4,657 research outputs found

    Application of hidden markov models to blind channel estimation and data detection in a gsm environment

    Get PDF
    In this paper, we present an algorithm based on the Hidden Markov Models (HMM) theory to solve the problem of blind channel estimation and sequence detection in mobile digital communications. The environment in which the algorithm is tested is the Paneuropean Mobile Radio System, also known as GSM. In this system, a large part in each burst is devoted to allocate a training sequence used to obtain a channel estimate. The algorithm presented would not require this sequence, and that would imply an increase of the system capacity. Performance, evaluated for standard test channels, is close to that of non-blind algorithms.Peer ReviewedPostprint (published version

    A probabilistic method for blind multiuser detection using array observations

    Get PDF
    In this paper, a blind algorithm for detecting active users in a DS-CDMA system is presented. This probabilistic algorithm relies on the theory of hidden Markov models (HMM) and is completely blind in the sense that no knowledge of the signature sequences, channel state information or training sequences is required for any user. Additionally, observation through an array of sensors is also considered. Performance is verified via computer simulations, showing the near-far resistance of the analyzed procedure.Peer ReviewedPostprint (published version

    Blind multiuser detection using hidden markov models theory

    Get PDF
    We present an adaptive algorithm based on the theory of hidden Markov models (HMM) which is capable of jointly detecting the users in a DS-CDMA system. The proposed technique is near-far resistant and completely blind in the sense that no knowledge of the signature sequences, channel state information or training sequences is required for any user. In addition to this, an estimate of the signature of each user convolved with its physical channel impulse response (CIR), and an estimate of the background noise variance are provided once convergence is achieved (as well as estimated data sequences). At this moment, and using that CIR estimate, we can switch to any decision-directed (DD) adaptation scheme.Peer ReviewedPostprint (published version

    Blind multiuser deconvolution in fading and dispersive channels

    Get PDF
    An adaptive near-far resistant technique for the blind joint multiuser identification and detection in asynchronous CDMA systems is analyzed in fading and dispersive GSM channels.Peer ReviewedPostprint (published version

    On the inclusion of channel's time dependence in a hidden Markov model for blind channel estimation

    Get PDF
    In this paper, the theory of hidden Markov models (HMM) is applied to the problem of blind (without training sequences) channel estimation and data detection. Within a HMM framework, the Baum–Welch(BW) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding model. However, such a procedure assumes the model (i.e., the channel response) to be static throughout the observation sequence. By means of introducing a parametric model for time-varying channel responses, a version of the algorithm, which is more appropriate for mobile channels [time-dependent Baum-Welch (TDBW)] is derived. Aiming to compare algorithm behavior, a set of computer simulations for a GSM scenario is provided. Results indicate that, in comparison to other Baum–Welch (BW) versions of the algorithm, the TDBW approach attains a remarkable enhancement in performance. For that purpose, only a moderate increase in computational complexity is needed.Peer Reviewe

    DeepSig: Deep learning improves signal peptide detection in proteins

    Get PDF
    Motivation: The identification of signal peptides in protein sequences is an important step toward protein localization and function characterization. Results: Here, we present DeepSig, an improved approach for signal peptide detection and cleavage-site prediction based on deep learning methods. Comparative benchmarks performed on an updated independent dataset of proteins show that DeepSig is the current best performing method, scoring better than other available state-of-the-art approaches on both signal peptide detection and precise cleavage-site identification. Availability and implementation: DeepSig is available as both standalone program and web server at https://deepsig.biocomp.unibo.it. All datasets used in this study can be obtained from the same website

    A blind decision feedback equalizer incorporating fixed lag smoothing

    Get PDF
    Copyright © 2000 IEEEA new type of blind decision feedback equalizer (DFE) incorporating fixed lag smoothing is developed in this paper. The structure is motivated by the fact that if we make full use of the dependence of the observed data on a given transmitted symbol, delayed decisions may produce better estimates of that symbol. To this end, we use a hidden Markov model (HMM) suboptimal formulation that offers a good tradeoff between computational complexity and bit error rate (BER) performance. The proposed equalizer also provides estimates of the channel coefficients and operates adaptively (so that it can adapt to a fading channel for instance) by means of an online version of the expectation-maximization (EM) algorithm. The resulting equalizer structure takes the form of a linear feedback system including a quantizer, and hence, it is easily implemented. In fact, because of its feedback structure, the proposed equalizer shows some similarities with the well-known DFE. A full theoretical analysis of the initial version of the algorithm is not available, but a characterization of a simplified version is provided. We demonstrate that compared to the zero-forcing DFE (ZF-DFE), the algorithm yields many improvements. A large range of simulations on finite impulse response (FIR) channels and on typical fading GSM channel models illustrate the potential of the proposed equalizer.Sylvie Perreau, Langford B. White and Pierre Duhame

    A Mobile Wireless Channel State Recognition Algorihm: Introduction, Definition, and Verification - Sensing for Cognitive Environmental Awareness

    Get PDF
    This research includes mobile wireless systems limited by time and frequency dispersive channels. A blind mobile wireless channel (MWC) state recognition (CSR) algorithm that detects hidden coherent nonselective and noncoherent selective processes is verified. Because the algorithm is blind, it releases capacity based on current channel state that traditionally is fixed and reserved for channel gain estimation and distortion mitigation. The CSR algorithm enables cognitive communication system control including signal processing, resource allocation/deallocation, or distortion mitigation selections based on channel coherence states. MWC coherent and noncoherent states, ergodicity, stationarity, uncorrelated scattering, and Markov processes are assumed for each time block. Furthermore, a hidden Markov model (HMM) is utilized to represent the statistical relationships between hidden dispersive processes and observed receive waveform processes. First-order and second-order statistical extracted features support state hard decisions which are combined in order to increase the accuracy of channel state estimates. This research effort has architected, designed, and verified a blind statistical feature recognition algorithm capable of detecting coherent nonselective, single time selective, single frequency selective, or dual selective noncoherent states. A MWC coherence state model (CSM) was designed to represent these hidden dispersive processes. Extracted statistical features are input into a parallel set of trained HMMs that compute state sequence conditional likelihoods. Hard state decisions are combined to produce a single most likely channel state estimate for each time block. To verify the CSR algorithm performance, combinations of hidden state sequences are applied to the CSR algorithm and verified against input hidden state sequences. State sequence recognition accuracy sensitivity was found to be above 99% while specificity was determined to be above 98% averaged across all features, states, and sequences. While these results establish the feasibility of a MWC blind CSR algorithm, optimal configuration requires future research to further improve performance including: 1) characterizing the range of input signal configurations, 2) waveform feature block size reduction, 3) HMM parameter tracking, 4) HMM computational complexity and latency reduction, 5) feature soft decision combining, 6) recursive implementation, 7) interfacing with state based mobile wireless communication control processes, and 8) extension to wired or wireless waveform recognition
    • …
    corecore