A meta-model (or a surrogate model) is the modern name for what was
traditionally called a response surface. It is intended to mimic the behaviour
of a computational model M (e.g. a finite element model in mechanics) while
being inexpensive to evaluate, in contrast to the original model which may take
hours or even days of computer processing time. In this paper various types of
meta-models that have been used in the last decade in the context of structural
reliability are reviewed. More specifically classical polynomial response
surfaces, polynomial chaos expansions and kriging are addressed. It is shown
how the need for error estimates and adaptivity in their construction has
brought this type of approaches to a high level of efficiency. A new technique
that solves the problem of the potential biasedness in the estimation of a
probability of failure through the use of meta-models is finally presented.Comment: Keynote lecture Fifth Asian-Pacific Symposium on Structural
Reliability and its Applications (5th APSSRA) May 2012, Singapor