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A Blind Decision Feedback Equalizer Incorporating
Fixed Lag Smoothing

Sylvie Perreau, Langford B. White, and Pierre Duharfellow, IEEE

Abstract—A new type of blind decision feedback equalizer delay. However, the issue of the computational complexity of
(DFE) incorporating fixed lag smoothing is developed in this the HMM formulation still remained. This was the motivation
paper. The structure is motivated by the fact that if_we make fu_II for the proposal of a suboptimal algorithm in [3]. The idea was
use of the dependenc_e_of the observed data on a given transmlttedt v the f d . duced b f bol
symbol, delayed decisions may produce better estimates of that 0 appY € forward recursion on a reduce num €er of Symbols
symbol. To this end, we use a hidden Markov model (HMM) stored in the channel memory, where the decisions on the other
suboptimal formulation that offers a good tradeoff between symbols were no longer being questioned. This approach has
computational complexity and bit error rate (BER) performance.  strong connections with the DFE since, on some symbols, the
The proposed equalizer also provides estimates of the channelygisjon that has been taken is no longer questioned and is used
coefficients and operates adaptively (so that it can adapt to a to remove the ISI. As a result, the algorithm in [3] has the same
fading channel for instance) by means of an online version of R ' ’
the expectation-maximization (EM) algorithm. The resulting type of behavior as the DFE (although of reduced order) since
equalizer structure takes the form of a linear feedback system a wrong detection may result in error propagation, especially
including a quantizer, and hence, it is easily implemented. In fact, when dealing with nonminimum-phase channels.
because of its feedback structure, the proposed equalizer shows  Thig haper proposes another suboptimal HMM formulation
some similarities with the well-known DFE. A full theoretical . . - .
analysis of the initial version of the algorithm is not available, with a CompUtat'ona_l complexity I_'near in the channel memory.
but a characterization of a simplified version is provided. We When compared twith the DFE, it can be seen that both algo-
demonstrate that compared to the zero-forcing DFE (ZF-DFE), rithms feedback symbol estimates before detection. The key dif-
the ?Igtg_orithm yfi_e[?s _manly improvemerztsl-Rf h’ﬂge Iranged of ference is that, although the DFE never questions the estimates
simulations on finite Impulse response channels and on H :
typical fading GSM chan%el modeIF; illustrate the potential of the Iaterl on, the proposed a!gorlthm prpdusmoothecbstlmates,
proposed equalizer. Fhat is, updates at each time the estimates of each symbol stored

in the channel memory and feeds these updates back at the next
iteration. Finally, the decision on a symbol is made the last time
this symbol is seen by the channel memory, which justifies the
EVERAL methods based on a hidden Markov modekrmfixed-lag smoothing
HMM) formulation were recently proposed for non-linear The paper is organized as follows. We first propose a general
blind equalization. An optimal off-line algorithm was pre-description of the algorithm briefly recalling the HMM defini-
sented in [1], performing alternatively forward and backwartions and recursions used for the symbol detection, as well as the
recursions on a whole block of data. After several iterationsteps involved in the expectation-maximization (EM) algorithm,
the algorithm provides a reliable estimate of the channgllowing the estimation of the channel parameters. In Section 1V,
parameters as well as a detection of the emitted sequemgederive a simplified version of the proposed algorithm, which
of symbols. Such methods can become intractable whalows a theoretical bit error rate (BER) analysis, and we finally
dealing with long channels since the computational cost gopose, in Section V, a large range of simulations, in terms of
exponentially increasing with the channel memory. MoreoveBER and channel tap estimation accuracy.
the off-line method has large memory requirements and cannot
perform real-time processing, which can become an issue Il. GENERAL DESCRIPTION OF THEALGORITHM
in the case of time-varying channels. An “online” algorithm
was derived in [2], thus allowing a real-time computatiorf“'
The derivation of this recursive algorithm was made feasible We assume that symbols taken from a finite alphabedf
by applying the backward recursions on a fixed number sfze M, are transmitted through an FIR channel with transfer
“future” observations, i.e., the algorithm is applied with dunction H(z) = S>> ' h; 2~ where theh; are complex-
valued coefficients. We assume additive Gaussian white noise
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Here, the operatdr)? denotes the transposition operation. The  channel parameters denoti(]ﬁt_l), and the prediction
task of the algorithm is thus to estimate at each tirtlee trans- of the other symbols stored in the channel memory at
mitted symbolsc;, z; 1,---,z: ni1, as well as providing an timet — 1 [Xt(Tl),Vm £ n, At(f’l) denoting then + 1th
estimate of the channel impulse response, using the measure- component of vectoX;_;]
mentsY; = {y1, -, Y} . .
| , ol () = P, = qilHimy, Yoe, X = X))

B. Approximate MAP Symbol Detection Vm#n ¥Yn=0,---N—1,¢ €A (5)

In [3], an optimal formulation for maximura posteriories- R
timation of the transmitted symbols was presented. This formu- ¢ the current estimat&’, , of the vectorX,_, as given by

lation is based on an HMM formulation. Indeed, the vector the previous recursion. A predictioki,,_, of vectorX,
can be seen as the state vector of the Markov process described is easily obtained by taking advantage of the shift structure
by the state equation of the process\,. Clearly, we have, fon =1---N -1
(n (n—1
Xy =AX +zp1x[1 0 - 0F 3 Xt(|t11 = Xt(71|t)71' (6)

wh_ereA is a shift mgtrix withd,; = 1 & i = j+ 1. Then, by substituting?t(ﬁ)_l for Xt(n) VYn=1,---,N -1, we
This Markov process is only observable through the observatiggiain the approximate filtered probability at tihef the only

equation (1). Suppose that,, which is the current estimate of .omnonent of the state vector on which (6) does not provide
the channel, is available at timeAs in [2], define the so-called jhtormation

forward variable, expressing the probability that the stdtes
equal to some realizatidn;, “++Giy_y,]" according to the cur- aglot)(i) =P(x" = ¢|H,, Y, X = Xt(l’;)_l)_ @)
rent channel estimatH;, and the set of measuremeifisby
Substituting from (1) yields
arlioyin, - in-) (©0) 1y _ 0 g g ¢ (N7
P = (g g Y. @ o) = AN B XL XTI @)
The exact computation of this probability involves thewherecgo) is a normalizing constant, andi( ) is a zero mean
so-called forward recursion. See [1] for more details. ThiSaussian function with varianeé. Inthe forthcominth")(i)
recursion requires the calculation of the probability in (4) fodenotes the quantity
every possible realization of the stochastic procéssSuch an o . .
evaluation obviously requires the computationidf¥ proba- L (i) = N(y, — HtT[Xt(ﬁ),Xt(ﬁt)_l, S iy '7Xt(|?_11)]T)
bilities at each step. In [3], a reduced computation algorithm . )
based on state truncation was introduced. This 1‘0rmuIatic)fﬂlhereXt(ﬁ')_1 has been replaced lay.
however, appeared to perform rather poorly in comparisonThe remaining updated probabilities involved in (5) are also
with the optimal HMM filter, in particular when operatingapproximated by applying the classical forward recursion of the
in an adaptive mode. This property seems to be linked to théIM formulation on conditional instead of joint probabilities.
fact that a classical DFE is the coarsest approximation of thae quantitiesxil’?(i) recorded as smoothed probabilities are
algorithm in [3], whereas the superior performances of thbus obtained as
HMM may be due to the fact that past decisions are revisited
: i Wy — ) (1) o p(n);
several times over the duration of the channel memory and, oy, (8) = ¢ oy (8) Ly (4). (10)
hence, may be corrected. Thus, error propagation as often . , ]
observed with DFE’s is more unlikely to happen. This is ev ence, the condlAtlonaI mean (CM) estimate at tinoé symbol
more important in an adaptive mode, where too many errofs—" denoted byz,_,,; is
can lead to anomalous adaptive behavior. v
Thus, itis desirable to seek a simplified algorithm that permits Xflr:) = By = Z 4 aglr;) (i) (11)
state revisiting but does not have the exponential complexity in
N of the approaches of [1] and [2]. Such an algorithm was pre- _ o
sented in [5]. This algorithm uses thearginalposterior proba- and the new state estimate of vec#yr is given by
bilities of the symbols in the channel, rather than the joint prob-
abilities described by (4), as in [2], or a partially quantized joint

p_robablllty, as in _[3]' Such an algorlt_hm has linear computa- Note that (12) takes into account the probabilities computed

tional complexity in the channel duration. We now describe the, ie previous step (which are used as predictions here) as well

forward recursion for this algorithm. _ ~ as the effect that a particular symbol may have on the observed
Assume that the following quantities are available at ¥tme 55 attime, given other filtered and predicted estimates. Equa-

* the approximate filtered probabilitieaf’j)llt_l(i) de- tions (10) and (11) illustrate one key difference between our al-
noting the probability that the. + 1** symbol in the gorithm and the DFE [6]. In the DFE, once the current symbol
channel memory at time— 1 are equal t@;, knowing the has been estimated, this estimate never changes, whereas our
observations up to time— 1, which is the estimate of the algorithm puts the decisions back into question, as long as the

Xt|t = [:i't|t7 Ty '/i't—n|t7 e 7'%t—]\7—|—1|t]T' (12)
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considered symbol is seen by the channel. Thus, in principtbe likelihood function for the complete data (see [7] for the ter-
error propagation should occur less often. minology)

Consider the case of large SNR. In this situation, the
Gaussian functions should be sufficiently peaked in order €x(H:, H)

ensure the probability estimates in (9) to be very close to unity P(Xy = [giy, @iy qiN71]|ﬁt7 Y,)

for one symbol and close to zero for the other ones. Under ;, "7 |

this approximation, CM estimates behave like maximam Nog(P(Xy = (i Gir» > Gin_y || H)

posteriori probability (MAP) estimates and correspond to one 1 X

of the symbol values. From (11), this symbol value is clearly the- <—2—2> Z P(Xy = [Gig: iy s Gin_i )| He, Ya) |1
closest symbol to the current measurement withestemated 7 o i

ISI removed - [Qio y @iy qiNfl]H|2' (17)

Xt(ﬁ) =&y, = arg max Ny, —fItT(qi,Xt(ﬁ)_l, ,Xt(ljt\ ")) Now, focus on the computation aP(X, = [gi,,qi,
' N QiN71]|Ht’Y;)'

=arg meif}\ |ye — HtT(qz,Xt(|lt) L ,Xt(ft\ 11))|- (13) In order to be compatible with the approximation derived in

“ the previous section, we approximate this joint probability of

Now, we concentrate on the smoothed probabilities (10) at tiff¥ery component ok, by the product of the conditional mar-
+. Substituting fora™ (i), we have ginal probabilities of each component, given the one-step pre-

-ttt dictions of the other components according to (5)
n n n—1 n n—1 n—2 ~
ol (@) =" " LV OLITY (el PX0 = i i, i ]I, Y2)
N-1
(n—k) yn— k n S m
H elery Lisk (0): (14) ~ [ P = g, |He Yo, X5
n=0
N-1
Thus, maximizing ovet, we obtain a refined delayed estimate - H at|t (18)

of (13) as given below. This is called therfioothed estimdte

Appendix A shows the expansion of the calculation leading to

X,(|,) =Tt it = arg maX H C(n k)L(n k)( ) the following expression of the expectpdeudo-likelihoodat
time ¢
_ _gT :(n k) 1 N
=arg min Z e — HL A" () Q.(H,, H) = <2 2) lye — HY Xyp]?. (19)
=ar C_,, i 15 o . . o
gglclﬂ it (@) (15) 2) Maximization Step:This consists of maximizing

Li(Ho,Hy,--- H, H) as a function of H, since it has

where been shown [2], [7] that this maximization increases the
(k). likelihood of the observations. The function to be maximized
Xy () L(Hy,H,,---,Hy, H) is evaluated in [2] as
= (-%tfkltfka -%tfkflhfkfla ce a£t7k7n+l|t7kfl
Qis Bt hmn—1ft—k—1, " > Ttk N 1j—k—1) - (16) L(Hy, Hy,--- H, H —< ) Z Qn(Hi, H). (20)

An online algorithm has the ability of tracking time-varying
parameters. This property will be ensured by introducing

a forgetting constané < A < 1 in the estimation of
Once the symbol estimates are obtained, it is well know (Ho, Hy,--- H, H)

that since the noise model is Gaussian, the ML estimate of

the channel can be obtained through a least squares solution. . 1 ' — .
However, we have just seen that the estimaje can further Ly(Ho, Hy, -+, Hy, H) = <@) > AR Qu(Hy, H).
be improved by estimate ;. Rather than directly utilising k=0 1)
the classical recursive least squares (RLS) (with shift invari
property), we derive below the precise form of the est|mat|o

C. Approximate ML Estimation of the Channel Impulse
Response

ﬁe maximization step is realized recursively [2] by

algorithm by use of the EM algorithm. We briefly recall here Ht+1 =H + R! S(yt,fft) (22)
the various steps involved in this EM algorithm. See [2], [3],
[5], and [7] for a complete description of this algorithm. whereR, is the Fisher information matrix of the complete data

1) Expectation StepThis step corresponds to the compudefined below, and the scofeis defined by [5]
tation of an estimate of the Kullback—Leibler (KL) function at . o .
time ¢, which is defined as the expectation of the logarithm of Sy, Hy) = (g — HtTXﬂt) e (23)
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where()* and( )", respectively, stand for the conjugation andavere initialized to the value 0, which means that we did not use
transposed conjugation operations. This results in the followiagy knowledge on the channel.
recursions:

N N 1 N I1l. ComMPUTATIONAL COMPLEXITY
Hiyy =Hy+ Ry S(y, Hy)
R, = \R,_; + thtj(tf (24) Denoting by/V the length of the channel and By the size of
the input alphabet, the computation of the scheme using MAP
estimates of the symbols requires the following at each iteration:
Equation (24) correspond to the recursive estlm_atlon of_ the , xv_ multiplications to Computé{Ttht_l;
channel parameters by means of an EM sequential algorithm.
Since the algorithm requires a recursive computation involving
an exponential factor, it is not astonishing that the recursions
show some similarity with the ones used in a classical RLS
adaptive algorithm, where the so-called missing d&taare
replaced by their estimaté’”t. Note that an LMS (gradient)
like version of the algorithm is also feasible, although we do
not address its performance here.

It

» M multiplications to producé(t(ﬁ) via (13);

» M multiplications for each symbol estimate to be updated
in the channel memory via (15), that is, a total\@# (N —

1) multiplications;

* the update of the channel parameters requiring the same
computational complexity as for the RLS algorithm:
O(N?).

We have atotal o = N + N — 1 multiplications required at
each iteration plus those required for the parameter estimation.

D. The Proposed Algorithm Note that the computational complexity of a DFE would require

N —1 multiplications. The next sections compare this algorithm
To summarize, the overall algorithm runs the following rewith the DFE in terms of error propagation and BER. This study
cursions: is undertaken under the assumption that the channel is properly

. . ) . estimated.
1) Suppose acurrentestimatedf _; is availableX, 1, |

2) Predict vectorX, by (6): X,
3) Estimate vectoR; by the quantizations in (16) and (21): |y, SIMPLIFIED “SHIFT-INVARIANT” ALGORITHM BER

Xt o _ ANALYSIS
4) Use (23) and (24) for estimating, recursively, the channel

impulse response In this section, we propose an exact calculation of a lower
5) t =t + 1, and return to step 1. bound for the probability to recover from an error, in the general

case, and asymptotic error probabilities for every possible first-

order channels. These exact calculations are performed using a
E. Initialization Issues simplification of the proposed algorithm that yields a shift-in-

variant structure. With this shift-invariant structure, we obtain

Since the proposed algorithm is an iterative one, initializatian first-order Markov chain model for the error process, which
has to be addressed. As far as the estimates of the transmighalvs for a theoretical analysis. This new algorithm does not
symbols are concerned, as no training sequence is available pravide as good results as the original one, but we show that the
choose to initialize the marginal probabilities as uniform. corresponding error probabilities are always smaller than those
The initialization of the channel can be an issue. As the algtwr the ZF-DFE. Note that the second analysis only holds for

rithm is based on the maximum likelihood approach, it is welirst-order channels because the mathematical derivation for a
known that it might converge to some local maxima of the like:th-order channel (channel wittH-1 taps) is intractable. How-
lihood function. This issue is not treated here but has been cewer, it is useful because when an error starts to propagate for
sidered in [8], where this problem is overcome by coupling trany kind of linear channels, the expressions of the probabilities
proposed algorithm to a subspace-based method in the casaerefthe same as the ones for a first-order channel. The analysis
spatial diversity reception; in [9] in case of encoded data, whevelow is then interesting for understanding how an error will
the knowledge of the convolutional code is shown to reduce sigfart propagating throughout the channel memory. In addition,
nificantly this initialization issue; or in [10], using a GibbsiarBER simulations in Section V confirm some claims made in this
technique that significantly decreases the possibility of convexnalysis.
gence to the basin of attraction of a nonglobal maximum of theFor an easier analysis, all variables are now supposed to be
likelihood. In any case, as the algorithm derived in this papegal valued, and the emitted symbols belong to th¢-séf +1}.
performs online, the issue of local maxima is significantly re-
duced compared with the offline context; in fact, in an onling ' The Shift-Invariant Algorithm
setting, as the algorithm does not increase the likelihood of the _ o ) _ S
complete data at every step, it does not necessarily converge tohis algorithmis simply obtained by using the approximation
the closest local maximum. Simulations showed very few cases
(treated in [8]—-[10]) where the algorithm did not converge to the )
expected solution. In the simulation part, unless stated, all taps X1 ™ Xt(ft_i (25)
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which amounts to use the “filtered” estimates in the feedbac T@)
paths rather than the “smoothed” estimates in (13), (15), ary
(16). Then, considering (13), we have t uk +f\
) I
Y- ~
Xt-nlt
. . AT (D) c(N—1)
Tt|t =arg p C%n111.1+1} |yt - Ht ((JivXﬂt_lv '7Xt|t_1 )| +
=L Y
N ) F Ho@ —() T .
_ ; 2 (k)
=ar + hp X tt
0ty 1 (X i) i
N-1 P@
— 2hog; <yt — Z hk‘Xt((;)l) . (26)
k=1

Fig. 1. Structure of lage DFE.
Assuming i is a positive quantity (the symmetric argu-
ment can be used in case it is negative), the above criteriog demonstrated with a simple example. It has to be pointed
is minimized wheng; has the same sign as the quantitput that this shift-invariant structure is not as effective as the
(ye — f::_ll tht(ﬁ)—l)' Thus, applying the same procedur&lgorithm proposed in the first section in that it does not take
for 2, ¢, we get advantage of the updates of the decisions before retrieving the
corresponding ISI. However, we need the simplified structure in

) order to perform the error probability calculations.
&y, =Signz1(t) where

n 2n B. Lower Bound on the Probability to Recover from an Error
1) =D hnkUiok — Y Pak r—kji—k (27) for a BPSK Modulation
k=0 k=0 n 1) General Case AnalysisThis section provides a general
By =Signza(t)  With 2a(t) = gy — Z R ot expression for the pr.obablhty to recover frqm an error W|thou.t
Pt making any assumption on the channel. This general expression

(28) shows that the BER calculation in the general case is intractable,
but it does permit a better understanding of the advantage of the
proposed algorithm.

where the coefficients,, . are given by Assume that the estimate of symhgl at time¢ is wrong,
i.e., |eqe| = |&ye — x| = 2, whereas the previous symbols
N were correctly estimated. What is the probability for the next
_ Z bk estimate of the same symbol at tirhe n to be correct? Denote
Pr n—tlin=k this probability asP(e;|+1,, = Ole,; # 0). The corresponding
=0 cost function to be minimized according¢g which is defined
in (15), can be written as
fork =0,---,n—1,h, = 0, andhap_r = hy for k =
n41,---,2n. Chiran (@) = (ho(me — @) + 10)* + (hoer1i1
Inthe frequency domain, denoting ES(z) the reversed poly- +hi(zs —q) Fnep) + -+ (hoCttnt+n
nomial of H(z), e.q9..H(z) = 2"H (27 1) angHo(z) defined as o b — @) + Tegn). (30)
Hy(z) = H(z) — ho, (27) and (28) are written as
Let us denote

Zi(z) =H(2) Y(2) — P(z) X(2) Ui = hotrtije+i + Paeegijei-1 + -+ hiciCrgpetr-
Y

(2) — Ho(z) X(2). (29) ' Then, the condition for a good detection on symboivould be
that the cost functiod’;,1.,,(¢;) calculated withy; = x, is less

This allows us to represent the structure of the proposed alérc])@n the one obtained fgf = —z,, i.e.,

rithm as a two-input two-output linear system denoteddy) n ) n )

with a feedback nonlinearity, as shown in Fig. 1. Evideri) Z (L +ne44)” < Z (T + mugi +hieye)”™. (31)
is a2 x 2 matrix polynomial of degre&n and can be computed =0 =0

for approximately four times the computation of the usual DFAssume, as well, that, = 1 (the caser; = —1 leads to the

Note that in this shift-invariant structure, error propagatiosame probability because of the symmetry of the problem); then,
may occur in the zero lag estimation, e.g., DFE, as usual. Tag = 2, and the last equation becomes
shift-invariant smoother provides other subsequent estimates by " "
simply weighting the posterior likelihoods associated with each Z h2 + Z hi(Ts + negi) > 0 (32)

delay. This has the effect of reducing overall error rate, as will o izo
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or, equivalently

zn: hingyi > —znj hZ —En: L'k
=0 =0

=0

(33)

If we call Vi1 = Z;;l h;biqi, Which is a Gaussian random

variable of mean 0, and varianeé > h?, we want to
calculate the probability to recovet at timet + n, giventhat
ey = 2. First, denote by’ (¢;) the probability to recover, at
time ¢ + n under the following assumptions.
® Gy = 2.
» The random process of errofs, 1 = (Cqynjt4n, ">
¢ry1)t+1) IS equal to somé;, which is one of the™ pos-

sible realizations oF;,; (each component of the vector

&; can take the values 2,2, or 0). Thus

Pi(&)

=P | Neg1> =Y _hI—hone + Y T |ne < —ho

i=0 =0 €r1=2

5(e:)
(34)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 5, MAY 2000

Finally, we have, from (36)

P(-/i't|t+n = $t|et|t 7£ 0) 2 (%)(n) Z Pl(gmin(i))- (37)

We can comment on these results.

¢ This lower bound will hold more tightly when the channel
is “pathological,” i.e., when the only possibility for a
symbol to be correctly detected is that the sign of the
filtering error is the same one as that of the symbol.

» The bound explains why the exact calculation in general
is intractable without any assumption on the channel taps;
the functionss(£,,in(¢)), as well as the “plausible” error
sequences,,,i,(¢), depend explicitly on the channel pa-
rameters values.

» We can also find a particular case of channels for which
we know thathis probability will be close to unitywhich
means that nearly all the errors detected at timall be
corrected later on.

» The high SNR requirement is necessary to approximate
the Gaussian functions by % or 0. For lower SNR'’s,
these approximations become less accurate. However, in
this case, we can still provide a lower and upper bounds
for the probability in (36), as explained below.

Then, we have to evaluate the probability for the error s&uppose, for instance, the second channel tap absolute value is

guenceF,, to be equal t@;

P((Ct+n|t+m T 6t+1|t+1)

n
=&ileyy =2) = H P(esn—jift4n—j+1
j=1

). “Cop |t :Si(n)vcﬂt :2)
(35)

= 52‘(” |Ct+n—j|t+n—j = 52‘(%1

Finally, we obtain, as a result, an evaluation of the probabili

much greater than the first one. It is useful to deal with this sit-
uation for two reasons: First, as shown by simulations in [12], it
is met, in particular, for mobile communications transmissions
affected with fading and Doppler effects; second, this config-
uration would lead the worst error propagation schemes for a
ZF-DFE when a wrong detection is made on a symbol. There-
fore, it is necessary to check how the proposed algorithm per-
forms in such a pathological situation. The opposite situation
second tap smaller than the first one) is not of interest because
would not lead to error propagation.

P(&tje4n = weleye 7 0) (that a symbol estimate is correct at g nnase an error has occurred at timdhe remaining of

time ¢ + n, knowing it was wrong at time) by
P(£t|t+n = -Tt|ct|t * 0)
=" PU&)P((Coqnfiqns -+ Crptjirr) = Eilery = 2).

(36)

Using this general result, an approximation valid only for high

SNR is given below.
2) Derivation of a Lower Bound for High SNR Levelllote

this section provides order of magnitudes of this recovery prob-
ability in one iteration, which are checked against simulations.
The condition (36) to recover from this error at time- 1 (that

is, forn = 1 according to the previous calculations) becomes

P41 = zileys # 0) > (5)(P(bmin(0)) 4+ Pr(€min(1)).
(38)

First, determine each possible realization of vedfir,, that
is, assuming that,; = 2, we have the permitted values of

that all the probabilities involved in (36) are Gaussian functions, , |, ;. Recall that symbat, ., is estimated at time+ 1 via
Hence, the following approximations are valid for high SNR

levels.

Zpg1peq1 = SIQN(Yeq1 — hady)e) = SigN(hows41 + 2h1). (39)

* As the distribution functions of a very narrow Gaussiaye have to take into account two different possibilities for the

function can be accurately approximated by%l,or 0,
we just take into account the sequendgs; leading to

error process, corresponding to the two possible values for
Crt1le+1- 1) eq1e+1 = 0, corresponding to the error sequence

non-zero values of the exponential functions. We denoge an( i) Coprje4r = —2 if 2,41 is equal to—1, corresponding

such sequences &8s, (7).

to the error sequendg. Now, determine the value&¢;)

* On the other hand, we show in Appendix B that the high

SNR level assumption allows the derivation of a lower

bound for the probabilitie®((¢; 1y |t Ct41p41) =
&iley = 2). We find out that

P((Ct+n|t+m S Ctpl4t4l) = £i|ct|t =2)> (%)(n)-

8(&) = —h2 — h? — hony + 2R3

=h{ — hi — hony (40)
6(51) = _h(Q) — h% — hoTLt =+ 2h(2) — 2h0h1 — 2h%
=(ho — hl)2 — hony — 2/1%. (41)
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Now, to evaluate the corresponding probabilities TABLE |
PERCENTAGE FORRECOVERING AT TIME
Pi(&) = P(hinger > 6(&o)|ne < —ho) (42) t + 1 FROM AN ERROR COMMITTED AT TIME ¢ FOR DIFFERENTSNR
Pl(gl) = P(hlnt-l—l > 6(51)|7’Lt < —ho), (43) SNR (dB) 15 13 8 7 5

error recovery in % | 97.7% | 92.8% | 74.4% | 69.6% | 51.6%

Then, for high SNR, and given the assumption thats much
greater tharkg, we can note thaj, is almost surely negative, as

is &1, so that bothP; (£) and P (&) will be close to unity. For 10 ' ' ' '
poorer SNR levels, we can say that({,) satisfies

0 < P1(§1) < %
As a consequence, for high SNR levels, (38) becomes
P(£t|t+1 = xt|ct|t 7£ 0) =~ 1.

For lower SNR, we have

DFE

smoother

% < P(§7t|t+1 = $t|6t|t # 0) < %-

These results are checked by simulations on Table | for a typiro™F
GSM real-valued channel corresponding to a hilly drea[0.5,
1,0,0,0.63,0,0,0,0,0.25, 0, 0, 0, 0.16] fed by a white ur + experimental BER for smoother
amplitude BPSK input constellation.

Itis clearly seen that high SNR allows an almost sure corre
tion of an error, whereas a 7-dB SNR still allows half the erroig= . . . . : : :
to be recovered. ! 2 3 4 s 6 7 8 °

3) Error Probability Calculations for the Shift-Invariant  rig 2. Asymptotic and experimental BER on the charinet [1 2].
Structure—First-Order ChannelNow, consider a first-order
channelH (%) = 1+ hz~1. The decision equations for the DFE
and lag one shift-invariant smoother are

___ asymptotic BER

* experimental BER for DFE

Due to the symmetries of the error procdds, has the form

T :sigr‘(yt — h#y_1p1-1) (44) . — <7r07 1——27r0 7 1 —2 7ro> (50)
Zy_q)e =SIQNys—1 — hEy_op—o + R(yr — &41)).  (45)
Substituting fory, yields wherer is defined in Appendix C.
. Now, consider the shift-invariant smoother (47). Observe that
By =SION @y + 1y + hep_1pp-1) (46) the detected symbol depends only on the sfim= e, +
-/i't—1|t :Sigr‘(h(em + 6t—2|t—2) Ct—2(t—2 via

+ (1 +hzy 1 +hng +np 1) 47 X .
. - Zy_1pe = SIGN(Afr + (1+ B?)ze 1 +my) (51)
wheree, ;1 = x;_1 —&;_1;—1 and similarly for other quan-

tities. _ _ wherem;, is the colored noise process, = hn; + n;_1. Note
Now,_ we vy|ll“evaluate _the as;:mptotlc error performancegqat 4 given staté, definesf,, although the mapping so gener-
We define this “asymptotic error” biim; .. ¢:- Let St = ied is not one to one. The corresponding error probabilities for

(et|t €t—1]t—1, €t—2):—2); then, we claim thas, ande;_,|; form e shift-invariant smoother are

the states and observations, respectively, of a hidden Markov

process. This is easily seen by observing from (46)hats a P _ P -0 —d
first-order scalar Markov chain. Clearly, if we denotelbythe (et—aie) = D Pleerje = 0,00 = diserrjey

.5,k
vector ] —dyer s = di)
I, = (P(et“ = 0)7P(6t|t = 2)7P(Ct|t = —2)) (48) — Z P(6t71|t =0, e
we can write the state transition equation 0.4,k

T = di|ct—l|t—1 = dj7 Ct—1[t—1
He= Al (49) = djferajps = di) * Plepsps = di).  (52)
The transition probabilities, which are the coefficients of the
state transition matrixi and the asymptotic error probabilities,Then, according to (46), we have the equivalence between
are determined in Appendix C. These asymptotic error proba-
bilities are the coefficients of the vectol,, = lim; ., 1L e =diley 1p1=d;j & Nij < ne < M,; (53)

solution of
Crift—1 =djles_op_2 =dp & Njp < np1 < My

I = ATTI.. (54)
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which leads us to the error recovery probability o ‘@ . ° 1 ‘
2,1 r

Plep_1p =0)=Y_ P(ny 1+ hny > —1 —h* — h(d; + dy.)

- N . “r
NZ’] < ™ < MZ’]7N]’k < nt_lM]’k) State transition diagram for smoother
* Pep—2 = 0)
I/ Jni (1) fr,_, (n2) dny dna. (55)
Di ik

Here, f,,, andf,, ,, respectively, denote the probability densi- 1-«, ‘@ “2,1 @ ! @
ties ofn, andn,_;, andD, ; ; is the domain defined by the joint D
reallzatlon Of State transition diiagram for DFE

* Nij < me < My,

o Njp < mpm1 < Mg, Fig. 3. State transition diagrams.
e g1 +hng > —1—h%—h(d; +dy).

Flg 2 illustrates the asymptotic error probabilities for the DE 14 real part of the taps estimates, SNR=20db 1imag. part of the taps estimates, SNR=20db
and the shift-invariant smoother as a function of the SNR fi1» 0.8
h = 2. Note that the performances of the smoother are all t| + 06
better as the channel is nonminimum phase, which is a patlos 0.4
logical case for the DFE. 06 alh 0.2
Theorem 1:The asymptotic error probability for the o4 0
smoother is less than that for the DFE for every possiboe re(n -0.2
first-order channel at high SNR. % 1000 2000 3000 4 oo 2000 3000
Proof: We give here some elements of the proof, which re fterations iterations
quires some apprOXimationS on the Gaussian asymptotic erA real part of the taps estimates, SNR=13db 1imagA part of the taps estimates, SNR=13db
abilities. The proof relies on the two following observations: ,, 08 im¢h(1
1) The most likely event occurs whesn_,,_, is equal to  + ! 0.6 ()
zero for high SNR. Then, suppose an error has occurreco.s 0.4
timet— 1. Then, whatever may happen at timé¢he error  os [‘Aﬂ:u—yw 0.2
at timet — 1 cannot be corrected by the DFE, althouglo4 0
here, it is possible. 02| SO -02
2) Then, we may wonder if the possibility to change a dec 9, 1050 2000 w0 % P 2000
sion, whether it is correct or not, poses a problem. In fac., iterations iterations
suppose detection on symbals » andz, | were cor-
rect and that, was estimated incorrectly. Can the wrong Fig. 4. Adaptive behavior for complex channel taps.
decision on; resultin an incorrect update of_; attime
t?

) o _rithm of Section Il. Consider a noiseless channel, and assume
Appendix D compares both situations. We show that the fifg{at an error has occurred at timen symbolz,. Define the
situation, which is the favorable one, has a much greater proResie error a; = (e, e_yp2). This state error can take three

bility (o(o2)) than the second one(s*)) values.

4) Noiseless Error RecoveryFirst, consider the set of
length-1 channels (parameterized by a single real nurhper I =(0,0) (56)
for which the lagl smoother exhibits no pathological behavior. ’
By this, we mean that there are no input sequences for which @(1) =(0, £) 7
the equalizer cannot recover from an error in the noise-free ®(2) =(F, X) (58)

case [6]. For the DFE, such sequences exigt|if> % since ISI
may then occur. Now, consider the smoother. It is easily seahere
[from (51)] that under the condition thgt = O or f, = 2, -2
(with f; = e + er_914—2), the smoother output is always
correct (in the absence of noise). It is only under the condition
that f; = 4, —4 that the smoother output may be in error. This
condition occurs if and only if the DFE decisioasboth timeg We focus here on the mean duration (the mean number of iter-
andt — 2 are neither correct nor equal. Hence, the ranges of tatons) for the algorithm to reach stdt€no error) starting with
channel parameters ensuring error recovenjiare< 2 —+/3  state®(2) (an error just occurred). We can show that this dura-
and|p| > 2++/3. tion is reduced for the smoother, compared with the DFE. This
5) Average Error Brformance: We follow here an approach is easily understood from Fig. 3; for the smoother, the transition
similar to that of [11]. The results can apply to the initial algofrom state®(2) to statel” is allowed; therefore, this absorbing

£ error has occurredi = +2);
0 correct decision;
X either a correct or an incorrect decision.
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state may be reached in only one iteration, whereas the DFE 1o’ ' ‘ ' ' '
to first transit through staté(1) before going td".
107" 3
"
V. SIMULATIONS b " 5
it A oy -'I L\"." SRy AT i
All simulations in this section are concerned with the initial R V{,“f‘ﬂ.‘ b Y A ',f'-"p'/."(s,‘ﬂ*,ﬂct’llﬁh‘w“\q f l‘h,.
algorithm of Section II, unless otherwise stated. goF Wt \(:f'u"*?f f l".i c."J"y'fV{, AR
] b
! fy I}ﬁ. !
A. Adaptive Behavior of the Proposed Algorithm 107k ! g:
||
Second-Order Channel Exampléhe algorithm was run on a E
4PSK modulation going through a complex-valued channel wit °f 3
coefficientsH = [(1 + 0.8¢), (0.5 — 0.3¢), and(0.2 + 0.7%)].
The algorithm was initialized to the valdg = [0, 0, 0]. 0 . _— — i o o
. 500
Fig. 4 (20 dB SNR) and (13 dB SNR) show the channel tap_ ° ieration

adaptation. We can note that the convergence is faster as the _ .
SNR decreases, which can be explained by the fact that fif Vg)' ar%“;"ri[)ag'tf‘s:r(‘;rl o g;?vcer;"’]}g?g' e e of the ZF-DFE (dashed
Fisher matrix is better conditioned in the case of noisy estimates
of the input sequence.
Nonminimum-Phase Channel and Comparison with the * the blind predictive constant-modulus DFE derived in
ZF-DFE (see Fig. 5): The channel considered in the section [13].
H = [0.50.70.5]" has a spectral null. Fig. 5 shows theThe last two algorithms involve a 32-tap feedforward filter
quadratic error on the coefficients of the impulse response f@fid a two-tap feedback filter. We can see that the perfor-
the ZF-DFE and the smoother for a 13-db SNR. This shows thahnce of the smoother is very close to that obtained with the
the ZF-DFE (without any feed-forward filter) does not convergglind PCM-DFE. It has to be pointed out that although the
to the true values of the channel taps, whereas our algoritmMSE-DFE performs better, the number of taps involved are
does. The fact that the ZF-DFE converges to another solutigfich that the computational cost in terms of the number of
is due to the error propagation phenomenon that prevents hgltiplications is higher. It has been seen by simulations in
adaptation to be properly performed. For the smoother, as[aB] that the time of convergence of these DFE’s involving
error may be corrected thanks to more reliable future obsergafeedforward filter on this particular channel is on order of
tions, the error propagation is limited and does not adversggoo symbols, although we can check in Fig. 5 that it is only
affect the adaptation process. It has to be pointed out that a D5G0 symbols for the smoother. It has to be pointed out that
with a smoothing lag may have improved performances ovefts particular channel is a insidious one as the zeros of the
ZF-DFE if the smoothing lag is chosen large enough. Howevéfpulse response are on the unit circle, which explains why
this would result in an increased computational complexity. the feedforward filters of the DFE’s have so many taps and,
therefore, converge slowly. This is, however, a good example to
B. BER Results show that the proposed algorithm is not affected by the location
of the zeros while providing BER results that are very close to
These results were obtained with real-valued BPSK sign@ ones of the MMSE-DFE after convergence.
and channels. _ _ b) Comparison with Existing Suboptimal HMM Algo-
~ Checking the Theoretical Resultsig. 2 compares on the yithms: Fig. 7 compares the performance of the proposed
first-order channeH = [1; 2] simulations results with the theo- 51gorithm with the algorithm described in [3], leading to a
retical results derived in Section IV-B1 concerning the asympgmpuytational complexity ofZ ™~ =%, wherek is able to take
totic error probabilities for the ZF-DFE and the shift-invarianfhe values in the sitt, - --, N — 1}. Note that the valué = 0
smoother. This simulation confirms the theoretical results on thgyresponds to the optimal case, whergas: N — 1 corre-

comparison between the proposed method and the ZF-DFE, &snds to the DFE. We performed this suboptimal algorithm
pecially the fact that the performance of the smoother is betigy 5 possible values fot and compared the corresponding
when the channel is nonminimum phase. BER with the proposed algorithm, which has a computational
a) Comparison with Other EqualizersSimulations have complexity of M + L. We chose the following fifth-order
been performed on the channgl = [0.5 0.7 0.5]" to allow  channelzi, = [0.28, —0.62,0.2354, 0.4,0.47, 0.3]. This figure
comparison with other equalizer structures. In Fig. 6, we CofBmphasizes the interest of revisiting past decisions; for instance,
pare the smoother to different kind of DFE’s and to the linegy,, algorithm, with a complexity of = 4 multiplications per

MMSE. The DFE'’s involved here are sample, has improved performances compared with the other
« the nonadaptive ZF-DFE (where the channel taps asaboptimal algorithm with a complexity @f* multiplications.
known and fixed); This is due to the fact that we “revisit” the two last decisions
 the nonblind MMSE-DFE, which gives the best perforrather than taking them for granted. It is interesting to point out
mances; that these results, which are, of course, specific to the channel
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0

considered here, may be well explained by the fact that tI 10 ' ' ' .
energy of the channel taps is spread over the whole set of ta
which makes revisiting the decisions advantageous.

C. Performances of the Algorithm on Fading and Time Varyin
Channels: A GSM Application

In order to validate the proposed equalizer, we propose to pr .
form simulations on various standard channel models chosers

mimic different downlink scenarios of GSM. We give a briefde 5| . MMSE . |
scription of these scenarios and the characteristics of the ch. - - PCM-DFE

nels to be estimated. After checking the estimates of the chan - MMSE-DFE '

impulse response provided by the algorithm, we focus on BE 5+ _‘_s';zf‘;‘z’E |
performances by comparing the proposed blind equalizer wi

the one recommended by the GSM standard, which opera

with a training sequence and produced an identification of tt 44+ s ) s ) s

channel impulse response from each packet of data. ° 8 10 o " 1 18

A Simulation on a GSM Channel Mod&he source delivers
a sequence of random bits that are modulated according to a
Gaussian minimum shift keying (GMSK). We will assume valid
the approximation that the generated symbols belong to the f 10 .
lowing alphabet:A = {1;exp(in/2); —1;exp(—in/2)}. The
oversampling rate at the output of the modulator is 36 sampl
per symbol, where the symbol rate is 270 kbits/s. This ove
sampling is used for simulation purposes only, and only or
sample per symbol is considered for the equalization purpos
The system also incorporates the usual equipment filters at 1
transmitter and receiver. The data is then passed through g, |
propagation channel. It has to be pointed out that we did n™
consider the burst structure (continuous transmission) as in 1
GSM standard. In addition, we did not use any frequency ho
ping in the simulations. The models implemented are the on 10}
defined in the GSM recommendations 05.05 [14]. They corr
spond to six tap models. One important feature of these propa
tion models is that they are time varying, where the variatior
are mainly due to the local diffractions (leading to rapid an ™ g 10 12 14 16 18 20
small variations of the signal power) as well as the Doppler arnu SNR
shadowing effect (resulting in slower but deeper variations). Wgy. 7. BER results for the smoother and an other suboptimal algorithm based
show here the performances on the typical urban (Tu) chanrelHMM with different values of computational complexity.
but similar results corresponding to other channels can be found
in [12]. In the simulation, the SNR is set to 10 dB at the outpt Tul150
of the channel. It is worth mentioning that the exact number :
channel taps ia priori unknown for these kinds of applications.
For instance, for the typical urban channel, only the three fir_,
taps have a significant value, whereas for the hilly terrain cas-g
five taps have a non-neglectible contribution. In our simulation€
the length of the equalizer is equal to 6, which means that t ] o o
order of the true channel will be overestimated. In that case, Siin- Time in mecends
ulations show that the extra taps converge to zero. The equalizer Fig. 8. Tuchannel taps estimates for a 150km/h speed.
(of length 6) has been initialized to the value

Fig. 6. BER results.

C:computational complexity

a training sequence of 26 bits on each packet, allowing an es-
timation of the channel impulse response. We can note that the
BER'’s provided by the smoother are comparable with the ones
Fig. 8 shows the two first tap estimates (real and imaginaof the nonblind equalizer. The fact that the performances seem
parts) of the channel provided by the smoother highlighting theetter for poor SNR are due to the fact that in the case of fading,
improved adaptation performances of the smoother. the 26 bits of the training sequence are not enough to provide
Fig. 9 compares the BER performances of the smoother wétreliable estimate of the channel on some bursts. On the other
that of the standard equalizer of the GSM device, operating witand, when the smoother is an RLS-type algorithm, it can take

® =[01 0 0 0 0 0.
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10 T T T ' and
L. - =-Soother L .. . . N T
o N Z TI[O () Gins Gins i)
- RealseurGsM vt i 1 n=
: [Qio s Qi qiN—l]
= X, XT = X, X7 (61)
107 -
........ Proof of (60)
............................... We have to calculate, for every = 1,---, M
N-1
_ (n),
Srn = Z H at|t (Ln)qim- (62)
0,01, in_1 n=0
107 L m S - P s 1hen, by directly expanding (71), we have
Eb/NO
M
ig. 9. _ _ (n) . (n)
Fig. 9. BER results for Tu50 S, = Z l; (im) i, H Z t|t in)
T =1 n#Em ip=1
into account more reliable information from the previous sam- Conditional Mean estimate

ples that are not affected by fading.
Taking into account the fact th@:Z 1 a(")(tn) = 1 and

t|t
VI. CONCLUSION using the following conjecture
A new decision feedback equalizer (DFE) incorporating fixed M
lag smoothing has been derived in this paper. This algorithm has Z aiﬂ’)(tm)qzm Xt@") (63)
been derived using a suboptimal hidden Markov model (HMM) =1

formulation. The advantage of such a formulation is that it al-

lows the complexity of the HMM formulation to be significantlywe obtain
reduced; this new DFE has complexity linear with the channel
duration instead of exponential, as in the optimal case. Despite

the approximations, we observe considerable benefits in te
of bit error rate (BER), compared with the ZF-DFE. Moreover,
simulations show that the smoother provides better results i - o
term of BER than other suboptimal algorithms based on HMM JrSTt' compute the coefficients of matrikX, X/']. Ijet
even if the latter algorithms have a higher computational cortiit-X# Jm,m’ denote the element on theth row and then/th
plexity cost. Compared with simulations to DFE's incorporating°!umn-

a feedforward filter, the proposed algorithm seems to offer a 1) m #m/

better tradeoff between BER, computational complexity, and N1

time of convergence. Finally, it looks well suited to the problem Z H (n) ;.

of blind equalization of fading and time-varying channels. g W) Qi s G

Sy = XM (64)

Bgrformmg the same calculation for eveny we find (60).
Proof of (61):

£0,%1, 75V 1 n=0

APPENDIX A (m’)
=) G,y (i %, (4m)
CALCULATION OF THE APPROXIMATE LOG-L IKELIHOOD Z ’ ”t " Z Tt Qe Lo

From (17) and taking into account (18), we show how (19) is
obtained. Altogether, (17) and (18) read 11 Z O‘Eﬁ)(in)

n#EmM,m’ i,=1

N—1

~ 1 . .

Q(H:, H) = T 952 Z H whereas using (72) gives
dgsiyeino1 =0

X XT m,m’ — X(nl)X(nl ) X XT m,m’ (65)
§|t)( )(Ut HT[Qiovqim"'v(ﬁNfJ)Q' (59) [ ] [ ]

2) m =m'.
We first show that In that case, we need to calculate
Z H atlt Nio>@irs 3 Gin_r] = Xt (60) Z H atlt in qzm
t0,91, iy -1 =0 t0,%1, iy -1 n=0
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Expanding this expression in the same way as for the previous+ No error has occurred at tinter- n — j + 1: 55” =0
case, we obtain If hoZttn—jt1 and > _7 hreitn_j+1-x have the
u same signwhich occurs with the probabilitg (proba-
- / bility for x4y,,_ ;11 to be equal to 1 or-1), in that case
- T o 2 (m”) t+n—j+1 ’ ’
[XeXE e = Zqim' Yt Ctyn—jt1 = 0. '
fm If h0$t+n7j+l ande:f hket+n7j+lfk do not have
the same signthen the value taken by;4,,—,4+1 de-
pends on the absolute values of each of the two above
terms.

» This implies that

Now, assuming the following conjecture: At high SNR, the
Gaussian functions involved in the computation of each
agﬁ)(in) are sufficiently peaked so that one of these variable is
equal to unity, and the other is equal to zero. Then

M / Plerin—j1 =0lern—j = Sz‘(Hl) Gl = 52‘(”)7 e =2)
Yo, e = (XM =[%X T, (66) >1 (73)
 An error has occurred at time+n — j + 1 |£§j)| =2
Note thatz,;,—;+1 has the same sign @éf) and that this
Xt}(tT = X, X7 (67) occurs with probability;. Another necessary condition for an
error to occur ighg| < |E£:f hietqyn—jr1—x| If this is
Now, by directly expanding (17), and using (60) and (67)  not the case, the error sequergédas a null probability and is
not involved in the calculation of probability derived in Section

Z Nl_—Il aiﬁ)(in)(% CHTlg g g 1) IV-B1. Then, for every plausible sequence
10,81, 0y 1 =0 ) P(|6t+n—j+1| :2|Ct+n—j _ Si(j+1) e = Sz(n)’ e = 2)
=Yt — 2HTXt|t +H"X, XTH (68) —1 74
=Yt — 2HT X, + HTXtXtTH (69)
=(y: — HT X,)%. (70) Then, we obtain

P((et4n, - ery1) = &iler = 2)

APPENDIX B — H Plersnji1 = £§j)|et+n—j — £§j+1)

LOWER BOUND OF ERROR PROPAGATION PROBABILITY i

Under the assumption of high SNR, we show that ey = gi(n)7 e =2)

L1y(n)
P((Crans - er41) = Giler = 2) 2 (5)0. z ()" (75)

Recall that Section IV-B1 has provided the equality APPENDIX C

CALCULATION OF DFE ERRORSPROBABILITIES
P((et4n, - ery1) = &iler = 2) _ . .
First, suppose;_,;_; = 0, i.e., the DFE estimate was cor-

=[] Plersn—i+1 = & ersn—; rect at timet — 1. Then,2, = sgn(z, + n,) so that
j=1
= £§j+1) A gi(")’ e =2). (71) P(Zy = ztlei_1jp—1 = 0)
' = %(P(-i't = -Tt|ct—1|t—1 =0,z = —1)
Now, concentrate on the terfi(c i, j+1 = £§J)|et+n,j = + (P(2 = z¢|es_1jp—1 = 0,24 = 1))
Si(g+1) A — Sf")7 er = 2). As explained in Section IV-A, = %(P(nt < 1)

the decision at time+»n — j + 1 on symbolr;4,,— ;41 is taken

according to +P(ny > —1)) = x(c'V) Z e (76)

wherey denotes the pdf of & (0, 1) random variable. The tran-

Brpnj41 = Sign{ho$t+nj+1 sitions to the error states have probabilities
n—j P(Ct|t = 2|Ct—1|t—1 = 0)
+ Z hiCiim—jr1—k + brpn—jyi—k (72) =1 Pley, = —1les_ippoy = 0,2 = 1)
k=1 /
=1iP(n; < —1)21(1-«) 77)
Assuming high SNR, we neglect the effect of the noise. We have
two situations to examine: and similarly fore,; = —2.
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Similarly, if an error was made attinte-1 so thate, _;,_; = APPENDIX D
2,thenz; = sgnz;+n:£2h), and the probability of recovering SOME ELEMENTS FOR THEPROOF OFTHEOREM 1

on the next step is A. Calculation of the Probability to Recover from an Error

Committed at Timeé — 1

P2y = x|y = 2) First, suppose that, 1 = 1,e; a2 = O,¢,_1s_1 = 2.
1 L _ _ Under these assumptions, we aim at calculating the joint prob-
= 5 (Pl = zeleeyje—r = 2,20 = —1) ability for e, 1, to be equal to zero.
+ (P(& = @eler1jt—1 = 2,30 = 1))

_ 1(P(n < 1-2h) Pler_1)t = 0,¢4_ojp—2 = 0,¢,_1p—1 = 2)
== . —

2 =1 P(Ct—l t=0,¢ op_2=0,¢_11y_1 =2
+P(n; > —1—2h)) 2 :12_1 | | |
:1<X <1—2h>+1_x<—1—2h> . (86)
2 o o
A4 (e1 + €2) (78) Note that ifz; = 1, thene, = O_arlses with a probability close
to one. Therefore, we may write
and similarly forP(i; = x;|e;_1j,_, = 2). Similarly P(ei—11t =0,¢2jp—2 = 0,¢,_1p—1 = 2))
> %P(Ct—lh =0,¢211—2 = 0,¢4_1)p—1 = 2,5y = 1)
Pleye =2le;_1ji—1 = 2) > %P(thlh =0,¢.=0le; 11 =22 =1
1 1t—1 = 2|et_ojp—2 = 0) x Pley_op—
:—P(-f?ﬂt = —1|6t_1|t—1 = 2,$t = 1) (79) Ctl Hemt |Ct 2=z ) Q(Gt 2l 2)
2 b > §P(—1 > N1 > —1—nh —hTLt)P(Ct72 = 0)
1 1 —-1-2 /
=—P(ny < =1 —2h) = —x <—> 2 €1 (80) (87)
2 2 o
and sinceP(—1 > ny_q > —1—h%*—hn;) = o(c?), we
and have

Plei—1t = 0,¢_21p—2 = 0,¢,_1)s—1 = 2)) > 0(02)~
P(Ct|t :_2|6t71|t71 = 2)
1 ~
=P = derapr = 2o = —1) (81) B. Calculation of the Error Probability on a Previously
:%P(nt > 1—2h) = % <1 —x <1 — 2h> 2 es.  Well-Estimated Symbol
4 First, assume that,_; = 1 and thath, > 0, (the other
(82) : _
cases would provide the same results by symmetries). We have
to deal with the following events,_sj;_> = 0,¢,_1p—1 =
By symmetry, (79) is also the probability of remaining in thé, e, = —2. We aim at calculating the joint probability to have
—2 error state, and (81) is also the probability of transition from _;; = 2 and the above assumptions
—2 to +2. Enumerating the states according to the ordering O,

2, —2, we therefore have the state transition matrix Pley_1)t = 2,e0)t—2 = 0,111 = 0, ¢ = —2)
=1P(ny > 1,-1 < my_1 < —1—h*>+h(2-ny))
¢ 1-— €0 1-— €0 ES P(et—2|t—2 = 0) (88)
A=, . 2 2. (83) .
fL—e  a €2 Note that|2 — n;| < 1, sothat—1 — A% + k(2 — n;) will be
l—e—e €2 €1 negative. For high SNR, we have
From (49) and definingl., = lim;_.., II;, we have Pler_1p=2, 1902 = 0,¢,_1p—1 =0, ey = —2) = o(0?).
(89)
Then, taking into account (89), we have
. = ATTI, (84)
P(@t—1|t =2, 0 2=0,¢; 1p-1 = 0,64, = -2)
which means thdtl,, is an eigenvector ofi” associated to the L Pler—1p =0,¢,21p-2 =0,¢,1p-1 = 2)).
eigenvaluel. Hence, we obtain the following asymptotic error
probability
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