6 research outputs found

    Space rescaling in the MFS method improves the ECGI reconstruction

    Get PDF
    International audienceThe method of fundamental solutions (MFS) has been extensively used for the electrocardiographic imaging (ECGI) inverse problem. One of its advantages is that it is a meshless method. We remarked that the using cm instead of mm as a space unit has a high impact on the reconstructed inverse solution. Our purpose is to refine this observation, by introducing a rescaling coefficient in space and study its effect on the MFS inverse solution. Results are provided using simulated test data prepared using a reaction-diffusion model. We then computed the ECGI inverse solution for rescaling coefficient values varying from 1 to 100, and computed the relative error (RE) and correlation coefficient (CC). This approach improved the RE and CC by at least 10% but can go up to 40% independently of the pacing site. We concluded that the optimal coefficient depends on the heterogeneity and anisotropy of the torso and does not depend on the stimulation site. This suggests that it is related to an optimal equivalent conductivity estimation in the torso domain

    The Impact of Torso Signal Processing on Noninvasive Electrocardiographic Imaging Reconstructions

    Get PDF
    Goal: To evaluate state-of-the-art signal processing methods for epicardial potential-based noninvasive electrocardiographic imaging reconstructions of single-site pacing data. Methods: Experimental data were obtained from two torso-tank setups in which Langendorff-perfused hearts (n = 4) were suspended and potentials recorded simultaneously from torso and epicardial surfaces. 49 different signal processing methods were applied to torso potentials, grouped as i) high-frequency noise removal (HFR) methods ii) baseline drift removal (BDR) methods and iii) combined HFR+BDR. The inverse problem was solved and reconstructed electrograms and activation maps compared to those directly recorded. Results: HFR showed no difference compared to not filtering in terms of absolute differences in reconstructed electrogram amplitudes nor median correlation in QRS waveforms (p > 0.05). However, correlation and mean absolute error of activation times and pacing site localization were improved with all methods except a notch filter. HFR applied post-reconstruction produced no differences compared to pre-reconstruction. BDR and BDR+HFR significantly improved absolute and relative difference, and correlation in electrograms (p < 0.05). While BDR+HFR combined improved activation time and pacing site detection, BDR alone produced significantly lower correlation and higher localization errors (p < 0.05). Conclusion: BDR improves reconstructed electrogram morphologies and amplitudes due to a reduction in lambda value selected for the inverse problem. The simplest method (resetting the isoelectric point) is sufficient to see these improvements. HFR does not impact electrogram accuracy, but does impact post-processing to extract features such as activation times. Removal of line noise is insufficient to see these changes. HFR should be applied post-reconstruction to ensure over-filtering does not occur

    Generalization and Regularization for Inverse Cardiac Estimators

    Get PDF
    Electrocardiographic Imaging (ECGI) aims to estimate the intracardiac potentials noninvasively, hence allowing the clinicians to better visualize and understand many arrhythmia mechanisms. Most of the estimators of epicardial potentials use a signal model based on an estimated spatial transfer matrix together with Tikhonov regularization techniques, which works well specially in simulations, but it can give limited accuracy in some real data. Based on the quasielectrostatic potential superposition principle, we propose a simple signal model that supports the implementation of principled out-of-sample algorithms for several of the most widely used regularization criteria in ECGI problems, hence improving the generalization capabilities of several of the current estimation methods. Experiments on simple cases (cylindrical and Gaussian shapes scrutinizing fast and slow changes, respectively) and on real data (examples of torso tank measurements available from Utah University, and an animal torso and epicardium measurements available from Maastricht University, both in the EDGAR public repository) show that the superposition-based out-of-sample tuning of regularization parameters promotes stabilized estimation errors of the unknown source potentials, while slightly increasing the re-estimation error on the measured data, as natural in non-overfitted solutions. The superposition signal model can be used for designing adequate out-of-sample tuning of Tikhonov regularization techniques, and it can be taken into account when using other regularization techniques in current commercial systems and research toolboxes on ECG

    Evaluation of Fifteen Algorithms for the Resolution of the Electrocardiography Imaging Inverse Problem Using ex-vivo and in-silico Data

    Get PDF
    The electrocardiographic imaging inverse problem is ill-posed. Regularization has to be applied to stabilize the problem and solve for a realistic solution. Here, we assess different regularization methods for solving the inverse problem. In this study, we assess (i) zero order Tikhonov regularization (ZOT) in conjunction with the Method of Fundamental Solutions (MFS), (ii) ZOT regularization using the Finite Element Method (FEM), and (iii) the L1-Norm regularization of the current density on the heart surface combined with FEM. Moreover, we apply different approaches for computing the optimal regularization parameter, all based on the Generalized Singular Value Decomposition (GSVD). These methods include Generalized Cross Validation (GCV), Robust Generalized Cross Validation (RGCV), ADPC, U-Curve and Composite REsidual and Smoothing Operator (CRESO) methods. Both simulated and experimental data are used for this evaluation. Results show that the RGCV approach provides the best results to determine the optimal regularization parameter using both the FEM-ZOT and the FEM-L1-Norm. However for the MFS-ZOT, the GCV outperformed all the other regularization parameter choice methods in terms of relative error and correlation coefficient. Regarding the epicardial potential reconstruction, FEM-L1-Norm clearly outperforms the other methods using the simulated data but, using the experimental data, FEM based methods perform as well as MFS. Finally, the use of FEM-L1-Norm combined with RGCV provides robust results in the pacing site localization

    ECG Imaging to Detect the Site of Ventricular Ischemia Using Torso Electrodes: A Computational Study

    Get PDF
    Electrocardiography provides some information useful for ischemic diagnosis. However, more recently there has been substantial growth in the area of ECG imaging, which by solving the inverse problem of electrocardiography aims to produce high-resolution mapping of the electrical and magnetic dynamics of the heart. Most inverse studies use the full resolution of the body surface potential (BSP) to reconstruct the epicardial potentials, however using a limited number of torso electrodes to interpolate the BSP is more clinically relevant and has an important effect on the reconstruction which must be quantified. A circular ischemic lesion on the right ventricle lateral wall 27 mm in radius is reconstructed using three Tikhonov methods along with 6 different electrode configurations ranging from 32 leads to 1,024 leads. The 2nd order Tikhonov solution performed the most accurately (~80% lesion identified) followed by the 1st (~50% lesion identified) and then the 0 order Tikhonov solution performed the worst with a maximum of ~30% lesion identified regardless of how many leads were used. With an increasing number of leads the solution produces less error, and the error becomes more localised around the lesion for all three regularisation methods. In noisy conditions, the relative performance gap of the 1st and 2nd order Tikhonov solutions was reduced, and determining an accurate regularisation parameter became relatively more difficult. Lesions located on the left ventricle walls were also able to be identified but comparatively to the right ventricle lateral wall performed marginally worse with lesions located on the interventricular septum being able to be indicated by the reconstructions but not successfully identified against the error. The quality of reconstruction was found to decrease as the lesion radius decreased, with a lesion radius of &lt;20 mm becoming difficult to correctly identify against the error even when using &gt;512 torso electrodes
    corecore