In parallel, Q calls on merge to post a signal for ltp and then executes a send(R) command to establish a 

link with R. After its synchronization with Q, ltp increments the weight between Q and R. 

As a further example of long term potentiation implementing a simple form of operant 

conditioning, implying in this case learning the choice of a preferred action through a possible 

reinforcement, let us first introduce: 

 a watch(I) thread that drives a learning process, where I is a sensory input  



 a spot(I) thread discriminating perceptions through an excite or an inhibit stimulus  

 two effector threads accept(I) and reject(I)defining output responses. 

Let us then consider the virtual circuit in Fig. 5: 
 

            ---*->=>-accept(I) 

           |  /|\ 

           |  LTP 

           |   | 

           |   +---------------------------------  

           |   |                                 | 

           |  LTD                                | 

           |  \|/           |excite(accept(I))--- 

  watch(I)-+---*->=>-spot(I)| 

           |  /|\           |inhibit(accept(I))-- 

           |  LTD                                | 

           |   |                                 | 

           |   +---------------------------------  

           |   |  

           |  LTP 

           |  \|/ 

            ---*->=>-reject(I) 

 

Figure 5. Virtual circuit implementing a simple case of operant conditioning 

 at the start, the pathway from watch to spot is open, and pathways to accept and reject are closed; 

 thread spot discriminates inputs through positive and negative stimuli, and thus allows for diverging paths; 

 LTP threads open the path to either accept or reject, and LTD threads close the path to spot. 

This circuit matches a fundamental principle in circuit neuroscience according to which, as a 

result of synaptic plasticity (expressed here through LTP/LTD threads), inhibition in 

neuronal networks during baseline conditions allows in turn for disinhibition and constitutes a 

key mechanism for learning
 
(Letzkus et al 2015; Zagha et al 2015). As a result, this circuit 

learns a deterministic behavior driven by two neural populations competing for a response. 

4.3 An extended associative mechanism for memory engrams 

According to experimental results (Liu et al. 2012; Ryan et al., 2015; Tonegawa 2015), 

memory engrams involve two different circuits and mechanisms i.e., the retention of specific 

patterns of connectivity between engram cells required for the storage of information, on one 

hand, and the synaptic strengthening needed for its consolidation and retrieval, on the other. 

In order to allow for two threads P and Q attached to separate streams and active at different 

times to be associated in order to trigger a recall thread R, a new communication protocol 

involves two complementary long term storage/retrieval (lts/ltr) threads. This new 

protocol, which leads to the building of a storage trace depicted by -{P}- and its later 

retrieval, is given in Fig. 6. As a distinctive difference from an ltp(Q,R) thread (which 

gets fired by P and waits for a signal from Q in order to relate Q and R), an ltr(P,Q,R) 

thread is fired by Q and waits for a path from {P} in order to relate Q and R, thus defining the 

basic mechanism of an associative memory. 

  



 
      Q--+---*->=>-R 

         |  /|\ 

         |  ltr(P,Q,R) 

         |   | 

 P-+---*-{P}-*--- 

   |  /|\ 

   |  lts(P) 

   |   | 

    --- 
 

 P:  fire(lts(P))    fire thread lts(P) 

 lts(P): store(P)    fire thread {P} 

   increment(weight(P,{P}))  increment weight between P and {P} 

 {P}:  feed(_)   if weight(P,{P})>0 then open path  

 Q:   fire(ltr(P,Q,R))   fire thread ltr(P,Q,R) 

   send(R)    fire thread R and post a signal for R 

 ltr(P,Q,R): retrieve(P)    wait for an open path from {P} 

   increment(weight(Q,R))  increment weight between Q and R 

 R:   receive(Q)    wait for a signal from Q and weight(Q,R)>0 

 

Figure 6. Microcircuit and virtual machine instructions for a long term associative memory. 

5. Abstracting informational functionalities: a virtual machine formalism 

The concept of a virtual machine that we shall use allows for emulating the execution of a 

program given in a symbolic language S on a system having its own logical language L. On 

the cognitive side, virtual circuits, which somehow correspond to cognitive software written 

in language S, are compiled into virtual code implications of language L. On the neural side, 

these implications are used in turn to deduce just in time instructions that get interpreted by 

the virtual machine i.e., this virtual machine actually performs contextual deductions (Bonzon 

et al., 2000). In addition, languages I and O define respectively input/output sentences 

captured by sensors and delivered to effectors. By developing how models are actually 

constructed, we get the following functional signatures: 

compile:  S L 

load:   L L L 

compile and load:   S
  (S L)  L L 

compile load and run:   I  (S (S  L)  L)   L O 

Running a compiled model on a virtual machine then defines the reduced signature: 

run:   I  L   L O 

In the realm of behaviorism, reactive behaviors are described by mappings from inputs 

(stimuli) to outputs (responses). In the realm of cognitivism, these mappings are extended in 

order to account for flexible behaviors. According to Newen &Vosgerau (2020), the 

corresponding functions take two arguments i.e., a stimulus/internal state pair, and produce 

two values i.e., a resulting internal state/response pair, which actually corresponds to the 

reduced signature of the run mapping as defined above.   

Let Model ϵ L, Input ϵ I and Output ϵ O designate respectively an internal state, a stimulus and 

a response. In its interaction with the outside world, this machine does function as a non-

deterministic learning automaton that repeats a sense-react cycle of embodied cognition 



(Brooks 1991). At the top level, the virtual machine is defined by a run procedure that 

consists of a loop whose cycle comprises a sense procedure followed by a react procedure: 

run(Model) 

  loop sense(Model) 

          react(Model) 

At the next level, the sense procedure monitors stimuli directed to sensor threads. After 

capturing an Input interrupt, it updates Model through a transition function input: 

sense(Model) 

  if interrupt(Input) 

  then input(Model, Input) 

The react procedure consists of a loop using implications in Model to first deduce a response 

under the form of a virtual machine instruction Output, and then updates Model through a 

transition function output corresponding to the execution of this virtual machine instruction: 

react(Model) 

  for each (Instruction) 

  such that  ist(Model, Output) 

  do output(Model, Output) 

The ist predicate i.e., “is true”, implements contextual deduction. As there is no specified final 

state, whichever state the machine is in at any given time is acceptable and represents the 

simulated subject‟s current state of mind. 

6. Case study: Piaget revisited 

The purpose of this case study is to demonstrate how mental representations arising in the 

early course of a child‟s cognitive development can be simulated in a computational 

framework. These simulations, which reproduce experiments from Piaget (1937), are not 

intended to be a comprehensive model of the corresponding psychological theory, but merely 

to explore the possible neurological structures and processes that support this development. 

6.1 Background and scope 

According to Piaget‟s theory, cognitive development starts with a sensory-motor stage, which 

itself extends over 6 substages. At the beginning, infant behaviors are driven by elementary 

action schemas. Substage 4 is marked with the acquisition of object permanence, or 

objectification i.e., the emergence of objects as autonomous and permanent entities. In 

Piaget‟s terminology, assimilation (i.e., the insertion of new perceptions into existing 

schemas) is followed by accommodation (i.e., the modification and/or extension of existing 

schemas). His postulate then reads as follows: “The criterion of this objectification, hence of 

this rupture in continuity between things perceived and the elementary sensory-motor 

schemata, is the advent of the behavior patterns related to absent pictures: search for the 

vanished object, belief in its permanence, evocation, etc.” (Piaget 1937, p. 5).  

This theory has been repeatedly challenged (Bower 1967; Bower & Wishart 1972), especially 

after the evidence provided by new type of experiments did suggest that infants demonstrate 

an understanding of object permanence at an earlier age (Baillargeon et al 1985; Baillargeon 

1987). This evidence however, which relied on a violation of the expectation paradigm, has 

been later questioned by a theoretical account of this paradigm that does not invoke object 

concepts (Schöner & Thelen 2006). It was consequently proposed that infant‟s failure to 

achieve Piaget‟s search tasks should not be attributed to an inadequate level of cognitive 

development, but rather to an inherent difficulty in coordinating perceptive and motor actions. 

This controversy raises the issues of how schemas are acquired, coordinated, and eventually 



give rise to mental representations. Cognitive neuroscience, which aims at linking cognition 

to brain processes, hasn‟t succeeded yet in grounding such schemas into actual neural circuits. 

Our formalism of symbolic neural dynamics is used here to model them as virtual circuits 

linking sensory inputs with perceptual responses. These circuits will be then interpreted in 

turn by a virtual machine thus simulating successive the substages of the sensory-motor stage. 

6.2 Modeling reflexes (sensory-motor substages 1-2) 

The observations related to the first and second sensory-motor substages have been reported 

in (Piaget 1936). These essentially consist in describing reflex behaviors that are driven by 

visual attention and culminate in coordinated prehension: the grasping of objects becomes 

“systematic when the object and the hand are perceived in the same visual field”. In other 

terms, following a reciprocal assimilation, “all that is to be seen is also to be grasped and all 

that is to be grasped is also to be seen”. 

The work of Wible et al. (2020) offers a model of visual attention that simulates behavioral 

and neural correlates as the product of attractor states in a dynamical system. The model 

proposed here is based on symbolic neural dynamics and distinguishes two intervened steps:  

 first sensation i.e., the capture of visual data through sensors 

 then perception i.e., the interpretation of these data through virtual circuits linked to effectors.  

Visual input data consist in an object image and its position in space. The capture of an 

object‟s image results from multilayered neural processes taking place in the eye‟s retina.  As 

it has been demonstrated in rodent animals (O‟Keefe & Dostrosky 1971; Moser et al., 2008; 

Moser & Moser 2008), the capture of position data is achieved via multiple receptive fields 

i.e., place, head direction, grid and border cells. The perception associating these two data 

results from yet mostly unknown higher level circuits and mechanisms (Lewis et al 2019; 

Bicanski & Burgess 2019; Anselmi et al 2020). Our model relies on two simplifying 

hypotheses: 

 space will be restricted and defined as a one dimensional axis, with visual sensory inputs 

defined as P(X), where P and X stand respectively  for the stored image of an object and its 

position on the space axis, which together constitute a  numerical identity i.e., a 

prerequisite for object permanence (Moore & Meltzoff 2004) 

 neural assemblies processing these inputs will be represented by threads activated through 

short term potentiation. 

On this basis, a grasping reflex can be driven by the virtual circuit given in Fig. 7. In this 

circuit, two sensors sense(view(P(X))) and sense(view(hand(X)))converge to 

signal that an object P and a hand are perceived in the same visual field X. As a result, the 

effector grasp(P(X)) gets  activated through a short term potentiation. In conjunction with 

this visual drive, a grasping reflex involves other multi-modal perceptions e.g., for controlling 

motor actions (see e.g., Thelen et al 2001; Bonzon 2020). In the developments that follow, it 

is assumed that the firing of the circuit in Fig. 7 will be followed by the subject‟s required 

coordinated motor actions. 

 

 sense(view(P(X)))-------*>=>-grasp(P(X)) 

                        /|\ 

                        STP 

                         | 

 sense(view(hand(X)))---- 

 

Figure 7 .Virtual circuit implementing the grasping of an object. 

A short term potentiation STP opens the path from sense(view(P(X))) to grasp. 



6.3 Modeling visual object tracking (sensory-motor substage 3) 

Among others explorations, infant early experiences with the world follow from their visual 

attention being caught by moving objects. The tracking of moving objects results from eye 

saccades i.e., target-driven reflex movements. These are driven by expected upcoming data 

relying on pattern recognition from preceding inputs (Bicanski & Burgess 2019). As noted by 

Piaget (1937, p.13), “Visual accommodation to rapid movements makes possible the 

anticipation of future positions of the object”.  In the case of a single object, this anticipation 

relies on the focus of attention (i.e., the position where the object is expected to next hit the 

eyes). When the actual sensation does not meet the expectation (i.e., if another object hit the 

eyes), visual attention gets suspended, and a default action is taken. This represents an 

example of assimilation (here of the inputs produced by the moving object), followed by an 

accommodation (here by giving up tracking and looking instead at the occluding screen).  

As an example, let us consider a simple simulation scenario that reproduces a characteristic 

behavior that can be observed in the third sensory-motor substage, defined as follows: 

 a toy is seen moving (e.g., carried or rolling) along a one dimensional axis 

 if it stands still (e.g., is dropped or stops) in the sight of the observer, he grasps it 

 if it disappears behind/under a screen/object, the observer looks at the occluding item. 

Two successive eye saccades are sketched in Fig. 8 together with their sensory input vectors. 

 

      

-----------------------------> X 

0         1         2 

sensor(move(toy(0))),sensor(see(toy(1)))  toy moving from position 0 to position 1 

 

 

           ---- 

-----------------------------> X 

0         1         2 

sensor(move(toy(1))),sensor(see(screen(2)))  toy disappearing behind a screen 

 

Figure 8. Successive eye saccades tracking a moving object 

As a result of discriminating inputs to eye saccades, a forward propagation of excite/ inhibit 

stimuli leads to the virtual circuit implementing visual tracking given in Fig. 9. 

 

 sense(stop(P(X+1)))-------------------------------------------*>=>-grasp(P(X+1)) 

                                                              /|\ 

                                                              STP 

                                                               | 

 sense(move(P(X)))-set(focus(P))------------*>=>-track(P(X+1))- 

                                           /|\  

                                           STP 

                                            | 

                                   |excite-- 

 sense(see(Q(X+1)))-check(focus(Q))| 

                                   |inhibit- 

                                            | 

                                           STP 

                                           \|/  

 sense(move(P(X)))-set(focus(P))------------*>=>-look(Q(X+1)) 

 

Figure 9. Virtual circuit implementing the visual tracking of a moving object. 

 two parallel sensor threads first process the input  move(P(X)) and set the current focus of attention to P; 

 these two threads then wait for a sensor thread to process the input see(Q(X+1)); 

 current focus of attention leads to apply a short term potentiation to one of two threads track or look; 

 thread stop signaling that the toy stands in the observer‟s visual field leads to a grasp(P(X+1)). 



This is illustrated in Fig. 10 containing the execution trace of an actual simulation run. 

      

---------------> X 

0         1 

sensor(move(toy(0))),sensor(see(toy(1))) 

 track(toy(1)) track toy at  1 
 

 

              

            

-------------------------> X 

0         1         2 

sensor(move(toy(1))),sensor(see(toy(2))) 

 track(toy(2)) track toy at  2 
sensor(stop(toy(2))) 

 grasp(toy(2)) grasp toy 
 

 

                    

                  

-----------------------------------> X 

0         1         2         3 

sensor(move(toy(2))),sensor(see(toy(3))) 

 track(toy(3)) track toy at  3 
sensor(stop(toy(3)))  

 grasp(toy(3)) grasp toy 
 

                        ---- 

----------------------------------------------> X 

0         1         2         3         4 

sensor(move(toy(3))),sensor(see(screen(4))) 

 look(screen(4)) look at screen 

Figure 10. Execution trace of tracking a mobile object 

6.4 Modeling visual object tracking and searching (sensory-motor substage 4) 

The next substage is marked by a child‟s ability to search for an object outside of his visual 

field e.g., behind a screen. At the beginning, the child does not take into account successive 

object displacements i.e., for him “the place where the object was found for the first time 

remains the place where it will be found”, leading to the so-called A not B error. Piaget 

proposed a mix of possible explanations for this phenomenon, including a lack of ability to 

recall the sequence of displacements, to correctly take into account their order, and to separate 

objects from their context. This has been summarized as resulting from the persistent 

association binding an object with the infant‟s immediate action (Müller et al 2001), or as 

reflecting the sustained visual attention that accompanies a first reach (Ruffman 2001). In 

terms of neural processes, this could result from a failure to inhibit a previous response 

(Mukanata 1998; Diamond 2001) i.e., in other terms to bind successive related sensory inputs 

and actions. After a while, a correct sequential tracking is steadily observed. 

A virtual circuit implementing the tracking and searching of a moving object that extends the 

circuit of Fig. 9 is given in Fig.11. The sensation produced by a suspended attention, 

represented by the sensory input from sense(halt(Q(X+1))), is followed by a new 

accommodation i.e., a search  that gets activated by long time potentiation LTP. Two 

different LTP models (see Fig. 4) reflecting a form of weak vs. strong form of synaptic 

plasticity (i.e., a brain maturation that allows for binding successive related sensory inputs and 

actions) are used here to reproduce in turn an A not B error and a correct sequential tracking. 

Furthermore, uncovering an object via sense(view(P(X+1))produces a grasping reflex. 



 

 sense(stop(P(X+1)))-------------------------------------------*>=>-grasp(P(X+1)) 

                                                              /|\ 

                                                              STP 

                                                               | 

 sense(move(P(X)))-set(focus(P))------------*>=>-track(P(X+1))- 

                                           /|\  

                                           STP 

                                            | 

                                   |excite-- 

 sense(see(Q(X+1)))-check(focus(Q))| 

                                   |inhibit- 

                                            | 

                                           STP 

                                           \|/  

 sense(move(P(X)))-set(focus(P))------------*>=>-look(Q(X+1))-- 

                                                               | 

                                                              LTP 

                                                              \|/ 

 sense(halt(Q(X+1)))-------------------------------------------*>=>-search(Q(X+1))- 

                                                                                   | 

                                                                                  LTP 

                                                                                  \|/ 

 sense(view(P(X+1)))---------------------------------------------------------------*>=>-grasp(P(X+1)) 

 

Figure 11. Virtual circuit implementing the visual tracking and searching of a moving object. 

In addition to the previous circuit, 

 thread search(Q(X+1))gets driven by thread halt whenever the toy disappears; 

 two different models of LTP can be used to reproduce an A not B error or a correct sequential tracking; 

 thread view signaling that object P has been uncovered at location X+1 drives a grasping reflex;  

 grasping reflex grasp is activated by a potentiation from the search thread.  

An execution trace of this circuit implementing a weak LTP potentiation is given in Fig. 12. 

 

      

---------------> X 

0         1 

sensor(move(toy(0))),sensor(see(toy(1))) 

 track(toy(1)) track toy at 1 
 
 

                 

                 

           ---- 

-------------------------> X 

0         1         2 

sensor(move(toy(1))),sensor(see(screen(2))) 

 look(screen(2)) look at screen 

sensor(halt(screen(2))) 

 search(screen(2)) search screen  
sensor(view(toy(2))) 

 grasp(toy(2)) grasp toy 
 
 

             ----        
---------------------------------------------> X 

0         1         2         3         4 

sensor(move(toy(3))),sensor(see(toy(4)))) 

 track(toy(4)) track toy at 4 
 
 

             ----              ---- 
-------------------------------------------------------> X 

0         1         2         3         4         5 

sensor(move(toy(4))),sensor(see(screen(5))) 

 look(screen(5)) look at 2nd screen 
sensor(halt(screen(5))) 

 search(screen(2)) search 1st screen 

Fig. 12. Execution trace of tracking and searching a mobile object with an A not B error  



The unfeasibility of binding a second pair of related inputs at the second screen forced a 

renewed search at the first screen, thus producing an A not B error. In contrast, the same 

circuit implemented with a strong long time potentiation allows for successive associations of 

related sensory inputs and actions and produces the execution trace given in Fig. 13, which 

reflects a correct second search. 
 
 

             ----        
---------------------------------------------> X 

0         1         2         3         4 

sensor(move(toy(3))),sensor(see(toy(4))) 

 track(toy(4)) track toy at 4 
 

                                  

                                  

             ----                 ---- 

------------------------------------------------------> X 

0         1         2         3         4         5 

sensor(move(toy(4))),sensor(see(screen(5))) 

 look(screen(5)) look at2nd screen 
sensor(halt(screen(5))) 

 search(screen(5)) search 2nd screen 
sensor(view(toy(5))) 

 grasp(toy(5)) grasp toy 

Fig. 13. Execution trace of a correct tracking and searching a mobile object  

6.5 Modeling a partially invisible displacement (sensory-motor substage 5) 

The first acquisition of the next stage is to account for sequential displacements, i.e., to 

correct the A not B error. As discussed above, this is achieved in our framework by activating 

the search thread through a long time LTP potentiation implementing a strong from of 

synaptic plasticity. In order to study the dissociation of objects from their context (e.g., when 

an object‟s position is not directly perceived because of some invisible part along its way), 

Piaget (1937, p. 75) devised a series of experiments: “hiding an object not directly under a 

screen, but in box without a lid; box and object are made to disappear under a screen and the 

box brought out empty”. He then observed what he called an “empirical or practical 

apprenticeship” which, he argued, does not yet involve any image or representation of spatial 

relations.  

Our developments follow closely observation 55 from Piaget (pp.75-76). This observation 

was divided in three phases: 

I. An object is put in a box while the infant watches; the box is then placed under a screen 

and turned down to leave the object hidden under the screen without the infant noticing it; 

the box is finally brought out empty. The infant then searches for the object in the box, 

eventually looks around, but doesn‟t search for the object under the screen 

II. After a few repetition of this technique followed by the same negative result, the box is 

left under the screen with the object inside; the infant then immediately looks under the 

screen and grasps the object (NB. in the original description, the infant finds and grasps 

the box, opens it, and takes the object out of it; these details will be ignored here for the 

sake of simplicity, especially since the box was not explicitly said to be closed) 

III. Finally, the experiment protocol of phase I is resumed: this time, the infant first looks for 

the object in the box and not finding it then searches under the screen (NB this positive 

result is steadily observed only after a few experiments).  

The outcome of phase III led Piaget to conclude that mastering partially invisible 

displacements (NB which are generally but oddly referred to as “visible displacements”) 



could not occur through the awareness of some relation or image, but as a result of a 

“practical schema” acquired through some kind of learning. 

These three stages can be implemented through a further differentiation of the previous 

schema that gives rise to the schema in Fig.14. In this circuit, the practical learning envisioned 

by Piaget is implemented as a simple case of operant conditioning, which involves a watch 

and a spot thread (see Fig. 5). This behavior relies on the remembered position where the 

object equivalently, did disappear, represented in our formalism by a short term memory 

<look(Q(X+1))>.  
 
                                                                                   ---*>=>-grasp(I(X+1)) 

                                                                                  |  /|\ 

                                                                                  |  LTP 

                                                                                  |   | 

                                                                                  |   +---------------------------- 

                                                                                  |   |                            | 

                                                                                  |  LTD                           | 

                                                                                  |  \|/                  |excite-- 

 sense(stop(P(X+1)))-------------------------------------------*>=>-watch(P(X+1))-+---*>=>-spot(F(I)(X+1))| 

                                                              /|\                 |  /|\                  |inhibit- 

                                                              STP                 |  LTD                           | 

                                                               |                  |   |                            | 

 sense(move(P(X)))-set(focus(P))------------*>=>-track(P(X+1))-                   |   +---------------------------- 

                                           /|\                                    |   | 

                                           STP                                    |  LTP  

                                            |                                     |  \|/ 

                                   |excite--                                      *---*>=>-search(_(_))-  

 sense(see(Q(X+1)))|check(focus(Q))|                                              |   |                 | 

                                   |inhibit-                                      |   |                 | 

                                            |                                     |   |                 | 

                                           STP                                    |   |                 | 

                                           \|/                                    |   |                 | 

 sense(move(P(X)))|set(focus(P))------------*>=>-look(Q(X+1))-+-<look(Q(X+1))-----+   |                 | 

                                                              |                   |   |                 | 

                                                             LTP                  |   |                 | 

                                                             \|/                  |   |                 | 

 sense(halt(Q(X+1)))------------------------------------------*>=>----------------*---                  | 

                                                                                                       LTP 

                                                                                                       \|/ 

 sense(view(I(X+1)))------------------------------------------------------------------------------------*>=>-view(I(X+1))|excite-grasp(I(X+1)) 

 

Figure 14. Virtual circuit implementing a partially invisible displacement. 

In addition to the previous circuit, 

 the stop thread activates a learning circuit where I stands for the object contained in box F; 

 this sub-circuit is imbedded  in the overall circuit such that the search is now driven  by the halt thread; 

 this search relies on the memorized position <look(Q(X+1))> where the object did disappear; 

 the object I captured by the sensory input sense(view(I(X+1))) gets discriminated. 

The successive phases of observation 55 have been reproduced in simulation run based on the 

circuit of Fig. 14 (see Fig. 16 in the Supplementary information section). 

6.6 Modeling invisible displacement (sensory-motor substage 6) 

The transition between substages 5 and 6 i.e., when a child starts mastering invisible object 

displacements, demonstrates a shift from perceptual to representational responses i.e. , a 

capacity that can be invoked in the absence of a perceived reality (McCune 2001). This is 

summarized as being able to "keep an object in mind" when it is not in sight. In support of 

this evolution, Ramsay and Campos (1978) demonstrated that infants who had reached 

substage 6, and thus kept in mind the hidden object, expressed surprise when the toy they 

uncovered was different.  

This capacity builds up to the sequential tracking of objects that undergo successive invisible 

displacements. Our developments reproduce here Piaget‟s observation 64, translated however 

in a different setting involving a covered box instead of a closed hand. This observation is 

divided in three phases retaining their original numbering. 

Ia.  An object is put in a box and the box is covered by a lid while the infant watches; the box 

is then placed under a screen and emptied to leave the object hidden under the screen 

without the infant noticing it; the box is finally brought out empty. The infant searches for 

the object in the empty box, and then goes on searching for it under the screen 



Ib. The same experiment is repeated, with the covered box being passed and emptied in a 

different screen; the infant immediately searches this second screen. 

II. The experiment protocol of phase I is resumed, but this time the box passes under two 

successive screens before stopping; the infant looks for the object under the first screen, 

and not finding it searches the second screen.  

These three phases can be implemented through an ongoing differentiation of the schema in 

Fig. 14 that ends up with the extended circuit in Fig. 15.  

 

                                                                                                                            |excite-grasp(I(X+1)) 

 sense(spot(F(I)(X+1)))---------------------------------------------------------------------------------*>=>-spot(F(I)(X+1))| 

                                                                                                       /|\                  |inhibit- 

                                                                                                       LTP                           | 

 sense(open(F(I)(X)))--*>=>-image(F(I)(X))-+---*-{image(F(I)(X))}-----------------*---                  |                            | 

                      /|\                  |  /|\                                 |   |                 |                            | 

                      STP                  |  LTS                                 |  LTR                |                            | 

                       |                   |   |                                  |  \|/                |                            | 

 sense(close(F(_)(X)))-                     ---                                   +---*>=>-open(P(X+1))-                             | 

                                                                                  |  /|\                                             | 

                                                                                  |  LTB                                             | 

                                                                                  |   |                                              | 

 sense(stop(P(X+1)))-------------------------------------------*>=>-watch(P(X+1))-+   +---------------------------------------------- 

                                                              /|\                 |   | 

                                                              STP                 |  STP 

                                                               |                  |  \|/ 

 sense(move(P(X)))-set(focus(P))------------*>=>-track(P(X+1))-                   *---*>=>-search(_(_))- 

                                           /|\                                    |   |                 | 

                                           STP                                    |   |                 | 

                                            |                                     |   |                 | 

                                   |excite--                                      |   |                 | 

 sense(see(Q(X+1)))-check(focus(Q))|                                              |   |                 | 

                                   |inhibit-                                      |   |                 | 

                                            |                                     |   |                 | 

                                           STP                                    |   |                 | 

                                           \|/                                    |   |                 | 

 sense(move(P(X)))-set(focus(P))------------*>=>-look(Q(X+1))-+-<look(Q(X+1))>----+   |                 | 

                                                              |                   |   |                 | 

                                                             LTP                  |   |                 | 

                                                             \|/                  |   |                 | 

 sense(halt(Q(X+1)))------------------------------------------*>=>----------------*---+                 | 

                                                                                  |   |                 | 

                                                                                  |   |                 | 

{image(F(I)(X))}-------------------------------*---                               |   |                 | 

                                               |   |                              |   |                 | 

                                               |  LTR                             |   |                 | 

                                               |  \|/                             |   |                 | 

                                      |inhibit-+---*------------------------------*---                  | 

 sense(view(P(X+1)))-*>=>-view(P(X+1))|                                                                 | 

                    /|\               |excite-grasp(P(X+1))                                             | 

                    LTP                                                                                 | 

                     |                                                                                  | 

                      ---------------------------------------------------------------------------------- 

 

Figure 15. Virtual circuit implementing invisible displacements. 

In addition to the previous circuit, 

 sensation gets assimilated by sense(open(F(I)(X))) and sense(close(F(_)(X))); 

 this sensation gets accommodated in an internal representation {image(F(I)(X)))}; 

 a retrieval process leads the watch thread to activate the opening of the closed box after it  stopped; 

 a LTB process blocks subsequent box openings; 

 the sense(spot(F(I)(X))) thread leads to either grasp a wanted item or activate a new search; 

 a retrieval from {image(F(I)(X))} drives the view thread to activate a renewed search. 

At the start, watching the experimenter while he places a toy in a box (or equivalently takes it 

in his hand palms) and then covers the box (or closes his hands) produces a new sensation 

involving a relation between two objects. This gets assimilated by sense(open(F(I)(X))) 

and sense(close(F(_)(X)))threads, where F and I stand respectively for  the box and 

object, and accommodated by the image(F(I)(X)) thread that creates an internal 

representation {image(F(I)(X))} implemented via an LTS long term storage process. In 

our formalism (see Fig. 6), the internal representation {P} of a thread P  extends the 

mechanism of long term potentiation and allows for an LTR(P,Q,R) retrieval process to be 

fired by Q  in order to relate Q and R, thus defining the basic mechanisms of an associative 

memory. In the present context, this retrieval process drives the watch thread (which stands 

here for Q ) to activate the open thread (which stands for R) and thus trigger the opening of 

the box after it stops.   



After opening the box, sense(spot(F(I)(X))) drives spot thread to either grasp a 

desirable item or activate a new search. According to Piaget‟s observation, infants who at first 

do open a box and find it empty do not open it again in subsequent trials. This is achieved 

here through a long term blocking process LTB. Altogether, this new accommodation enlarges 

the previous operant conditioning learning process by allowing it to be driven by an image 

evocation. 

Finally, in order to take into account successive invisible displacements, an evocation from 

the {image(F(I)(X))} memory drives an LTR retrieval process that activates a renewed 

search via the discriminating view thread. In order to recall the sequence of displacements 

and take into account their order, the memory <look(Q(X+1))> is implemented as a 

classical  first-in-first-out (FIFO) data structure. 

The successive phases of observation 64 have been reproduced in a simulation run based on 

the circuit of Fig. 15 (see Fig. 17 in the Supplementary information section). 

6.7. Summary 

As demonstrated in this section, the progressive differentiation of action schemas involved in 

the sensory-motor stage of Piaget cognitive development theory can be simulated in a 

computational framework. These simulations successively allow for reproducing:  

 grasping an object in sight (substages 1-2); 

 visually tracking a moving object (substage 3); 

 the A not B error and the correct retrieval of a hidden object (substage 4); 

 following partially invisible object displacements (substage 5); 

 following invisible object displacements (substage 6). 

Whereas the implementation of the first substages relies on short/long term potentiation, the 

last transition requires the additional abstracted neuronal functionality of an associative 

memory. As defined in our formalism, the LTS/LTR long term storage and retrieval process 

precisely allow for two threads attached to separate streams to be associated in order to trigger 

a recall thread, thus enabling the retained image of a previously perceived relation to drive an 

action, and thus more generally to implement the basic mechanisms of memory engrams 

(Queenan et al., 2017; Gallistel, 2021).  

 

7. Conclusion  

The theoretical developments and their illustration presented in this work highlight a possible 

relation between abstract neurological processes and cognitive functionalities, on one hand, 

and between these functionalities and behaviors, on the other. In fine, they come in support to 

Piaget‟s early theoretical developments about mental representations as found in (Piaget 1936, 

p. 242), where he argues as follows: 

 “Hence the accommodation of this stage is more refined than that of the schemata hitherto 

under study, since the mobile schema applies to relations between external things and no 

longer only to things in their mere connection with the activity itself”. 

He then goes on asking the question  

“Does this accommodation involve representation? 

to which, after a digression, he proposes to add an additional criterion i.e. , that representation 

must be understood “to mean the capacity to evoke by a sign or a symbolic image an absent 

object or an action not yet carried out”.  



According to this argumentation, a criterion for the existence of a mental representation is the 

capacity of a symbolic image to evoke an action not yet carried out. This capacity is 

implemented in our virtual neurological framework through the additional functionality of an 

associative memory allowing for tracking invisible displacements by successively 

a) assimilating a relation between two things through a symbolic image  

b) accommodating this relation by enabling its retained image to drive an action.  

It can be concluded that these additional functionalities characterize mental representations as 

opposed to mere action schemas, and that the transition to substage 6 represents a shift from 

perceptual to representational responses. At this early stage of development, as postulated by 

various authors (e.g., Vosgerau 2006; Orlandi, 2020; Newen & Vosgerau 2020), these 

representations are in an isomorphic format.  

This raises the question of which additional basic neural functionalities, if any, would be 

needed in order for an extended framework to accommodate epistemological concepts, such 

as beliefs, which presumably involves mental representations in a propositional format 

(Newen and Vosgerau, 2020). In his reflection (Poggio 2012, p.7) about the “levels of 

understanding” framework (Marr & Poggio 1977), Poggio poses the following question: “did 

intelligence, as the ability to learn, evolve from associative reflexes and memories with the 

addition of (neurally simple) primitive operations such as composition of different 

memories?”. In order to answer this question, psychological theories should try and relate 

cognitive concepts to abstract brain structures and processes on which they could be possibly 

grounded. 

Piaget‟s theory of cognitive development, which is based on schemas that supposedly drive a 

child‟s activity, is detached from any hypothesis about their neurological grounding. 

Furthermore, this theory is based on his rejection of association as a basic mechanism for 

cognitive development. He introduced instead the collective effect of assimilation (i.e., the 

insertion of new perceptions into schemas) followed by accommodation (i.e., the modification 

and/or extension of schemas), two concepts that are situated at a higher explanatory level than 

associative memories, and which rely on the preexistence of innate schemas i.e., structures 

and processes that ultimately have to be grounded at a lower level. 

It has been argued that higher level constructions going beyond the functionalities of an 

associative are unlikely to be based on mechanisms directly related to the lowest level of brain 

structures and processes (Heyes, 2012). Darwin (1871) himself once wrote that “Nevertheless 

the difference in mind between man and the higher animals, great as is it, certainly is one of 

degree and not of kind”, thus somehow precluding the existence of fundamental neurological 

mechanisms that would be unique to humans. When discussing the modalities of mental 

representations associated with beliefs, Newen and Vosgerau (2020) content themselves with 

noting that “the best we can expect is a cluster of neural correlates embedded in one quite 

contextually varying mechanism or even embedded in a plurality of mechanisms”. Indeed if, 

as noted in (Carew 2002, p. 806) and supported by (Baxter et Byrne, 2006) as well by the 

abstract models presented above, classical and operand conditioning “have features in 

common, an exciting principle might emerge: evolution may have come up with a neural 

'associative cassette' that can be used in either type of conditioning, depending of the neural 

circuit in which it is embedded”. 
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Supplementary information 

Execution traces of actual simulation runs. 

The execution traces of simulation runs reproducing experiments 55 and 64 from Piaget 

(1937) are given below. 

Experiment 55 

 

||  || 

 

---------------> X 

0         1 

sensor(move(box(toy)(0))),sensor(see(box(toy)(1))) 

 track(box(toy)(1)) track toy in box at 1 

 

      ||  ---- 

 

------------------------> X 

0         1        2     

sensor(move(box(toy)(1))),sensor(see(screen(2))) 

 look(screen(2)) look at screen 
 
 

             ----    | |  | |   
---------------------------------------------> X 

0         1         2         3         4 

sensor(move(box([])(3))),sensor(see(box([])(4))) 

 track(box([])(4)) track empty box at 4 
sensor(stop(box([])(4))) 

 watch(box([])(4)) watch empty box 

 spot(box([])(4)) spot empty box 
 

Fig. 16a. Execution trace of tracking a partially invisible displacement (phase I) 
  



 

||  || 

 

---------------> X 

0         1 

sensor(move(box(toy)(0))),sensor(see(box(toy)(1))) 

 track(box(toy)(1))  track toy in box at 1 
 
 

                

                

      ||  ---- 

-------------------------> X 

0         1         2 

sensor(move(box(toy)(1))),sensor(see(screen(2))) 

 look(screen(2)) look at screen 
sensor(halt(screen(2))) 

 search(screen(2)) search screen 
sensor(view(toy(2))) 

 view(toy(2)) view toy 

 grasp(toy(2)) grasp toy 
 

Fig. 16b. Execution trace of tracking a partially invisible displacement (phase II) 

 

||  || 

 

---------------> X 

0         1 

sensor(move(box(toy)(0))),sensor(see(box(toy)(1))) 

 track(box(toy)(1)) track toy in box at 1 
 
 

      ||  ---- 

--------------------------------------------> X 

0         1         2         3         4 

sensor(move(box(toy)(1))),sensor(see(screen(2))) 

 look(screen(2)) look at screen 
 
 

                

                

             ----    | |  | | 
---------------------------------------------> X 

0         1         2         3         4 

sensor(move(box([])(3))),sensor(see(box([])(4))) 

 track(box([])(4)) track empty box at 4 
sensor(stop(box([])(4))) 

 watch(box([])(4)) watch empty box 

 spot(box([])(4)) spot empty box 

 search(screen(2)) search screen 
sensor(view(toy(2))) 

 view(toy(2)) view toy 

 grasp(toy(2)) grasp toy 
 

Fig. 16c  Execution trace of tracking a partially invisible displacement (phase III) 
  



Experiment 64 

 

  ____ 

|| 

  ____ 

|| 

|| 

---------------> X 

0         1 

sensor(open(box(toy)(0))),sensor(close(box(_)(0))) 

 {image(box(toy)(0))} image of toy in box 
 

  ____         ____ 

||  || 

---------------> X 

0         1 

sensor(move(box(_)(0))),sensor(see(box(_)(1))) 

 track(box(_)(1)) track closed box at 1 
 
       ___ 

      ||  ---- 

 

------------------------> X 

0         1        2     

sensor(move(box(_)(1))),sensor(see(screen(2))) 

 look(screen(2)) look at screen 
 
  ____  

||                    |  | 

                     ___         

             ----    |  |  |  | 
---------------------------------------------> X 

0         1         2         3         4 

sensor(move(box(_)(3))),sensor(see(box(_)(4))) 

track(box(_)(4)) track closed box at 4 
sensor(stop(box(_)(4))) 

 watch(box(_)(4)) watch closed box 

 {image(box(toy)(0))} evoke mental image 

 open(box(_)(4)) open box 
sensor(spot(box([])(4))) 

 spot(box([])(4)) spot empty box 
 search(screen(2)) 

sensor(view(toy(2))) search screen 

 view(toy(2)) view toy 

 grasp(toy(2)) grasp toy 
 

Fig. 17a. Execution trace of tracking a invisible displacement (phase Ia) 

  



 
                           ______ 

                         || 

                           ____ 

                         || 

                         || 
-----------------------------------------------> X 

0         1         2         3         4 

sensor(open(box(toy)(4))),sensor(close(box(_)(4))) 

 {image(box(toy)(4))} image of toy in box 

 

                          _____         ____ 

                         ||  || 

-------------------------------------------------------> X 

0         1         2         3         4         5 

sensor(move(box(_)(4))),sensor(see(box(_)(5))) 

 track(box(_)(5)) track closed box at 5 
 
                                 _____ 

                               ||  ---- 

 

-------------------------------------------------------------------> X 

0         1         2         3         4         5         6 

sensor(move(box(_)(5))),sensor(see(screen(6))) 

 look(screen(6)) look at screen 
 
                           _____ 

                         ||             

                                              _______      _______ 

                                      ----    |  | |  | 
------------------------------------------------------------------------------------> X 

0         1         2         3         4         5         6        7        8 

sensor(move(box(_)(7))),sensor(see(box(_)(8))) 

track(box(_)(8)) track closed box at 8 
sensor(stop(box(_)(8))) 

 watch(box(_)(8)) watch closed box 

 {image(box(toy)(4))} evoke mental image 

 search(screen(6)) search screen 
sensor(view(toy(6))) 

 view(toy(6)) view toy 

 grasp(toy(6)) grasp toy 
 

Fig. 17b. Execution trace of tracking of invisible displacement (phase Ib) 

 

 
  _____ 

|| 

  ____ 

|| 

|| 

---------------> X 

0         1 

sensor(open(box(toy)(0))),sensor(close(box(_)(0))) 

 {image(box(toy)(0))} image of toy in box 
 
  ____         ____ 

||  || 

---------------> X 

0         1 

sensor(move(box(_)(0))),sensor(see(box(_)(1))) track(box(_)(1)) track closed box at 1 
 
       ___ 

      ||  ---- 

 

------------------------> X 

0         1        2     



sensor(move(box(_)(1))),sensor(see(screen(2))) 

 look(screen(2)) look at 1st screen 
 
                     ____     ____ 

             ----    ||  || 

----------------------------------------------> X 

0         1         2         3         4 

sensor(move(box(_)(3))),sensor(see(box(_)(4))) 

 track(box(_)(4)) track closed box at 4 
 
                           ____       ____ 

             ----          ||  || 

--------------------------------------------------------> X 

0         1         2         3         4         5 

sensor(move(box(_)(4))),sensor(see(box(_)(5))) 

 track(box(_)(5)) track closed box at 5 
 
                                 ____ 

             ----                ||   ---- 

 

---------------------------------------------------------------> X 

0         1         2         3         4         5         6 

sensor(move(box(_)(5))),sensor(see(screen(6))) 

 look(screen(6)) look at 2nd screen 
 
  _____ 

||                                      

                                              _______      _______ 

             ----                       ----    |  | |  | 
------------------------------------------------------------------------------------> X 

0         1         2         3         4         5         6        7        8 

sensor(move(box(_)(7))),sensor(see(box(_)(8))) 

 track(box(_)(8)) track closed box at 8 
sensor(stop(box(_)(8))) 

 watch(box(_)(8)) watch closed box 

 {image(box(toy)(0))} evoke mental image 

 search(screen(2)) search 1st screen 
sensor(view([](2))) 

 view([](2)) view void screen 

 {image(box(toy)(0))} evoke mental image 

 search(screen(6)) search 2nd screen 
sensor(view(toy(6))) 

 view(toy(6)) view toy 

 grasp(toy(6)) grasp toy 
 

Fig. 17c. Execution trace of tracking invisible displacement (phase II) 


