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The electrocardiographic imaging inverse problem is ill-posed. Regularization has to

be applied to stabilize the problem and solve for a realistic solution. Here, we assess

different regularization methods for solving the inverse problem. In this study, we

assess (i) zero order Tikhonov regularization (ZOT) in conjunction with the Method of

Fundamental Solutions (MFS), (ii) ZOT regularization using the Finite Element Method

(FEM), and (iii) the L1-Norm regularization of the current density on the heart surface

combined with FEM. Moreover, we apply different approaches for computing the optimal

regularization parameter, all based on the Generalized Singular Value Decomposition

(GSVD). These methods include Generalized Cross Validation (GCV), Robust Generalized

Cross Validation (RGCV), ADPC, U-Curve and Composite REsidual and Smoothing

Operator (CRESO) methods. Both simulated and experimental data are used for this

evaluation. Results show that the RGCV approach provides the best results to determine

the optimal regularization parameter using both the FEM-ZOT and the FEM-L1-Norm.

However for the MFS-ZOT, the GCV outperformed all the other regularization parameter

choice methods in terms of relative error and correlation coefficient. Regarding the

epicardial potential reconstruction, FEM-L1-Norm clearly outperforms the other methods

using the simulated data but, using the experimental data, FEM based methods perform

as well as MFS. Finally, the use of FEM-L1-Norm combined with RGCV provides robust

results in the pacing site localization.

Keywords: inverse problem, Tikhonov regularization, L1-norm regularization, regularization parameter, method of

fundamental solutions, finite element method, generalized singular value decomposition, pacing site localization

1. INTRODUCTION

The non-invasive electrocardiographic imaging (ECGI) is an imaging technique that allows one to
non-invasively reconstruct the electrical activity of the heart using electrocardiograms and a patient
specific heart-torso geometry. This clinical tool is used by electrophysiologists to understand the
mechanisms underlying arrhythmias and to localize targets for ablation therapy, such as for atrial
fibrillation (Haissaguerre et al., 2013; Rudy, 2013). This technology is based on a mathematical
relationship defining the propagation of the electrical activity between the heart and the torso
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surface Ŵext . Given the extracellular electrical potential uH on the
epicardial heart boundary ŴH , the distribution of the electrical
potential uT in the torso domain�T and specifically at electrodes
distributed on the body surface Ŵext , could be obtained by solving
the following Laplace equation:











∇ · (σT∇uT) = 0, in �T ,

σT∇uT · nT = 0, on Ŵext ,

uT = uH, on ŴH .

(1)

where σT stands for the torso conductivity tensor and nT is the
outward unit normal to the torso external boundary Ŵext . This
is what we call a forward problem. Now, given a body surface
potential distribution and knowing that the flux of potential over
the body surface is zero, could we obtain the right distribution
of the electrical potential on the heart surface? This is what we
call an inverse problem in electrocardiography. In almost all of
the works reported in the literature, the mathematical approach
used for solving the inverse problem is based on a transfer matrix
which has been first formulated by Barr et al. (1977). The transfer
matrix can be computed using different approaches such as the
finite element method (FEM) (Wang et al., 2010; Zemzemi et al.,
2015) or the boundary elements method like in Stenroos and
Haueisen (2008); Stenroos (2009); Schuler et al. (2017); Ghosh
and Rudy (2009); Chamorro-Servent et al. (2017); Barr et al.
(1977), the method of fundamental solutions (MFS) (Wang and
Rudy, 2006) or mixed methods like the factorization of boundary
value method (Bouyssier et al., 2015) or finite element with
mixed element types (Wang et al., 2010). In this study, we are
only interested in FEM and MFS. Using any of these numerical
approaches, the governing Equation (1) can be reduced to a
matrix-vector system:

Ax = b, (2)

whereA is the transfer matrix, its form depends on the numerical
method used. The vector x is either the unknown epicardial
potentials on the surface of the heart in the case of the FEM
or a vector of weighting coefficients from which it’s possible to
reconstruct the epicardial potential in the case of MFS. Finally,
b represents either the body surface potentials (BSPs) for the first
case or a concatenation of the BSPs and a null vector representing
the non flux boundary condition for the second case.
Generally, the inverse problem of electrocardiography is known
to be ill-posed in the sense of Hadamard Hadamard (1923) which
means that a small perturbation of the Cauchy data may lead to
a high variation in the inverse solution. This could be explained
at the discrete level by the ill-conditioning of the transfer matrix
A and the measurement noise that we have in the vector b. To
overcome this, a regularization approach is often used to solve
Equation (2). However, this has led to a large variety of different
inverse algorithms being developed. To date, few studies have
attempted to compare the different methods available. Cheng
et al. (2003) looked at different regularization methods and
methods to compute the regularization parameter. Since this
work, many new methods have been developed.
A recent work by Barnes and Johnston (2016) compares

several regularization techniques but without changing either the
regularization operator or the numerical method defining the
transfer matrix. Finally, both of these studies were based purely
on simulated data, and their applicability to experimental or
clinical work is unknown.
In this work we compare not only different methods for
computing the transfer matrix, but also different regularization
operators and differentmethods for optimizing the regularization
parameter to assess how they perform on two sets of data:
simulated and experimental.

2. METHODS

To date, the regularization approach most commonly used
to solve the electrocardiographic imaging inverse problem is
the Tikhonov regularization defined by the following objective
function:

min
x

{

‖Ax− b‖2 + λ2‖Lx‖2
}

, (3)

where L is the regularization operator, λ is the regularization
parameter and ‖.‖ is the L2-norm. Here, L can be the identity
matrix (zero-order) or an approximation operator of a potential’s
derivative form (first or second order). Independent of the
numerical method used to compute the transfer matrix, the best
way to analyze the different methods to computing the optimal
regularization parameter is to use the GSVD of the couple {A, L}

for first or second order Tikhonov regularization and the singular
value decomposition of A for zero-order.

2.1. Generalized Singular Value
Decomposition
In the case where L = I, we use the Singular Value
Decomposition of them × n transfer matrix A, wherem ≥ n,m
is the number of torso nodes and n is the number of heart nodes.
Following Hansen (1998), we decompose A as follows

A = U6VT =

n
∑

i=1

uiσiv
T
i , (4)

where U is a m × n orthonormal matrix containing the left
singular vectors of A,V is a n×n orthonormal matrix containing
the right singular vectors of A and 6 is a n × n diagonal matrix
with the singular values of A on its diagonal. Note that ui, vi and
σi are, respectively, the columns of U, V and the singular values
of A arranged in a decreasing order. In terms of the singular
value decomposition, the solution of the regularized problem
expressed by:

min
x

{

‖Ax − b‖2 + λ2‖x‖2
}

, (5)

can be written as (Hansen, 1998):

x = A†b = (ATA + λ2I)−1ATb =

n
∑

i=1

σ 2
i

σ 2
i + λ2

uTi b

σi
vi. (6)
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It can be shown that the two terms of (5) can be written as
(Johnston and Gulrajani, 1997):

ρ1(λ) = ‖Ax − b‖2 =

n
∑

i=1

λ4µ2
i

(λ2 + σ 2
i )

2
+ ‖r⊥‖2 (7)

and

η1(λ) = ‖x‖2 =

n
∑

i=1

σ 2
i µ2

i

(λ2 + σ 2
i )

2
, (8)

where ‖r⊥‖2 = ‖AxLSS − b‖2 is the residual of the least squares
solution xLSS and µi = uTi b.
In the case where L 6= I, the Generalized Singular Value
Decomposition of the pair {A, L} is defined by (Hansen, 2010):

A = PCZ−1, L = QSZ−1, (9)

where P and Q are, respectively, m × n and n × n orthogonal
matrices.C and S arem×n and n×n diagonal matrices satisfying
CTC + STS = I where diag(C) = {σ1...σn} and diag(S) =

{ν1...νn}. Diagonal elements of C and S satisfy 0 ≤ σ1 ≤ ... ≤

σn ≤ 1 and 1 ≥ ν1 ≥ ... ≥ νn ≥ 0. The matrix Z is non singular.
We define λ̄i = σi

νi
as the generalized singular values of the pair

{A, L}.
Using the generalized singular value decomposition, the solution
of the problem expressed by Equation (3) can be written as
(Chung et al., 2014):

x∗ = A#b = (ATA + λ2LTL)−1ATb =

n
∑

i=1

φi
pTi b

σi
zi, (10)

where 8 is a n × n diagonal matrix containing the filter factors
defined by:

φi =
λ̄2
i

λ̄2
i + λ2

, for i = 1...n. (11)

It can be shown that the two terms of (3) can be written in terms
of generalized singular values as (Chung et al., 2014):

ρ2(λ) = ‖Ax∗−b‖2 =

n
∑

i=1

(

λ2

λ̄2
i + λ2

)2
(

pTi b
)2

+

m
∑

i=n+1

(

pTi b
)2

,

(12)
and (Ghista, 2012)

η2(λ) = ‖Lx∗‖2 =

n
∑

i=1

(

λ̄i

λ̄2
i + λ2

)2
(

pTi b
)2

. (13)

2.2. Regularization Techniques
Several regularization techniques can be applied to the ill-posed
inverse problem of electrocardiography. In this study, we focus
on two methods.

2.2.1. Zero Order Tikhonov Regularization
Using the zero order Tikhonov regularization, the objective
function can be expressed by (5). This type of regularization
places a constraint on the magnitude of the reconstructed
epicardial potentials which is known to provide a smooth
solution but may lead to the loss of meaningful information.

2.2.2. L1-Norm Regularization of the Current Density

Over the Heart Surface
Previous studies have shown that using the L1-Norm can provide
a better reconstruction when applied in different fields (Wolters
et al., 2004; Bai et al., 2007; Ding and Hei, 2008). In this
paper, we choose to apply the regularization scheme used in
Ghosh and Rudy (2009). Here, we penalized the L1-Norm of the
normal derivative of the solution. The potential normal derivative
represents the distribution of electrical flux over the epicardial
surface.

This will yield less smoothed potentials than zero-order
Tikhonov. The use of current density in the regularization of the
inverse problem in electrocardiography was first introduced by
Khoury (1994) and proved to provide significant improvement
in the inverse problem.
The objective function using L1-Norm based regularization is
given by:

min
x

‖Ax − b‖ + λ2‖∇x.nH‖1, (14)

where nH is the outward unit normal to the epicardium surface.
Using the Finite Element Method, and thanks to the linearity of
the solution of problem (1) to its boundary conditions, we can
define the Dirichlet-To-Neumann operator D satisfying:







∂uT

∂n (p1)
...

∂uT

∂n (pn)






= D







x1
...

xn






, (15)

where D is an n-by-n matrix and the points (p1, p2, ..., pn) are
the coordinate tuples of the heart mesh vertices. Note that the
operator D is different from the gradient over the surface used
for the total variation regularization. In fact the gradient of x over
the heart surface (∇ŴH

x) is the tangential component of electrical
potential gradient (∇uT), whereas Dx is its normal component.
Thus one could write the 3D gradient of the potential on the
epicardial boundary as the sum of both components (∇uT =

(∇ŴH
x + Dx ). The operator ∇ŴH

depends only on the epicardial
surface ŴH, whereas, D depends on the whole torso domain �.
The objective function (14) can be expressed as follows:

min
x

‖Ax − b‖ + λ2‖Dx‖1. (16)

The L1-Norm regularization of the current density leads to a
non-linear problem. Following Karl (2005), we can smoothly
approximate the L1-Norm of the derivative by:

‖Dx‖1 =

n
∑

i=1

|⌊Dx⌋i| ≈

n
∑

i=1

√

|⌊Dx⌋i|2 + β, (17)
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with β a small constant satisfying β > 0 and ⌊Dx⌋i the ith

component of the vector Dx.
This approximation leads to an interesting formulation of the L1-
Norm regularization problem in the form of a set of equations
whose resolution as β −→ 0 gives an estimate of the solution of
(16). The linear problem to be solved is then:

[

ATA + λ2DTWβ (x)D
]

x = ATb, (18)

where Wβ (x) is a diagonal matrix called weight matrix,
expressed by:

Wβ(x) =
1

2
diag

[

1
√

|⌊Dx⌋i|2 + β

]

. (19)

We notice that (19) has an effect on the variation of the normal
derivative penalty. In fact, when the local normal derivative is
too small, the weight goes to larger values imposing greater
smoothness on the solution. When the local normal derivative
is large, the weight goes to small values allowing larger gradients
in the solution in these regions.
The above formulation can be further simplified in a way that
it can be seen as a first-order Tikhonov regularization. In fact,
thanks to the diagonality ofWβ(x), (18) can be written such that:

[

ATA + λ2DT
(
√

Wβ (x)
)T (√

Wβ (x)
)

D

]

x = ATb, (20)

which leads to:
[

ATA + λ2D̃T(x)D̃(x)
]

x = ATb, (21)

where D̃(x) =
√

Wβ (x)D.
Computationally, the Equation (21) is still non-linear since the
weighting matrixWβ(x) depends on the solution x. To overcome
this constraint, we suggest to use the zero-order Tikhonov
solution instead of the solution itself. Thus, the problem that we
solve is

[

ATA + λ2D̃T(x0)D̃(x0)
]

x = ATb, (22)

where x0 is the zero-order Tikhonov solution determined by the
Finite Element Method.

2.3. Methods for Choosing Regularization
Parameter
In this section, we detail the formulation of several methods
used for choosing the optimal regularization parameter in terms
of, both, the singular value decomposition in the case of the
zero-order Tikhonov regularization and the generalized singular
value decomposition in the case of L1-Norm regularization of the
current density treated as a first-order Tikhonov regularization.
It’s fundamental for a good regularization parameter λ to satisfy
the Discrete Picard Condition (DPC) (Hansen, 1990). In other
words, this means that the singular values σi and the generalized
singular values λ̄ that are greater than λmust decay to zero slower
than the corresponding |uTi b| and |pTi b|, respectively.

2.3.1. U-Curve
The U-Curve is a plot of the sum of the inverse of η1(λ)

(respectively, η2(λ)) and the inverse of the corresponding
residual ρ1(λ) (respectively, ρ2(λ)) in the case where L = I

(respectively, L 6= I), in terms of λ on a log-log scale:























Ucurve(λ) =
1

ρ1(λ)
+

1

η1(λ)
, if L = I,

Ucurve(λ) =
1

ρ2(λ)
+

1

η2(λ)
, if L 6= I.

(23)

The U-Curve method was proposed by Krawczyk-Stańdo and
Rudnicki (2007) and Krawczyk-Stańdo and Rudnicki (2008) and
tested by Krawczyk-Stańdo and Rudnicki (2007), Krawczyk-
Stańdo and Rudnicki (2008), and Yuan et al. (2010) for the
selection of the regularization parameter in the inverse problem.
These works presented the method as a tool to determine the
interval to which the regularization parameter belongs, providing
a better computing efficiency.
According to Krawczyk-Stańdo and Rudnicki (2007) results,

Ucurve(λ) is strictly decreasing on the interval
[

0, δn
2/3
]

and

strictly increasing on the interval
[

δ
2/3
1 ,∞

]

where δ1 and δn

are, respectively, the biggest and the smallest singular values
(generalized singular value in the case where L 6= I). Thus,

Ucurve(λ) reaches a local minimum in the interval
[

δ
2/3
n , δ

2/3
1

]

.

If we have at least one non-zero singular value, we can ensure the
uniqueness of the Ucurve(λ) minimizer, λu, the optimum value
of λ.

2.3.2. ADPC
As mentioned above, the optimal regularization parameter
should satisfy the DPC. Therefore, ADPC is a regularization
parameter choice method based on this condition. The idea is
to look for the last index i before the DPC is no longer satisfied
(Chamorro-Servent et al., 2017). This means before σi becomes
smaller than |uTi bt| in a log-log scale where t is time. For

the sake of simplification, log(|uTi bt|) is fitted by a polynomial

pt(i, log(|u
T
i bt|)) of degree 5 to 7. Then, for each pt , we seek for

αt = σmaxi such that log(σi) ≥ pt . The ADPC regularization
parameter is then λ = median(αt).

2.3.3. CRESO
The Composite REsidual and Smoothing Operator (CRESO)
method was introduced by Colli-Franzone et al. (1985). It
chooses the parameter that corresponds to the first local
maximum of the derivative of the difference between the
constraint term and the residual term with respect to λ2.











C(λ) = d
d(λ2)

(λ2η1(λ) − ρ1(λ)), if L = I,

C(λ) = d
d(λ2)

(λ2η2(λ) − ρ2(λ)), if L 6= I.

(24)
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In terms of the singular value decomposition, this can be written
as (Johnston and Gulrajani, 1997; Ghista, 2012):



























C(λ) =
∑n

i=1

σ 2
i µ2

i (σ
2
i − 3λ2)

(σ 2
i + λ2)3

, if L = I,

C(λ) =
∑n

i=1

λ̄2
i α

2
i (λ̄

2
i − 3λ2)

(λ̄2
i + λ2)3

, if L 6= I.

(25)

where αi = pTi b, i = 1...n.

2.3.4. GCV
The Generalized-Cross Validation (GCV) (Wahba, 1977) is also
a well-known method to choose the regularization parameter. It
provides the optimal value of λ by minimizing the function:



























G(λ) =
ρ1(λ)

[

Trace(I − AA†)
]2
, if L = I,

G(λ) =
ρ2(λ)

[

Trace(I − AA#)
]2
, if L 6= I.

(26)

The function G(λ) is, according toWahba (Wahba, 1977), equal
to the weighted linear combination of the m prediction errors
by leaving out, in each time, the kth data point, k = 1..m and
resolving the inverse problem by the use of them − 1 remaining
data points. The idea is that the optimum of the regularization
parameter provides the best prediction of a measurement as a
function of the others. In terms of singular value decomposition,
G(λ) is expressed by (Wahba, 1977; Chung et al., 2014):











































































G(λ) =

∑n
i=1

λ4µ2
i

(σ 2
i + λ2)2

+ ‖r⊥‖2

(

m −
∑n

i=1

σ 2
i

σ 2
i + λ2

)2
, if L = I,

G(λ) =

∑n
i=1

λ4α2
i

(λ̄2
i + λ2)2

+
∑m

i=n+1 α2
i

(

m −
∑n

i=1

λ̄2
i

λ̄2
i + λ2

)2
, if L 6= I.

(27)

It’s known that the GCV method has good asymptotic properties
as n −→ ∞ (Craven andWahba, 1978; Golub et al., 1979; Lukas,
1993). However, it may not be reliable for small or medium values
of n and can give values of λ that are too small resulting in a very
noisy regularized solution.

2.3.5. RGCV
In Lukas (2006), a new method called Robust GCV (RGCV) is
proposed and proved to be more reliable than GCV for small
values of n and generally more accurate. The RGCV estimate is
defined by the minimizer of the following function:

R(λ) =
[

γ + (1 − γ )ξ (λ)
]

G(λ), (28)

where G(λ) is given by (26) and ξ (λ) is defined as:































ξ (λ) = Trace
[

(AA†)2
]

=
∑n

i=1

σ 4
i

(

λ2 + σ 2
i

)2
, if L = I,

ξ (λ) = Trace
[

(AA#)2
]

=
∑n

i=1

λ̄4
i

(

λ2 + λ̄2
i

)2
, if L 6= I.

(29)
Here, γ is called a robustness parameter, γ ∈ [0, 1].
The RGCV method is based on the average influence
1
m

∑m
i=1 ‖Axλ − Ax

[i]
λ ‖2, where ‖Axλ − Ax

[i]
λ ‖2 is a measure of

the influence of the ith data point on the regularized solution. It’s
trivial that, when γ = 1, R(λ) is reduced toG(λ). It can be shown
that the term (1 − γ )ξ (λ) penalizes the too small values of λ. In
fact, when λ → ∞, ξ (λ) → 0, so 1

γ
R(λ) becomes equivalent to

G(λ). Otherwise, if λ → 0, ξ (0) = n, so 1
γ
R(λ) ≫ G(λ) for small

values of γ which means that the smaller γ , the more robust is
the RGCV method (Lukas, 2006).

3. EXPERIMENTAL METHODS AND
SIMULATION PROTOCOLS

3.1. Data Sets
ECGI reconstructions were performed on two different sets of
data:

I Simulated data obtained by considering a realistic 3D
heart-torso geometry segmented from CT-Scan images as
illustrated in Figure 1 (see Zemzemi et al., 2014 for
more details). The propagation of the electrical wave
was computed using the monodomain reaction-diffusion
model. The transmembrane currents used to compute the
extracellular potential distribution throughout the torso were
computed by solving a static bidomain problem in an
homogeneous, isotropic torso model (Boulakia et al., 2010).
Synchronized electrical potential on the epicardium and on
the body surface were extracted in order to test the inverse
methods. The torso mesh contained 2,873 nodes and the heart
mesh 519 nodes.

II Experimental data were obtained using an ex-vivo pig heart
perfused in Langendorff mode suspended into a human-
shaped torso tank. The heart was paced by 2 ms pulses at 2 Hz,
with constant current amplitudes 2x the diastolic threshold,
on the left and right ventricular epicardial surface, mimicking
ectopic activity. Epicardial ventricular electrograms were
recorded using a 108-electrode sock (of which 93 were used)
simultaneously with torso potentials from 128 electrodes
embedded in the tank surface as it appears in Figure 2.

Tank and sock unipolar electrograms were recorded at 2
kHz (BioSemi, the Netherlands) and referenced to a Wilson’s
central terminal defined using tank electrodes. A multi-lead
signal averaging algorithm was used to remove noise and non-
synchronized p-waves on recordings. Inmost cases, retrograde
VA conduction was present with P-waves only present during
the non-analyzed ST-segment. The tank mesh contains 1,177
nodes and the epicardium 761 nodes. For the application
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FIGURE 1 | (A) Two slices of the CT-scan images. (B) Torso geometry

showing the epicardium (heart-torso interface 6) (red), lungs (yellow), bones

(blue) and torso external boundary Ŵext (green).

FIGURE 2 | (A) The heart-human-shaped torso tank model used for the

experimental data simulations. The heart consists of 761 nodes and 1,518

elements and the tank contains 1,177 nodes and 2,350 elements. (B) The

heart geometry covered by the sock consisting of 108 electrodes (blue points).

of described inverse methods, potential recordings need to
be available for all the mesh nodes. To do so, a linear
interpolation was applied to the ex-vivo recordings. More
details about the ex-vivo experimental protocol can be found
in Bear et al. (2018).

For all the carried out tests using the L1-Norm regularization, β
is kept fixed and equal to 10−5.

3.2. Choice of the Robustness Parameter
The choice of γ for the RGCV tests is based on the study
made by Barnes and Johnston (2016). In fact, they proved that
applying RGCV with γ = 0 gives a good approximation
of the optimal regularization parameter, especially when using
realistic geometries and potential measures. To justify this choice,
Figure 3 represents a plot of the RGCV criterion in terms of the
parameters λ and γ where the color map defines the value of
the RGCV function and the red marks correspond to the local
minima . We observe that the local minima are almost reached at
the same λ value except the case where γ = 1 corresponding to

FIGURE 3 | The RGCV criterion plotted in terms of λ and γ . The red markers

are the grid points where RGCV(λ,γ ) is minimum when γ is fixed.

the GCV. For organization reasons, we present here only a graph
realized using experimental data at a specific time step, but we
observe the same behavior for all the other cases. This confirms
the fact that for the inverse problem of electrocardiography,
RGCV is not sensitive to γ when γ ∈ [0, 0.5].

3.3. Evaluation Criteria
To assess the accuracy of the results obtained by the different
approaches, we define the relative error (RE) and the correlation
coefficient (CC):

RE =

√

∑n
i=1(x

c
i − xei )

2

∑n
i=1(x

e
i )
2

(30)

CC =

∑n
i=1

[

xci − x̄c
] [

xei − x̄e
]

√

∑n
i=1(x

c
i − x̄c)2

∑n
i=1(x

e
i − x̄e)2

(31)

where xc and xe denote, respectively, the computed epicardial
potential and the known one. n is either the number of epicardial
nodes or the total number of time steps. In the first case, x̄c and
x̄e are the spatial mean values of xc and xe over the n epicardial
nodes. Otherwise, x̄c and x̄e are the temporal mean values of
xc and xe over the n time steps. The means and the standard
deviations of RE and CC are then computed and represented as
bar graphs. The accuracy of pacing sites localization is measured
by the geodesic distance between real and estimated pacing sites.

4. RESULTS

4.1. Epicardial Potential Reconstruction
4.1.1. Simulated Data
First, we assessed regularization techniques and numerical
methods using simulated data. The five regularization parameter
choice criteria described above were assessed using all the
suggested numerical methods: MFS, FEM-ZOT, and FEM-L1
which make 15 different algorithms.
Figure 4 presents the mean and the standard deviation of the
spatial REs and CCs of the reconstructed potentials by the
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different numerical tests. ForMFS, GCV gives the best estimation
of the optimal regularization parameter in terms of relative
error (0.24 ± 0.15) and correlation coefficient (0.98 ± 0.04).
we notice an improvement by 10% comparing to RGCV and
CRESO methods. These 3 techniques outperform with different
grades ADPC and U-Curve which seem to be unsuitable for MFS
resolution.
For all the runned simulations using FEM, GCV and ADPC fail
to compute the optimal regularization parameter. In fact, GCV
tends to be flat for small values of λ which make it difficult to
pick a minimum. RGCV is suggested to help with this difficulty.
We observe here that it outperforms U-Curve by nearly 30%

using the zero order Tikhonov and 20% using the L1-norm

regularization of the current density while it gives similar results
to CRESO in terms of both spatial RE and CC.
Figure 4 shows also the accuracy of L1-norm regularization in
the reconstruction of epicardial potential maps. We observe that
it provides the minimum of mean relative error (0.21± 0.2 ) and
the maximum of spatial correlation coefficient (0.99 ± 0.04).
Figures 5, 6 show simulated epicardial potential maps (A) and
reconstructed ones using FEM-ZOT (B) and FEM-L1-Norm (C)
at the stimulation sample time and at 212 ms, after the electrical
pacing leading to a reentry arrythmia, respectively. It can be seen
that L1-Norm regularization provides a better reconstruction
compared to the zero-order Tikhonov regularization especially
on the regions where we have a potential leap. This fits exactly

FIGURE 4 | Bar graphs of means of relative errors and correlation coefficients with the standard deviations for simulated data.

FIGURE 5 | Simulated (A) and reconstructed epicardial potential distributions on the epicardium at the stimulation sample time using FEM-ZOT (B) with the optimal

regularization parameter (RGCV), L1-Norm (C) with the optimal regularization parameter (RGCV).
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FIGURE 6 | Simulated (A) and reconstructed epicardial potential distributions on the epicardium at 212ms after stimulation using FEM-ZOT (B) with the optimal

regularization parameter (RGCV) and L1-Norm (C) with the optimal regularization parameter (RGCV).

with the role of the L1-Norm regularization which is a better way
to detect the gradient changes compared to Zero order Tikhonov.

4.1.2. Experimental Data
Preprocessing of the experimental data revealed the existence
of a few localized sites of ischemia produced due to electrode
pressure on the epicardium. This produced monophasic action
potential-like signals. These electrodes were identified when the
potential was greater than a fixed threshold equal to 50% of the
maximum signal magnitude in the plateau phase, 250 ms after
pacing. This choice is based on observations of the QT interval
in order to eliminate the ischemic signals. This leads us to run
two sets of comparisons, with all the working electrodes and
after removing the above threshold electrodes. We observe that
results after thresholding are better than those obtained with
ischemic signals. For the sake of clarity, we present here only
results after thresholding. Figure 7 shows the mean and standard
deviation of spatial RE and CC. We observe a degradation of
the metrics for the three models of experimental data (RV, LV,
and BiV). This can be explained by different factors, the subject
of section 4.4. In Figure 7, we observe that using MFS, all the
methods demonstrated similar trends in RE mean values. It
shows also that GCV outperforms the other methods in terms
of spatial correlation coefficient. For FEM, GCV and ADPC
have always difficulties in computing the optimal value of the
regularization parameter while RGCV, CRESO and U-Curve
perform the same with a mean relative error near to 0.95 for all
the three paced rhythms. Regarding the performance, there is not
a clear difference among all the methods.
For the sake of completeness, statistical detailed results of RE and
CC in time and space on the reconstructed potential for all cases
are reported in the Supplementary Material.

4.2. Localization of Pacing Sites
For the localization of pacing sites, we used three different
experiments, two of them provide LV, RV, and BiV pacing
data sets and the other one has only RV and LV models. In
summary, we have 3 cases of LV pacing, 3 cases of RV pacing
and 2 cases of BiV pacing. In Figure 8 (respectively, Figure 9)

(top), we show measured and reconstructed potential maps right
at the pacing sample time in an LV-pacing (respectively, RV-
pacing) case. The detected pacing sites are marked by bigger red
crosses than the actual pacing site and the length of the green
segment between them represents the geodesic distance. For the
sake of comparison, only the simulation using the regularization
parameter technique providing the better localization is selected
for the figures. The case where the reconstructed epicardial
potential do not allow us to extract the pacing sites are reported
in Table 1 as non applicable (N.A) cases.

For the LV-pacing (respectively, RV-pacing) case , we observe
that L1-norm regularization of the current density combined
with RGCV provides the best localization with an error of
0.45 cm (respectively, 2.15 cm). It outperforms FEM-ZOT
2.55 cm (respectively, 2.16 cm) and MFS 0.83 cm (respectively,
3.15 cm) that give similar approximations. We also plot in the
bottom of the figure the time course of the electrical potential at
the actual pacing site position detected from the measured data.
For LV-pacing case, MFS, (respectively FEM-ZOT and FEM-L1)
present temporal relative error and correlation coefficient
equal to (0.83, 0.72) (respectively (0.86, 0.75), (0.8, 0.72)).
For the RV-pacing case, MFS, (respectively FEM-ZOT and
FEM-L1) present temporal relative error and correlation
coefficient equal to (1.05, 0.3) (respectively (1.12, 0.40),
(1.01, 0.33)).

For both LV and RV-pacing we observe that none of the
methods is clear-cut.

In the case of a bi-ventricular pacing (BiV), not all the
methods were able to locate both pacing sites. Only MFS-
ZOT combined with GCV, FEM-ZOT and FEM-L1 with RGCV
succeed to detect the two pacing sites with more-less good
accuracy. Figure 10 presents the real and estimated pacing sites
and their electrograms for a BiV pacing rhythm for which all
the methods work. The Figures 10B–D show the results for the
BiV pacing sites. Errors of localization of the LV pacing site
are 1.3 cm for FEM-L1, 1.8 cm for FEM-ZOT and 2.3 cm for
MFS. The bottom row of each panel represents the reconstructed
electrograms in the real pacing sites using the specified method.
The temporal relative errors and correlation coefficients for LV
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FIGURE 7 | Spatial mean relative errors and correlation coefficients and their standard deviations for reconstructed epicardial potentials with all the algorithms for

three paced rhythms: (A) Biv, (B) RV, and (C) LV.
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FIGURE 8 | Real (A) and the estimated LV pacing sites (top) and its electrograms (bottom) using MFS-ZOT (B), FEM-ZOT (C), and FEM-L1 (D), respectively.

FIGURE 9 | Real (A) and the estimated RV pacing sites (top) and its electrograms (bottom) using MFS-ZOT (B), FEM-ZOT (C), and FEM-L1 (D), respectively.

are (0.80, 0.71) using FEM-L1, (0.86, 0.75) with FEM-ZOT and
(0.83, 0.72) usingMFS. As shown in Figure 10B, MFS nearly fails
to detect the left ventricular pacing site. The epicardial potential
in the whole left ventricle is almost in the same range. For the RV
pacing site, results are nearly the same as for the LV pacing site.
The performance in terms of pacing site localization of the 15
algorithms on the set of the experimental data are reported
in Table 1 where we provide the mean values and standard
deviations of pacing sites localization errors for the three cases,
LV, RV, and BiV. We remark that, L1-norm regularization of the
current density combined with RGCV parameter choice method

outperforms all the other methods with minimum errors and
more stable standard deviations.

4.3. Limitations
4.3.1. The Imperfect Knowledge of the Transfer Matrix
It’s important to mention that in this work, the use of simulated
data provides an optimal knowledge of the transfer matrix A,
which is not the case of experimental data. It explains somehow
the degradation of the results using the experimental data. To
assess the impact of the transfer matrix, we computed a relative
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TABLE 1 | Mean errors and standard deviations of localization of pacing sites for

the 2 paced rhythms RV, LV using the 3 numerical methods MFS-ZOT, FEM-ZOT,

and FEM-L1 combined with the regularization parameter choice methods.

CRESO GCV RGCV UCurve ADPC

RV MFS-ZOT 2.8± 1.2 2.4± 1.1 1.9± 0.9 2.4± 0.8 2.5± 0.8

FEM-ZOT 2.7± 0.8 N.A 2.7± 0.9 2.0± 0.1 N.A

FEM-L1 1.9± 0.5 N.A 1.8± 0.3 1.8± 0.4 N. A

LV MFS-ZOT 1.7± 0.7 2.1± 0.3 2.0± 1.1 1.3± 0.6 2.1± 0.2

FEM-ZOT 2.1± 0.4 N.A 2.8± 1.0 3.0± 0.2 N.A

FEM-L1 1.3± 0.5 N.A 1.2± 0.6 1.3± 0.6 N.A

BiV

MFS-ZOT 2.5/N.A 2.3/1.5 0/N.A 2.3/N.A 2.7/2.0

FEM-ZOT 1.8/N.A N.A 1.8/2.1 2.5/N.A N.A

FEM-L1 2.5/N.A N.A 1.3/1.4 1.4/N.A N.A

For BiV, values are the geodesic distances (LV/RV). N.A means that one could not extract

the pacing site from the reconstructed signals. Highlighted values are the best localization

errors.

error defined by:

REd =
‖Axex − b‖

‖b‖
(32)

where xex is the exact solution whether it’s the simulated
epicardial potential or the measured one.
The REd is almost equal to zero using the simulated transfer
matrix. However, it increases for the experimental data to reach,
for some time steps, REd ≈ 0.9. Although this issue is out of
the scope of this paper, the degradation can be due to different
factors like the measurement errors and geometrie’s inaccuracy
due to the fact that the heart is moving during the experiment, but
also to the mathematical modeling of the physical phenomenon
which is reduced to the Laplace equation. These hypotheses make
the issue subject to further analyzes.

4.3.2. Experimental Protocols
Obviously, the experimental conditions have a very important
impact on the quality of the data that we obtain from
experiments. One of the limitations of this study is the dataset
of epicardial signals. In fact, the experimental protocol described
in Bear et al. (2018) indicates that the epicardial surface is not
totally covered with electrodes which provides less information
and biased results. Further studies should be done in this context.
The protocols we have set until now do not include endocardial
stimulation, this is one of the limitation of our work. Of course,
if we have to evaluate the methods against endocardial and
septal stimulations we have to make use of a W-shape geometry
of the ventricles including endocardial, epicardial and septal
surfaces instead of a nut-shape geometry that only represents the
epicardial surface.

5. DISCUSSION AND CONCLUSION

In this paper, we numerically assessed 15 different algorithms
for the resolution of the inverse problem of electrocardiography
based on the Generalized Singular Value Decomposition of the
pair {Transfer matrix, Regularization matrix} combined with
different regularization parameter choice methods. Although the
L1-Norm of the normal derivative regularization method has

been presented before (Khoury, 1994; Ghosh and Rudy, 2009)
to solve the ECGI inverse problem, there are two novelties in
this paper: First, the non quadratic scheme was solved using the
generalized singular values decomposition, whereas, in Ghosh
and Rudy (2009) authors use an iterative method. Second, the
regularization method was combined with five regularization
parameter choice methods to assess its performance on simulated
and experimental data. In Barnes and Johnston (2016), authors
used only ZOT regularization and compared results only on
simulated data. In this paper and in the majority of the studies
looking for the ECGI inverse solution, the problem is formulated
in terms of electrical potential. There are other approaches, where
the problem is formulated in terms of propagating wave front
(Cuppen and Van Oosterom, 1984; Huiskamp and Greensite,
1997). In Van Dam et al. (2009), the activation and recovery
times and the transmembrane potentials are constructed. Other
approaches are interested in constructing directly dominant
frequencies on the heart surface and torso surfaces (Pedrón-
Torrecilla et al., 2016; Beltrán-Molina et al., 2017).

The evaluation of the different approaches studied in this
paper is based on the reconstruction of the epicardial potential
maps and the localization of pacing sites. For that, we
used 3 different cardiac paced rhythms: left-ventricular, right-
ventricular and bi-ventricular pacing.

Unlike the work presented by Barnes and Johnston (2016),
this study considered two types of transfer matrices: MFS and
FEM and two different approaches of regularization: zero-order
Tikhonov and L1-Norm. This study demonstrated that, when
using the MFS discretization approach, the GCVmethod is more
appropriate and optimal than RGCV and the other parameter
choice methods. Otherwise, for the FEM approach, the RGCV
gives the best results using simulated data. But also, GCV and
ADPC provide very weak results with FEM, this is mainly due to
the fact that the minimization criteria in both cases chooses the
regularization parameter λ at the lower bound of the provided
interval.

However, for the experimental data, all the methods perform
nearly the same with a slight difference in terms of both spatial
and temporal relative error and correlation coefficient when
comparing the epicardial potential distribution. We think that
this is mainly due to the magnitude of the recorded potentials but
also to the noise and other experimental uncertainties. Results
show, also, that L1-Norm regularization of the potential normal
derivative yields generally the best solution. For the purpose
of benchmarking, the represented algorithms were evaluated
against the data set used in the paper (Figuera et al., 2016). Results
are reported in the Supplementary Material. They show similar
performance for the sinus rhythm model using the L1-norm
regularization of the current density. This last regularization has a
better performance for the atrial fibrillation models compared to
all the ZOT based methods but weaker results than the Bayesian
approach (Serinagaoglu et al., 2005; Figuera et al., 2016). This
should be subject of several further studies.

Regarding the pacing site localization, Table 1 show clearly
that the estimation of pacing sites is more accurate using L1-
norm regularization than other methods with minimum errors
and less variance despite the fact that it depends of the epicardial
potential reconstruction. This is due to the use of L1-Norm
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FIGURE 10 | Real (A) and the estimated BiV pacing sites with its electrograms using the numerical methods (B) MFS-ZOT, (C) FEM-ZOT, and (D) FEM-L1. In each

panel, LV and RV pacing sites (top) with their electrograms (bottom) are represented using the mentioned numerical method.

regularization that preserves the spatial gradient changes in the
solution which is not the case for the L2-Norm regularization that
tends to give smoother solutions. Despite the good performance
of the methods in the case of LV and RV, they have faced
difficulties in localizing two pacing sites for the BiV pacing and
localize in some cases only one pacing site nearly equidistant
to the two real ones. Some limitations of this study have been
explored such as the imperfect knowledge of the transfer matrix
and the noise in the ground truth data that could lead to biased
results. This explains the degradation of the RE and CCmetrics in
terms of electrical potential for the experimental data compared
to the simulated model.
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