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A Blind Decision Feedback Equalizer Incorporating
Fixed Lag Smoothing
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Abstract—A new type of blind decision feedback equalizer
(DFE) incorporating fixed lag smoothing is developed in this
paper. The structure is motivated by the fact that if we make full
use of the dependence of the observed data on a given transmitted
symbol, delayed decisions may produce better estimates of that
symbol. To this end, we use a hidden Markov model (HMM)
suboptimal formulation that offers a good tradeoff between
computational complexity and bit error rate (BER) performance.
The proposed equalizer also provides estimates of the channel
coefficients and operates adaptively (so that it can adapt to a
fading channel for instance) by means of an online version of
the expectation-maximization (EM) algorithm. The resulting
equalizer structure takes the form of a linear feedback system
including a quantizer, and hence, it is easily implemented. In fact,
because of its feedback structure, the proposed equalizer shows
some similarities with the well-known DFE. A full theoretical
analysis of the initial version of the algorithm is not available,
but a characterization of a simplified version is provided. We
demonstrate that compared to the zero-forcing DFE (ZF-DFE),
the algorithm yields many improvements. A large range of
simulations on finite impulse response (FIR) channels and on
typical fading GSM channel models illustrate the potential of the
proposed equalizer.

I. INTRODUCTION

SEVERAL methods based on a hidden Markov model
(HMM) formulation were recently proposed for non-linear

blind equalization. An optimal off-line algorithm was pre-
sented in [1], performing alternatively forward and backward
recursions on a whole block of data. After several iterations,
the algorithm provides a reliable estimate of the channel
parameters as well as a detection of the emitted sequence
of symbols. Such methods can become intractable when
dealing with long channels since the computational cost is
exponentially increasing with the channel memory. Moreover,
the off-line method has large memory requirements and cannot
perform real-time processing, which can become an issue
in the case of time-varying channels. An “online” algorithm
was derived in [2], thus allowing a real-time computation.
The derivation of this recursive algorithm was made feasible
by applying the backward recursions on a fixed number of
“future” observations, i.e., the algorithm is applied with a
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delay. However, the issue of the computational complexity of
the HMM formulation still remained. This was the motivation
for the proposal of a suboptimal algorithm in [3]. The idea was
to apply the forward recursion on a reduced number of symbols
stored in the channel memory, where the decisions on the other
symbols were no longer being questioned. This approach has
strong connections with the DFE since, on some symbols, the
decision that has been taken is no longer questioned and is used
to remove the ISI. As a result, the algorithm in [3] has the same
type of behavior as the DFE (although of reduced order) since
a wrong detection may result in error propagation, especially
when dealing with nonminimum-phase channels.

This paper proposes another suboptimal HMM formulation
with a computational complexity linear in the channel memory.
When compared twith the DFE, it can be seen that both algo-
rithms feedback symbol estimates before detection. The key dif-
ference is that, although the DFE never questions the estimates
later on, the proposed algorithm producessmoothedestimates,
that is, updates at each time the estimates of each symbol stored
in the channel memory and feeds these updates back at the next
iteration. Finally, the decision on a symbol is made the last time
this symbol is seen by the channel memory, which justifies the
term fixed-lag smoothing.

The paper is organized as follows. We first propose a general
description of the algorithm briefly recalling the HMM defini-
tions and recursions used for the symbol detection, as well as the
steps involved in the expectation-maximization (EM) algorithm,
allowing the estimation of the channel parameters. In Section IV,
we derive a simplified version of the proposed algorithm, which
allows a theoretical bit error rate (BER) analysis, and we finally
propose, in Section V, a large range of simulations, in terms of
BER and channel tap estimation accuracy.

II. GENERAL DESCRIPTION OF THEALGORITHM

A. Signal Model and Problem Definition

We assume that symbols taken from a finite alphabetof
size are transmitted through an FIR channel with transfer
function where the are complex-
valued coefficients. We assume additive Gaussian white noise
with zero mean and variance The received signal is thus
modelled by

(1)

where and are defined by

(2)
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Here, the operator denotes the transposition operation. The
task of the algorithm is thus to estimate at each timethe trans-
mitted symbols as well as providing an
estimate of the channel impulse response, using the measure-
ments

B. Approximate MAP Symbol Detection

In [3], an optimal formulation for maximuma posteriories-
timation of the transmitted symbols was presented. This formu-
lation is based on an HMM formulation. Indeed, the vector
can be seen as the state vector of the Markov process described
by the state equation

(3)

where is a shift matrix with
This Markov process is only observable through the observation
equation (1). Suppose that , which is the current estimate of
the channel, is available at timeAs in [2], define the so-called
forward variable, expressing the probability that the stateis
equal to some realization according to the cur-
rent channel estimate and the set of measurementsby

Pr (4)

The exact computation of this probability involves the
so-called forward recursion. See [1] for more details. This
recursion requires the calculation of the probability in (4) for
every possible realization of the stochastic processSuch an
evaluation obviously requires the computation of proba-
bilities at each step. In [3], a reduced computation algorithm
based on state truncation was introduced. This formulation,
however, appeared to perform rather poorly in comparison
with the optimal HMM filter, in particular when operating
in an adaptive mode. This property seems to be linked to the
fact that a classical DFE is the coarsest approximation of the
algorithm in [3], whereas the superior performances of the
HMM may be due to the fact that past decisions are revisited
several times over the duration of the channel memory and,
hence, may be corrected. Thus, error propagation as often
observed with DFE’s is more unlikely to happen. This is even
more important in an adaptive mode, where too many errors
can lead to anomalous adaptive behavior.

Thus, it is desirable to seek a simplified algorithm that permits
state revisiting but does not have the exponential complexity in

of the approaches of [1] and [2]. Such an algorithm was pre-
sented in [5]. This algorithm uses themarginalposterior proba-
bilities of the symbols in the channel, rather than the joint prob-
abilities described by (4), as in [2], or a partially quantized joint
probability, as in [3]. Such an algorithm has linear computa-
tional complexity in the channel duration. We now describe the
forward recursion for this algorithm.

Assume that the following quantities are available at time:

• the approximate filtered probabilities de-
noting the probability that the symbol in the
channel memory at time are equal to , knowing the
observations up to time , which is the estimate of the

channel parameters denoting , and the prediction
of the other symbols stored in the channel memory at
time [ denoting the th
component of vector ]

(5)

• the current estimate of the vector as given by
the previous recursion. A prediction of vector
is easily obtained by taking advantage of the shift structure
of the process Clearly, we have, for

(6)

Then, by substituting for , we
obtain the approximate filtered probability at timeof the only
component of the state vector on which (6) does not provide
information

(7)

Substituting from (1) yields

(8)

where is a normalizing constant, and is a zero mean
Gaussian function with variance In the forthcoming,
denotes the quantity

(9)
where has been replaced by

The remaining updated probabilities involved in (5) are also
approximated by applying the classical forward recursion of the
HMM formulation on conditional instead of joint probabilities.
The quantities recorded as smoothed probabilities are
thus obtained as

(10)

Hence, the conditional mean (CM) estimate at timeof symbol
denoted by is

(11)

and the new state estimate of vector is given by

(12)

Note that (12) takes into account the probabilities computed
on the previous step (which are used as predictions here) as well
as the effect that a particular symbol may have on the observed
data at time, given other filtered and predicted estimates. Equa-
tions (10) and (11) illustrate one key difference between our al-
gorithm and the DFE [6]. In the DFE, once the current symbol
has been estimated, this estimate never changes, whereas our
algorithm puts the decisions back into question, as long as the
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considered symbol is seen by the channel. Thus, in principle,
error propagation should occur less often.

Consider the case of large SNR. In this situation, the
Gaussian functions should be sufficiently peaked in order to
ensure the probability estimates in (9) to be very close to unity
for one symbol and close to zero for the other ones. Under
this approximation, CM estimates behave like maximuma
posteriori probability (MAP) estimates and correspond to one
of the symbol values. From (11), this symbol value is clearly the
closest symbol to the current measurement with theestimated
ISI removed

arg

arg (13)

Now, we concentrate on the smoothed probabilities (10) at time
Substituting for , we have

(14)

Thus, maximizing over, we obtain a refined delayed estimate
of (13) as given below. This is called the “smoothed estimate”

arg

arg

arg (15)

where

(16)

C. Approximate ML Estimation of the Channel Impulse
Response

Once the symbol estimates are obtained, it is well known
that since the noise model is Gaussian, the ML estimate of
the channel can be obtained through a least squares solution.
However, we have just seen that the estimate can further
be improved by estimates Rather than directly utilising
the classical recursive least squares (RLS) (with shift invariant
property), we derive below the precise form of the estimation
algorithm by use of the EM algorithm. We briefly recall here
the various steps involved in this EM algorithm. See [2], [3],
[5], and [7] for a complete description of this algorithm.

1) Expectation Step:This step corresponds to the compu-
tation of an estimate of the Kullback–Leibler (KL) function at
time , which is defined as the expectation of the logarithm of

the likelihood function for the complete data (see [7] for the ter-
minology)

(17)

Now, focus on the computation of

In order to be compatible with the approximation derived in
the previous section, we approximate this joint probability of
every component of by the product of the conditional mar-
ginal probabilities of each component, given the one-step pre-
dictions of the other components according to (5)

(18)

Appendix A shows the expansion of the calculation leading to
the following expression of the expectedpseudo-likelihoodat
time

(19)

2) Maximization Step:This consists of maximizing
as a function of since it has

been shown [2], [7] that this maximization increases the
likelihood of the observations. The function to be maximized

is evaluated in [2] as

(20)

An online algorithm has the ability of tracking time-varying
parameters. This property will be ensured by introducing
a forgetting constant in the estimation of

(21)
The maximization step is realized recursively [2] by

(22)

where is the Fisher information matrix of the complete data
defined below, and the scoreis defined by [5]

(23)
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where and , respectively, stand for the conjugation and
transposed conjugation operations. This results in the following
recursions:

(24)

Equation (24) correspond to the recursive estimation of the
channel parameters by means of an EM sequential algorithm.
Since the algorithm requires a recursive computation involving
an exponential factor, it is not astonishing that the recursions
show some similarity with the ones used in a classical RLS
adaptive algorithm, where the so-called missing dataare
replaced by their estimate Note that an LMS (gradient)
like version of the algorithm is also feasible, although we do
not address its performance here.

D. The Proposed Algorithm

To summarize, the overall algorithm runs the following re-
cursions:

1) Suppose a current estimate of is available:
2) Predict vector by (6):
3) Estimate vector by the quantizations in (16) and (21):

4) Use (23) and (24) for estimating, recursively, the channel
impulse response

5) , and return to step 1.

E. Initialization Issues

Since the proposed algorithm is an iterative one, initialization
has to be addressed. As far as the estimates of the transmitted
symbols are concerned, as no training sequence is available, we
choose to initialize the marginal probabilities as uniform.

The initialization of the channel can be an issue. As the algo-
rithm is based on the maximum likelihood approach, it is well
known that it might converge to some local maxima of the like-
lihood function. This issue is not treated here but has been con-
sidered in [8], where this problem is overcome by coupling the
proposed algorithm to a subspace-based method in the case of
spatial diversity reception; in [9] in case of encoded data, where
the knowledge of the convolutional code is shown to reduce sig-
nificantly this initialization issue; or in [10], using a Gibbsian
technique that significantly decreases the possibility of conver-
gence to the basin of attraction of a nonglobal maximum of the
likelihood. In any case, as the algorithm derived in this paper
performs online, the issue of local maxima is significantly re-
duced compared with the offline context; in fact, in an online
setting, as the algorithm does not increase the likelihood of the
complete data at every step, it does not necessarily converge to
the closest local maximum. Simulations showed very few cases
(treated in [8]–[10]) where the algorithm did not converge to the
expected solution. In the simulation part, unless stated, all taps

were initialized to the value 0, which means that we did not use
any knowledge on the channel.

III. COMPUTATIONAL COMPLEXITY

Denoting by the length of the channel and by the size of
the input alphabet, the computation of the scheme using MAP
estimates of the symbols requires the following at each iteration:

• multiplications to compute ;

• multiplications to produce via (13);
• multiplications for each symbol estimate to be updated

in the channel memory via (15), that is, a total of
multiplications;

• the update of the channel parameters requiring the same
computational complexity as for the RLS algorithm:

.

We have a total of multiplications required at
each iteration plus those required for the parameter estimation.
Note that the computational complexity of a DFE would require

multiplications. The next sections compare this algorithm
with the DFE in terms of error propagation and BER. This study
is undertaken under the assumption that the channel is properly
estimated.

IV. SIMPLIFIED “SHIFT-INVARIANT ” A LGORITHM BER
ANALYSIS

In this section, we propose an exact calculation of a lower
bound for the probability to recover from an error, in the general
case, and asymptotic error probabilities for every possible first-
order channels. These exact calculations are performed using a
simplification of the proposed algorithm that yields a shift-in-
variant structure. With this shift-invariant structure, we obtain
a first-order Markov chain model for the error process, which
allows for a theoretical analysis. This new algorithm does not
provide as good results as the original one, but we show that the
corresponding error probabilities are always smaller than those
for the ZF-DFE. Note that the second analysis only holds for
first-order channels because the mathematical derivation for a

th-order channel (channel with taps) is intractable. How-
ever, it is useful because when an error starts to propagate for
any kind of linear channels, the expressions of the probabilities
are the same as the ones for a first-order channel. The analysis
below is then interesting for understanding how an error will
start propagating throughout the channel memory. In addition,
BER simulations in Section V confirm some claims made in this
analysis.

For an easier analysis, all variables are now supposed to be
real valued, and the emitted symbols belong to the set

A. The Shift-Invariant Algorithm

This algorithm is simply obtained by using the approximation

(25)
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which amounts to use the “filtered” estimates in the feedback
paths rather than the “smoothed” estimates in (13), (15), and
(16). Then, considering (13), we have

arg

arg

(26)

Assuming is a positive quantity (the symmetric argu-
ment can be used in case it is negative), the above criterion
is minimized when has the same sign as the quantity

Thus, applying the same procedure
for , we get

sign where

(27)

sign with

(28)

where the coefficients are given by

for and for

In the frequency domain, denoting by the reversed poly-
nomial of , e.g., and defined as

, (27) and (28) are written as

(29)

This allows us to represent the structure of the proposed algo-
rithm as a two-input two-output linear system denoted by
with a feedback nonlinearity, as shown in Fig. 1. Evidently,
is a matrix polynomial of degree and can be computed
for approximately four times the computation of the usual DFE.

Note that in this shift-invariant structure, error propagation
may occur in the zero lag estimation, e.g., DFE, as usual. The
shift-invariant smoother provides other subsequent estimates by
simply weighting the posterior likelihoods associated with each
delay. This has the effect of reducing overall error rate, as will

Fig. 1. Structure of lagn DFE.

be demonstrated with a simple example. It has to be pointed
out that this shift-invariant structure is not as effective as the
algorithm proposed in the first section in that it does not take
advantage of the updates of the decisions before retrieving the
corresponding ISI. However, we need the simplified structure in
order to perform the error probability calculations.

B. Lower Bound on the Probability to Recover from an Error
for a BPSK Modulation

1) General Case Analysis:This section provides a general
expression for the probability to recover from an error without
making any assumption on the channel. This general expression
shows that the BER calculation in the general case is intractable,
but it does permit a better understanding of the advantage of the
proposed algorithm.

Assume that the estimate of symbol at time is wrong,
i.e., , whereas the previous symbols
were correctly estimated. What is the probability for the next
estimate of the same symbol at time to be correct? Denote
this probability as . The corresponding
cost function to be minimized according to, which is defined
in (15), can be written as

(30)

Let us denote

Then, the condition for a good detection on symbolwould be
that the cost function calculated with is less
than the one obtained for , i.e.,

(31)

Assume, as well, that (the case leads to the
same probability because of the symmetry of the problem); then,

, and the last equation becomes

(32)
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or, equivalently

(33)

If we call , which is a Gaussian random
variable of mean 0, and variance , we want to
calculate the probability to recover at time , giventhat

First, denote by the probability to recover at
time under the following assumptions.

• .
• The random process of errors

is equal to some , which is one of the pos-
sible realizations of (each component of the vector

can take the values 2,2, or 0). Thus

(34)

Then, we have to evaluate the probability for the error se-
quence to be equal to

(35)

Finally, we obtain, as a result, an evaluation of the probability
(that a symbol estimate is correct at

time , knowing it was wrong at time) by

(36)

Using this general result, an approximation valid only for high
SNR is given below.

2) Derivation of a Lower Bound for High SNR Levels:Note
that all the probabilities involved in (36) are Gaussian functions.

Hence, the following approximations are valid for high SNR
levels.

• As the distribution functions of a very narrow Gaussian
function can be accurately approximated by 1,, or 0,
we just take into account the sequences leading to
non-zero values of the exponential functions. We denote
such sequences as

• On the other hand, we show in Appendix B that the high
SNR level assumption allows the derivation of a lower
bound for the probabilities

We find out that

Finally, we have, from (36)

(37)

We can comment on these results.

• This lower bound will hold more tightly when the channel
is “pathological,” i.e., when the only possibility for a
symbol to be correctly detected is that the sign of the
filtering error is the same one as that of the symbol.

• The bound explains why the exact calculation in general
is intractable without any assumption on the channel taps;
the functions , as well as the “plausible” error
sequences , depend explicitly on the channel pa-
rameters values.

• We can also find a particular case of channels for which
we know thatthis probability will be close to unity, which
means that nearly all the errors detected at timewill be
corrected later on.

• The high SNR requirement is necessary to approximate
the Gaussian functions by 1,, or 0. For lower SNR’s,
these approximations become less accurate. However, in
this case, we can still provide a lower and upper bounds
for the probability in (36), as explained below.

Suppose, for instance, the second channel tap absolute value is
much greater than the first one. It is useful to deal with this sit-
uation for two reasons: First, as shown by simulations in [12], it
is met, in particular, for mobile communications transmissions
affected with fading and Doppler effects; second, this config-
uration would lead the worst error propagation schemes for a
ZF-DFE when a wrong detection is made on a symbol. There-
fore, it is necessary to check how the proposed algorithm per-
forms in such a pathological situation. The opposite situation
(second tap smaller than the first one) is not of interest because
it would not lead to error propagation.

Suppose an error has occurred at timeThe remaining of
this section provides order of magnitudes of this recovery prob-
ability in one iteration, which are checked against simulations.
The condition (36) to recover from this error at time (that
is, for according to the previous calculations) becomes

(38)

First, determine each possible realization of vector , that
is, assuming that , we have the permitted values of

Recall that symbol is estimated at time via

sign sign (39)

We have to take into account two different possibilities for the
error process, corresponding to the two possible values for

: i) corresponding to the error sequence
and ii) if is equal to , corresponding

to the error sequence Now, determine the values

(40)

(41)
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Now, to evaluate the corresponding probabilities

(42)

(43)

Then, for high SNR, and given the assumption thatis much
greater than , we can note that is almost surely negative, as
is , so that both and will be close to unity. For
poorer SNR levels, we can say that satisfies

As a consequence, for high SNR levels, (38) becomes

For lower SNR, we have

These results are checked by simulations on Table I for a typical
GSM real-valued channel corresponding to a hilly area[0.5,
1, 0, 0, 0.63, 0, 0, 0, 0, 0.25, 0, 0, 0, 0.16] fed by a white unit
amplitude BPSK input constellation.

It is clearly seen that high SNR allows an almost sure correc-
tion of an error, whereas a 7-dB SNR still allows half the errors
to be recovered.

3) Error Probability Calculations for the Shift-Invariant
Structure—First-Order Channel:Now, consider a first-order
channel The decision equations for the DFE
and lag one shift-invariant smoother are

sign (44)

sign (45)

Substituting for yields

sign (46)

sign

(47)

where and similarly for other quan-
tities.

Now, we will evaluate the asymptotic error performances.
We define this “asymptotic error” by Let

; then, we claim that and form
the states and observations, respectively, of a hidden Markov
process. This is easily seen by observing from (46) thatis a
first-order scalar Markov chain. Clearly, if we denote bythe
vector

(48)

we can write the state transition equation

(49)

The transition probabilities, which are the coefficients of the
state transition matrix and the asymptotic error probabilities,
are determined in Appendix C. These asymptotic error proba-
bilities are the coefficients of the vector
solution of

TABLE I
PERCENTAGE FOR RECOVERING AT TIME

t + 1 FROM AN ERRORCOMMITTED AT TIME t FOR DIFFERENTSNR

Fig. 2. Asymptotic and experimental BER on the channelh = [1 2]:

Due to the symmetries of the error process, has the form

(50)

where is defined in Appendix C.
Now, consider the shift-invariant smoother (47). Observe that

the detected symbol depends only on the sum
via

sign (51)

where is the colored noise process Note
that a given state defines , although the mapping so gener-
ated is not one to one. The corresponding error probabilities for
the shift-invariant smoother are

(52)

Then, according to (46), we have the equivalence between

(53)

(54)
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which leads us to the error recovery probability

(55)

Here, and , respectively, denote the probability densi-
ties of and , and is the domain defined by the joint
realization of

• ;
• ;
• .

Fig. 2 illustrates the asymptotic error probabilities for the DFE
and the shift-invariant smoother as a function of the SNR for

Note that the performances of the smoother are all the
better as the channel is nonminimum phase, which is a patho-
logical case for the DFE.

Theorem 1: The asymptotic error probability for the
smoother is less than that for the DFE for every possible
first-order channel at high SNR.

Proof: We give here some elements of the proof, which re-
quires some approximations on the Gaussian asymptotic prob-
abilities. The proof relies on the two following observations:

1) The most likely event occurs when is equal to
zero for high SNR. Then, suppose an error has occurred at
time Then, whatever may happen at time, the error
at time cannot be corrected by the DFE, although
here, it is possible.

2) Then, we may wonder if the possibility to change a deci-
sion, whether it is correct or not, poses a problem. In fact,
suppose detection on symbols and were cor-
rect and that was estimated incorrectly. Can the wrong
decision on result in an incorrect update of at time
?

Appendix D compares both situations. We show that the first
situation, which is the favorable one, has a much greater proba-
bility than the second one

4) Noiseless Error Recovery:First, consider the set of
length-1 channels (parameterized by a single real number)
for which the lag smoother exhibits no pathological behavior.
By this, we mean that there are no input sequences for which
the equalizer cannot recover from an error in the noise-free
case [6]. For the DFE, such sequences exist if since ISI
may then occur. Now, consider the smoother. It is easily seen
[from (51)] that under the condition that or
(with ), the smoother output is always
correct (in the absence of noise). It is only under the condition
that that the smoother output may be in error. This
condition occurs if and only if the DFE decisionsat both times
and are neither correct nor equal. Hence, the ranges of the
channel parameters ensuring error recovery are
and

5) Average Error Performance: We follow here an approach
similar to that of [11]. The results can apply to the initial algo-

Fig. 3. State transition diagrams.

Fig. 4. Adaptive behavior for complex channel taps.

rithm of Section II. Consider a noiseless channel, and assume
that an error has occurred at timeon symbol Define the
state error as This state error can take three
values.

(56)

(57)

(58)

where

error has occurred ( );
0 correct decision;

either a correct or an incorrect decision.

We focus here on the mean duration (the mean number of iter-
ations) for the algorithm to reach state(no error) starting with
state (an error just occurred). We can show that this dura-
tion is reduced for the smoother, compared with the DFE. This
is easily understood from Fig. 3; for the smoother, the transition
from state to state is allowed; therefore, this absorbing

Authorized licensed use limited to: Adelaide University. Downloaded on October 13, 2008 at 02:25 from IEEE Xplore.  Restrictions apply.



PERREAUet al.: BLIND DECISION FEEDBACK EQUALIZER INCORPORATING FIXED LAG SMOOTHING 1323

state may be reached in only one iteration, whereas the DFE has
to first transit through state before going to

V. SIMULATIONS

All simulations in this section are concerned with the initial
algorithm of Section II, unless otherwise stated.

A. Adaptive Behavior of the Proposed Algorithm

Second-Order Channel Example: The algorithm was run on a
4PSK modulation going through a complex-valued channel with
coefficients and
The algorithm was initialized to the value

Fig. 4 (20 dB SNR) and (13 dB SNR) show the channel taps
adaptation. We can note that the convergence is faster as the
SNR decreases, which can be explained by the fact that the
Fisher matrix is better conditioned in the case of noisy estimates
of the input sequence.

Nonminimum-Phase Channel and Comparison with the
ZF-DFE (see Fig. 5): The channel considered in the section

has a spectral null. Fig. 5 shows the
quadratic error on the coefficients of the impulse response for
the ZF-DFE and the smoother for a 13-db SNR. This shows that
the ZF-DFE (without any feed-forward filter) does not converge
to the true values of the channel taps, whereas our algorithm
does. The fact that the ZF-DFE converges to another solution
is due to the error propagation phenomenon that prevents the
adaptation to be properly performed. For the smoother, as an
error may be corrected thanks to more reliable future observa-
tions, the error propagation is limited and does not adversely
affect the adaptation process. It has to be pointed out that a DFE
with a smoothing lag may have improved performances over a
ZF-DFE if the smoothing lag is chosen large enough. However,
this would result in an increased computational complexity.

B. BER Results

These results were obtained with real-valued BPSK signals
and channels.

Checking the Theoretical Results: Fig. 2 compares on the
first-order channel simulations results with the theo-
retical results derived in Section IV-B1 concerning the asymp-
totic error probabilities for the ZF-DFE and the shift-invariant
smoother. This simulation confirms the theoretical results on the
comparison between the proposed method and the ZF-DFE, es-
pecially the fact that the performance of the smoother is better
when the channel is nonminimum phase.

a) Comparison with Other Equalizers:Simulations have
been performed on the channel to allow
comparison with other equalizer structures. In Fig. 6, we com-
pare the smoother to different kind of DFE’s and to the linear
MMSE. The DFE’s involved here are

• the nonadaptive ZF-DFE (where the channel taps are
known and fixed);

• the nonblind MMSE-DFE, which gives the best perfor-
mances;

Fig. 5. Quadratic error on the channel taps estimates of the ZF-DFE (dashed
curve) and smoother (plain curve) for a 15–dB SNR.

• the blind predictive constant-modulus DFE derived in
[13].

The last two algorithms involve a 32-tap feedforward filter
and a two-tap feedback filter. We can see that the perfor-
mance of the smoother is very close to that obtained with the
blind PCM-DFE. It has to be pointed out that although the
MMSE-DFE performs better, the number of taps involved are
such that the computational cost in terms of the number of
multiplications is higher. It has been seen by simulations in
[13] that the time of convergence of these DFE’s involving
a feedforward filter on this particular channel is on order of
5000 symbols, although we can check in Fig. 5 that it is only
500 symbols for the smoother. It has to be pointed out that
this particular channel is a insidious one as the zeros of the
impulse response are on the unit circle, which explains why
the feedforward filters of the DFE’s have so many taps and,
therefore, converge slowly. This is, however, a good example to
show that the proposed algorithm is not affected by the location
of the zeros while providing BER results that are very close to
the ones of the MMSE-DFE after convergence.

b) Comparison with Existing Suboptimal HMM Algo-
rithms: Fig. 7 compares the performance of the proposed
algorithm with the algorithm described in [3], leading to a
computational complexity of where is able to take
the values in the set Note that the value
corresponds to the optimal case, whereas corre-
sponds to the DFE. We performed this suboptimal algorithm
for all possible values for and compared the corresponding
BER with the proposed algorithm, which has a computational
complexity of We chose the following fifth-order
channel: This figure
emphasizes the interest of revisiting past decisions; for instance,
our algorithm, with a complexity of multiplications per
sample, has improved performances compared with the other
suboptimal algorithm with a complexity of multiplications.
This is due to the fact that we “revisit” the two last decisions
rather than taking them for granted. It is interesting to point out
that these results, which are, of course, specific to the channel
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considered here, may be well explained by the fact that the
energy of the channel taps is spread over the whole set of taps,
which makes revisiting the decisions advantageous.

C. Performances of the Algorithm on Fading and Time Varying
Channels: A GSM Application

In order to validate the proposed equalizer, we propose to per-
form simulations on various standard channel models chosen to
mimic different downlink scenarios of GSM. We give a brief de-
scription of these scenarios and the characteristics of the chan-
nels to be estimated. After checking the estimates of the channel
impulse response provided by the algorithm, we focus on BER
performances by comparing the proposed blind equalizer with
the one recommended by the GSM standard, which operates
with a training sequence and produced an identification of the
channel impulse response from each packet of data.

A Simulation on a GSM Channel Model: The source delivers
a sequence of random bits that are modulated according to a
Gaussian minimum shift keying (GMSK). We will assume valid
the approximation that the generated symbols belong to the fol-
lowing alphabet: The
oversampling rate at the output of the modulator is 36 samples
per symbol, where the symbol rate is 270 kbits/s. This over-
sampling is used for simulation purposes only, and only one
sample per symbol is considered for the equalization purposes.
The system also incorporates the usual equipment filters at the
transmitter and receiver. The data is then passed through the
propagation channel. It has to be pointed out that we did not
consider the burst structure (continuous transmission) as in the
GSM standard. In addition, we did not use any frequency hop-
ping in the simulations. The models implemented are the ones
defined in the GSM recommendations 05.05 [14]. They corre-
spond to six tap models. One important feature of these propaga-
tion models is that they are time varying, where the variations
are mainly due to the local diffractions (leading to rapid and
small variations of the signal power) as well as the Doppler and
shadowing effect (resulting in slower but deeper variations). We
show here the performances on the typical urban (Tu) channel,
but similar results corresponding to other channels can be found
in [12]. In the simulation, the SNR is set to 10 dB at the output
of the channel. It is worth mentioning that the exact number of
channel taps isa priori unknown for these kinds of applications.
For instance, for the typical urban channel, only the three first
taps have a significant value, whereas for the hilly terrain case,
five taps have a non-neglectible contribution. In our simulations,
the length of the equalizer is equal to 6, which means that the
order of the true channel will be overestimated. In that case, sim-
ulations show that the extra taps converge to zero. The equalizer
(of length 6) has been initialized to the value

Fig. 8 shows the two first tap estimates (real and imaginary
parts) of the channel provided by the smoother highlighting the
improved adaptation performances of the smoother.

Fig. 9 compares the BER performances of the smoother with
that of the standard equalizer of the GSM device, operating with

Fig. 6. BER results.

Fig. 7. BER results for the smoother and an other suboptimal algorithm based
on HMM with different values of computational complexity.

Fig. 8. Tu channel taps estimates for a 150km/h speed.

a training sequence of 26 bits on each packet, allowing an es-
timation of the channel impulse response. We can note that the
BER’s provided by the smoother are comparable with the ones
of the nonblind equalizer. The fact that the performances seem
better for poor SNR are due to the fact that in the case of fading,
the 26 bits of the training sequence are not enough to provide
a reliable estimate of the channel on some bursts. On the other
hand, when the smoother is an RLS-type algorithm, it can take
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Fig. 9. BER results for Tu50.

into account more reliable information from the previous sam-
ples that are not affected by fading.

VI. CONCLUSION

A new decision feedback equalizer (DFE) incorporating fixed
lag smoothing has been derived in this paper. This algorithm has
been derived using a suboptimal hidden Markov model (HMM)
formulation. The advantage of such a formulation is that it al-
lows the complexity of the HMM formulation to be significantly
reduced; this new DFE has complexity linear with the channel
duration instead of exponential, as in the optimal case. Despite
the approximations, we observe considerable benefits in term
of bit error rate (BER), compared with the ZF-DFE. Moreover,
simulations show that the smoother provides better results in
term of BER than other suboptimal algorithms based on HMM,
even if the latter algorithms have a higher computational com-
plexity cost. Compared with simulations to DFE’s incorporating
a feedforward filter, the proposed algorithm seems to offer a
better tradeoff between BER, computational complexity, and
time of convergence. Finally, it looks well suited to the problem
of blind equalization of fading and time-varying channels.

APPENDIX A
CALCULATION OF THE APPROXIMATELOG-LIKELIHOOD

From (17) and taking into account (18), we show how (19) is
obtained. Altogether, (17) and (18) read

(59)

We first show that

(60)

and

(61)

Proof of (60)
We have to calculate, for every

(62)

Then, by directly expanding (71), we have

Taking into account the fact that and
using the following conjecture

(63)

we obtain

(64)

Performing the same calculation for every, we find (60).
Proof of (61):
First, compute the coefficients of matrix Let

denote the element on theth row and the th
column.

1)

whereas using (72) gives

(65)

2) .
In that case, we need to calculate
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Expanding this expression in the same way as for the previous
case, we obtain

Now, assuming the following conjecture: At high SNR, the
Gaussian functions involved in the computation of each

are sufficiently peaked so that one of these variable is
equal to unity, and the other is equal to zero. Then

(66)

i.e.,

(67)

Now, by directly expanding (17), and using (60) and (67)

(68)

(69)

(70)

APPENDIX B
LOWER BOUND OFERRORPROPAGATIONPROBABILITY

Under the assumption of high SNR, we show that

Recall that Section IV-B1 has provided the equality

(71)

Now, concentrate on the term
. As explained in Section IV-A,

the decision at time on symbol is taken
according to

sign

(72)

Assuming high SNR, we neglect the effect of the noise. We have
two situations to examine:

• No error has occurred at time
If and have the
same sign, which occurs with the probability (proba-
bility for to be equal to 1 or 1), in that case,

If and do not have
the same sign, then the value taken by de-
pends on the absolute values of each of the two above
terms.

• This implies that

(73)

• An error has occurred at time

Note that has the same sign as and that this
occurs with probability Another necessary condition for an
error to occur is If this is
not the case, the error sequencehas a null probability and is
not involved in the calculation of probability derived in Section
IV-B1. Then, for every plausible sequence

(74)

Then, we obtain

(75)

APPENDIX C
CALCULATION OF DFE ERRORSPROBABILITIES

First, suppose , i.e., the DFE estimate was cor-
rect at time Then, sgn so that

(76)

where denotes the pdf of a random variable. The tran-
sitions to the error states have probabilities

(77)

and similarly for
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Similarly, if an error was made at time so that
, then sgn , and the probability of recovering

on the next step is

(78)

and similarly for Similarly

(79)

(80)

and

(81)

(82)

By symmetry, (79) is also the probability of remaining in the
2 error state, and (81) is also the probability of transition from
2 to 2. Enumerating the states according to the ordering 0,

2, 2, we therefore have the state transition matrix

(83)

From (49) and defining , we have

(84)

which means that is an eigenvector of associated to the
eigenvalue Hence, we obtain the following asymptotic error
probability

(85)

APPENDIX D
SOME ELEMENTS FOR THEPROOF OFTHEOREM1

A. Calculation of the Probability to Recover from an Error
Committed at Time

First, suppose that
Under these assumptions, we aim at calculating the joint prob-
ability for to be equal to zero.

(86)

Note that if , then arises with a probability close
to one. Therefore, we may write

(87)

and since , we
have

B. Calculation of the Error Probability on a Previously
Well-Estimated Symbol

First, assume that and that (the other
cases would provide the same results by symmetries). We have
to deal with the following events:

We aim at calculating the joint probability to have
and the above assumptions

(88)

Note that so that will be
negative. For high SNR, we have

(89)
Then, taking into account (89), we have
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