35,062 research outputs found

    Alaska University Transportation Center 2012 Annual Report

    Get PDF

    Meta-models for structural reliability and uncertainty quantification

    Get PDF
    A meta-model (or a surrogate model) is the modern name for what was traditionally called a response surface. It is intended to mimic the behaviour of a computational model M (e.g. a finite element model in mechanics) while being inexpensive to evaluate, in contrast to the original model which may take hours or even days of computer processing time. In this paper various types of meta-models that have been used in the last decade in the context of structural reliability are reviewed. More specifically classical polynomial response surfaces, polynomial chaos expansions and kriging are addressed. It is shown how the need for error estimates and adaptivity in their construction has brought this type of approaches to a high level of efficiency. A new technique that solves the problem of the potential biasedness in the estimation of a probability of failure through the use of meta-models is finally presented.Comment: Keynote lecture Fifth Asian-Pacific Symposium on Structural Reliability and its Applications (5th APSSRA) May 2012, Singapor

    [Report of] Specialist Committee V.4: ocean, wind and wave energy utilization

    No full text
    The committee's mandate was :Concern for structural design of ocean energy utilization devices, such as offshore wind turbines, support structures and fixed or floating wave and tidal energy converters. Attention shall be given to the interaction between the load and the structural response and shall include due consideration of the stochastic nature of the waves, current and wind

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Fluid-structure interactions of anisotropic thin composite materials for application to sail aerodynamics of a yacht in waves

    No full text
    In recent years technological innovations has allowed large improvements to be made in sail design and construction. Sails and in particular kite-sails have application for sport, ships’ auxiliary propulsion and even power generation. Sails are divided into upwind and downwind sails (Fig.1), where upwind sails operate as lifting surfaces with small angles of attack whereas traditional downwind sails acted as drag device. New designs of downwind sails have reduced the area of separated flow and increased the lifting behaviour of the sails. In order to capture the lifting behaviour and regions of separation present in both types of sail careful application of computational fluid dynamic analysis tools are required. Solutions of the Reynolds averaged Navier- Stokes equations (RANSE) are often used as a part of the design process of high performance sailing yachts.The present paper discusses some initial investigations and future guidelines in order to get a more detailed description of the physics involved in sail FSI. Three main fields are therefore covered: the use of CFD in order to accurately capture flow features and a comparison with experimental results; structural modelling; and approach to couplin

    The value of remote sensing techniques in supporting effective extrapolation across multiple marine spatial scales

    Get PDF
    The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process

    Contrasting carbonate depositional systems for Pliocene cool-water limestones cropping out in central Hawke's Bay, New Zealand

    Get PDF
    Pliocene limestone formations in central Hawke's Bay (eastern North Island, New Zealand) accumulated on and near the margins of a narrow forearc basin seaway within the convergent Australia/Pacific plate boundary zone. The active tectonic setting and varied paleogeographic features of the limestone units investigated, in association with probable glacioeustatic sea-level fluctuations, resulted in complex stratigraphic architectures and contrasting types of carbonate accumulation on either side of the seaway. Here, we recognise recurring patterns of sedimentary facies, and sequences and systems tracts bounded by key physical surfaces within the limestone sheets. The facies types range from Bioclastic (B) to Siliciclastic (S) end-members via Mixed (M) carbonate-siliciclastic deposits. Skeletal components are typical cool-water associations dominated by epifaunal calcitic bivalves, bryozoans, and especially barnacles. Siliciclastic contents vary from one formation to another, and highlight siliciclastic-rich limestone units in the western ranges versus siliciclastic-poor limestone units in the eastern coastal hills. Heterogeneities in facies types, stratal patterns, and also in diagenetic pathways between eastern and western limestone units are considered to originate in the coeval occurrence in different parts of the forearc basin of two main morphodynamic carbonate systems over time
    corecore