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Abstract. - In this paper we present an adaptive algorithm 
based on the theory of Hidden Markov Models (HMM) 
which is capable of jointly detecting the users in a DS- 
CDMA system. The proposed technique is near-far 
resistant and completely blind in the sense that no 
knowledge of the signature sequences, channel state 
information or training sequences is required for any 
user. In addition to this, an estimate of the signature of 
each user convolved with its physical channel impulse 
response (CIR), and an estimate of the background noise 
variance are provided once convergence is achieved (as 
well as estimated data sequences). At this moment, and 
using that CIR estimate, we can switch to any decision- 
directed (DD) adaptation scheme. 

I. INTRODUCTION 

It's well known that no high-speed band-limited digital 
communication can be carried out without the help of an 
equalizer. Conventional approaches to the adjustment of this 
equalizer require the transmission of a training sequence (i.e. 
known a priori by the receiver and the transmitter), which 
provides an accurate initial estimate for the equalizer taps; 
afterwards, slighter adjustments can be made on a decision- 
directed (DD) basis to adapt this first estimate to the, almost 
always, changing environment. Of course, the transmission 
of these training sequences, when possible, brings down the 
capacity of the system. For that reason, there is an increasing 
interest in blind equalizers [1,2,3] which deal with the tap 
adjustment without training sequences (i.e. blindly). 

On the other hand, CDMA techniques have become one 
of the most useful strategies in order to provide multiple 
access in digital communications. In [4], a Viterbi-based 
blind algorithm is proposed to jointly perform channel 
estimation and sequence detection in a CDMA environment. 
Nevertheless, modeling the received signal as a HMM [5] 
allows us to make use of the complete theory developed for 
these models. For example, the Baum&Welch (BW) 
algorithm was proposed in [6] to estimate the parameters of 
the channel and the characteristics of the modulation in a 
single-user case. This algorithm is known to lead, at least, to 
a local maximum of the likelihood function [5,6], what is not 
guaranteed by the Viterbi algorithm (VA). 

This paper is devoted to build a signal model and to 
include several modifications to this previously proposed 
BW algorithm, to adapt it to a multiuser CDMA system. 

11. SIGNAL MODEL 

We consider the general asynchronous multiple-access 
channel model. The received signal is given by: 

n k=l 

where hk(t-nT, t) is the overall complex channel impulse 
response of user k given by the convolution of its signature 
sequence, physical channel and the receiving filter responses. 
It incorporates the amplitude, the Doppler frequency 
deviation and the delay for user k, and its duration is 
assumed to be no longer than L symbol periods. The total 
number of active users is K and their transmitted data 
sequences are binary independent symbols bk[n]e { -1, 1 } . 
The symbol rate is 1R" and w(r) is normalized AWGN. The 
multiple-access channel is sampled at a rate ~ . = l ~ T = M R "  to 
derive the discrete vector sequence r[n]: 

where denotes transpose operation. The observation r[n] 
can be modeled as a M-length vector, probabilistic function 
of a state vector s [n] :  

r[n] =H[n]s[n]+w[n] (3) 
Since at any given time a maximum of L symbols for each 
user affect the observation, there are N=2LK possible state 
vectors corresponding to all combinations of L binary 
symbols of the K active users. We denote each of the 
possible states as the KL-length vector sj, 

si E s = {S1,S 2 , . . . , s N }  (4) 
such that, 

T 
s j  = [Sil ,..., S j K T I T  ( 5 )  

The actual state at time instant nT is denoted by s[n], s [ ~ ] E  S .  
The (MxKL) matrix H[n] depends on the overall discrete 
impulse responses for all users, denoted by matrices Hk[n] 

(7) 
Each of these matrices incorporates a vector response for the 
L symbols that may be present in the observation due to 
multipath propagation, 

and, finally, the resulting signature for each user and symbol: 

hk{ (( + z)T,  nT) 1 (9) 
h,, (( n + 2)T + ( M - 1)q, nT) 

hkl [.] = 

The noise is characterized as the M-length vector 

w [ n ] = + v  (nT) ,  ..., w (nT+(M-l)T,)]T (10) 
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Fig. 1: System model. 
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As a consequence of this modeling, we obtain a description 
of the sequence rp(r[l], r[2],.., r[D])T as a first order 
HMM (A) [5] with the following features: 

1. The number of states is N = 2LK, i.e., the number of 

2. The probability density function of the observation r 
distinct inputs that the system may have. 

conditioned on a given state channel sj is 

where 
mj[n]= H[n]sj, 15 j S N  

3. The state transition probability distribution is 

A = {a,}, 1 I i, j I N 

a, = ~ ( s [ n + ~ ] = s ~ I s [ n ] = s ~ ) =  

P( s F n  ... n s g  ) if sj;) = sji"', I = L..L - 1, 

k =  1..K 
else 

where s j i z )  E { -1,l } denotes the Zrh symbol (bit) in slk 

We will assume that K is known and L is either known or can 
be upper bounded. Then, we can follow standard HMM- 
based approaches to determine the unknown parameters of 
our model: (1) M, the MxN means matrix given by: 

(14) 
which stands for the noise-free ISI-corrupted received 
multiuser signal corresponding to each state of the model (or, 
equivalently to this parameter, the overall multiuser channel 

M [n] = [m 1 [ n], . . . 9  m N [.I] 

impulse responses H[n] ); (2) 02, the AWGN variance; and 
(3) Pa = (P(-l), P(l))T, the probability distribution of the 
symbols. Note that, according to Fig. 1, all K users 
contribute to every means vector according to: 

K 

mj [n] == Emjk [n] (15) 
k=l  

We will assume, without loss of generality, that symbols are 
equally likely. This allows us to simplify the derivations and 
the expressions for the proposed estimation methods. 

111. BLIND IDENTIFICATION AND DETECTION 
ALGORITHM 

We will concentrate in a recursive version of the algorithm 
called ABW (Adaptive Baum&Welch) [6] that is iterated at 
the symbol rate. First of all, we will obtain ~ [ n ] ,  the 
probability of being in sitate si at time instant n, given the 
observed sequence, rD , and the model A. The Fonuard- 
Backward algorithm [5,6] provides a computationally- 
efficient way to compute this variable. Secondly, and taking 
into account ~ [ n ] ,  we will reestimate the parameter set of the 
model (M[n+ I], 02[n+ 11) using the BW reestimation 
method. For this purpose, the BW reestimation formulas [5 ]  
are rewritten in a recursive manner so that the algorithm can 
track slow variations in the parameters of the model. When 
the channels, as in our case, are modeled as linear FIR 
systems, instead of adapting the means, we can directly adapt 
the CIR estimate. In the framework of the steepest-descent 
algorithm for system identification we have (see Fig. 1): 

H[n]  =H[n - 111 +(U, E[e[n]~f[n]~] (16) 

where 
e[n] = r[n] - m[n] (17) 

(18) 
T 

sf [n] = [ sf, [ n]' , . . . , sf, [n]' ] 
and stands for conjugate transpose. In our blind 
environment, the expectation in the gradient term will be 
computed in the following manner. 
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j=l  

where: 

s f j [n]  = sI @[exp( j6 , [n])  ,..., exp(jB,[a])  ,..., 

e,[n]=r[n]-mj[n-l], l < j < N  (20) 

t L - times 3 

and 0 stands for element-by-element product. Two 
advantages show up when using this approach: (1) we obtain 
an estimate for the CIRs at each time instant and, (2)  since 
the Forward-Backward iteration should operate with the 
means matrix, it makes possible to incorporate additional 
linear constraints between M and H: 

M[n] = H[n]Sf[n] (22) 
where: 

Sf [n] = [sf, [n], . . . , SfN [n]] (23) 
The AWGN variance estimate is updated according to: 

1 &'[n]=& ' [ n - l ] + p , ,  -6 ' [ n - l ]  (24) 

Finally, data detection, is performed following an 
individually most likely state (IMLS) criterion . 

A. Inclusion of a blind PLL 

As depicted in Fig.1 and equation (21), we compensate 
Doppler frequency shifts separately with the inclusion of a 
blind PLL. Adopting such strategy increases the robustness 
of the receiver, in particular in environments (such as third 
generation personal communication systems) where large 
frequency deviations appear as a consequence of high speed 
of the mobiles. 

According to [7] ,  we introduce a second order DPLL into 
the process of joint channel estimation and data detection. 
The update equation is given by: 

m=O 

where K k l  and Kk2 are proportional and integral tracking 
constants respectively. The term q5k [n]  is the instantaneous 
estimate of the MSE gradient w.r.t. the phase estimate for 
user k: 

Where null crosscorrelation between transmitted data 
sequences has been assumed. Again, in our blind 
environment, mk [n] is replaced by its estimate given the 
received data and the model, namely: 

B. Summary of the algorithm 

To sum up, the whole algorithm states as follows: 

Initialization of the algorithm: 

Iteration for all received data: 
for n=l..D, 

Set initial values for i jk ( k  = 1.. K ) ,  fi, e* . 
0 

+ Estimation of M[n]  by means of the additional 
linear constraint. (Eq. 22) 

+ BW iteration: 
* Compute the variable yi [n] (i=l..N) 
* Data detection (IMLS criterion) 
* Reestimation of the parameter set: 

G,[n + 11, H[n + I] 6"n + 11 
end ; 

IV. AVOIDING LOCAL MAXIMA 

As mentioned previously, BW-based algorithms lead, at least 
to a local maximum of the likelihood function. When dealing 
with CDMA signals, those maxima appear as a consequence 
of two fairly independent phenomena 171: severe Intersymbol 
Interference, and multiuser structure of the signal resulting 
from the near-far effect. The first circumstance rarely occurs 
in most practical radio channels in which IS1 spans a very 
few symbols. Therefore, we will concentrate on analyzing 
and solving the problems in our algorithm associated to the 
near-far effect. When a multiuser signal is affected by the 
near-far effect, the algorithm tends to split the CIR estimate 
of the user(s) of greatest magnitude among the weakest(s) 
ones since it locally maximizes the likelihood function. 
Nevertheless, this extent can be easily detected since, in 
those cases, estimated data sequences for the involved users 
are identical (up to a sign change). The strategy employed in 
the present paper to overcome this problem was suggested in 
[4].  It consists in checking, every S symbols, the 
crosscorrelation of the estimated data sequences between 
users (evaluated for 2,L+1 lags). Estimated CIRs for the 
number of users with matching data sequences, say K, , are 
added up and arbitrarily assigned to one of them whereas 
those of the remaining K,-1 are set to the initial value. Of 
course, the same operation must be performed with the rest 
of parameters being estimated, in this case, Doppler 
frequency shift. Note that this approach leads to an 
unpredictable assignment of the estimated CIRs to the users. 

A final remark. If, at any moment, the estimate of noise 
level is higher than the energy of any user's CIR estimated so 
far, the system tends to converge towards the trivial solution 
(H=O), i.e. considering the whole signal as noise. This might 
happen if the system were suddenly disturbed, for instance 
after coherence compensations. Therefore, we impose the 
additional restriction that, at any time instant, the estimate 
for the noise variance can not be greater in magnitude than 
the energy of any of the already-estimated CIRs. 

V. SIMULATION RESULTS 

The system under study employs a BPSK modulation 
scheme. The received signal is sampled at a rate of 1 
samplekhip although the identification algorithm operates at 
the symbol rate. For all simulations, the constants in the 
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update equations were set to: ph= 2-102, P.~= 4.10'2, Kkl =lo3 
and Kkz=104. Several tests were performed for power 
difference between users up to 30dB, and for SNR -for the 
weakest user- ranging from 6 to 12 dB. Distortion due to 
Doppler frequency shifts has been considered too. Unless 
stated otherwise, the results are averaged over SO-run 
simulations. 

First, a case of K=4 users received with similar power is 
considered. Figure 2 shows the evolution of the estimated 
CIR (real part) in a single-run simulation. Note that, despite 
of the joint detection strategy, users are extracted 
sequentially -within the first 300 symbols- in accordance 
with their received amplitudes. Sudden jumps in the 
estimates are due to coherence compensations. The averaged 
estimation noise for CIRs corresponding to each user 
(learning curves) is depicted in Fig. 3. 

10.' 

ESTIMATED CIR 

4' 

I I 
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Fig. 2: Evolution of CIR estimate (real part, single-run test). Users' 
amplitudes: 3,2, 1, 1. SNR=12 dB. 
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Fig. 3: Learning curves for different users. Amplitudes: 3, 2, 1, 1. 
SNR=12 dB. 

Figure 4, is devoted to plot the evolution of the AWGN 
variance estimate. It asymptotically attains the true value 
($=0.063), as long as the contribution from the estimation 
noise goes to zero. 

ESTIMATED NOISE POWER 
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Fig. 4: Evolution of the AWGN variance estimate. Amplitudes: 3, 
2, 1, 1 .  SNR=12 dB. 

Behaviour when facing near-far effect is depicted in Figs. 
5-6. A maximum of (approximately) 30 dB power difference 
between users is considered and, despite of this, signals are 
extracted within a few hundred symbols as happened before. 
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Fig. 5: Evolution of CIR estimate (real part, single-run test) with 
near-far effect. Users' amplitudes: 30, 7,5,  1. SNR=12 dB. 
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Fig. 6: Learning curves for different users with near-far effect. 
Users' amplitudes: 30,7,5, 1. SNR=12 dB. 

Other tests were performed for a difference of 40dB; the 
algorithm also succeeded in separating users. 
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In Fig. 7, the system is tested in a noisy environment. We 
observe that users separation is also achieved despite of low 
SNR, 6dB. Since the CIR is obtained as an average for all 
channel states, such algorithm is specially robust to noise. 
Note, however, that estimation noise is higher now. 
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Fig. 8: Evolution of the phase shift estimate. Solid lines correspond 
to the estimate; dash-dot lines to the true value. Users’ amplitudes: 
10,7,5, 1. SNR=12 dB. 

VI. CONCLUSIONS AND FUTURE WORK 

receiver operates blindly, training sequences are replaced by 
estimates of the transmitted data based on the received signal 
and the present parameter set of the HMM. Such parameter 
set is adjusted with the help of the forward-backward 
iteration and the BaumLkWelch (BW) reestimation 
procedure. The CIR estimate incorporates frequency shift 
compensation with the inclusion of a blind PLL. The 
motivation for adopting such strategy is increasing the 
robustness of the receiver, in particular in environments 
(such as third generation personal communication systems) 
where large frequency deviations appear as a consequence of 
high speed of the mobiles. The resulting algorithm is well- 
suited for the startup period of a system in which, after 
convergence, we can switch to any less computationally- 
intensive decision-directed adaptation method. 

Undergoing research focuses on the inclusion of array 
observation in the present framework, comparison with other 
blind detection techniques and computational load reduction. 
Further validation is also due by considering synthetic 
signals generated by standard test channels (such as those 
proposed in the GSM recommendation [SI) or, otherwise, 
real data. 
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