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Abstract

This research includes mobile wireless systems limited by time and frequency disper-

sive channels. A blind mobile wireless channel (MWC) state recognition (CSR) algo-

rithm that detects hidden coherent nonselective and noncoherent selective processes is

verified. Because the algorithm is blind, it releases capacity based on current channel

state that traditionally is fixed and reserved for channel gain estimation and distor-

tion mitigation. The CSR algorithm enables cognitive communication system control

including signal processing, resource allocation/deallocation, or distortion mitigation

selections based on channel coherence states.

MWC coherent and noncoherent states, ergodicity, stationarity, uncorrelated scatter-

ing, and Markov processes are assumed for each time block. Furthermore, a hidden

Markov model (HMM) is utilized to represent the statistical relationships between

hidden dispersive processes and observed receive waveform processes. First-order

and second-order statistical extracted features support state hard decisions which are

combined in order to increase the accuracy of channel state estimates.

This research effort has architected, designed, and verified a blind statistical feature

recognition algorithm capable of detecting coherent nonselective, single time selec-

tive, single frequency selective, or dual selective noncoherent states. A MWC coher-

ence state model (CSM) was designed to represent these hidden dispersive processes.

Extracted statistical features are input into a parallel set of trained HMMs that compute

state sequence conditional likelihoods. Hard state decisions are combined to produce

a single most likely channel state estimate for each time block. To verify the CSR al-

gorithm performance, combinations of hidden state sequences are applied to the CSR

iii



algorithm and verified against input hidden state sequences. State sequence recogni-

tion accuracy sensitivity was found to be above 99% while specificity was determined

to be above 98% averaged across all features, states, and sequences.

While these results establish the feasibility of a MWC blind CSR algorithm, optimal

configuration requires future research to further improve performance including: 1)

characterizing the range of input signal configurations, 2) waveform feature block size

reduction, 3) HMM parameter tracking, 4) HMM computational complexity and la-

tency reduction, 5) feature soft decision combining, 6) recursive implementation, 7)

interfacing with state based mobile wireless communication control processes, and 8)

extension to wired or wireless waveform recognition.
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This work is dedicated to those that dare to dream, possess an insatiable appetite for

learning, and a tenacious will to achieve.
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Chapter 1

Introduction

The scope of this research is the communication system shown in Figure 1.1 with a transmitter

and receiver connected through a mobile wireless channel (MWC). It is assumed that in addition

to mobile frequency dispersion, multipath time dispersion occurs based on geometry and terrain

reflections (i.e. ground, water, mountains, and buildings); both capable of producing significant

fading and distortion effects upon the received waveform characteristics.

These systems are stressed by operations across diverse terrain, propagation conditions, fast mov-

ing platforms, and size, weight, and power (SWAP) disadvantaged terminals. It is assumed that

environmentally aware cognitive and adaptive processes are required to maintain optimum perfor-

mance across these broad operational environments.

This research has created a coherence state model (CSM) and a new channel state recognition

(CSR) algorithm to ease the fading and distortion challenges. The result combines multiple re-

ceive waveform statistical features into a channel coherence state estimate using statistical feature

recognition methods. The CSR algorithm provides detection of channel coherent nonselective and

noncoherent selective states rather than channel transfer function gain; thus increasing communi-

cation processing environmental awareness beyond conventional channel state estimation methods.

This new environmental awareness enables state based communication system control processes

that select appropriate signal processing methods when current channel state is favorable, disable
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those for which the current channel state is unfavorable, and applying appropriate mitigation meth-

ods when the current channel state is debilitating. The CSR algorithm enables environmentally

responsive resource allocations such as capacity, power, and spectral efficiency.

This research contribution provides background, assumptions, and introduces the CSR algorithm

in Chapter 1. Chapter 2 develops a preliminary CSR algorithm utilized to establish hidden Markov

model (HMM) statistical feature recognition feasibility, while Chapter 3 describes enhancements

including expanded waveform feature extraction, parallel feature recognition, and diversity deci-

sion combining. Chapter 4 includes algorithm verification testing, and Chapter 5 presents conclu-

sions, lessons learned, and future steps.

1.1 Background

1.1.1 Mobile Wireless Communication

The mobile wireless communication system shown in Figure 1.1 provides simplex transfers be-

tween a mobile source and destination applications through a single input single output (SISO)

physical layer link. A duplex link between two transceivers can be constructed from a pair of

forward and reverse simplex SISO links.

Figure 1.1: Mobile Wireless Communication System

2



1.1.2 Mobile Wireless Channel

The MWC architecture shown in Figure 1.2, comprises source and destination applications, trans-

mit, mobile wireless fading, noise, interference, and receiver processes. It is assumed that the

MWC output includes 4 specular plus diffuse components that result from locally reflected waves

from surrounding surfaces. Refer to Appendix Section A.3 for background on this spectral model.

This model can represent Ricean or Rayleigh amplitude distributions with the configuration of a

gain parameter. It can also be configured to represent mobile Doppler frequency dispersion. With

these capabilities, it can represent a broad range of discrete waveform, power, bandwidth, noise,

large scale loss, and small-scale fading cases.

Figure 1.2: Mobile Wireless Channel Architecture

1.1.3 MWC Time Domain Features

The MWC passband input is assumed to be a real continuous time waveform described by

equation (1.1),

spb(t) = Re
{

c(t)e jωot} , (1.1)
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where c(t) is the continuous time waveform magnitude. If this waveform is discrete time

sampled, the discrete time passband waveform results as defined by equation (2.3),

spbk(kT ) = Re
{

c(kT )e jωokT
}
, (1.2)

where k is the sample index and 0 < k < ∞ . The MWC passband output is assumed to be a real

continuous time waveform defined by equation (1.3)

ypb (t) = Re
{

z(t)e jωot} . (1.3)

If this waveform is discrete time sampled, the discrete time waveform results as defined by equation

(1.4)

ypbk (kT ) = Re
{

z(kT )e jωokT
}
, (1.4)

where z(t) is the baseband complex envelope, and ejωokT describes a carrier at frequency ω o .

The output baseband complex waveform ybb (t) with magnitude and phase components is defined

by equation (1.5) and (1.6)

ybb (t) = z(t) = x(t)+ y(t) = |z(t)|e jθ(t) =
√

x2 (t)+ y2(t)e jθ(t), (1.5)

θ (t) = tan−1 y(t)
x(t)

. (1.6)

It is common to define the channel gain transfer function h(t) which can be related to the input

signal s(t), the output signal y(t), and Gaussian noise n(t) , with a convolution as defined in

equation (1.7),

ypb (t) =
[
spb (t)⊗hpb (t)

]
+n(t). (1.7)

Here n(t) is Gaussian white noise. Analyzing these functions at baseband conveniently drops

references to the carrier as shown in equation (1.8),
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˜ybb (t) =
1
2
[

˜sbb (t)⊗ h̃bb (t)
]
+ ñ(t). (1.8)

Application of Fourier transforms provides baseband and passband spectral versions of these

waveforms as defined in equation (1.9) and (1.10) respectively,

Ypb ( f ) = Xpb ( f )Hpb( f )+Npb( f ), (1.9)

Ỹbb ( f ) =
1
2
[
X̃bb ( f ) H̃bb( f )+ Ñbb( f )

]
. (1.10)

For the time-varying channel case, frequency or time domain multiplication in equation 1.9 or 1.10

does not hold and therefore the expression in equation (1.11) must be utilized,

˜ybb (t) =
1
2

+∞ˆ

−∞

[
˜{Xbb ( f ) H̃bb( f , t)+ Ñbb( f )}e( j2π f t)dt .

]
(1.11)

For equation (1.11) the frequency domain channel transfer function is time-variant, therefore, val-

ues of frequency and time are no longer valid transform pairs as they were in the time-invariant

case. In contrast to blind channel estimation methods, these channel transfer functions (equation

1.7 through 1.10) require knowledge of both the input waveform as well as the output waveform

in order to compute the channel gain function. Refer to Appendix Section A.1 for additional back-

ground on channel models.

1.1.4 MWC Challenges

Time-variant noncoherent selectivity and distortion are problematic MWC conditions. MWCs can

transition between nondispersive, single time, single frequency, or dual dispersive states depend-

ing on dynamic environmental factors such as multipath and velocity. Time selectivity results
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from moderate to severe frequency dispersion while frequency selectivity results from moderate

to severe time dispersion. Moderate to full selectivity (when dispersion exceeds 10-20% of sym-

bol period/rate) results in amplitude and phase distortion yielding irreducible error rate floors that

cannot be mitigated with signal to noise (SNR) gain. Without alternative mitigation methods,

these channels become severely handicapped. Mild selectivity (dispersion less than 10-20% of the

symbol period) is less problematic, with reduced sensitivity to SNR gain.

Many advanced communication signal processing waveforms (e.g. MIMO, OFDM, WCDMA)

depend upon accurate and timely channel state estimation. It is common for these methods to de-

fine channel state in terms of channel transfer function gain. These methods do not directly detect

channel coherence or selectivity and require knowledge of both the transmit and receive waveform.

These methods degrade when channels become time or dual selective and also are sensitive to la-

tency between the receiver and the transmitter. For example, if these methods are designed for a

particular channel state, and are exposed to a restricted channel state (i.e., a time domain equal-

izer applied in time selective conditions) the overall system performance degrades. Furthermore,

if these resource intensive methods are misapplied under unfavorable channel conditions, subop-

timum resource allocations result. For example, when static distortion guard bands designed for

single dispersive conditions are applied in coherent or dual dispersive cases, inefficient resource

allocation (capacity, bandwidth, or power) results in decreased communication system efficiency.

Additionally, capacity is not maximized with overhead allocated for channel estimation when a

channel is coherent or dual dispersive.

1.1.5 Cognitive Architectures

Cognitive processing (CP) builds on a foundation of adaptive processing (AP) as shown in Figure

1.3. These systems respond to internal and external conditions with autonomous adaptive meth-

ods. These cognitive processing architectures (CPA) are comprised of functions for environmental

awareness, cognitive processing, self-awareness, in addition to AP functions. For example, CPAs

are sensitive to external environmental conditions such as channel state, or location, as well as
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Figure 1.3: Cognitive Processing Architecture (CPA)

internal state such as power levels, health, and status conditions. This awareness provides input

for policy-based decision engines that can provide selection of state based control, adaptive oper-

ational parameters, alternative signal processing methods, or adverse condition compensation.

1.1.6 Channel State Recognition (CSR) Algorithm

The CSR algorithm architecture is shown in Figure 1.4. The input is a sequence of MWC

complex baseband samples that are observed at the receiver (RX) antenna and organized into

blocks of 50k samples. This quantity of samples is conservatively long to establish statistical

significance. The output is a sequence of channel CSM estimates, one for each input sample

block. The CSR algorithm comprises functions for waveform feature extraction, feature state

likelihood, and state decision estimation. It provides the local cognitive transceiver (TXR)

environmental awareness of MWC coherent nonselective and noncoherent selective states, does

not require knowledge of the channel input, and is insensitive to feedback latency.
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Figure 1.4: Channel State Recognition (CSR) Architecture

1.2 Assumptions

1.2.1 Coherence State Model

A MWC is noncoherent or selective if the magnitude varies as a function of time, frequency, or

space. In contrast, a MWC is coherent if it does not change, or nearly constant, as a function of

time, frequency, or space. According to Dr. Durgin, a published researcher in Virginia Tech’s

Mobile & Portable Radio Research Group, the “fundamental concept in channel modeling is clas-

sifying the three possible channel dependencies of time, frequency, and space as either coherent

or selective”[2]. The CSM and the CSR algorithm are motivated to achieve Durgin’s idea with an

accurate blind process. Refer to Appendix Section A.7 for additional background on the CSM.
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1.2.2 Channel Time Coherence and Selectivity

A channel is time coherent if the unmodulated complex envelope does not change in a period of

interest, typically this is the symbol period. This condition is defined by equation (1.12)

∣∣h̃(t)∣∣≈Vo f or |t− to| ≤
Tc

2
, (1.12)

where Vo is some constant voltage, Tc is the coherence period, or equivalently the coherence time,

and to is some arbitrary time. The coherence time is defined as the largest value for which equation

(1.12) is true and is the time period over which the channel is considered to be static [2]. During

the coherence time sample magnitudes would be highly correlated [3].

The primary reason for loss of time coherence is relative velocity between the transmitter and

the receiver, or mobile scatters in the propagation environment. If resulting frequency dispersion

is much less than the symbol rate, then coherence time is much larger than the symbol period;

the channel is considered coherent, or time-flat. As frequency dispersion exceeds 10-20% of the

symbol rate, then interfrequency interference (IFI) becomes increasingly problematic. In this case

energy is displaced from one frequency to another resulting in signal distortion. As frequency

dispersion approaches the symbol rate, the channel becomes fully time selective.

Given that coherence time is related to time correlation and to Doppler spread through an in-

verse Fourier transform, an approximation for envelope unit autocovariance is defined in equation

(1.13)[2]

ρ R (t)≈ e
(
−23
2π2 σ 2

ω t2
)
. (1.13)

Here σ ω is the RMS Doppler spread; this expression provides a close approximation when t is

small since the error of this expression remains small until the complex envelope becomes uncor-

related.

If coherence time is defined as when the correlation decays to a value of e−1, a definition of
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coherence time is provided by equation (1.14),

Tc =
2π√
46σ ω

=
1.08
σ ω

. (1.14)

A common wireless engineering approximation [3] to coherence time characterized by a frequency

correlation of approximately .5 is defined by equation (1.15),

Tc ≈
2π

5σω

. (1.15)

Refer to Appendix Section A.5 for additional background material.

1.2.3 Channel Frequency Coherence and Selectivity

Frequency coherence exists if the magnitude of the envelope does not change over a frequency

band of interest, typically this is the symbol rate. This condition is defined by equation (1.16)

∣∣h̃( f )
∣∣≈Vo f or | fc− f | ≤ Bc

2
. (1.16)

where Vo is some constant amplitude, Bc is the coherence bandwidth, and fc is the carrier fre-

quency. The largest value of Bc for which equation (1.16) is true is called the coherence bandwidth

and is the range of frequencies over which the channel is static [2]. Two received frequencies

within the coherence bandwidth would be correlated [3].

Loss of frequency coherence in a MWC is primarily due to time dispersion from multipath prop-

agation. If time dispersion is much less than the symbol period, then the coherence bandwidth is

much greater than the symbol rate; the channel is coherent and defined as a frequency-flat channel.

As time dispersion exceeds 10-20% of the symbol period, intersymbol interference (ISI) becomes

increasingly problematic. In this case, waveform energy is displaced in time into adjacent symbol

periods resulting in waveform distortion. As time dispersion approaches or exceeds the symbol

period then full intersymbol interference results.
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Given that the coherence bandwidth is related to frequency correlation and to delay spread through

a Fourier transform, an approximation for magnitude unit autocovariance is defined by equation

(1.17),

ρ R (f)≈ e(−46σ 2
τ f2), (1.17)

where στ is the RMS delay spread. The unit autocovariance has been normalized and is an im-

portant tool for estimating how a waveform tends to change with respect to itself when it has a

nonzero mean.

If coherence bandwidth is defined as when the correlation decays to a value of e−1, a definition of

coherence bandwidth is provided by equation (1.18),

Bc =
1√

46σ τ

=
1

6.78σ τ

≈ 1
5σ τ

. (1.18)

A common wireless engineering approximation [3] is to estimate the coherence bandwidth char-

acterized when the time correlation is approximately .5 is defined by equation (1.19),

Bc ≈
1

5στ

. (1.19)

Refer to Appendix Section A.5 for additional background material.

1.2.4 RMS Delay Spread and Doppler Spread

The waveform power spectral density (PSD) bandwidth as inversely related to time correlation

or dispersion, therefore, the PSD bandwidth is an indicator for time correlation. The RMS delay

spread can be estimated by equation (1.20),

σ
2
τ = τ2− (τ̄)2, where τn =

´ +∞

−∞
τnSh̃ (τ)dτ´ +∞

−∞
Sh̃ (τ)dτ

, (1.20)

and the RMS Doppler spread can be estimated by equation (1.21)
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σ
2
ω = ω2− (ω̄)2, where ωn =

´ +∞

−∞
ωnSh̃ (ω)dω´ +∞

−∞
Sh̃ (ω)dω

. (1.21)

Refer to Appendix Section A.5 for additional background material.

1.2.5 Channel Ergodicity

In this work, ergodic conditions are assumed such that time statistics are equivalent to ensemble

statistics given heterogeneous scattering of homogeneous plane waves in the local area of the

receiver. Ergodicity is a necessary assumption for channel observability in order that the channel

output at the receiver can be modeled as a sum of received waveforms. In this model the MWC

output is a sum of specular and diffuse components as defined in Section A.3 of the Appendix.

1.2.6 Channel Stationarity and Waveform Scattering

Stationarity is an important attribute to characterize a stochastic process; there are several different

types of stationarity which are discussed in Section A.2 of the Appendix. For this work, first order

stationarity is assumed such that first order statistical parameters are constant for the period of

interest. Additionally, wide sense stationarity (WSS) is assumed such that second order statistical

parameters such as autocorrelation and covariance are stable and represent the waveform in the

local area of the receiver.

When a waveform is WSS, then spectral components must be uncorrelated as defined by equation

(1.22),

CH̃ (ω1,ω2) = 2πSh̃ (ω1)δ (ω1−ω2) , (1.22)

which evaluates to zero whenever ω 1 6= ω 2.
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1.2.7 Channel Finite State Markov Processes

Beginning with Shannon in the 1950s, continuing with Gilbert and Elliott at Bell Labs in the 1960s

[4], and through the maturation of 2G wireless systems in the 1980s, finite state Markov chains

(FSMC) have been utilized to model flat and time varying channels [5, 6, 7]. FSMC transition

probabilities are independent of time and they embody the Markov property which is known as the

first order assumption. The first order assumption means that the transition to the current state is

primarily influenced only by the previous state. FSMC assume a finite set of states and a sequence

of states typically defined as a set of nonoverlapping quantized amplitude, power, or SNR. Con-

siderable research has proven the accuracy of modeling Rayleigh amplitude distributions. Inves-

tigations into higher order Markov models reach a point of diminishing return after the first order

model (complexity increases rapidly after the first order). While FSMC provide foundational state

based system models, they cannot express how states relate to independent outputs. The ability to

relate system states to independent outputs is what HMM provide such that observable stochastic

processes can be related to internal system state processes.

1.2.8 Channel Hidden Markov Model

MWC internal processes such as coherence and selectivity can be related to observable processes

such as a receive waveform as shown in Figure 1.5. These relationships can be expressed with a

dual statistical system formulated with a HMM.

Refer to Rabiner [1, 8]and Durbin [9] for an introduction to HMMs. When a system’s internal

states are not observable, a representative FSMC can be embedded in a HMM, where the unob-

servable or hidden states are represented as an internal statistical process and the output is related as

a secondary output statistical process. HMMs can operate in a generative mode, whereby dwelling

in a single internal hidden state, time-invariant output statistics are observed on the output. How-

ever, when the HMM transitions from the initial hidden state to another hidden state, the output

statistics change based on a different output probability distribution. Unique output probability dis-
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Figure 1.5: HMM System Architecture

tributions relate each hidden state to the output. Thus observed time-variant output behavior can be

related to the hidden state sequence. A transition probability matrix governs transitions among the

unobservable internal hidden states and an output probability matrix relates each hidden state to

the output. An initial probability matrix defines which state is most likely to occur at initialization.

When the HMM is operating in the training mode, off-line input training sequences are input to

estimate the transition and output probability matrices. These HMM parameters provide memory

for the HMM which is utilized in one of the two operational modes where input sequences are

evaluated against the HMM memory parameters or the hidden state sequences are decoded. Either

the Viterbi or Baum-Welch forward/backward algorithms serve to estimate the HMM parameters.

Once the HMM has been trained, it can operate in an evaluation mode where given an input data

sequence, the probability that the input sequence matches the trained model is estimated with a

dynamic programming forward pass algorithm. A trained HMM can also operate in a decode

mode based on the maximum likelihood (ML) Viterbi algorithm where given an input sequence,

an optimum (ML is an optimum approach) hidden state sequence is estimated. HMMs have also
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been successfully utilized for decades in mature structured pattern recognition applications such as

automatic speech, image, facial, hand writing, gait, biological sequence, waveform, and network

traffic recognition systems. HMMs have known limitations such as: 1) complexity, 2) extensive

training requiring significant amounts of relevant data, 3) convergence rate, and 4) accuracy.

1.2.9 Waveform First-order Statistical Features

An important first-order tool for characterizing MWC processes is the probability density function

(PDF). An approach for computing a complex envelope magnitude (CEM) PDF is equation (1.23)

that defines specular and diffuse waveform components;

fR(ρ) = ρ

∞̂

0

Jo(vρ)e

(
−v2Pdi f f

4

)[
N

∏
i=1

Jo(Viv)

]
vdv, (1.23)

for R =

∣∣∣∣Ṽ diff +
N
∑

i=1
Vie(jΦi)

∣∣∣∣and E
{∣∣Ṽ diff

∣∣2} = Pdiff, which is valid for ρ ≥ 0. Additional details

can be found in Section A.4 of the Appendix.

Six closed form PDFs cases are defined in the Appendix for: 1) single wave, 2) two wave, 3)

three wave, 4) Rayleigh, 5) Ricean, and 6) two wave plus diffuse power (TWDP) [2]. The single

wave case is trivial; generated by integration of the second specular term of equation (1.23) with

N = 1 and the diffuse term Pdiff = 0. The two wave case is common, well researched, and is

generated by integration of the second specular term of equation (1.23) with N = 2 and diffuse

term Pdiff = 0. While case three is more complicated, it provides insight into differences in behavior

between the specular and nonspecular components and is generated with the specular term N = 3

and diffuse term Pdiff = 0. The central limit theorem begins to dominate the PDF in the three wave

case; additional nonspecular components move the PDF toward a Gaussian distribution and results

approach the Rayleigh case.

In this work, these claims underlie assumptions for MWC simulations which are based on 4 spec-

ular components in addition to diffuse components (4WDP). With this configuration, observations
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of received waveform pdfs are expected to approach Gaussian distributions. A Rayleigh PDF dis-

tribution is derived in Section A.4.1 of the Appendix. For the CSR algorithm, a more general

Ricean distribution is assumed and the first order PDF is estimated with a histogram method.

1.2.10 Waveform Second-order Statistical Features

A common second order statistical feature for characterizing stochastic MWC behavior is the au-

tocorrelation function. A definition for the autocorrelation function Ch̃(t1, t2) of a time-varying

stochastic baseband channel h̃(t) is described by equation (1.24)

Ch̃ (t1, t2)=̇E
{

h̃(t1)h̃∗(t2)
}
. (1.24)

The autocorrelation function characterizes how the waveform compares to itself by averaging the

products of all samples in the random process at two different times, t1and t2.

A Fourier transform applied to a baseband time-varying channel transfer function gain results in a

frequency-varying process H̃(ω). A frequency domain autocorrelation CH̃(ω 1,ω 2) is defined by

equation (1.25),

CH̃ (ω1,ω2) = E
{

H̃ (ω1) H̃∗ (ω2)
}
, (1.25)

for characterizing correlation between frequency components ω1 and ω2. The frequency domain

autocorrelation can be related to the PSD by equation (1.26),

CH̃ (ω1,ω2) = 2πSh̃ (ω1)δ (ω1−ω2) , (1.26)

where the function Sh̃ (ω 1) is known as the PSD and it describes how the spectral power is dis-

tributed in the frequency domain.

The unit autocovariance ρ h̃(t) of a time-varying stochastic process may be computed by subtract-

ing the mean value from the autocorrelation and normalizing the result. The autocorrelation Ch̃(t)

in turn is calculated from the PSD Sh̃(ω) by performing an inverse Fourier transform. These
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relationships are shown in equation (1.27)

Sh̃(ω)→ Ch̃(t)→ ρ h̃(t). (1.27)

A similar set of relationships can be developed for the spectrum of received envelope as defined in

equation (1.28)

SR(ω)→ CR(t)→ ρ R(t), (1.28)

given that the envelope and complex baseband channels are related by equation (1.29),

R(t) =
∣∣h̃(t)∣∣ . (1.29)

1.2.11 Channel State Waveform Generation and CSR Algorithm Testbed

MWC System Behavioral Simulation The MWC behavioral model shown in Figure 1.6 en-

ables investigation of primary parameters of coherent and selective channel state waveforms. This

behavioral model was formulated in SIMULINK with a MATLAB foundation; it serves as a MWC

CSM waveform generator. The waveform generator provides input to the CSR algorithm testbed

shown in Figure 1.7. In this testbed several major parameters can be controlled to support analyt-

ical methods for the CSR algorithm. For example, parametric investigation of data format, rate,

encoding, modulation, power, noise, fading, demodulation, and decoding effects on quality of ser-

vice can be investigated. To verify the CSR algorithm, several different CSM state sequences were

generated and provided as input to the algorithm as shown in 1.7. The output state estimates were

evaluated against the input sequence for accuracy in terms of sensitivity and specificity.
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Figure 1.6: MWC Waveform Generator

Figure 1.7: CSR Algorithm Testbed

18



1.3 Research Contribution

1.3.1 Existing State of Art

Channel State Model Literature Review

A more detailed discussion of a mobile wireless channel state modeling is located in A.7, a sum-

mary of this material is provided here. Several historical accounts of the evolution of finite state

channel models (FSCM) are provided in the literature originating in the 1960s. Several differ-

ent approaches based on Markov processes have various state definitions from simple on-off error

models to more sophisticated SNR, or dwell-time states. More complex higher order models have

been found to approach representative Rayleigh and Ricean distributions, error memory problems,

and other accurate approaches, however, complexity limits these modeling applications. Several

approaches have been reported based on state-based approaches for modeling multiple input mul-

tiple output (MIMO) channels. State space approaches with Kalman filtering (KF) have been

demonstrated for dynamic tracking of channel parameters. Several state definitions were described

in the literature that is summarized in Table 1.1. After this literature review, the CSM defined in

this work, is determined to be a unique channel state system description. While some of these

models describe MWC behavior, they do not model coherence or selectivity as hidden states. Ex-

amples of signal processing recognition systems have been developed over the past 4-5 decades

for speech, facial, silhouette, handwriting, and target recognition among others. However, the CSR

algorithm is one of the first applications of channel state recognition HMMs to recognizing MWC

hidden coherence and selective state recognition.

Channel State Estimation Literature Review

A more detailed discussion of a CSR literature review is located in A.8, and a summary of this

material is provided here. Common assumptions were discovered including: 1) stationarity for

a fixed time period, 2) channel state defined by transfer function gain, 3) specific waveform or
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Table 1.1: Published Mobile Wireless Channel State Definitions
Channel Definition Reference

CIR or FIR Coefficients [10, 11]
Bit Error Rate Statistics [12, 13]

Block Error Rate Statistics [14, 15]
Quantized Signal Strength [4, 16, 17, 18, 19]

Quantized SNR [20, 21, 22, 23, 5, 24, 25, 26, 27]
Partitioned Statistical Distributions [28, 29, 30]

Fading Level [30, 31, 32]
AWGN Numerous-Refer toA.7

Log Normal Fading Numerous-Refer toA.7
Rayleigh Distributoin Numerous-Refer toA.7
Ricean Distribution Numerous-Refer toA.7
Hybrid Distributions Numerous-Refer toA.7

Cellular Systems Numerous-Refer toA.7
Satellite Systems Numerous-Refer toA.7

Personal Area Networks Numerous-Refer toA.7
Indoor Propagation Numerous-Refer toA.7

Large, Small Scale Fading Numerous-Refer toA.7

specific communication channel fading type constraint, 4) critical processing dependence upon

channel impulse response estimates at the transmitter, receiver, or both, 5) Channel impulse re-

sponse tracking, 6) data assisted channel estimation processes, 7) blind and semi-blind channel

state estimation approaches, 8) Gaussian distributed noise. A few articles are based on HMM

methods and a few are based on cognitive, SDR, or neural network architectures. Only one article

claimed distortion estimation. Performance advantages claimed include: 1) reduced computational

complexity, 2) reduced overhead approaches, 3) shorten training sequences, 4) faster convergence,

5) global maximum convergence, or 6) reduced latency.

Most importantly, channel state estimation weaknesses emerge from this body of literature which

are summarized in Table 1.2. The first three weaknesses are a primary focus for the CSR algorithm

research, namely maintaining robust performance, optimizing resource allocations, or distortion

mitigation despite dynamic MWC conditions. Secondary objectives include reducing overhead

and feedback latency. Processing latency, computational complexity, and convergence will be

topics for future work. The last two weaknesses are resolved by the CSR algorithm approach.
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Table 1.2: Channel State Estimation Literature Search Weaknesses
1 Degraded communication performance is often assumed under very specific channel

conditions. Claims by this body of literature are without exception limited to a single
channel type such as: 1) flat time (invariant), 2) frequency selective, 3) low mobility ( flat
frequency), 4) fast fading (time selective). This set of constraints is particularly difficult to
implement, given that MWC will not behave as a single channel type. When channel
conditions become dynamic, the constraint is violated, and the claims fall apart.

2 Resource allocations (power efficiency, spectral efficiency, or capacity) are often based on
optimal channel state or waveform configuration; when these conditions vary,
suboptimum resource allocations result,

3 Distortion mitigation methods are often restricted to a single channel condition or
waveform configuration; these methods depend upon accurate channel gain estimation,
when these assumptions are violated, distortion mitigation degrades,

4 Overhead associated with channel impulse response estimation,

5 Processing and feedback latency,

6 Computational complexity,

7 Convergence to local maximum or weak convergence rates,

8 Offline operational processing,

9 Assumptions regarding availability of perfect and timely channel state estimates.
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1.3.2 Research Questions

Several relevant and unanswered questions emerge from the weaknesses found in the the literature

search on channel state and distortion estimation in the previous Section. In mobile wireless com-

munication systems, channel state estimation methods are common and communication processing

often critically depends upon accurate channel gain estimation. Most channel estimation methods

define channel state as the gain of the channel transfer function. Additionally, it is common for

these methods to be restricted to either coherent, or singly selective channel types, with very rare

methods for dually selective channels. Furthermore, resource allocations are often fixed or based

upon channel state defined in terms of time invariant impulse response. Again, distortion mitiga-

tion methods are common and restricted to either coherent, or singly selective channel conditions.

When MWC conditions change, performance, resource allocations, and/or distortion mitigation

methods degrade. Significant percentages of capacity (10-15%) is reserved for estimation of chan-

nel gain and distortion mitigation. Blind channel estimation methods exist to reduce overhead,

but most of these methods are restricted to either coherent, or singly selective channel conditions.

Data or tone assisted channel gain estimation in nonreciprocal links is common, but each of these

methods requires latency for feedback from the receiver to the transmitter on a control channel.

When the time period of the noncoherence decreases below the feedback latency, the channel state

estimates become stale. This results in degraded system performance. Guiding research questions

can be formulated and are summarized in Table 1.3.

1.3.3 Original Contribution

Coherence State Model
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Table 1.3: Channel State Estimation Literature Research Questions
1 Fundamentally, is channel gain the only meaningful definition of channel state?

2 Can dispersion become a basis for channel state definitions such as coherent, singly
selective, or dually selective?

3 Is there a control method whereby appropriate signal processing methods can be
dynamically selected based on channel conditions other than channel transfer function
gain?

4 Is there a technique to maintain communication processing performance when channels
dynamically migrate between coherent, singly, or dually noncoherent?

5 Is there an approach that enables detection of channel selectivity and associated distortion?

6 Can signal processing methods be disabled when channel conditions are unfavorable?

7 Can expensive resource allocations such as power, spectrum, or bandwidth be controlled
based on channel conditions other than channel impulse response?

8 Is there a means to minimize overhead associated with channel state estimation?

9 Is there a means to minimize feedback latency associated with channel state estimation?

An alternative channel state definition has been formulated based on hidden MWC dispersion

processes. These MWC processes are important indicators of coherence and selectivity. The CSM

shown in Figure 1.8 illustrates the designed coherent nonselective and noncoherent selective

states. These states were chosen because they are relevant for signal processing environmental

awareness.

Coherent State Definitions State 1 (AWGN = Additive White Gaussian Noise). In this state

virtually no multipath effects and virtually no Doppler shift exist, tt represents coherent, nondis-

persive channel conditions.

State 2 (FN&TN = Time Non Selective and Frequency Non-selective). In this state multipath

component delay and gain are minimal such that time dispersion is less than 10% of the symbol

period, and velocity is minimal such that frequency dispersion is less than 10% of the symbol rate.

In this state This state is represents very low relative velocities between the transmitter and the

receiver; and perhaps multipath components are present, however, their delay and magnitudes are

such that frequency non-selective and time non-selective channel conditions exist.
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Figure 1.8: Mobile Wireless Channel Distortion State Model
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Single Selective State Definitions

Single time selective (TS) or frequency selective (FS) dispersion cases also exist where either

significant relative velocities or multipath effects lead to selective distortion independently in

either the time or frequency domain. Selective distortion conditions are defined relative to the

symbol rate. When time dispersion exceeds ~10-20% of the symbol period, frequency selectivity

becomes increasingly problematic and once it approaches and exceeds the symbol period full

intersymbol interference distortion produces frequency selective distortion. In a similar manner,

when frequency dispersion exceeds ~10-20% of the symbol rate, interfrequency interference

increases, and time selectivity becomes increasingly problematic. Once it approaches and exceeds

the symbol rate, the MWC becomes fully time selective.

State 3 (FS&TN = Frequency Selective and Time Non-selective). In this state multipath delay

and gain are large enough such that time dispersion exceeds 20% of the symbol period, however

velocity is small enough that Doppler spread is less than 10% of the symbol rate. In this state,

frequency selective and time non-selective channel conditions exist.

State 4 (FN&TS = Frequency Non-selective and Time Selective). In this state multipath delay and

gain are small enough such that time dispersion is less than 10% of the symbol period, however

velocity is large enough such that Doppler spread is greater than 20% of the symbol rate. In this

state, frequency non-selective and time selective channel conditions exist.

Dual Selective State Definitions

Dual TS and FS dispersion is representative of MWC conditions when relative velocities between

transmitter and receiver locations are large enough to cause time selective distortion and multipath

components arrive with delays and magnitude sufficient to cause frequency selective distortion.

State 5 (FS&TS = Frequency Selective and Time Selective). In this state multipath delay and gain

are large enough such that time dispersion is greater than 20% of the symbol period, and velocity
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Figure 1.9: Enhanced CSR Algorithm Tier 1 System Model1.9

is large enough such that Doppler spread is greater than 20% of the symbol rate. In this state,

frequency selective and time selective channel conditions exist.

CSM State Transitions

As shown in Figure 1.8, the CSM represents dynamic MWCs (changes in degrees of velocity or

multipath producing variable frequency and time dispersion), by providing for transitions between

the states. If MWC time-invariant conditions exist, the DSM settles into a single stable state.

CSR Algorithm Design and Verification

To investigate the feasibility of a blind coherence state awareness, a CSR algorithm shown in

Figure 1.9 has been architected, designed, and verified. This channel state awareness algorithm

is based on statistical feature recognition HMMs capable of detecting whether a mobile wireless

channel is coherent, single time, single frequency, or dual selective. This algorithm also based

upon hard state decision combining which significantly increases accuracy in terms of sensitivity

and specificity performance. A CSR algorithm testbed as shown in Figure 1.10 was created.

A CSM state waveform generator was designed to create a set of waveforms whose statistics have

been shaped by controlled Ricean channel impulse response configurations. These statistical re-
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Figure 1.10: CSR Algorithm Testbed

lationships were utilized to establish HMM transition and output probability parameters. A set

of statistical features were extracted from these channel dispersion state waveforms. First order

amplitude probability distribution functions and second order autocorrelation functions in both the

time and frequency domain were extracted from consecutive time blocks. These statistical features

were input to a set of trained HMMs which for each feature computed a symbol sequence condi-

tional likelihood estimate. These likelihood computations are proportional to the likelihood that the

input sequence agrees with the training sequence. A value of 1 would signify perfect correlation

between the input sequence and the training sequence while an estimate of 0 would signify per-

fect decorrelation between the input sequence and the training sequence. State hard decisions were

computed for each feature in each time block. These hard decisions were based on a likelihood that

exceeds 90% that the input sequence agrees with the training sequence. The hard decision were

selected from a set of values {1, 2, 3, 4, 5} given that there are five states in the channel dispersive

state model. In a given time block, the hard decisions were numerically summed to arrive at the

most likely channel state decision. In this manner, the state that was most recognizable across all

waveform features was weighted higher and selected as the output channel state estimate.
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Table 1.4: CSR Algorithm Test State Sequences
Seqeunce ID State Sequence

1 [1,2,3,4,5]
2 [2,3,4,5,1]
3 [3,4,5,1,2]
4 [4,5,1,2,3]
5 [5,1,2,3,4]

1.3.4 Impact

The CSR algorithm output is an estimate of channel coherent and selective states for each wave-

form sample block. Given this new channel state awareness, state based control processes can adapt

signal processing methods as the MWC transitions between coherent and noncoherent states. Per-

formance processes that are sensitive to channel conditions can be selected when channel character-

istics are favorable or disabled when channel conditions are unfavorable. Resource consuming pro-

cesses that consumed reserve capacity currently are not coherent state aware; they consume excess

power, bandwidth, or capacity even when channel state offers positive margin or when conditions

are unfavorable thus resulting in wasteful resource allocations. Distortion mitigation processing

that are designed for a single channel characteristic, can be disabled when dynamic channel con-

ditions change to a channel characteristic that is not favorable to the mitigation method. When the

state based communication control process becomes sensitive to coherent, single time, frequency,

or dual selective states, transitions between alternative resource efficient processing is enabled.

This is an advantage because many existing signal processing methods, which are dependent upon

accurate and timely channel transfer gain, degrade when MWC state becomes singly time selective

or dual selective, rendering them ineffective. When the channel estimation methods degrade, the

communication system performance is compromised. When these processes become sensitive to

MWC coherent, time, frequency, and dual selective states, then dynamic performance, resource ,

and mitigation appropriate processing selections increase communication system resilience.
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1.3.5 Significance

Environmental Impact A typical wireless network is composed of mobile switching centers,

base station transceivers, and mobile devices. The core network power consumption is reported as

relatively low and the power consumption of the mobile devices has been optimized, and on the

order of a few Watts. However, the base station transceiver is documented as the largest power

consumer in these networks. More than 60% of the base station power budget is consumed by ra-

dio equipment and amplifiers, while 11% is utilized by DC power systems, and 25% is required for

equipment cooling. [33]. Published research in 2011 studied wireless network power consumption

across the Italian nation; it combined power auditing data over a 1000 day period, from 95 base

stations, and four wireless commercial carriers, with both second generation and third generation

systems. The yearly average power consumption for a base station transceiver was determined

to be 35,500 kWh/year [33]. As shown in Figure 1.11 the number of cell phone towers in the

continental United States in 2012 was estimated to be 190000 [34]. Given these assumptions, a

rough order of magnitude estimate of the total power consumption of the United States wireless

network is 6.74 TWh/year. According to the U.S. Department of Energy, the total electric en-

ergy consumption of the United States power grid is estimated to be 3886.4 TWh/year [35]. For

comparison, the U.S. wireless network consumes less than one percent, approximately .17%, of the

total U.S. power consumption. Considering the environmental impact, the total U.S. annual carbon

footprint is 5420 MTonnesCO2 [36], which is estimated to be 18% of the global total. Therefore,

a rough order of magnitude estimate of the annual U.S wireless network carbon footprint is 9.4

MTonnesCO2e f f ective. Assuming $.16 per KWh, the cost to power the U.S. wireless network is

approximately $1.078B. Clearly the U.S. wireless network consumes a small percentage of the

electric power grid production and the global carbon footprint. However, it does incur a significant

economic cost which is passed on to consumers.

As a relevant case study, consider the mobile WiMAX waveform standard [37] that was designed

to provide broadband wireless service at up to 20 Mbps within 3 km diameter cells, with non-line-

of-sight links and mobile speeds exceeding 60 mph. This waveform has many dynamic features
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including: 1) a scalable bandwidth and data rate OFDM waveform, 2) adaptive modulation, 3)

adaptive coding, 4) MIMO modes, 5) time division or frequency division duplexing modes, 6)

OFDMA to enable multiple users to share the wireless service, 7) security, and 8) mobility sup-

port such as power control, delay tolerance, and channel estimation. The WiMAX waveform

has allocated approximately 10% of available subcarriers as pilot channels in both UL and DL

frame/subchannel configurations for channel gain estimation. It also has allocated another approx-

imate 15% of subcarriers as frequency guard bands to mitigate the effects of frequency dispersive

mobile environments. Furthermore, another 3% to 25% of time slots are allocated for cyclic-prefix

time guard bands to mitigate time dispersive multipath conditions. Dynamic bandwidth, modu-

lation, and coding rates are based upon closed loop, channel impulse response gain estimations.

Periodic sounding signals are sent from the mobile station to the basestation on the uplink to es-

timate the channel impulse response under the assumption that the channel is reciprocol and time

nonselective. The WiMAX waveform offers a relevant case study for demonstrating the potential

significance of applying the CSR algorithm.

It is clear that a significant percentage of the WiMAX network capacity (10-15%) is consumed

in overhead to mitigate time dispersive multipath and frequency dispersive mobile effects. Addi-

tionally, adaptive waveform features to maximize performance across dynamic link configurations

depend upon accurate and timely channel gain estimation. When the mobile wireless channel is co-

herent, a minimum excess capacity is reserved for cyclic prefix time guard bands, and a minimum

excess capacity is reserved for frequency guard bands. Additionally, when the channel becomes

time variant, the adaptive performance features become compromised. In both these cases, power

efficiency and spectral efficiency is degraded [38] resulting in reduced energy utilization efficiency.

The likelihood that pedestrian traffic would experience coherent channel conditions can roughly

be estimated as CLEp by the percentage of people that use the wireless system in non-urban en-

vironments vs. urban areas. This is estimated to be 21% in the continental United States [39].

The likelihood that mobile vehicle traffic would experience coherent conditions can roughly be

estimated as CLEv by the percentage of vehicles in non-urban areas verses urban areas of the con-
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tinental United States. This is estimated to be 75% based on U.S. Census data [40]. The excess

WiMAX capacity ηcoherence is estimated to be 4.8% by combining the excess WiMAX system

capacity ECwimax (overhead reserved for channel estimation and distortion mitigation) of 5%, the

likelihood of pedestrian coherent conditions (21%), and likelihood of vehicular coherent conditions

(75%) as defined in equation (1.30),

ηcoherence = ECwimax ∗CLEp +ECwimax ∗CLEv. (1.30)

As the market penetration of WiMAX continues to grow [41] a proportional percentage of the U.S

annual wireless network power consumption will be consumed by the WiMax excess overhead

without associated value. However, if the WiMAX waveform were coherent state aware, then this

excess power consumption can be reduced in the following cases: 1) when coherent MWC con-

ditions exist the guard bands can be reduced further and the channel estimation sounding period

can be increased resulting in conversion of overhead to productive capacity, 2) when the MWC

is singly time selective, cyclic prefix overhead can be increased while maintaining low frequency

guard bands resulting in conversion of current overhead to productive capacity, 3) when the MWC

is singly frequency selective, frequency guard bands can be increased while maintaining low cyclic

prefix durations resulting in conversion of current overhead to productive capacity, and 4) when

the MWC is dual selective, a case in which WiMAX is not effective, rather than pursue the current

WiMAX waveform, alternative waveforms designed for fast fading conditions could be imple-

mented.

It is implied that other mobile wireless waveform standards also rely upon excess capacity overhead

for mitigation of time and frequency dispersion. It is also assumed that a significant percentage

~5% of the energy consumed by the continental United States wireless infrastructure is expended

to support unnecessary overhead. Application of the channel coherence state model and the CSR

algorithm would enable MWC awareness and wireless communications controls that would con-

vert excess overhead to useful operational capacity when coherent states existed. The end result
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Figure 1.11: Notional representation of cell phone tower distribution across United States

would therefore be increased energy benefit-cost ratios of the U.S. wireless network infrastruc-

ture. A benefit/cost ratio BCenergy can be formed such as defined in equation (1.31) which could be

increased by approximately 5%.

BCenergy =
systemcapacity(Mbps)

annualenergyconsumption(TWh/year)
(1.31)

A similar environmental benefit-cost ratio of the U.S. wireless network infrastructure could be

formed as defined in equation (1.32),

BCenvironment =
systemcapacity(Mbps)

annualcarbon f oot print(MTonnesCO2/year)
(1.32)

which could also be increased by approximately 5% with the application of the CSR algorithm.

Economic Impact As shown in Figure 1.12 the U.S. wireless data market revenues were fore-

casted to exceed $70B in 2012. As a case study, if the CSR algorithm is applied to the WiMax wire-

less network, the conversion of 4.8% of excess overhead capacity to operational capacity would

positively impact revenues for wireless data services. Clearwater Inc. reported 11 million WiMAX

subscribers with average of $11 per month revenue for a total of $1.4B in 2012 annual revenues

[42]. Application of the CSR algorithm to the WiMAX waveform would convert excess overhead
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Figure 1.12: Economic Impact of Wireless Communications (Used with permission from Chetan
Sharma)

to operational capacity, on the order of 4.8%; it would result in an increase of $62.72M in annual

revenues.

1.4 Contribution Limits and Future Research

Limitations in the enhanced version of the CSR algorithm are noted in Table 1.5. Each is elaborated

in the following paragraphs.

1.4.1 Input Waveform Configurations

The input waveforms utilized for testing of the CSR algorithm were created directly from the chan-

nel state training waveforms. This increased the likelihood that the statistical feature recognition

would be successful. Generation and application of real waveforms that are representative of CSM

states would be more stressful to the statistical feature recognition processes. Future work would

investigate the sensitivity of the front end first order and second order statistical features that would

enable discrimination of unobservable MWC state processes.
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Table 1.5: Recommended Future Research
1 Input Waveform Configuration

2 Waveform Feature Block Size

3 HMM Parameter Tracking

4 HMM Computational Complexity

5 HMM Soft Decision Combining

6 Recursive Implementation

7 Cognitive Processing Integration

8 Extend CSM to Waveform State Model

9 Extend CSR to Waveform State Recognition

1.4.2 Waveform Feature Block Size

The input waveforms were partitioned into block sizes that are 10x the size of 3G/4G frames. For

example, given a 1 Mbps bit rate, a 50 ms frame would be equivalent to 50K samples. This was

an arbitrary choice in the original formulation of the CSR algorithm. Investigation into shorter

block lengths would enable the extension of the CSR algorithm to MWCs with frame lengths on

the order of 3G/4G frame sizes. For example, reducing the number of samples to 5K samples

would be on the order of a 3G/4G frame size, while reduction further to 500 samples would extend

the CSR algorithm to MWC with much shorter coherence times of .5 usec. These reduced frame

size lengths would enable the CSR algorithm to be responsive to faster moving MWC conditions.

Additionally the reduction in frame size would reduce complexity and computational intensity for

the statistical feature recognition process.

1.4.3 HMM Parameter Error Tracking

HMM parameters are derived from offline training data. If the training data is representative of

the input feature stream, then when waveforms with similar statistical features are applied, the

sequence conditional probabilities will approach a value of 1. However, if the first order or second

order statistical feature distributions become different, training data is no longer representative.
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Kalman filters can be utilized to track measured covariance between the training data and the in-

put waveform as an indicator that the training data is no longer representative. Given this error a

snapshot of new data can be stored and utilized to train a new set of statistical features. Investiga-

tion into Kalman filters for tracking HMM parameter error to trigger new training data sets would

enable the CSR to be adaptive to new MWC environments.

1.4.4 HMM Computation Complexity

HMM computation of sequence conditional probabilities is based on maximum likelihood algo-

rithms which require O(N2T ) computations for each feature where N is the number of states and

T is the length of the time record. This is computationally intensive and makes HMMs expensive

to implement. Investigation into equivalent recursive implementations of the maximum likelihood

sequence conditional probability process would reduce the complexity of the CSR algorithm en-

abling scaling to larger state systems, and larger feature sets.

1.4.5 Feature Soft State Decison Combining

For the enhanced version of the CSR algorithm, multiple parallel waveform features are extracted.

A sequence state conditional probability is computed for each input feature. The enhanced version

of the CSR algorithm gnerates a hard state decision for each feature, then combines these parallel

feature state decision into a single MWC state estimate for each time block. Further investigation

into combining the parallel feature soft decision rather than hard decisions would improve the

accuracy of each timeblock estimate.

1.4.6 Recursive Algorithm

The current version of the CSR algorithm works on batches of input data files. This architecture

limits the current version to offline applications. Further investigation into recursive versions of
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the CSR algorithm would enable online versions of the algorithm which would not be limited to

batch processing.

1.4.7 Cognitive Processing Integration

The output channel state stream provides MWC environmental awareness regarding channel co-

herence and noncoherence states. These outputs can be input to communication state based control

processes which could enable adapting between signal processing methods based on current chan-

nel coherence state. Investigation of a communication control system that integrates the CSR algo-

rithm for environmental awareness would demonstrate increased performance robustness, resource

efficiency and improved latency.

1.4.8 Waveform State Model

Investigation into extending the CSM to a waveform state model. This could provide the basis for

waveform state recognition (WSR) algorithms.

1.4.9 Waveform State Recognition

Investigation into extending the CSR algorithm to waveform state recognition. Waveform state

recognition could open approaches for wired or wireless waveform signature, modulation, coding,

error, distortion recognition.
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Chapter 2

Baseline CSR Algorithm

There are two versions of the CSR algorithm; the first is a baseline version utilized for proof-

of-concept (POC) verification. It serves to prove that the CSM and CSR are feasible. A second

enhanced version includes additional feature extraction methods, parallel state likelihood estima-

tion, and hard decision combining, to improve state recognition accuracy sensitivity and specificity.

This chapter analyzes the baseline CSR algorithm by defining architecture, system, data, and ana-

lytical models at four levels of detail.

2.1 Tier 0 Analysis

This Section will describe the baseline algorithm first and lowest level of detail. Subsequent sub-

sections will embellish additional details.

2.1.1 Architecture

The CSR algorithm architecture shown in Figure 2.1 contributes environmental awareness to CPA

by recognizing MWC hidden coherent nonselective and noncoherent selective states from the ob-

servable received waveform. The CSR algorithm relies upon state-based statistical feature recog-

nition HMMs to produce blind MWC hidden state estimates (without the aid of online training
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Figure 2.1: CSR Algorithm Architecture

sequences or pilot tones). Note that at present the CSR algorithm is an independent process which

provides channel sensing that produces environmental awareness as an input to the mobile cogni-

tive transceiver. The cognitive TXR and communication control processes are outside the scope of

the CSR algorithm. In the future the CSR algorithm could be integrated directly into the cognitive

TXR.

2.1.2 Data Model

Referring to Figure 2.2, the input can be described as a vector of complex waveform samples

defined by equation (2.1)

WSmn =

WS11 WS12 · · · WS1Ntot

WS21 WS22 · · · WS2Ntot

 , (2.1)
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Figure 2.2: Tier 0 System Model

with each waveform sample defined as WSmn ∈ R, and WSmin <WSmn <WSmax.

The following parameter definitions apply:

Minimum waveform amplitude = WSmin,

Maximum waveform amplitude = WSmax,

R = Set of Real Numbers,

I/Q component index = m=

 1 f or wave f orm symbol real component

2 f or wave f orm symbol imaginary component
,

Waveform sample index = n =

{
0 1 · · ·Ntot

}
,

Input waveform sample rate = fs > 2∗ fm,

Input waveform maximum frequency component = fm,

Input waveform sample period = Ts =
1
fs

,

Total number of waveform samples = Ntot ,

Total observation period = Ttot = Ntot ∗Ts,

Total number of samples in a waveform block = Nblk,

Total number of waveform blocks = kblk =
Ntot
Nblk

,

Waveform block period = Tblk,

Waveform block sample rate = fblk =
1

Tblk
= 1

Nblk ×Ts
= fs

Nblk
,
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Waveform block stream = WBk =

[
WB1 WB2 · · · WBkblk

]
,

Waveform block index = k =

{
0 1 kblk

}
,

Waveform sample blocks = BSi j =

BS11 BS12 · · · BS1Nblk

BS21 BS22 · · · BS2Nblk

,

I/Q component index = i =

 1 f or block symbol real component

2 f or block symbol imaginary component
,

Block sample index = j =

{
0 1 Nblk

}
.

Again referring to Figure 2.2, the output is a sequence of channel state estimates (CSE) defined by

equation (2.2),

ĈSEk =

[
ĈSE1 ĈSE2 · · · ̂CSENcse

]
. (2.2)

The following parameter definitions apply:

CSEx ∈ N and 0 <CSEx < Ncs,

N = Set o f Natural Numbers,

Total number of channel states = Ncs,

Total number of channel state estimates = Ncse = kblks =
Ntot
Nblk

,

Channel state estimate sample rate = fcs = fblk = wave f orm block sample rate = fs
Nblk

,

Total waveform samples in a block = Nblk,

Waveform block index = k =

{
0, 1, . . . kblk

}
,

Channel state estimate period = Tcs =
1

fblk
= Tblk.

2.1.3 Analytical Model

The analytical model defines a transfer function in equation (2.3) such that is possible to compute

the output channel state estimate sequence on a floating point or a fixed point processor given the
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Figure 2.3: Tier 1 Architecture

input waveform sequence. The Tier 0 analytical process can be expressed as the product of the

Tier 1 subprocesses where: 1) CSR(. . .) is a function defined in either the time or the frequency

domain; 2) f (. . .)is a function based on the feature extraction (FE) process; 3) g(. . .)is a function

based on the state likelihood (SL) process; and 4) h(. . .)is a function based on the state decision

(SD) process. Each of these functions will be defined in the Tier 1-3 analytical models to follow.

CSR0(. . .) =
ˆCSEk

WSmn
= f (FE)∗g(SL)∗h(SD). (2.3)

2.2 Tier 1 Analysis

This Section will analyze the baseline algorithm second level of detail.

2.2.1 Architecture

The Tier 1 architecture shown in Figure 2.3 comprises three subprocesses: 1) feature extraction

(T1:1), 2) state likelihood estimation (T1:2), and 3) state decision estimation (T1:3). The fea-

ture extraction (FE) process transforms the input envelope magnitude into a sequence of waveform

feature vectors (WFV) via a histogram approximation method. The state likelihood estimation pro-

cess transforms the WFV into a sequence of state likelihood estimate (SLE) vectors via a statistical

feature recognition HMM. The state decision estimation (SDE) process transforms the SLE vector

into a sequence of channel state estimates (CSE) with maximum likelihood sequence estimation

methods. All these processes operate at the waveform block rate.
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Figure 2.4: Feature Extraction System Model

Figure 2.5: State Likelihood Estimate System Model

Waveform Feature Extraction

The FE process (T1:1) shown in Figure 2.4, provides a method for extracting the input waveform

magnitude PDF.

State Likelihood Estimation

The state likelihood estimation process (T1:2) shown in Figure 2.5, produces a sequence of SLE

which defines how well the input WFV compares to the state sequence memory of the trained

HMM. The SLE contains a vector of likelihood estimates, one for each hidden state. Each SLE

indicates how likely the input WFV agrees with each training hidden state sequence. For N hidden

states, the SLE will contain N parameters. For example, if the waveform sample block is actually

from state 1, then you would expect a high likelihood for the channel state 1 parameter and low

likelihood for all other channel state parameters.
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Figure 2.6: State Decision Estimation System Model

State Decision Estimation

The state decision estimation process (T1:3) shown in Figure 2.6, selects the most likely channel

state. It evaluates each of the input SLE vectors and identifies the maximum likelihood state. The

state decision estimation process includes methods for sorting and selecting the maximum likely

state within each SLE vector.

2.2.2 Data Model

Feature Extraction

Referring to Figures 2.3 and 2.4, the output of the baseline FE process is a sequence of WFV each

containing a complex envelope magnitude PDF estimate defined as equation (2.4)

WFV =

[
ĈEM1ĈEM2 . . .ĈEMkblk

]
. (2.4)

The following parameter definitions apply:

Waveform block index = k,

Total number of waveform blocks = kblk,

43



Channel state estimation period = Tcs =
1

fblk
= Tblk,

Complex envelope magnitude relative frequency = ̂CEM j ∈ N,

where CEMminbin < ̂CEM j <CEMmaxbin,

CEM bin index = j,

Waveform block rate = fblk,

Waveform block period = Tblk,

Symbol Period = Ts,

Input waveform sample rate = fs,

Natural numbers = N,

CEMminbin = Minimum bin index, and

CEMmaxbin = Maximum bin index.

State Likelihood Estimation

The output of the state likelihood estimation process is a state likelihood vector (SLV) comprising

one SLE for each WFV. The SLV is defined by equation (2.5)

SLV =

[
ŜLE1 ŜLE2 · · · ̂SLEkblk

]
. (2.5)

The following parameter definitions apply:
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Waveform block index = k,

Total number of State Likelihood Estimates = kblks = NSLE ,

Waveform block rate = fblk,

State Likelihood Estimates = SLEk =

[
Ŝ1E Ŝ2E · · · ̂SNcsE

]
,

State Likelihood Estimate = ŜLE ∈ R and 0≤ ŜLE ≤ 1, and

Number of channel states = NCS.

State Decision Estimation

The output of the state decision process is a state decision vector (SDV) that includes a sequence

of SDE, one for each waveform block, defined by equation (2.6)

SDV =

[
SDE1 SDE2 · · · SDENSD

]
. (2.6)

The following parameter definitions apply:

Natural numbers = N,

State decision estimate = SDE = SDEk ∈ N, 1≤ SDEk ≤ NCS,

State decision estimate index = k, 1 < k < NSD,

Number of possible channel states = NCS,

Total number of state decision estimates = NSD = kblk.
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Figure 2.7: Tier 2 Architecture

2.3 Tier 2 Analysis

This Section will analyze the baseline algorithm third level of detail.

2.3.1 Architecture

The Tier 2 architecture, shown in Figure 2.7, comprises five subprocesses: 1) waveform PDF

estimation (T2:1), 2) state likelihood parameter estimation (T2:2), 3) state likelihood estimation

(T2:3), 4) likelihood rank order (T2:4), and 5) likelihood maximum selection (T2:5).

Waveform Magnitude Estimation

Referring to Figure 2.7, the CEM process (T2:1) shown in Figure 2.8, estimates the CEM PDF.
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Figure 2.8: Complex Envelope Magnitude Distribution Estimation

State Likelihood Estimation

Referring to Figure 2.7, the feature state likelihood estimator (T1:2), shown in Figure 2.9, pro-

duces a SLE for each channel state. To implement the CSM, which has five defined coherent

nonselective and noncoherent selective states, a trained HMM will generated five SLEs for each

input waveform block. The baseline state likelihood estimator process includes two subprocesses:

1) state likelihood parameter (SLP) estimator, and 2) state likelihood estimator. An HMM requires

a set of memory parameters estimated from an associated training sequence that has statistics sim-

ilar to the operational waveform sequence. The output of the SLP estimation process includes an

HMM state transition and output probability matrix which define how each hidden state is likely

to transition to the next state and also how likely the output value is given the current hidden state.

The SLP process relies upon a common dynamic programming algorithm, however the training

sequence for each state is required to be unique. The output of the SLP estimator is a pair of

transition and output probability matrices. These parameters formulate the HMM memory and are

required by the HMM to implement a common ML sequence estimation algorithm applied to the

operational sequence for state likelihood estimation. There are two inputs to the state likelihood

estimation process: 1) state likelihood parameters, and 2) operational waveform sequences. The

output is an estimate of the likelihood that the input sequence statistics match the statistics of the

HMM training sequence.
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Figure 2.9: Channel Feature State Likelihood System Model

Figure 2.10: State Likelihood Parameter Estimation System Model

State Parameter Estimation

Referring to Figure 2.9, the SLP estimation process (T2:2) shown in Figure 2.10, estimates the

state likelihood parameters for each HMM. The SLP estimation input is an offline sequence of

training symbols that are statistically similar to the expected operational sequence.
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Figure 2.11: State Likelihood Estimation System Model

Figure 2.12: State Decision Estimation System Model

State Likelihood Estimation

Referring to Figure 2.9, the Tier 2 state likelihood estimation method (T2:3) shown in Figure 2.11,

estimates the likelihood that the input sequence matches the trained HMM hidden state sequence.

State Decision Estimation

The Tier 2 state decision estimator (T1:3) process shown in Figure 2.12, comprises two subpro-

cesses: 1) rank order state likelihood, and 2) select the maximum likelihood. Referring to Figure

2.12, the CSE is selected as the most likely state based on the largest SLE provided by the state

likelihood estimator.
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Figure 2.13: Likelihood Rank Order System Model

Figure 2.14: Likelihood Maximum Selection System Model

Likelihood Rank Order Referring to Figure 2.12 and Figure 2.13, the Tier 2 rank order likeli-

hood method (T2:4) sorts the input state likelihood estimates into ascending order. The output of

this function is a sequence of SLE that have been reorganized into ascending order.

Likelihood Maximum Selection System Model Referring to Figure 2.12 and Figure 2.14, the

Tier 2 select maximum likelihood method (T2:5) selects the maximum SLE. The output of this

function is a sequence of the most likely CSE.

2.3.2 Data Model

Waveform Magnitude PDF Feature Extraction

The CEM PDF estimation output is a sequence of CEM samples CEMx quantized into a set of

characters Cx ∈
[
C1 CNchar

]
where Cx is a member of the character alphabet, and Nchar is the
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number of characters in the alphabet, given Â j ∈ R, and 0 < Â j < Amax. Each character in the

alphabet is assigned a key index to each equally sized amplitude bins that partition the amplitude

range between 0 and Amax. The bin index size = Amax
Nchar

and bin index j is the bin number where

A j−1 < A j < A j+1.

State Parameter Estimation

The output of the SLP estimation process is a set of HMM memory parameters defined by three

matrices: 1) initial probability, 2) transition probability, and 3) output probability. The initial

probability matrix defines the initial state probability occurring at t0 = 0 . The initial probability

matrix is defined by equation (2.7),

Pi =

[
1 0 0 0 0

]
, (2.7)

where the baseline SLE process is assumed to be initialized in state 0. The transition probability

matrix is defined by equation (2.8),

Pt =



α11 α12 α13 α14 α15

α21 α22 α23 α24 α25

α31 α32 α33 α34 α35

α41 α42 α43 α44 α45

α51 α52 α53 α54 α55


, (2.8)

describes the transition probabilities between the hidden states. The parameter αmn determines

the likelihood of a transition from state m to state n. The output probability matrix is defined by

equation (2.9),

Pt =


ε11 · · · ε1Nchar

... . . . ...

εNCS1 · · · εNcsNchar

 , (2.9)
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describes the probability of an observed output symbol given a particular state. The parameter εxy

defines the probability that an observed output symbol Cy in an alphabet Nchar given the current

state of the system.

The following definitions apply:

εxy ∈ R , where R is the set of real numbers,

y ∈
[

1 . . . Nchar

]
, where Nchar is the number of characters in the output alphabet,

x ∈
[

1 . . .Ncs

]
, where Ncs is the number of channel states in the HMM,

Cy ∈
[
C1 . . . CNchar

]
, where Cx is a character in the output symbol alphabet.

Rank Order Likelihood The output of the rank order likelihood (ROL) process is a SLV where

each SLE element has been rank ordered in ascending order of magnitude as defined in equation

(2.10),

SLEk =

[
Ŝ1E Ŝ2E · · · ̂SNCSE

]
, (2.10)

where Ŝ1E < Ŝ2E < · · ·< ŜNCS.

Select Maximum Likelihood Data Model The output of the select maximum likelihood (SML)

process is a CSE which is the maximum SLE previously defined in the Tier 0 data model.

2.4 Tier 3 Analysis

This Section will analyze the baseline algorithm fourth level of detail.

2.4.1 Architecture

The Tier 3 architecture shown in Figure 2.15 comprises five methods: 1) complex envelope mag-

nitude pdf extraction (T3:1), 2) Viterbi and Baum Welch likelihood model parameter estimation
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Figure 2.15: Tier 3 Architecture

(T3:2), 3) forward state likelihood estimation (T3:3), 4) rank order likelihood (T3:4), and 5) select

maximum likelihood (T3:5).

Waveform Magnitude Distribution Estimation

Referring to Figure 2.15, the CEM PDF extraction method shown in Figure 2.16, estimates the

MWC CEM distribution. This method implements a histogram algorithm by accumulating CEM

relative frequency in each equally sized magnitude bins. The output of this method is a sequence

of CEM distribution estimates; one for each input waveform block.
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Figure 2.16: Complex Envelope Magnitude Distribution System Model

Figure 2.17: State Parameter Estimation System Model

State Parameter Estimation System

Referring to Figure 2.15, the SLP estimation (T3:2) system model shown in Figure 2.17, estimates

the HMM state likelihood parameters. The SLP estimation output includes both a transition, and

output probabilities that defines the state sequence memory for the feature recognition HMM.

This method implements either or both the Viterbi and Expectation Maximum (EM) algorithm

to produce the HMM parameters. The Viterbi algorithm is applied if the input state sequence is

available in addition to the symbol sequence while the EM algorithm is applied if only the symbol

sequence is available. Additionally the EM algorithm can be iteratively applied to the output of the

Viterbi process to reduce the mean squared error of the parameter estimates.

State Likelihood Estimation

Referring to Figure 2.15, the state likelihood estimate system model (T3:3) shown in Figure 2.18,

computes a SLE for each hidden state with the forward ML algorithm. The inputs to this method
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Figure 2.18: State Likelihood Estimation System Model

Figure 2.19: Likelihood Rank Order System Model

include: 1) transition probability matrix, 2) output probability matrix, and 3) operational WFV.

The output of this function is a sequence of SLE.

Rank Order Likelihood Referring to Figure 2.15, the ROL method (T3:4) shown in Figure 2.19,

sorts the input SLE into ascending order. The output of this method is a sequence of sorted SLE.

Select Maximum Likelihood Referring to Figure 2.15, the SML method (T3:5) shown in Figure

2.20, selects the maximum SLE.
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Figure 2.20: Select Maximum State Likelihood System Model

2.4.2 Analytical Model

The purpose of this mathematical model is to express the baseline CSR process behavior in terms

of mathematical operators such that its transfer function can be implemented with a floating or

fixed-point processor.

Waveform Feature Extraction

Given that the input is a MWC random process, first order statistics are useful for characterization

and a histogram estimation algorithm will be utilized to estimate the CEM frequency distribution.

The mathematical model for estimating the CEM distribution is shown in equations (2.11 - 2.13).

The histogram can be defined by equation (2.11),

N =
j

∑
i=1

Nbin. (2.11)

Where N is the total number of observations, j is the total number of bins, and Nbin are the number

of observed discrete complex envelope magnitude |R(kT )| samples in each bin. The number of

bins can be defined with a number of alternative approaches. For this CEM distribution, bin width
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Bwidth is defined by equation (2.12),

Bwidth =
Rmagmax−Rmagpmin

k
. (2.12)

Where k is an arbitrary number of bins chosen to produce a smooth and continuous distribution,

Rmagmax is the maximum CEM observation, and Rmagmin is the minimum CEM observation. Next,

distribute the CEM observations into each bin and accumulate the total number of observations

(Nbin) in each bin. Finally, normalize the magnitude of each bin as defined in equation (2.13),

f =
Nbin

N
, (2.13)

such that the total area under the curve is equal to one by dividing the total number of observations

in each bin by the total number of observations such that the area of each bin approaches the

percentile of observations in that bin. With these constraints, the histogram approaches an estimate

of probability distribution. Given that a block of MWC random complex symbols are provided as

input to this process, the output is an estimate of the waveform CEM distribution for each input

block. The mean magnitude level can be estimated from the distribution with equation (2.14),

µ̂ =
1
j

j

∑
i=1

fi. (2.14)

Furthermore, the variance of the received waveform complex envelope is estimated from the dis-

tribution with equation (2.15),

σ̂2 =
1
j

j

∑
i=1

( fi− µ̂)2. (2.15)

Refer to Appendix Section A.11.2 for additional background material.
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State Likelihood Parameter Estimation

The discussion of HMMs will be based on widely cited introductory works by Durbin [9] and Ra-

biner [1]. Introduction to the difference between state sequences and symbol sequences is given

by Rabiner [1]. For the MWC state recognition algorithm, states are defined by the CSM and

hidden state sequences correspond to the presence of MWC coherent nonselective or noncoher-

ent selective states. The observed symbol sequences correspond to the MWC received waveform

symbols.

The 5 elements of an HMM [1] are defined as:

1. The number of hidden states in the model (Ns) . The states are defined as S = {S1,S2, · · ·SNs}

and the state probability at time t = qt . For the CSR algorithm, the CSM defines 5 channel

coherent and selective states, therefore, the number of HMM states is five.

2. The number of discrete observable symbols per state is M; the character alphabet size. The

individual symbols are defined as V = {v1,v2, · · ·vM} . For the CSR algorithm, waveform feature

distributions are estimated with a resolution equal to k, the size of each histogram bin, and M has

been fixed at 200.

3. State transition probability matrix A =
{

ai j
}

, where ai j = P
[
qt+1 = S j

∣∣qt = Si
]

, and 1 ≤

i, j ≤ N.

4. Observed symbol probability distribution in state j is defined by B =
{

b j(k)
}

where b j (k) is

defined by equation ( 2.16),

b j (k) = P
[
νk at t|qt = S j

]
, (2.16)

where 1≤ j ≤ Ns, and 1≤ k ≤M.

5. Initial state distribution πi = P [q1 = Si] where 1≤ i≤ Ns.

Given values for Ns, M, A, B, and π , a generative HMM is defined, and an observed output

sequence O = {O1,O2, · · ·OT} where each observation Ot is one of the symbols from V, and T is

the number of observations in the sequence [9].

The symbol sequence is assumed to be from a Markov process such that each state is dependent
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only on the previous state P(Si = qt |Si−1 = qt−1). The transitions are defined by the transition

matrix which specifies the probability of starting in state Si and ending in state S j. Because the

hidden states are not directly connected to the symbol sequence, the output matrix defines the

conditional probability of the observed symbol given the current state.

HMM parameter estimation methods can be divided into two groups 1) parameter estimation when

both the symbol sequence and an associated state sequence is known, and 2) parameter estimation

when the symbol sequence is known but the associated state sequence is unknown [9].

For the first case, when the associated state sequence is known, a closed form of the ML algo-

rithm is utilized. In this case, the number of times each particular state transition or a particular

output occurs is enumerated in the training sequence. Each transition probability parameter can be

computed based on number of observed transitions from state i to state j Ai j defined by equation

(2.17),

ai j =
Ai j

∑ j′ Ai j′
, (2.17)

where the number of observed transitions is normalized by the sum of all transitions from state i.

Each output probability parameter can be computed as the number of symbol observations b from

state i Ei(b) defined by equation (2.18),

ei (b) =
Ei(b)

∑b′ Ei(b
′
)
, (2.18)

where the the number of observed symbols is normalized by the sum of all observed symbols.

Maximum likelihood estimators are vulnerable to errors given overfitting when insufficient

training data is available. Another problem is encountered if a state Si is not observed in a training

sequence resulting an indeterminant case when 0
0 occurs. To avoid this case, pseudo-counts are

added to the transition and output probability matrices as defined in equations (2.19) and (2.20),

Ai j = number of transitions i to j in training data+ ri j, (2.19)
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E j (k) = occurances of the symbol from state k in training data+ r j(k). (2.20)

The pseudo counts ri j and r j(k) reflect prior knowledge about the probability values[9].

In the second case, when state sequence information is unknown, parameters are estimated by one

of two recursive approaches [9]. The first is the Baum-Welch EM algorithm and the second is the

Viterbi algorithm. The Baum-Welch which is discussed in Rabiner’s tutorial, will be provided in

the paragraphs that follow. Following the Baum-Welch discussion, the Viterbi algorithm as

described by Durbin [9] will be provided.

There is no known way to analytically solve for the HMM parameters which maximizes the

probability of the observation sequence. Given any finite observation sequence as training data,

there is no optimal way of estimating the HMM parameters. However, by choosing λ such that

P(O|λ ) of the observed symbol sequence is locally maximized can be accomplished using

iterative procedures such as the Baum-Welch method, or equivalently the EM method [43].

Rabiner [1] overviews the Baum-Welch algorithm which is presented below. Refer to Figure 2.21

and equation (2.21) for the computation of joint probability of being in state Si at time t and being

in state S j at time t+1,

ζt (i, j) = P
(

qt = Si,qt+1 = S j
∣∣O,λ

)
. (2.21)

Here ζt (i, j) can be defined in terms of forward αt (i) and backward βt+1( j) variables as defined

in equation (2.22),

ζt (i, j) =
αt (i)ai jb j (Ot+1)βt+1( j)

P(O|λ )
, (2.22)

and equation (2.23),

ζt (i, j) =
αt (i)ai jb j (Ot+1)βt+1( j)

∑
Ns
i=1 ∑

Ns
j=1 αt (i)ai jb j (Ot+1)βt+1( j)

. (2.23)

The transition probability parameter computation is defined below in equations (2.24) to (2.28)

while the output probability parameter computation is defined in equation (2.29).
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Figure 2.21: Joint Probability of State Si at Time t and State Sj at Time t+1[1]

The probability of being in state Si at time t, given the observation sequence and the model is γt(i)

defined by equation (2.24),

γt (i) =
Ns

∑
j=1

ξt (i, j) . (2.24)

If γt(i) is summed over the time index t, a quantity which can be interpreted as the expected number

of times that state Si is visited as defined in equation (2.25),

T−1

∑
t=1

γt (i) = expected number of transitions from Si, (2.25)

or equivalently, the expected number of transitions made from state Si (if the time slot t = T is

excluded).

Similarly, summation of ζt (i, j)over t (from t = 1 to t = T-1) can be interpreted as the expected

number of transitions from state Si to state S j as defined by equation (2.26),

T−1

∑
t=1

ξt (i, j) = expected number of transitions from Si to Si . (2.26)

The expected number of times in state Si is defined by equation (2.27),
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π̂i = expected f requency (number o f times) in state Si at time (t = 1) = γ1(i). (2.27)

The transition probabilities are defined by equation (2.28) and the output probabilities are defined

by equation (2.29),

âi j =
expected number o f transitions f rom state Si to S j

expected number o f transitions f rom state Si
=

∑
T−1
t=1 ξt(i, j)

∑
T−1
t=1 γi(i)

, (2.28)

b̂ j(k) =
expected number o f times in state j and observing symbol νk

expected number o f times in state j
=

∑
T
t=1 γt( j) sub ject to Ot = νk

∑
T
t=1 γt( j)

. (2.29)

The Baum Welch algorithm provides a method for iterative restimation of HMM parameters de-

fined as follows. A set of equations for estimation of λ̂ =
{

π̂, Â, B̂
}

is provided in equations (2.25)

to (2.29). The initial HMM estimation is defined as λ which is utilized as the right hand sides of

equations (2.28) to (2.29). The HMM reestimation defined as λ̂ is utilized as the left hand sides of

equations (2.28) to (2.29). It has been proven by Baum and Welch that either: 1) the initial model

λ defines a critical point of the likelihood function in which case λ = λ̂ , or 2) λ is more likely than

model λ̂ in the sense that P
(

O| λ̂
)
> P(O|λ ) (that is a new model has been found from which the

sequence is more likely to have been produced). If the estimation is iterated, the probability of O

being observed from the model can be improved until a point of diminishing return is reached. The

final result is considered a ML estimate of the model. This forward backward algorithm suffers

from convergence to local maximum, and given complex optimization surfaces with many local

maxima, it is difficult to achieve global maximums.
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The Baum Welch algorithm utilizes the forward variable and the reverse variable to estimate the

HMM parameters. The forward variable αt (i) = P(O1O2 · · ·Ot ,qt = Si|λ ) , is defined as the

probability of the partial observation sequence, O1O2 · · ·Ot ending in state Si at time t, given the

model λ . An inductive solution for the forward variable is provided in equations (2.30) to (2.32).

Initialization of the forward probability as the joint probability of state Si and the initial observation

O1 is defined in equation (2.30),

αt (i) = πibi (O1) , 1≤ i≤ Ns. (2.30)

Referring to Figure 2.23 and equation 2.31 for the computation of the partial observation forward

probability. This equation defines how the state S j can be reached at time t+1 from the Ns possible

states Si, where 1≤ i≤Ns at time t. Since αt(i) is the probability of the joint event that O1O2 · · ·Ot

are observed, and the state at time t is Si , the product αt(i)ai j is the probability of the joint event

that O1O2 · · ·Ot are observed, and state S j is reached at time t+1 via state Si at time t. Summing

this product over all the possible states Si, where 1 ≤ i ≤ Ns at time t, results in the probability of

S j at time t+1 with all the previous partial observations. Given S j is known, αt+1( j) is obtained

by accounting for observation Ot+1 in state j by multiplying by the probability b j (Ot+1). The

computation in equation (2.31) is completed for all states j, where 1 ≤ j ≤ Ns for a given t, and

iterated for t = 1,2, · · · ,T −1,

αt+1 ( j) =

[
Ns

∑
i=1

αt(i)ai j

]
b j (Ot+1) ,1≤ t ≤ T +1, 1≤ j ≤ Ns. (2.31)

Termination provides the probability of the partial observed sequence, O1O2 · · ·Ot , given the

model λ , as defined in equation (2.32) which is the summation of the forward variables αT (i),

P(O|λ ) =
Ns

∑
i=1

αT (i). (2.32)

Computation of the forward variable requires on the order of N2
s T computations.
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S

Figure 2.22: Computation of Partial Observation Forward Probability [1]

The backward variable is βt (i) = P(Ot+1Ot+2 · · ·OT ,qt = Si|λ ) which is the probability of the

partial observation sequence from time t+1 to the end of the sequence, given state Si at time t and

the model λ . An inductive solution for the backward variable is provided in equations (2.33) to

(2.34). Initialization of the reverse probability is arbitrarily set to 1 for all i as defined in equation

(2.33),

βT (i) = 1, 1≤ i≤ Ns. (2.33)

For computation of the reverse partial sequence observation, refer to Figure 2.23 and equation

(2.34). It shows that in order to have been in state Si at time t, and to account for: 1) the observation

sequence from time t+1 backward, 2) all states S j at time t+1, 3) transitions from Si to S j (the

αi j term), 4) the observation (Ot+1(the b j (Ot+1) term), and 5) the remaining partial observation

sequence from state j, the βt+1( j)term must be defined as in equation (2.34),

βt (i) =
Ns

∑
j=1

ai jb j (Ot+1)βt+1 ( j) , t = T −1,T −2, · · · ,1,1≤ i≤ Ns. (2.34)

Computation of the backward variable requires on the order of N2
s T computations.

The second HMM parameter estimation method when the hidden state sequences are unknown
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Figure 2.23: Computation of Partial Observation Reverse Joint Probability [1]

is provided by the Viterbi algorithm. Given a sequence of observed symbols, it is desirable to

identify the underlying sequence of hidden states. The process of identifying the hidden state

sequence associated with an observed symbol sequence is called decoding. The Viterbi dynamic

programming algorithm is the most common algorithm utilized for decoding. There is more than

one state sequence which could produce the same observed symbol sequence, however, they have

different probabilities. The most probable path S∗ = argmax
q

P(x,q) can be identified recursively.

Suppose the probability qk(i) of the most probable path ending in state k with observation I is

known for all the states k. Then these probabilities can be calculated for the observation xi+1 as

defined in the full Viterbi parameter estimation algorithm shown in equations (2.35) to (2.39). All

sequences start in state 0 so the initial condition is that q0 (0) = 1. Maintaining reverse pointers,

the actual state sequence can be found by backtracking from the end state to the beginning state.

Initialization q0 (0) = 1,qk (0) = 0 f or k > 0 begins with equation (2.35),

qi(i+1) = ei(xi+1)max
j

(
q j (i)ai j

)
. (2.35)

Recursion (i = 1 . . . . . .L) continues with equation (2.36),

qi (i) = e j (xi) = max
k

(
qk (i−1)ai j

)
. (2.36)
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Backward pointers are defined by equation (2.37),

ptri (i) = argmax
k

(
qk (i−1)ai j

)
. (2.37)

Termination is defined by equation (2.38),

P(x,S∗) = max
k

(qk (L)ak0) ;S∗L = argmax
k

(qk (L)ak0) . (2.38)

Traceback i = L . . . . . .1) is defined by equation (2.39),

S∗i−1 = ptri(S∗i ). (2.39)

Note that ak0 is an assumed end state which can be dropped if the end state is never reached.

The Viterbi algorithm results in the multiplication of many small numbers which can result in an

underflow; this can be avoided if the computation is completed in log space. This is completed

by log
(
q j(i)

)
which transforms the multiplications to sums so that the numerical computations

remain reasonable. The Viterbi algorithm performs less well than the Baum-Welch, however, it

is widely utilized , and when the HMM is to be utilized for decoding state sequences then it is

effective to estimate the model parameters with the Viterbi algorithm.

State Likelihood Estimation

The state likelihood estimation problem is: given the observational sequence O = O1,O2, · · ·OT ,

and an HMM model λ , how to choose a corresponding state sequence Q = q1,q2, · · · ,qT which

best matches the observed sequence[1]. If optimal is defined as choosing the individual states

which will maximum the correct number of states decoded in the state sequence then γt(i) can be

defined as equation (2.40),

γt(i) = P(qt = Si|O,λ ) . (2.40)
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It is the probability of being in state Si at time t, given the observation sequence O, and the model

λ .

This probability is defined in equation (2.41),

γt (i) =
αt (i)βt (i)
P(O|λ )

=
αt (i)βt (i)

∑
Ns
i=1 αt (i)βt (i)

, (2.41)

as a function of the forward and backward variables provided in equations (2.30) to (2.31) and

(2.33) to (2.34) respectively.

Equation (2.42),

qt = argmax
1≤i≤Ns

[γt(i)] , 1≤ t ≤ T, (2.42)

defines the partial observation sequence O1,O2, · · · ,Ot in state Si at time t with αt(i) . The re-

mainder of the sequence is defined by βt(i) given Ot+1,Ot+2, · · · ,OT and state Si at time t. The

normalization factor provides the condition that
Ns
∑

i=1
γt (i) = 1. Choosing the largest γt (i) enables a

solution for the most likely state qt at time t as defined in equation (2.42). Although this produces

the most likely state at each time t, if the number of state transitions is zero, the criteria becomes

undefined. An alternative is to define the optimum state sequence that maximizes P(Q|O,λ )

which is equivalent to maximizing P(Q, O|λ ). This result can be achieved with the dynamic pro-

gramming Viterbi algorithm defined in equations (2.35) to equation (2.39). The Viterbi algorithm

is similar to the forward variable computation except for substitution of a maximization step (2.38)

for the summation step in equation (2.32).

Rank Order Likelihood

Given that the input is a sequence of MWC SLE, and the output is a permuted stream of rank

ordered SLE, a data sorting algorithm will be utilized to implement this process. Several general

purpose sorting algorithms have been invented which are described by Cormen et al. [44], Press

et al. [45], and Estivill-Castro [46]. Like all algorithms, these algorithms are analyzed by running

time which can be established by the number of program steps and number of iterations. Some
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algorithms are more efficient for shorter input data structures while more advanced algorithms are

more asymptotically efficient for large input data structures. Basic algorithm strategies are incre-

mental while more advanced strategies are based on divide and conquer techniques. Some sorting

algorithms execute without additional memory while others require substantial memory require-

ments. Examples of basic sorting algorithms are Insertionsort and Mergesort while examples of

more advanced sorting algorithms include Heapsort and Quicksort.

Quicksort is a classical sorting algorithm with optimal upper bound of O(n log n) runtime with

worst case runtime upper bound of O(n2) with an input array of n numbers. On average,Quicksort

is more efficient than Heapsort, for long input record lengths by a factor of 1.5 to 2X. Therefore,

Quicksort will be utilized for the CSR algorithm. Estivill-Castro [46] describe Quicksort as a

popular divide and conquer algorithm with a guarantee that in place memory requirements will not

exceed the log of the input array size. Standard Quicksort algorithms do the bulk of the work in the

divide phase bisecting the input array successively until the primitive subarrays are smaller than a

controlled length. After each bisection step, each resultant subarray is sorted in ascending order

before the process is repeated. Variants on the standard Quicksort algorithm seek to avoid worst

case performance through effective choices of the array partition point in rare special cases where

multiple equal valued data keys are adjacent to the divide point.

Cormen [44] describes the Quicksort procedure as follows:

Divide: Rearrange and partition the array A [a · · ·zzz] into two subarrays A [a · · ·q−1]

and A [q+1 · · ·zzz]such that each element of the first subarray is less than or equal to A [q]

and the elements of the second subarray are larger than A [q] .

Conquer: Sort the two subarrays by recursively calling Quicksort.

Combine: Because the subarrays are already sorted, when the subarrays are combined, the orig-

inal subarray is sorted.
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Maximum Likelihood Selection

Given that the input is a sequence of sorted SLE, and the output is the maximum SLE, a maximum

selection algorithm will be utilized to implement this process. Therefore to select the maximum

SLE requires access and extraction of either the first or the last element of the input array.

2.5 Conclusion

The baseline algorithm served as a proof of concept for the channel state model and the channel

state recognition algorithm. Preliminary baseline verification test results provided in Chapter 4 in-

dicate that the channel state model and the channel state recognition algorithm are feasible. While

the verification results are not comprehensive, they suggested, that continued development of the

CSR algorithm could produce significant results. Several enhancements are added to the CSR al-

gorithm in the next Chapter and verification testing in Chapter 4 confirm improved performance

results of the enhanced CSR algorithm.
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Chapter 3

Enhanced CSR Algorithm

Building upon the baseline CSR algorithm described in the previous chapter, this chapter analyzes

the enhanced CSR algorithm by defining architecture, system, data, and analytical models at four

levels of detail.

3.1 Tier 0 Analysis

The Tier 0 system model is shown in Figure 3.1. Given that the Enhanced Tier 0 process first and

lowest level of detail is the same as the baseline Tier 0 process, refer to Section 2.1.

3.2 Tier 1 Analysis

This Section will analyze the enhanced algorithm second level of detail.

Figure 3.1: Tier 0 System Model
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Figure 3.2: Tier 1Architecture

3.2.1 Architecture

Referring to Figure 3.2, the Tier 1 architecture comprises three subprocesses: 1) feature extraction

(T1:1), 2) state likelihood estimation (T1:2), and 3) state decision estimation (T1:3). The FE

process extracts multiple parallel waveform statistical features providing waveform feature

diversity. The state likelihood estimation process produces parallel sequences of feature SLEs.

The state decision estimation process produces sequences of state hard decision estimates (HDE)

and combines them into a sequence of most likely CSE.

Waveform Feature Extraction

Referring to Figure 3.2, the FE system model (T1:1) shown in Figure 3.3, extracts a diverse set of

waveform features. This FE process comprises five statistical feature extraction subprocesses: 1)

complex envelope magnitude PDF, 2) time dispersion PDF, 3) frequency dispersion PDF, 4) time

correlation PDF, and 5) frequency correlation PDF. These features were designed to support the

coherence state model (CSM) and the CSR algorithm which defines MWC states in terms of

coherent nonselective and noncoherent selective states. Time dispersion is a direct indicator of

noncoherent frequency selectivity while frequency dispersion is a direct indicator of noncoherent
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Figure 3.3: Feature Extraction System Model

time selectivity. Heuristic rules of thumb (ROT) suggest that if time dispersion is less than

10-20% of the symbol period, then ISI is minimal, and the MWC behaves as if it were

nondispersive. As time dispersion approaches the symbol period duration, ISI distortion

components increase such that SNR increases will not be effective at improving BER

performance. Heuristic ROT also suggests that if frequency dispersion is less than 10-20% of the

symbol rate, then IFI is minimal, and the MWC behaves as if it were nondispersive. However, as

frequency dispersion approaches the symbol rate, IFI distortion components increase such that

SNR increases become ineffective at improving BER performance.

It is common knowledge that MWC conditions can dynamically transition between coherent,

single time selective, single frequency selective, or dual selective conditions. Referring to Figure

3.4, several notional CSR zones are defined to support discussion about communication power

efficiency, CSM states, and waveform feature extraction processes. These zones are useful to

demonstrate that with MWC state recognition, a broad range of cognitive adaptive state based

communication processing decisions are enabled. These zones provide insight among

performance, resource allocation, and distortion mitigation processing alternatives under dynamic

MWC conditions. Four notional zones are defined: 1) coherent zone representative of AWGN

conditions, 2) SNR mitigation processing zone with coherent minimally dispersive frequency flat

or time flat conditions, 3) distortion mitigation processing zone with single time selective or

single frequency selective conditions, and 4) dual selective conditions. These zones provide

insight regarding adaptive communication performance, resource allocation, or distortion
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Figure 3.4: Channel State Recognition Processing Zones

mitigation processing.

For example, a coherent processing zone can be established at or near the minimal fading boundary

based on CSM state 1 awareness. Under these conditions, the MWC behaves nearly like an AWGN

channel. In this region, SNR performance mitigation processing methods would be effective while

application of distortion methods would result in wasteful or inefficient communication resource

allocations. As a second example, a SNR processing zone can also be established based on CSM

state 2 awareness. Under these conditions, in the absence of distortion, effective adaptive SNR mit-

igation processing selections (i.e. power, coding or processing gain) can be selected to maintain

robust performance. In this zone, application of single distortion mitigation strategies are commu-

nication resource wasteful and inefficient. As a third example, a distortion mitigation processing

zone can be established based on CSM states 3 or 4 awareness (single time or frequency selective

conditions). In the case of MWC ISI distortion, adaptive equalization processing selections will be

effective at maintaining BER performance while SNR mitigation selections are ineffective, com-

munication resource wasteful, and inefficient. As a fourth example, is an irreducible error zone
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Figure 3.5: State Likelihood Estimation System Model

defined at the dual frequency and time selective boundary. This zone can be established based

on awareness of CSM state 5 (dual selective conditions). Attempts to apply SNR and/or single

distortion mitigation processing methods in these conditions are ineffective and result in wasteful

or inefficient application of communication resources. Rather, alternative processing methods de-

signed for dual dispersive conditions, should be selected. In all these cases, CSM state awareness

provides channel state recognition and resulting capabilities to disable ineffective communication

processing and to enable selections of alternative effective communication processing methods

based on current MWC dynamic conditions.

State Likelihood Estimation

The state likelihood estimation (T1:2) system model shown in Figure 3.5 transforms the parallel

input WFV into a SLV comprising a sequence of parallel feature SLEs.

State Decision Estimation

The state decision estimation (T1:3) system model shown in Figure3.6 transforms the parallel

feature SLE sequences into a CSE vector.
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Figure 3.6: State Decision Estimation System Model

3.2.2 Data Model

Waveform Feature Extraction

The waveform FE output is a sequence of WFV defined by equation (3.1),

WFVk =

[
ĈEk T̂ ck B̂Wck D̂Sk D̂Pk

]
. (3.1)

The following parameter definitions apply:

Complex envelope estimate = ĈEk ∈ R,

and 0 < ĈEk <CEmax,

and CEmax is the maximum waveform amplitude,

Time Dispersion Estimate = Delay Spread = D̂Sk ∈ R,

and 0 < D̂Sk < 5Ts,

Frequency Dispersion Estimate = Doppler Spread = D̂Pk ∈ R,

and 0 < D̂Pk < 5 fs,

Tc -Time Correlation Estimate = T̂ ck ∈ R,

and 0 < T̂ ck < 5Ts,

BWc -Frequency Correlation Estimate = B̂Wck ∈ R,

where R is the set of all real numbers,
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and 0 < B̂Wck < 5 fs,

Waveform block index = k, where 0 < k < kblk,

Number of waveform blocks = kblk,

Waveform block rate = fblk,

Waveform sample rate = fs,

Complex envelope estimate sequence = ĈEk =

[
ĈE1 ĈE2 · · · ĈEx Nblk

]
,

Time dispersion delay spread estimate sequence = D̂Sk =

[
D̂S1 D̂S2 · · · D̂SNblk

]
,

Frequency dispersion Doppler spread estimate sequence = D̂Pk =

[
D̂P1 D̂P2 · · · D̂PNblk

]
,

Time Correlation Tc estimation sequence = T̂ ck =

[
T̂ c1 T̂ c2 · · · T̂ cNblk

]
,

Frequency Correlation BWc estimation sequence = ˆBWck =

[
ˆBWcs1 ˆBWcs2 · · · ˆBWcsNblk

]
,

Number of samples per waveform block = Nblk.

On a per feature basis, the Tier 1 state likelihood estimation and the channel state decision estima-

tion process outputs are similar to the baseline data model described in Section 2.2.2.

3.3 Tier 2 Analysis

3.3.1 Architecture

The architecture shown in Figure 3.7 comprises eight subprocesses that have been upgraded from

the baseline architecture. Tier 2 enhancements include: 1) waveform feature extraction

(T2:1,T2:6-T2:9), 2) state likelihood parameter estimation (T2:10), and 3) state likelihood

estimation (T2:11), 4) state decision estimation process (T2:4-T2:5) which will be discussed as

part of the Tier 3 analysis. These waveform features were chosen because they are directly related

to the MWC coherent nonselective and noncoherent selective states defined in the CSM.
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Figure 3.7: Tier 2 Architecture

Waveform Feature Extraction

The FE system model shown in Figure 3.8, transforms the input MWC waveform blocks into a set

of parallel statistical WFVs.

Complex Envelope Distribution Estimation The envelope magnitude estimation model (T2:1)

shown in Figure 3.9, transforms the input MWC waveform blocks into a WFV comprising a se-

quence of CE PDF estimates.

Time Dispersion Estimation

The time dispersion estimation model (T2:6) shown in Figure 3.10, transforms the input

waveform blocks into a WFV comprising a sequence of DS PDF estimates.

Frequency Dispersion Estimation
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Figure 3.8: Feature Extraction System Model

Figure 3.9: Waveform Envelope Distribution Estimation System Model

Figure 3.10: Time Dispersion Estimation System Model
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Figure 3.11: Frequency Dispersion Estimation System Model

Figure 3.12: Time Correlation Estimation System Model

The frequence dispersion estimation model (T2:7) shown in Figure 3.11, transforms the input

waveform blocks into a WFV comprising a sequence of DP estimates.

Time Correlation Estimation

The time correlation estimation model (T2:8) shown in Figure 3.12, transforms the input

waveform blocks into a WFV comprising a sequence of Tc estimates.

Frequency Correlation Estimation

The frequency correlation estimation model (T2:9) shown in Figure 3.13, transforms the input

waveform blocks into a WFV comprising a sequence of BWc estimates.

Feature State Likelihood Estimation
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Figure 3.13: Frequency Correlation Estimation System Model

The state likelihood estimation architecture (T1:2) shown in Figure 3.14, transforms the input

parallel WFVs into a SLV comprising a sequence of feature SLE. There are two inputs to each

HMM for this process: 1) HMM training sequences, and 2) operational WFV sequences.

State Likelihood Parameter Estimation

The feature recognition HMM state likelihood parameter (SLP) estimation model (T2:10) shown

in Figure 3.15, transforms the offline feature state training sequence into HMM state transition

and output probability matrices. These training processes are computed prior to operating the

HMM in recognition mode.

Feature State Likelihood Estimation

The feature state likelihood estimation model (T2:11) shown in Figure 3.16, transforms the input

WFV into a sequence of individual feature SLE.

State Decision Estimation

The state decision estimation model (T1:3) shown in Figure 3.17, transforms the parallel SLE

sequences into a combined hard decision estimate (HDE) and then into a sequence of CSEs.
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Figure 3.14: Feature State Likelihood Estimation Architecture

Figure 3.15: State Parameter Estimation System Model
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Figure 3.16: Feature State Likelihood Estimation System Model

Figure 3.17: State Decision Estimation System Model
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Figure 3.18: Timeblock Distribution System Model

Timeblock Frequency Distribution

The timeblock distribution model (T2:4) shown in Figure 3.18, transforms the parallel SLEs into

a sequence of timeblock state relative frequency distribution (RFD) vectors.

Select Maximum

The select maximum likelihood model (T2:5) shown in Figure 3.19, transforms the input

timeblock state RFD vector into a sequence of CSEs.

3.4 Tier 3 Analysis

3.4.1 Architecture

The Tier 3 architecture shown in Figure 3.20, provides the fouth level of detail for the Enhanced

CSR algorithm. This Section highlights the methods for each feature extraction, state likelihood

estimation, and state decision estimation processes.
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Figure 3.19: Timeblock Distribution System

Figure 3.20: Tier 3 Architecture
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Figure 3.21: Complex Envelope Estimation System Model

Waveform Envelope Estimation

The complex envelope estimation method (T3:1) shown in Figure 3.21, estimates the magnitude

and phase of the waveform envelope estimate. The output of this function is a sequence of CEM

and complex envelope phase (CEP) estimates. This method is implemented by applying an

absolute value and an angle functions to each MWC waveform block.

Waveform Time Dispersion Estimation

The time dispersion estimation method (T3:6) shown in Figure 3.22, estimates the magnitude and

phase of the time dispersion estimate (Delay Spread - DS) . The output of this function is a

sequence of time dispersion, or delay spread magnitude (DSM) and DS phase (DSP) estimates.

This is implemented by applying a Fourier transform followed by a frequency domain correlation,

and an inverse Fourier transform followed by an absolute value and an angle functions to each

MWC waveform block.

Waveform Frequency Dispersion Estimation

The frequency dispersion estimation method (T3:7) shown in Figure 3.23, estimates the

magnitude and phase of the frequency dispersion estimate (Doppler Spread - DP). The output of
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Figure 3.22: Time Dispersion Estimation System Model

Figure 3.23: Frequency Dispersion Estimation System Model

this function is a sequence of frequency dispersion, or Doppler spread magnitude (DPM) and DP

phase (DPP) estimates. This method is implemented by applying a correlation followed by an

FFT, absolute value, and angle functions applied to each waveform block.

Waveform Time Correlation Estimation

The time correlation estimation method (T3:8) shown in Figure 3.24, estimates the magnitude and

phase of the time correlation estimate (Coherence Time - Tc). The output of this function is a

sequence of time correlation, or coherence time magnitude (TcM) and Tc phase (TcP) estimates.

This method is implemented by applying a time domain correlation followed by an absolute value

and an angle functions applied to each MWC waveform block.

Waveform Frequency Correlation Estimation
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Figure 3.24: Time Correlation Estimation System Model

Figure 3.25: Frequency Correlation System Model

The frequency correlation estimation method (T3:9) shown in Figure 3.25, estimates the

magnitude and phase of the frequency correlation estimate (Coherence Bandwidth - BWc). The

output of this function is a sequence of frequency correlation, or coherence bandwidth magnitude

(BWM) and BWc phase (BWP) estimates. This method is implemented by applying a Fourier

transform and frequency domain correlation followed by both an absolute value and angle

functions applied to each waveform block.

State Likelihood Estimation

The state likelihood estimation architecture (T3:11) shown in Figure 3.26, generates the feature

SLPs and the SLEs. The output of the offline training process is a transition and output

probability matrices. The output of the online operational process is a sequence of SLE. These
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Figure 3.26: State Likelihood Estimate Architecture

methods are implemented by application of the Baum Welch and the Viterbi algorithms

respectively to the training and operational WFVs.

State Decision Estimation

The state decision estimation process architecture (T1:3) shown in Figure 3.27, transforms the

input SLE into a sequence of HDE, followed by hard decision combining, frequency distribution

estimation, and a select maximum likelihood methods applied to each MWC waveform block.

State Hard Decision

The state hard decision (T3:12) model shown in Figure 3.28, transforms the input feature SLE

into a sequence of timeblock feature state estimates. This method is implemented by applying a

hard decision function to each MWC waveform feature block.
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Figure 3.27: State Decision Estimation Architecture

Figure 3.28: State Hard Decision System Model
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Figure 3.29: Matrix Concatenate System Model

Matrix Concatenation

The matrix concatenation method (T3:13) model shown in Figure 3.29, transforms the input

individual feature state estimate vectors into a sequence of combined feature state vectors. This

method is implemented by application of a matrix concatenation method.

Timeblock State Frequency Distribution

The timeblock state frequency distribution method (T3:14) shown in Figure 3.30, transforms the

input timeblock combined feature state sequence into a sequence of timeblock frequency

distribution vectors. This method is implemented by applying a histogram function to each MWC

waveform block.

91



Figure 3.30: Timeblock Frequency Distribution Architecture

3.4.2 Analytical Model

The purpose of the analytical model is to express the behavior of each method in terms of mathe-

matical operators such that its transfer function can be implemented with a floating or fixed-point

processor. Refer to the Baseline Algorithm analysis in Chapter 2, and the Enhanced CSR

Algorithm system architecture and data models for background for the analytical model.

Waveform Envelope Estimation

Refer to Figures 3.20 and 3.21 for the waveform envelope estimation (T3:1) architecture and sys-

tem model. Given the input waveform samples, the waveform envelope estimation method com-

putes both the complex envelope magnitude and phase. The waveform magnitude and phase were

defined in Chapter 1 and repeated here as equations (3.2) and (3.3) respectively

ybb (t) = z(t) = x(t)+ y(t) = |z(t)|eθ(t) =
√

x(t)+ y(t)eθ(t), (3.2)

θ (t) = tan−1 y(t)
x(t)

. (3.3)

The frequency distribution method is applied to the envelope magnitude and phase by applying a

histogram PDF estimation method previously defined in Chapter 2 and repeated here as equations

(3.4) through (3.6)
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The histogram can be defined by equation (3.4),

N =
j

∑
i=1

Nbin, (3.4)

where N is the total number of observations, j is the total number of bins, and Nbin are the number

of observed discrete waveform envelope magnitude |R(kT )| samples in each bin. For this wave-

form magnitude distribution estimation the bin width Bwidth is defined by equation (3.5),

Bwidth =
Rmagmax−Rmagmin/k. (3.5)

Where k is an arbitrary number of bins chosen to produce a smooth and continuous distribution,

Rmagmax is the maximum received waveform magnitude observation, and Rmagmin is the minimum

received waveform magnitude observation.

Next, distribute the waveform envelope magnitude observations into each bin and accumulate the

total number of observations (Nbin) in each bin. Finally, normalize the magnitude of each bin as

defined in equation (3.6),

f = Nbin/N . (3.6)

Normalize so that the total area under the curve is equal to one by dividing the total number of ob-

servations in each bin by the total number of observations such that the area of each bin approaches

the percentile of observations in that bin. With these constraints, the histogram approaches an es-

timate of probability distribution. The output of this method is a sequence of CEM and CEP

estimates as defined in Section 3.2.2. Refer to Appendix Section A.11.2 for additional background

for second order statistical feature extraction.

Waveform Time Dispersion Estimation Refer to Figures 3.20 and 3.22 for the waveform DS

estimation (T3:6) architecture and system model. As discussed in Chapter 1, time dispersion is

related to coherence bandwidth by an inverse Fourier transform. Additionally, channel coherence
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bandwidth is directly related to waveform frequency correlation. Therefore, the waveform time

dispersion method first applies a Fourier transform, and then a complex autocorrelation, as a wave-

form indicator feature for the coherence bandwidth BWc. Then an inverse Fourier transform is

applied to the BWc estimate to produce the DS result. After these operations, both the delay

spread magnitude and phase frequency distributions are computed as previously defined in Section

3.4.2. The output of this method is a stream of delay spread magnitude and phase estimate vec-

tors at the waveform block rate as defined in Section 3.2.2. Refer to Appendix Section A.11.2 for

additional background for second order statistical feature extraction.

Waveform Frequency Dispersion Estimation Refer to Figures 3.20 and 3.23 for the wave-

form DP estimation (T3:7) architecture and system model. As discussed in Chapter 1, frequency

dispersion is related to time coherence by a Fourier transform. Additionally, channel time coher-

ence is related to waveform frequency domain correlation. Given the input waveform complex

envelope samples, the waveform frequency dispersion method estimates both the frequency dis-

persion magnitude and phase. Therefore, a time domain autocorrelation is computed followed by

a Fourier transform to produce a waveform feature indicator for DP. After these operations, both

the DP magnitude and phase frequency distributions are computed as previously defined in Sec-

tion 3.4.2. The output of this method is a sequence of DP magnitude and phase estimates at the

waveform block rate as defined in Section 3.2.2. Refer to Appendix Section A.11.2 for additional

background for second order statistical feature extraction.

Waveform Time Correlation Estimation Refer to Figures 3.20 and 3.24 for the waveform Tc

estimation (T3:8) architecture and system model. As discussed in Chapter 1, channel coherence

is related to waveform time correlation. Given the input waveform complex envelope samples,

the time correlation method estimates the Tc magnitude and phase. Therefore, a time domain

autocorrelation is computed to produce a waveform indicator feature for Tc. After these operations,

both the Tc magnitude and phase frequency distributions are computed as previously defined in

Section 3.4.2. The time domain correlation was previously defined in Section 3.22. The output of
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this method is a stream of Tc magnitude and phase estimate vectors at the waveform block rate as

defined in Section 3.2.2. Refer to Appendix Section A.11.2 for additional background for second

order statistical feature extraction.

Waveform Frequency Correlation Estimation Refer to Figures 3.20 and 3.25 for the wave-

form BWc estimation (T3:9) architecture and system model. As discussed in Chapter 1, frequency

coherence is related to waveform frequency correlation. Given the input waveform complex enve-

lope samples, the frequency correlation method estimates both the BWcM and BWcP. Therefore, a

frequency domain autocorrelation is computed to produce a waveform indicator feature for BWc.

After these operations, both the BWc magnitude and phase frequency distributions are computed

as previously defined in Section 3.4.2. The output of this method is a sequence of BWc magnitude

and phase estimates at the waveform block rate as defined in Section 3.2.2. Refer to Appendix

Section A.11.2 for additional background for second order statistical feature extraction.

State Likelihood Estimation

State Likelihood Parameter Estimation Referring to Figure 3.26, for the state likelihood pa-

rameter estimation architecture. As discussed in Chapter 1 and Chapter 2 the HMM training pro-

cesses have been defined. These processes for the Enhanced CSR Algorithm for a single feature

are similar to the HMM training processes as defined for the Baseline HMM Algorithm. Refer

to Section 2.4.2 for background and definition of the Enhanced CSR Algorithm SLP analytical

model.

State Likelihood Estimation Referring to Figure 3.26, for the state likelihood parameter esti-

mation architecture. As discussed in Chapter 1 and Chapter 2 the HMM state likelihood estimation

processes have been defined. These processes for the Enhanced CSR Algorithm for a single fea-

ture are similar to the HMM training processes as defined for the Baseline HMM Algorithm. Refer

to Section 2.4.2 for background and definition of the Enhanced CSR Algorithm state likelihood
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Figure 3.31: CSR-Enhanced Tier 3 State Decision Estimation Computations

estimation analytical model.

State Decision Estimation

The state decision computations shown in Figure 3.31, provides a reference for each of the state

decision methods to follow. Refer to Appendix Sections A.11.5 and A.11.6 for additional back-

ground for state decision estimation processes.

State Hard Decision Referring to Figures 3.27, 3.28, and 3.31, the state hard decision method

is defined by equation (3.7) which defines the feature state estimate (FSE) for each input feature.

The hard decision is made as CSi if the input feature state likelihood is greater than 90% likely,

otherwise, FSE is zero. The .90 threshold is arbitrary, and could just as well been established as .98

depending upon the desired accuracy between the operational sequence and the training sequence

statistics.

FSEk =


0 i f SLE < .9

CSi i f SLE >= .9
(3.7)

Matrix Concatenation Referring to Figures 3.27, 3.29, and 3.31, the matrix concatenate method

appends the individual feature states into a single column vector.
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Timeblock State Frequency Distribution Referring to Figures 3.27,3.30, and 3.31, the time

block frequency distribution is achieved by application of the histogram method previously defined

in Section 3.4.2.

Select Maximum Referring to Figures 3.27 and 3.31, the select maximum method is achieved

by selecting the state with the highest highest number of estimates previously defined in Section

3.4.2.

3.5 Conclusion

The enhanced algorithm is established upon the preliminary results discussed in the previous Chap-

ter 3. In this Chapter, the enhanced algorithm has been decomposed into 4 levels of detail. Within

each level analysis of relevant architecture, system, data, and analytical models have been pro-

vided. This effort exposes details of the enhanced CSR algorithm. Verification test results for

the enhanced CSR algorithm are provided in Chapter 4. The test results in Chapter 4 are to be

interpreted consistent with the analysis provided in this chapter.
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Chapter 4

CSR Algorithm Verification

There are two forms of the CSR algorithm. The baseline version serves as a proof of concept proto-

type for feasibility evaluation of the CSM and CSR concepts. The first Section of this chapter will

cover the verification testbed, approach, and test results from evaluation of the baseline version.

The enhanced version of the CSR algorithm is focused on improving limitations discovered in the

POC prototype and also in the published literature. The second Section of this chapter will cover

the verification testbed, approach, and test results from evaluation of the enhanced version.

4.1 Baseline CSR Algorithm Verification

This Section will cover the verification testbed, approach and results for the Baseline CSR Algo-

rithm.

4.1.1 Baseline Verification Testbed

The CSR verification testbed (CVT) shown in Figure 4.1, has been created for testing of MWC

state recognition algorithms. A channel state waveform generator has been designed to provide a

source of calibrated MWC state waveforms. After these are applied to the CSR algorithm the

output CSEs are monitored for verification against the source waveform generator.
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Figure 4.1: CSR Algorithm Testbed

Figure 4.2: Channel State Waveform Generator

State Waveform Generator

The channel state waveform generator (SWG) shown in Figure 4.2, provides a set of MWC state

cases based on waveform characteristics, channel parameters, and source bit streams. The SWG

enables control of channel hidden process parameters and receive waveform characteristics so

that correlated training and operational sequences can be generated for the CSM and the CSR

algorithm. Example CSM state parameters have been enumerated in Table 4.1. Observable

Table 4.1: SWG: Enumerated MWC CSM Cases
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Figure 4.3: MWC Impulse Response with Selective Frequency Response

receive waveform features such as CEM first order statistics and symbol rate are correlated with

channel parameters such as time and frequency dispersion. Each case is applied to the baseline

CSR algorithm with predictable state sequence recognition results. Given an expected output

sequence, performance verification of the baseline CSR algorithms is achievable. Training

waveforms are also produced by the SWG for off-line HMM parameter estimation prior to

operational testing. Random data streams with statistics similar to operational data are generated

for training. Time-variant MWC hidden state sequences are produced for evaluating state

tracking. Management of these parameters enables implementation of statistical relationships

between MWC hidden states and observable waveform statistics. For example in Figure 4.3, the

channel impulse response is shown which provides an indicator of channel time dispersion. A

second example is shown in Figure 4.4 which illustrates the MWC scattering function. A third

example is shown in Figure 4.5, which provides multipath components with associated CIR and

symbol amplitude and phase traces. These waveform and channel features provide sufficient
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Figure 4.4: MWC Scattering Function

Figure 4.5: MWC CIR, Time Variant Frequency Response and Constellation
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information to discriminate MWC states and waveform statistical features which can be

recognized by the CSR algorithms. These channel and waveform features, along with input and

output waveform symbol sequences, and output CSR state sequences are recorded for analysis

and verification. CSR algorithm performance is verified by comparing the experimental CSR

algorithm response to the known response of the SWG. Cause and effect relationships between

CSR algorithm response and SWG MWC state sequences can be experimentally verified.

4.1.2 Baseline Verification Approach

Coherence State Model

For verification of the baseline algorithm, the CSM has been embedded within the memory param-

eters of a CSR HMM. This was accomplished by tailoring the training sequences with statistical

parameters consistent with the CSM. The CSM trained HMM has been tested in the CVT as shown

in Figure 4.1. The intent of this test is to demonstrate the feasibility of HMMs to recognize time-

variant channel states. As described in Chapter 2, the HMM is operated as a ML sequence decoder;

that is, given an observed sequence of symbols, an estimate is generated of the unobserved hidden

state sequence. Recall from Chapter 1 that HMMs have been utilized in several recognition appli-

cations including automatic speech recognition systems. Given sufficient MWC waveform feature

extraction, and statistical training, this verification test demonstrates that a HMM can be extended

to channel state recognition.

Coherence State Cases

SWG symbol sequences with characteristics as defined in Table 4.2 are applied to the CSR HMM

for performance verification. Each test case is designed to represent a state in the CSM.

Sequences of 50k symbols were generated for each case in MATLAB [47] and also in SIMULINK

[47] and the channel output was stored for post processing analysis. Certification that waveform
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Table 4.2: Test Case Definitions

symbol streams are consistent with wireless channel CSM states is critical. Therefore testing on

each waveform sequence has been conducted to verify that specific waveform state and channel

state characteristics are reliable. Figures of merit such as SNR levels, chanel impulse response

(CIR), channel frequency response (CFR), channel scattering functions (CSF), CEM PDF, and bit

error rate (BER) curves have been evaluated to verify the integrity of each waveform sequence.

Waveform Envelope PDF Estimation

Complex waveform magnitude and angle distributions were estimated with a 200 bin histogram.

For case 1 and 2, the magnitude distribution is consistent with a theoretical Ricean magnitude

distribution. The angle distributions had a small variance with means located at 0 and pi radians.

Cases 2-5 had magnitude distributions consistent with cases 1 and 2 as expected. However, the

angle distributions demonstrated greatly increased variance around the means of 0 and pi radians.

This is consistent with dramatic fading effects on phase and minor impacts to waveform magnitude.

Waveform Eb/No Estimation

Eb/No for each test cases was estimated by computing signal power and noise relative to the specified

Eb/No signal level. All test cases produced an estimated SNR and of 10 dB as specified in Table 4.2.
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Waveform Bit Error Rate Computation

Bit error rates were computed by comparing the output data stream to the transmitted bit stream

(Refer to SWG Figure 4.2) and enumerating observed errors. For case 1 and 2, BER curves were

exponential confirming that state 2 assumptions regarding nonselective behavior is valid. Test

cases 3-5 did demonstrate an error floor consistent with more linear BER curves for frequency

selective or time selective channels. All BER tests are consistent with theoretical expected results.

Waveform Channel Impulse Response

Cases 1-5 had CIR delay and gain components consistent (refer to Figures 4.3 – 4.5 for examples)

with each specified channel state in Table 4.2.

Waveform Frequency Response Estimation

The CFR was estimated for each test case (refer to Figures 4.3 – 4.5 for examples) with consistent

results. Case 1-2 demonstrated time invariant CFR however case 2 demonstrated flat frequency fad-

ing as expected for the AWGN and Flat Frequency channels. Test case 3 demonstrated frequency

selective behavior as expected for a frequency selective channel. Test case 4-5 demonstrated time

variant CFR in that for each symbol the CFR was dynamic consistent with a time selective chan-

nel. Test case 4 was a time variant flat frequency response while test case 5 was a time variant

frequency selective channel response. The CFR were all consistent with expected behavior.

Scattering Function Estimation

The CSF is a 3D graphical display of waveform power as a function of delay spread and Doppler

spread. For each test case the Doppler spread and multipath delay components were as specified

in Table 4.3. Channel coherence time and coherence bandwidth were computed based on root

mean square (RMS) time delay spread and maximum Doppler frequency spread as defined in

equation 4.1 to equation 4.5. Case 1 and 2 were designed such that the channel time dispersion is
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Table 4.3: MWC Coherence Time/Bandwidth
Channel BWc and Tccomputed from CSF

Case Channel State Waveform State Computed CBW (Hz) Computed CT (s)
1 AWGN 1 Mbps uncoded BPSK 3.7417e-12 42.3
2 FN+TN 1 Mbps uncoded BPSK 6.3972e-8 42.3
3 FS+TN 1 Mbps uncoded BPSK 6.3972e-7 42.3
4 FN+TS 10 kbps uncoded BPSK 6.3972e-7 4.23e-4
5 FS+TS 10 kbps uncoded BPSK 6.3972e-4 4.23e-4

much less than the bit period and case 1 represents an AWGN channel with a Ricean distribution.

Case 2 is a Rayleigh distribution with flat frequency fading. Case 3 was designed such that the

channel time dispersion exceeds 20% of the bit period and therefore is representative of a frequency

selective channel. Case 4 is designed such that the channel time dispersion is much less than

the bit period however the channel coherence time is approaching the bit period and therefore is

representative of mildly time selective channel. Case 5 was designed such that the channel time

dispersion exceeds 20% of the bit period and the coherence time is approaching the bit period and

therefore is representative of a dual time and frequency selective channel.

Channel BWc and Tc Estimation

The following discussion was introduced in Chapter 1; it is based on several commonly cited

wireless communication references such as Rappaport [3], Proakis [48], and Sklar [49].

Equations (4.1) to (4.5) have been repeated here to support the verification testing observations.

Tc and BWc are computed from the cases in Table 4.2 and enumerated in Table 4.3. BWc is

inversely related to the channel time dispersion due to summation of multipath signals and is

defined as the frequency bandwidth where waveform frequencies are highly correlated. The BWc

is roughly related to the channel time dispersion through equation (4.1),

Bc =
1

50στ

, (4.1)

where σt is the rms multipath channel delay spread. This equation estimates the bandwidth where
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the frequency components are highly correlated; frequency correlation exceeds .9 in this region.

If the frequency correlation is reduced to .5, then equation (4.2),

Bc =
1

5στ

, (4.2)

is utilized to estimate the BWc. The rms time delay spread is computed from the multipath CIR

from the first and second weighted moments.

Tc is inversely related to the channel frequency dispersion due to Doppler spread induced by

motion between transmitter and receivers. Tc is loosely defined as the period of time where

waveform signals are highly correlated. The Tc is roughly related to the channel frequency

dispersion by equation (4.3),

Tc =
9

16 π fm
, (4.3)

where fm is the maximum Doppler frequency spread. Equation (4.4),

Tc =
1
fm
, (4.4)

estimates Tc where time samples have correlation coefficients greater than .5. A more restrictive

relationship between Tc and Doppler spread is provided by equation (4.4). A more practical

estimation of CT is provided by equation (4.5),

Tc =

√
9

16 π fm
2 =

.423
fm

, (4.5)

which is the geometric mean between equation (4.3) and (4.4). Time-variant operational and

training symbol sequences with varying combinations of hidden channel states were concatenated

to form a set of 250k symbol sequence training vectors and after quantization each is similar in

structure to the example shown in Figure 4.6.
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Input State Sequence Generation

Five training CSM state sequence vectors are shown for reference:

1. State 1, State 2, State 3, State 4, State 5,

2. State 2, State 3, State 4, State 5, State 1,

3. State 3, State 4, State 5, State 1, State 2,

4. State 4, State 5, State 1, State 2, State 3,

5. State 5, State 1, State 2, State 3, State 4.

This set of state sequences is not exhaustive, but sufficient to prove feasibility of the CSM and the

CSR algorithm. It does capture the self state transitions, and forward state transitions of the CSM.

Remaining state transitions are left for future confidence testing. The input waveform PDF is

estimated by outputting a histogram bin index for each waveform sample. The bin indexes are

accumulated to produce an estimated waveform pdf. An example statistical quantized sequence

for hidden state sequence 12345 is shown in Figure 4.6. Each hidden state was formulated with

controlled waveform and wireless channel properties consistent with the previously defined CSM

channel states. These symbol sequences were applied to the statistical quantizer which estimated

the waveform envelope PDF with a 200 bin1 histogram2.

4.1.3 State Likelihood Parameter Estimation

Refer to chapter 2 for background on HMM training sequences and parameter estimation. A set

of CSM training vectors were formed with five different combinations of MWC hidden state se-

quences. Correlated state vectors were also generated and submitted to the baseline CSM algorithm

to estimate HMM memory parameters first with the Viterbi algorithm, and refined by the Baum

1Less than 200 bins is inadequate to represent an accurate histogram function
2Mathworks, Inc.. MATLAB [20] function histogram(variable_name, bin_size) help pages.
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Figure 4.6: Statistically Quantized Waveform for State Sequence 12345

Welch algorithm. Estimates for the HMM transition and output probability matrices are formed

by submitting a training symbol sequence statistically similar to the operational symbol sequences

with an associated state sequence vector. As an example, a training statistically quantized sequence

vector is shown in Figure 4.6 with a hidden state sequence of 12345. This was input to the training

algorithm with 50 000 symbols3 for each hidden state. An associated known state vector was also

generated with a correlated state variable for each symbol. For clarification, each state vector is

formulated as in equation (4.6),

State_vector = [11 · · ·15000021 · · ·25000031 · · ·35000041 · · ·45000051 · · ·550000] . (4.6)

These training vectors were input to the Viterbi training algorithm to formulate an initial rough

order estimation of the transition and output parameters. Next these initial transition and output

matrices were input into the Baum Welch training algorithm for fine-tuning. The Viterbi training

algorithm is available in the MATLAB function hmmestimate [50] and the BW algorithm is

available in the MATLAB function hmmtrain [51]. This training parameter estimation process

produced estimates for the 5 state transition probability matrix (5x5) shown in Table 4.4. The
3Statistical significance is a known HMM limitation, to avoid this problem a substantial number of samples were

generated. Future research will investigate shorter training sequences.
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Table 4.4: CSR HMM Transition Probability Matrix
.9999 1.999e-5 1.999e-5 1.999e-5 1.999e-5

1.999e-5 .9999 1.999e-5 1.999e-5 1.999e-5
1.999e-5 1.999e-5 .9999 1.999e-5 1.999e-5
1.999e-5 1.999e-5 1.999e-5 .9999 1.999e-5
1.999e-5 1.999e-5 1.999e-5 1.999e-5 .9999

Figure 4.7: CSR HMM Output Probability Matrix Rows

training process also produced an output probability matrix (5x200) shown in Figure 4.7. This

figure plots each of the rows of the output matrix similar to a PDF relating the HMM output to

each of the CSM hidden states.

4.1.4 State Decision Estimation

As discussed in Chapter 2, the Viterbi algorithm can be applied to the observed symbol sequence

to estimate the most probable or the most likely hidden state sequence given an HMM model. The

maximum likelihood state sequence is described by equation (4.7),

π
∗ = max

π
P(x,π), (4.7)

where Π is the ML symbol sequence and Πi is a specific symbol in the ML sequence.
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The Viterbi algorithm is initialized with the most probable state k known for all the states at position

i and then backward iterates to the beginning of the state space with equation (4.8),

vl (i) = el(xi)max
k

(vk(i)akl. (4.8)

This equation is utilized to identify the ML path through the state space, where vl is the most

probable path in the sequence through the state space at observation i, el(xi) is the associated

output probability, akl is the associated transition probability, and vk(i) is the highest probability

state at observation i. The output is a state sequence Π whose elements identify the most likely

states associated with the symbol sequence x. The Viterbi decoding algorithm is implemented by

the MATLAB hmmdecode function [52].

4.1.5 CSR Baseline Algorithm Verification Results

After training was completed, accuracy testing of the DSR HMM was performed by submitting a

single hidden state sequence to each of the 5 trained HMMs. Accuracy performance results from

each ML decoding trial were recorded for evaluation. Accuracy performance metrics in terms of

sensitivity and specificity coefficients are provided. Decoded HMM output hidden state

sequences are shown in Figure 4.8.

Statistical accuracy metrics sensitivity and specificity for the baseline CSM CSR are summarized

in Figures 4.9 to 4.13.

For each test case, an operational hidden state sequence 12345 was submitted to each uniquely

trained HMM. The HMM model utilized to recognize the sequence was varied as noted in each

diagram. Accuracy is defined in terms of statistical tests for sensitivity and specificity as computed

by equation (4.9),

Sensitivity =
T P

T P+FN
, (4.9)
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Figure 4.8: ML Decoded CSM State Sequences

Figure 4.9: Training State Sequence 12345 Results
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Figure 4.10: Training State Sequence 23451 Results

Figure 4.11: Training State Sequence 34512 Results

Figure 4.12: Training State Sequence 45123 Results
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Figure 4.13: Training State Sequence 51234 Results

and (4.10),

Speci f icity =
T N

T N +FP
. (4.10)

Sensitivity is a statistical measure for a binary classification system which identifies the proportion

of actual positive decisions that are correct, that is, the number of true positives (TP) as shown in

equation (4.9) where, TP = true positives and FN = false negatives. With high sensitivity, a low

type II error is expected, and a negative result would suggest a high probability of a negative result.

Specificity is a statistical measure for a binary classification system which identifies the proportion

of actual negative decisions that are correct as shown in equation (4.10) where TN = true negatives

and FP = false positives. The goal is 100% sensitivity (correctly predict all the positive outcomes)

and 100% specificity (correctly predict all negative outcomes). With high specificity, a low type I

error is expected, and a positive result would indicate a high probability of a positive result.

4.1.6 CSR Baseline Algorithm Verification Findings

Evaluating the results, several conclusions can be formed:

• These results suggest that statistical feature recognition with HMMs is feasible,

• These results suggest that decoding MWC hidden state sequences with HMM is feasible,

• None of the HMMs recognize dual dispersive state 5,
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• All of the HMMs recognized the absence of dual dispersive state 5,

• All of the HMMs would accurately predict the presence or the absence of dual non-selective

state 2 or singly frequency dispersive state 4,

• All of the HMMs would recognize the presence of AWGN State 1 with greater than 85%

accuracy and would recognize the absence of AWGN S state 1 greater than 80% of the time,

• Two of the HMMs would recognize the presence of singly time dispersive state 3 with greater

than 80% accuracy while all of the HMMs would recognize the absence of singly time dis-

persive state 3 with greater than 70% accuracy,

• Preliminary results suggest that the approach is insensitive to waveform parameters such as

modulation or data rate,

• If these HMMs were arranged in parallel and their outputs were logically combined, states

1, 2, and 4 could be recognized with 100% accuracy and state 3 could be recognized with

greater than 90% accuracy,

• As suggested by this observation, HMM structures for CSR will be a subject for further

research,

• It is clear that the dual dispersive state 5 training sequence is not representative of the oper-

ational data.

4.2 Enhanced CSR Algorithm Verification

This Section will discuss the CSR enhanced algorithm testbed, verification approach, and accuracy

test results.
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Figure 4.14: CSR Algorithm Testbed

4.2.1 Enhanced Verification Testbed

The Enhanced CVT is shown in Figure 4.14. It is similar to the previously described Baseline CVT

discussed in the previous Section 4.1.1 except the architecture and function of the CSR algorithm.

4.2.2 Enhanced Verification Approach

The approach to verify the enhanced algorithm is similar to that described previously in Section

4.1.2. CSM hidden state and observable receive waveform features sequences were generated.

These receive waveform sequences were input to the state likelihood and state decision estimation

processes and the output CSM state sequences were evaluated for accuracy against the input MWC

hidden state sequences. Figure 4.15 highlights the relationship between MWC hidden processes

(e.g., time and frequency dispersion) and observable process features receive waveform first and

second order statistics (e.g., CEM distribution, time, and frequency correlations). As described

in the introduction, the HMM statistical memory links the the MWC hidden state process and the

observable process statistics. The waveform generator was utilized to produce calibrated CSM

waveforms that were passed through HMMs that had been trained as described in Section 4.2.3.

The resulting output MWC state estimates were evaluated for accuracy against the input hidden

state sequences.
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Figure 4.15: HMM Verification

State Feature Sequence Generation

The Enhanced CSR WFV were generated as shown in Figure 4.16. Each feature vector is processed

to produce the waveform feature sequences defined in Table 4.2. The WFV generation results can

be reviewed in Appendix Section A.11.2.

The WFV from the previous Section were processed to formulate a set of state feature sequence

vectors as shown in Figure 4.17. This processing produced test vectors that contain state feature

sequences as previously described in Section 4.1.2. Input test sequences were formulated for each

of 10 features in each state resulting in 50 unique test sequences that were applied to the state

likelihood estimation algorithm.

4.2.3 Enhanced State Likelihood Parameter Estimation Processing

To create the state likelihood HMM transition and output probability parameters, state sequence

and feature sequence vector pairs are combined into HMM training sequences. This process is
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Figure 4.16: State Feature Generator

shown in Figure 4.18. The state feature sequence generator was described in the previous Section

while the state sequence generator is a sequence of state vectors that are correlated with the feature

sequence. These correlated sequences provide the linkage between the MWC hidden processes

and the MWC observable feature sequences. Standard MATLAB matrix and vector operations

provide the processes to produce the HMM training sequences.

The HMM training sequences described in the previous Section were supplied to the state like-

lihood parameter estimation process as shown in Figure 4.19. The HMM parameter estimation

generates a transition and output probability matrix. A set of HMM parameters for each HMM can

be reviewed in Appendix Section A.11.3.

Refer to Appendix section A.11.3 for additional background for state likelihood parameter estima-

tion.
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Figure 4.17: Feature State Sequence Generation

Figure 4.18: HMM Training Sequence Generator
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Figure 4.19: HMM Parameter Estimation

4.2.4 Enhanced State Likelihood Estimation Processing

Each of the state feature sequences were input into the state likelihood estimation HMMs to pro-

duce a sequence conditional probability sequence as shown in Figure 4.20. The output state feature

conditional probability matrices are shown in Appendix Section A.11.4. These conditional prob-

ability sequences identify how closely the input sequence agrees with the sequence utilized to

estimate the HMM parameters. The first row of the output matrix corresponds to how the hidden

state 1 relates to the output waveform while the second row of the matrix corresponds to how state

2 of the hidden process relates to the output waveform. The rest of the rows are mapped to states 3-

5 respectively. A value of 1 on any of the outputs indicates that the input sequence and the training

sequences possess similar statistical properties while a value of 0 indicates that the two sequences

do not have the same statistical properties. By monitoring each of the outputs sequences, the like-

lihood of the input matching any of the hidden states can be detected. By utilizing the same input

sequences that were utilized to train the HMM, likelihood values approaching 1 would be expected

when the input sequences match the training sequences.

Refer to Appendix Section A.11.4 for additional background for second order state likelihood

estimation.
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Figure 4.20: State Likelihood Estimation
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Figure 4.21: State Decision Estimation

4.2.5 State Decision Estimation

The state feature conditional probability matrices produced in the previous Section are input to

the state decision estimation process as shown in Figure 4.21. The individual feature states are

accumulated within each timeblock and normalized to provide a scalar likelihood estimate for

each individual feature state sequence. Any states that exceed a 90% likelihood are extracted into

the example individual feature state matrix as shown in Figure 4.21 and Appendix Section A.11.5.

Each of the individual feature state matrices are concatenated into a an example composite feature

state matrix as shown in Figure 4.21. An example surface plot of the composite feature state

estimate matrix is shown in Figure 4.21 while the results are shown in Appendix Section A.11.6.

The timeblock state distribution is estimated by accumulating all feature state estimates as shown

in Figure 4.21. Finally, as shown in Figure 4.21, the state with the maximum number of detections

is selected as the CSR output state. The timeblock state distributions and the CSR output state

estimates are provided in Appendix Section A.11.7.
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Table 4.5: CSR Accuracy State Sequence 12345

Results Evaluation

CSR Algorithm MWC Hidden State Estimation Accuracy After applying the state sequences

to the CSR algorithm, each state likelihood output sequence was evaluated against the input se-

quence. Each estimated state can be classified into one of four categories : 1) the estimated state

is correctly true while the true state was true, 2) the estimated state was incorrectly true while the

true state was false (Type I error), 3) the estimated state was incorrectly false while the state was

true (Type II error), 4) the estimated state was correctly false while the true state was false. Table

4.5 through Table 4.9 provides the results after evaluating the input state sequences 12345, 23451,

34512, 45123, and 51234 respectively.
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Table 4.6: CSR Accuracy State Sequence 23451

Table 4.7: CSR Accuracy State Sequence 34512

Table 4.8: CSR Accuracy State Sequence 45123
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Table 4.9: CSR Accuracy State Sequence 51234

4.2.6 Enhanced CSR Algorithm Verification Findings

Several conclusions emerge after evaluating the CSR enhanced algorithm verification results as

described in teh paragraphs that follow:

1. The sensitivity and specificity over all features, states, and sequences is shown in Table

4.10. This Table displays averages over all features derived from the accuracy data shown in

Section 4.2.5 The average over all states is shown in the far right column for each input state

sequence. The average over all state sequences is shown in the bottom row. The average

over all all features, states, and sequences is displayed in the lower right-hand colums.

2. Referring to Figure 4.22, the enhanced as compared to the baseline algorithm across all

states, with the hard decision approach, has improved state recognition sensitivity by over

20% across all state sequences and exceeds 40% for the state sequence 51234. The state

recognition specificity has improved by more than 10% across all states and by as much

as 12% for state sequence 51234. The enhanced as compared to the baseline algorirthm

across all states, without the hard decision approach, suffers from several underperforming

feature extractions. The average sensitivity has decreased by almost 20% across all state

sequences except 51234. The average specificity has decreased by as much as 2.5% across

all state sequences except 51234. Clearly, rejection of under performing waveform features

by the decision rule, has increased accuracy performance of the CSR algorithm in terms of
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sensitivity and specificity.

3. Referring to Figure 4.23, the enhanced algorithm as compared to the baseline algorithm

across all features, without the hard decision approach, suffers from under performing fea-

ture extraction. The state recognition sensitivity across all features in most cases has de-

creased as compared to the baseline algorithm. There are only a few cases where the sen-

sitivity has increased; namely for state 3 and state 5 which the baseline algorithm under

performed. The state recognition specificity has improved by more than 5% across states

for 2 state sequences and all state sequences for state 5. Clearly the enhanced as compared

to the baseline algorithm without the hard decision method, has improved state recognition

accuracy for states 3 and 5, while under performing the baseline in all other states.

4. Referring to Figure 4.24, the enhanced algorithm as compared to the baseline algorithm

across all state sequences and without the hard decision approach, suffers from under per-

forming feature extraction. The state recognition sensitivity across all state sequences in

most cases has decreased as compared to the baseline algorithm. There is only a one case

where the sensitivity has increased; namely for state 5 which the baseline algorithm under

performed. The state recognition specificity has improved by more than 1% across all state

sequences for 3 states, and 25% for state 5. Clearly the enhanced as compared to the base-

line algorithm across all state sequences without the hard decision method, has improved

state recognition accuracy for states 3 and 5, while under performing the baseline in all other

states. The effect of the enhanced hard decision method is clearlypositive across all state

sequences increasing state recogntion sensitivity by over 25% and specificity by over 5%.

5. Evaluating input sequence likelihood against HMM memory sequences has been demon-

strated to be an effective means of recognizing MWC hidden states,

6. Recognizing MWC hidden processes such as coherence, noncoherent selectivity is feasible

with HMMs.
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7. Blind Channel state recognition utilizing first and second order observable waveform fea-

tures is feasible based on HMMs.

8. First order waveform features were more effectively recognized by the HMM.

9. Some second order features were not as effectively recognized by the HMM. Namely, second

order magnitude, however, several second order phase sequences were uniquely recognized,

but not with likelihoods that achieve the hard decision threshold. This is because either the

magnitude, phase, or both, feature extracts were not statistically unique. Alternative second

order methods should be reevaluated that produce unique magnitude and phase statistical

sequences.

10. The effect of the hard decision method is positive and significant. This is due to rejection of

under performing feature extraction methods.

11. The length of the state sequence blocks were conservatively long. There were no observable

convergence issues, or asymptotic errors, therefore it is likely that the block lengths could

be reduced from 50000 samples to identify any effects on accuracy and/or convergence.

The state sequence vectors were intensive on the modeling and simulation testbed memory.

Shorter length would improve speed of computations and reduce memory requirements.

12. The coherence state model was effective at recognizing the MWC coherent, single time and

frequency selective, and dual selective waveforms.

13. Feature diversity can improve feature recognition accuracy with proper feature extraction

design. It can also penalize feature recognition accuracy with improper feature extraction

design.

14. HMM computations are intensive on memory and require latency. Parallel computational

architectures and/or hardware based computational architectures would be required to im-

plement the CSR algorithm.
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Table 4.10: Enhanced CSR Accuracy Across All Features, States, and Sequences

Figure 4.22: CSR Algorithm Accuracy Comparison Across All States
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Figure 4.23: CSR Algorithm Accuracy Comparison Across All Features
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Figure 4.24: CSR Algorithm Accuracy Comparison Across All State Sequences

130



Chapter 5

Conclusions

5.1 Summary

In summary, this research has produced two forms of a CSR Algorithm based on statistical feature

recognition HMMs. The first is a baseline algorithm utilized for POC prototyping, the second in-

tegrated enhanced features such as diverse feature extraction, state hard decisions, and combined

feature state decisions to improve algorithm accuracy. MWC first order and second order statis-

tical features are extracted as indicators of channel time and frequency dispersion processes and

formulated into sample timeblocks. A novel CSM was architected that organizes the MWC fea-

tures into one of five coherent nonselective or noncoherent selective states. HMMs are utilized

to map statistical relationships between the hidden MWC time and frequency dispersion processes

and the observable receive waveform processes. The HMM memory parameters were derived from

training sequences that were statistically similar to expected operational waveforms. MWC fea-

ture state likelihood estimates are produced by parallel HMM feature recognition processes which

feed a state hard decision process. The parallel state decisions are combined into a single most

likely channel state estimate for each waveform timeblock. A MWC state waveform testbed was

designed and implemented to verify the CSR algorithms. CSM state sequences were applied to

the algorithms, and performance verified by comparing the sensitivity and specificity of the algo-
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Table 5.1: Baseline CSR Algorithm Findings
1 The coherence state model was verified to be accurate in terms of sensitivity and specificity.

Results were mixed. Sensitivity and specificity were high for some states while low for other
states. This suggests with enhancements, performance might be more consistent.

2 HMM training processes were verified to be mixed. The baseline CSR algorithm utilized a hybrid
of Viterbi and Baum Welch training algorithms. An alternative approach might improve the
accuracy performance.

3 Recognition of MWC hidden CSM state sequences by HMM decoding methods were mixed
suggesting enhancement to the baseline version might improve consistency.

4 The channel state waveform generator was verified to be effective.

5 The CSR verification testbed was verified to be effective.

6 The CSR algorithm accuracy measures of performance were verified to be effective.

7 The CSR algorithm verification testing motivated the enhanced version of the CSR algorithm.

rithm channel hidden state estimates to the input hidden state sequence. It was determined that

the enhanced algorithm improved sensitivity by as much as 25% and specificity by as much as

5% over the baseline version because of the enhanced multiple feature extraction and parallel hard

decision combining methods. The enhanced algorithm sensitivity was determined to exceed 95%

for the best features and the specificity was determined to exceed 98% for the best cases. It was

determined that some waveform features were not as effective as others due to lack of statistical

uniqueness. Overall, the CSR algorithm was found to be feasible and effective at recognizing the

MWC hidden CSM states. A case study based on the WiMAX waveform demonstrated how sig-

nificant improvements in wireless power efficiency and economic revenues could be achieved if

the CSR algorithm were applied.

5.2 Key Findings

Important lessons learned from the design and verification testing of the baseline CSR algorithm

are shown in Table 5.1.

Important lessons learned from the design and verification testing of the enhanced CSR algorithm

132



are shown in Table 5.2.

5.3 Knowledge Contributions

This research effort provided answers to several MWC state recognition questions which are pro-

vided in Table 5.3.

5.4 New Research Questions

During the course of researching the CSR algorithm, new questions have emerged which are shown

in Table 5.4.

5.5 Recommended Next Steps

Recommended follow on research into MWC state recognition is summarized in Table 5.5:
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Table 5.2: Enhanced CSR Algorithm Findings
1 The enhanced CSR algorithm has been demonstrated to be feasible based on accuracy verification

results provided in Chapter 4. The verification was designed for proof of concept. A full factorial
experiment that includes a full range of hidden transitions and full range of waveform statistical
features would be required for full confidence testing.

2 Test results for HMM sequence likelihood computations suggest that it is feasible to track
dynamic MWC CSM hidden state sequences such as coherent nonselective and noncoherent
selectivity. Further investigation into hidden state transition convergence and a full factorial
experiment that includes full range of hidden state transitions would be required for confidence
testing.

3 The enhanced CSR algorithm has improved accuracy sensitivity by 25% and specificity by 5%
over the baseline CSR approach.

4 Parallel waveform statistical feature extraction adds diversity but at a cost of complexity.

5 Block size was conservative to maintain statistical significance. Decreased block size could
improve computational speed and responsiveness while reducing complexity.

6 MWC waveform phase features tend to be more statistically unique than magnitude features.

7 First order statistical features utilized in the CSR algorithm were found to be less complex and
more effective than second order statistical waveform features.

8 Some second order statistical features were found to be more unique than others, suggesting
feature extraction process design is important and should be investigated for improvements.

9 It is known that HMM training suffers from overfitting and staleness; published approaches
suggest that combining Kalman Filtering and HMM training processes could yield dynamic
HMM parameter tracking over time to overcome staleness.

10 The demonstrated HMM training was effective, however, additional verification testing is
required to investigate the range of MWC waveforms that can be effectively recognized by the
CSR HMMS.

11 The verification testing of the enhanced CSR algorithm was designed for a limited proof of
concept demonstration. Further confidence testing is required to investigate all transitions in the
CSM model.

12 Parallel feature state likelihood was demonstrated to be feasible, however it adds considerable
complexity.

13 HMM computations will add latency; although latency was not a primary focus of this research,
investigation into HMM latency should be characterized to minimize these effects.

14 Published research into HMM complexity reduction such as ML suboptimal sequence detection
approaches can yield reduced complexity recognition methods.

15 Maturation of the CSR algorithm from a collection of batch MATLAB scripts to a recursive
monolithic library function could yield a reduced complexity online version of the algorithm.

16 Feature state hard decisions are feasible, however, combining soft decision likelihoods might
offer additional benefits.

17 Combining feature state hard decisions increased the CSR algorithm sensitivity and specificity
performance.

18 Confidence testing of the enhanced CSR algorithm would require embedding with
communication state based control processes for complex wireless waveforms (e.g. WiMAX).
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Table 5.3: Knowledge Contributions
1 Can MWC hidden states be defined that express the presence of hidden coherent nonselective and

noncoherent selective distortion processes? This research demonstrated that this is true.

2 Can a signal processing algorithm based on statistical feature recognition HMMs be architected to
recognize MWC hidden states? This research demonstrated that this is true.

3 Can MWC first order and second order statistical features provide sufficient uniqueness that
HMMs can discriminate between coherent and noncoherent states? This research demonstrated
that this is true.

4 Can blind channel state recognition approaches, without the aid of training symbols or pilot tones,
achieve sufficient sensitivity and specificity to be considered feasible? This research demonstrate
that this is true.

5 Will diverse parallel waveform statistical feature combining approaches increase recognition
accuracy? This research demonstrate that this is true.

Table 5.4: New Research Questions
1 Can complexity and latency be reduced with recursive approaches to achieve a practical CSR

algorithm?

2 Can HMM statistical memory parameters be dynamically tracked as MWC states evolve?

3 What are the limits of operational waveform statistics for which HMM training processes provide
robust recognition accuracy?

4 What is the practical waveform block size that increases CSR responsiveness without
compromising accuracy performance?

5 Cam the waveform block size be dynamically adaptive with MWC conditions?

6 Can soft rather than hard decision combining provide additional performance benefits?

7 Can the CSR algorithm provide sufficient environmental awareness for state based
communication controls for operational waveforms such as WiMAX or LTE?

8 Can the CSR algorithm benefits be extended to wired or wireless waveform recognition
applications?
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Table 5.5: Recommended Follow On Developments
1 Confidence testing of CSR algorithm against a full range of input waveform characteristics and

hidden state transitions.

2 Implement waveform feature block size reduction and adaptive processes to dynamically adjust
the block size.

3 Implement HMM parameter error tracking.

4 Implement HMM complexity reduction.

5 Implement feature state soft decision combining.

6 Implement a recursive CSR algorithm.

7 Integrate CSR prototype with cognitive state based mobile wireless communication control
process.

8 Redesign the coherent state model for wireless or wired waveform states.

9 Redesign and verify a waveform state recognition algorithm.
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Appendix A

A.1 Time Variant, Invariant, and Mobile Models

The transmission of a baseband signal s̃(t) through a linear time-varying channel such that the

received signal varies as a function of time and space can be modeled in the time domain by

equation (A.1) or the frequency domain by equation (A.2) ,

ỹ(t,r) =
1
2

+∞ˆ

−∞

H̃(τ; t,r)s̃(t− τ)dτ, (A.1)

ỹ(t,r) =
1
2

+∞ˆ

−∞

h̃( f ; t,r)S̃ ( f )e( j2π f t)d f . (A.2)

The transmission of a baseband signal s̃(t) through a linear time-invariant channel such that a

received signal varies as a function of only frequency and position can be modeled by equation

(A.3) and equivalently equations (A.4) and (A.5),

ỹ(t,r) =
1
2

+∞ˆ

−∞

H̃(τ;r)s̃(t− τ)dτ, (A.3)

ỹ(t,r) =
1
2
[
H̃ (τ;r) |τ = t⊗ x̃(t)

]
, (A.4)
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Ỹ ( f ,r) =
1
2
[
h̃( f ;r) S̃( f )

]
. (A.5)

The mobile case where position r = vt is a function of a constant velocity and time. In this case

the received signal can be expressed only as a function of time as defined in equations (A.6) and

(A.7) ,

ỹ(t) = ỹ(t,r) |r = vt , (A.6)

ỹ(t) =
1
2

+∞ˆ

−∞

[
H̃(τ;r, t) |r = vt

]
s̃(t− τ)dτ. (A.7)

A.2 Stationarity

Stationarity is an important attribute to characterize stochastic processes; there are at least three

defined types of stationarity. First order stationarity exists if all first order statistics- mean, variance,

and probability density function (PDF) are invariant with regard to time, frequency, and space.

Wide sense stationarity requires that first order and second order statistics are invariant. In this

case the autocorrelation by definition, depends only on the difference in time so that the correlation

behavior is time invariant. Additionally the mean is expected to be invariant[2] as defined in

equation (A.8),

Ch̃ (t1, t2)=̇Ch̃ (t0 + t1, t0 + t2) f or all t0. (A.8)

Here a WSS processes is equivalent to equation (A.9),

Ch̃ (t)=̇E
{

h̃(t1)h̃∗(t1− t)
}

f or all t0. (A.9)
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Strict-sense stationarity describes a process that is invariant across all orders of time, frequency,

and space.

A.3 Spectral Model

The effects of spatial selectivity can be defined within a local area with relatively constant mean

power in contrast to a macro area where mean power would vary. Durgin defines a spectral model

based on a local area model. The local area is the largest volume of free-space that can be modeled

accurately as the sum of homogeneous plane waves. In this volume plane waves are dominate

so that inhomogeneous plane waves are insignificant. Furthermore, specular, nonspecular, and

diffuse waveform components are described by a sum of specular waves and a diffuse nonspecular

component as defined by equation (A.10),

h̃( f ,~r) =
N

∑
i=1

Vie
(

j
[
ϕi−
−→
ki~r−2π f τi

])
+ ˜hdi f f ( f ,~r). (A.10)

Here N is the number of specular components and this equation reduces a local area channel of any

arbitrary complexity to the sum of a few large specular components and nonspecular components

that are diffuse[2].

A.3.1 Local Area Specular Component Mathematical Model

The local area specular component defined by equation (A.11),

ΦXY(v) = ρ

∞̂

0

Jo (Vov) , (A.11)

is based on a zero-order Bessel function which only depends on the amplitude of the specular

component[2].
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A.3.2 Local Area Diffuse Component Mathematical Model

The local area diffuse component defined by equation (A.12),

ΦXY(v) = e

(
−v2Pdi f f

4

)
, (A.12)

is a Gaussian function that depends only on the average power of the voltage component, Pdiff.

A.3.3 Local Area Complex Envelope PDF Model

The envelope PDF in terms of specular and diffuse terms is defined by equation (A.13),

fR(ρ) = ρ

∞̂

0

Jo(vρ)e

(
−v2Pdi f f

4

)[
N

∏
i=1

Jo(Viv)

]
vdv, (A.13)

for R =

∣∣∣∣Ṽ diff +
N
∑

i=1
Vie(jΦi)

∣∣∣∣and E
{∣∣Ṽ diff

∣∣2}= Pdiff, which is valid for ρ ≥ 0[2] .

A.4 First Order Statistical Model

The probability density function (PDF) is a common first-order tool for characterizing mobile

wireless fading channels. The mean received power is a common statistics given the relationship

between received power and error rate. Independent, uniformly distributed phases, have a specific

phase PDF [2]. Application of the specular model enables an approach that ignores the fine wave-

form structure with a focus on mean-squared power of specular and nonspecular components. The

waveform PDF fp(ρ) can be defined in terms of received voltage envelope with conversions to and

from envelope power defined in equations (A.14),

fP (p) =
1

2
√

p
fR(
√

p), (A.14)
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and (A.15)

fR (ρ) = 2ρ fP
(
ρ

2) . (A.15)

A.4.1 MWC Closed Form PDF Model

Six closed form PDFs can be defined [2]: 1) single wave, 2) two wave, 3) three wave, 4) Rayleigh,

5) Ricean, and 6) two wave plus diffuse power (TWDP). The single wave is a primitive case

generated by integration of equation (A.13) with N = 1 and Pdiff = 0. The two wave case is

common and well researched and is generated by integration of equation (A.11) withN = 2 and

Pdiff = 0 . While case three is more complicated, it provides insight into differences in behavior

between the specular and nonspecular components and is generated with N = 3 and Pdiff = 0. The

central limit theorem begins to dominate the PDF in the three wave case; additional nonspecular

components move the PDF toward a Gaussian distribution based on the central limit theorem and

results approach the Rayleigh case.

MWC Rayleigh PDF First Order Statistical Model

The Rayleigh case is most popular for computation of fading margins in wireless fading links can

be generated by equation A.13 with N = 0 and Pdiff > 0. The Rayleigh PDF is nonzero over the

entire range of ρ ≥ 0 and is defined by equation (A.16),

fR (ρ) =
2ρ

Pdi f f
e

(
−ρ2

Pdi f f

)
f or ρ ≥ 0. (A.16)

MWC Ricean PDF First Order Statistical Model

The more general case is the Ricean distribution generated by equation A.13 with N = 1 and

Pdiff > 0. This PDF is nonzero over the range of K and ∆ where K is the ratio of specular power

to diffuse power and ∆ is the difference in power between the specular components which are zero

for the Ricean case. As K approaches one, the Ricean PDF approaches the Rayleigh PDF. The
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Ricean PDF is defined by equation (A.17),

fR (ρ) =
2ρ

Pdi f f
e

(
−ρ2−V 2

1
Pdi f f

)
Io

(
2ρV1

Pdi f f

)
f or ρ ≥ 0, (A.17)

where Io(. . .) is a zero-order modified Bessel function and K = Specular Power
Nonspecular Power =

V2
1

Pdiff
. As K be-

comes much larger than one, the Ricean PDF approaches a pure Gaussian with an mean that is

increasingly greater than one. In this case, the Ricean PDF can be approximated by a pure Gaus-

sian distribution as defined in equation (A.18),

fR(ρ) =
1√

πPdi f f
e

(
−(ρ−V1)

2

Pdi f f

)
. (A.18)

MWC Two Wave plus Diffuse Component PDF First Order Statistical Model

The TWDP case is generated by equation A.13 with N = 2 and Pdiff > 0. While this model is the

most complicated, it represents a range of fading behavior[2]. For the TWDP case, K and ∆ are

used to classify the shape of the PDF as defined in equations (A.19) and (equation (A.20)),

K =
V2

1 +V2
2

Pdi f f
, (A.19)

∆ =
2V1V2

V 2
1 +V 2

1
. (A.20)

The TWDP PDF is defined by equation (A.21),

fR(ρ) =
2ρ

Pdi f f
e

(
−ρ2

Pdi f f
−K
)

M

∑
i=1

ai

[
1
2

e∝KIo(x
√

2K (1−α)+
1
2

e−∝KIo(x
√

2K (1+α)

]
, (A.21)

where α = cos(π(i−1)
2M−1 ), x = ρ√

Pdiff
2

, M is the order of the approximation and ai is defined by ta-

ble A.1 .

The product of K and ∆ determine the order of equation (A.21) as defined by equation (equa-
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Table A.1: TWDP approximate PDF coefficients
Order a1

1 1 a2

2 1
4

3
4 a3

3 10
144

25
48

25
72 a4

4 751
8640

3577
8640

49
320

2080
8640 a5

5 2857
44800

15741
44800

27
1120

1209
2800

2880
22400

tion (A.22))

Order (M) = ceiling
[

1
2

K∆

]
. (A.22)

Here ceiling [. . .] is a function that rounds up to nearest integer. The approximation will deviate

from the actual PDF if K is large and ∆ approaches unity. The family of resulting PDFs have the

following characteristics:

• Mathematically exact PDFs which integrate to unit over the interval of 0≤ ρ ≤ ∞,

• Accurate over upper and lower tails,

• Second order moments are preserved (average local power),

• Compact description based on Pdi f f , K, and ∆,

• Proper limiting behavior with ∆ = 0 approaching Ricean PDF and with K = 0 the Rayleigh

PDF.

A.5 Second Order Statistical Models

Autocorrelation functions are common for characterizing stochastic processes such as wireless

fading channels. The autocorrelation function Ch̃(t1, t2) of a time-varying stochastic channel h̃(t)

is defined by equation (A.23),
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Ch̃ (t1, t2)=̇E
{

h̃(t1)h̃∗(t2)
}
. (A.23)

The autocorrelation characterizes the time evolution averaging the products of all samples in the

random process a two different points in time. The autocorrelation, Ch̃ (t1, t2) is a snapshot of the

correlation behavior of a wireless channel random process defined by equation (A.24),

Ch̃ (t1, t2)=̇Ch̃ (t0 + t1, t0 + t2) f or all t0. (A.24)

For WSS processes equation (A.24) is equivalent to equation (A.25),

Ch̃ (t)=̇E
{

h̃(t1)h̃∗(t1− t)
}

f or all t0. (A.25)

The MWC autocovariance is defined by equation (A.26),

Ch̃ (t) = E
{[

h̃(t0− µ̃)
][

h̃∗ (t0 + t)− µ̃
∗]} where µ̃ = E

{
h̃(t)

}
. (A.26)

This equation is useful for characterizing processes of envelope and power which have a positive

mean value. Recall that the mean power of a time varying process is equal to the autocorrelation

evaluated at ∆t = 0 as defined in equations (A.27) and (A.28),

Ch̃ (0)=̇E
{

h̃(t)h̃∗(t)
}
= E

{∣∣h̃(t)∣∣2} , (A.27)

ρh̃ (∆)=̇
Ch̃ (t)−|µ̃|

2

Ch̃ (0)−|µ̃|
2 where µ̃ = E

{
h̃(t)

}
. (A.28)

The normalized unit autocovariance is an important dimensionless measure of correlation. A unit

autocorrelation value of 1 indicates complete correlation while a value of 0 indicates a lack corre-

lation independent of the magnitude of h̃(t). In addition to characterizing random processes with
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autocorrelation in the time domain, spectral analysis via Fourier transforms enable characterization

in the frequency domain. Mathematical operations on a random process produce another random

process and this is the case when a Fourier transform is applied to a time-varying mobile wireless

fading channel. This results in a frequency-varying process H̃(ω). A frequency domain autocor-

relation CH̃(ω 1,ω 2) is defined by equation (A.29),

CH̃ (ω1,ω2) = E
{

H̃ (ω1) H̃∗ (ω2)
}
, (A.29)

characterizing correlation in the frequency domain. If a process is WSS in the time domain, then

the spectral components must be uncorrelated as defined by equation (A.30),

CH̃ (ω1,ω2) = 2πSh̃ (ω1)δ (ω1−ω2) , (A.30)

which evaluates to zero whenever ω 1 6= ω 2 . The function Sh̃ (ω 1) is known as the power spectral

density (PSD) and it describes how the spectral power is distributed in the Doppler spread domain.

A.5.1 Second Order Statistical Models- Time and Bandwidth Coherence

Envelope autocovariance can be related to channel coherence time and bandwidth. The autocor-

relation is calculated from its Doppler spectrum by performing an inverse Fourier transform as

defined in equation (A.21),

Sh̃(ω)→ Ch̃(t)→ ρ h̃(t). (A.31)

The first Fourier transform converts the Doppler spectrum Sh̃(ω) into a autocorrelation Ch̃(t) and

the unit autocovariance ρ h̃(t) is computed by normalizing by the average power Ch̃(0). A similar

set of relationships is developed for Doppler spectrum of received envelope as defined in equation

(A.32),

SR(ω)→ CR(t)→ ρ R(t). (A.32)
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Here the envelope and complex baseband channels are related by equation (A.33),

R(t) =
∣∣h̃(t)∣∣ . (A.33)

Coherence Time and Time Domain Unit Autocovariance

An approximation for envelope unit autocovariance that is based only on the root mean square

(RMS) spectral spread of the channel process as defined in equation (A.34),

ρ R (t)≈ e
(
−23
2π2 σ 2

ω t2
)
, (A.34)

where σ ω is the RMS Doppler spread. In this expression, the Doppler spread is the only factor

that determines the temporal correlation behavior. It provides a close approximation of unit auto-

covariance when the time separation ∆t is small. Error grows after the time-varying envelope is

uncorrelated. The coherence time Tc is the time period when the complex envelope is a constant.

The coherence time can be defined as the time when envelope decorrelates to a value of e−1defined

by equation (A.35),

Tc =
2π√
46σ ω

=
1.08
σ ω

. (A.35)

Coherence Bandwidth and Frequency Domain Unit Autocovariance

Applying duality to equation (A.34) results in equation (A.36),

ρ R (f)≈ e(−46σ 2
τ f2). (A.36)

This equation produces an expression for frequency unit autocovariance given that σ ω → 2π σ τ

and ∆t→ ∆f such that the envelope unit autocovariance in the frequency domain. Here στ is the

RMS delay spread which is the only factor that determines the frequency correlation behavior.

Coherence bandwidth, Bc , will be based on the frequency separation ∆ f where the envelope
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decorrelates to a level of e−1 as defined in equation (A.37),

Bc =
1√

46σ τ

=
1

6.78σ τ

≈ 1
5σ τ

. (A.37)

A.6 Time and Frequency Duality

The Wiener-Khintchine theorem defines the autocorrelation of a WSS process and the PSD of an

uncorrelated spectrum as Fourier transform pairs defined in equation (A.38),

Ch̃ (∆t) =
1

2π

+∞ˆ

−∞

Sh̃(ω)e( jω∆t)dω, (A.38)

and (A.39),

Sh̃ (ω) =

+∞ˆ

−∞

Ch̃(∆t) e(− jω∆t)d∆t. (A.39)

This implies that characterizing time correlation via the autocorrelation function is equivalent to

characterizing average signal power distribution in the spectral domain.

A.7 Coherence State Model Literature Review

Several authors have published historical development of wireless fading channel modeling with

multistate Markov chains (MMC). Seon Yeong et al. [4] report that the earliest accounts of mul-

tistate MWC models based on the HMM was Gilbert and Elliott in a 1960 publication. Tan [6]

provided a historical overview of amplitude quantized finite state Markov Models (FSMM). Since

the 1960’s, Markov models have been widely utilized to represent simple error and signal strength

behavior[4]. Lopez-Guerrero [53] provide development of error state models. Kundu [20] asserts

that n-state FSMM are required to achieve sufficient accuracy. Reidiger [21] provides overview of

information theoretic based FSMM. Kumwilaisak [22] proposed variable length FSMM to better
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model dynamic channel conditions. Qinqing and Kassam [23] proposed partitioned SNR defined

not by amplitude but rather average dwell time in each state to model time-variant conditions.

Wang and Moayeri [5] state “by partitioning the range of the received signal to noise ratio (SNR)

into a finite number of intervals, we build a finite-state model for the Rayleigh fading channel.

Each state of the channel corresponds to a specific interval and the Rayleigh fading channel can be

modeled by a binary symmetric channel (BSC) in that state”. Pimental [24] looked at high-order

FSMMs for modeling error behavior with significant memory. Babich [54, 7] reaffirms the need

for higher order FSMM for accuracy, however acknowledges the computational complexity and

offers order reduction methods to reduce complexity to a 1st order model while maintaining accu-

racy. Yongjun [28] asserts the need for higher order methods for accurate time-variant behavior and

traced prior development of fading envelope distribution models and develops a general distribu-

tion model for all channel environments to overcome limitations of the Ricean distribution. Richter

et al. [55] and Olama et al. [10] provide general wireless channel state variable models. Galvao et

al.[56] assert that state space models are an important alternative to channel impulse response with

better accuracy than traditional convolutional methods. Richter, et al., [55] formulated a time vari-

ant state-space channel model to track the state-space wireless mobile channel dynamic parameters

with a Kalman filter. Olama et al. [57] present a higher order dynamic ad-hoc channel model that

estimates parameters from the Doppler PSD. The remainder of the literature search is summarized

here. Two articles have been published with multistate wireless channel models which map states

to channel impulse response [10] or FIR coefficients [11]. Several papers have been published

with multistate Markov chains which associate states with bit error statistics [58, 13]. Several

papers have been published with multistate Markov chains which map states to block error statis-

tics [14, 15]. Several published articles present finite state Markov chains with states defined as

quantized signal strength [4, 16, 17, 18, 19]. Several published articles present finite state Markov

chains with states defined as quantized SNR [20, 21, 22, 23, 5, 24, 25, 26, 27]. In the literature

there are a few examples of multistate Markov chain wireless channel models with states derived

based on partitioned statistical distributions [28, 29, 25]. Several published articles with multistate
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Markov chain wireless channel models define states based on partitioned shadowing. Several pa-

pers have been published that include multistate Markov chains which define states as partitioned

fading level . Wakana [30] published an example of hidden Markov chain with states defined with

channel fading level. Swarts and Ferreira [31] present HMM research for a frequency nonselec-

tive, slow time varying MWC model. Yuen and Yue [32] published research based on a four-

state Markov model representing variable bit rates partioned into good and bad states. Multistate

Markov models have been applied to correlated channels with many channel distributions includ-

ing: 1) AWGN [13, 14], 2) Log Normal [59], 3) Rayleigh [4, 20, 22, 23, 5, 11, 58, 16, 29, 25, 30],

4) Ricean [5, 54, 7, 15, 17, 18, 19], and 5) Hybrid combinations [27, 60, 61, 62, 63]. Finite state

Markov chains have been applied to many communication applications including: 1)CDMA and

OFDM cellular networks [53, 11, 58, 26, 31, 32], 2) GEO and LEO Satellite [28, 19, 64, 61, 62], 3)

Wireless personal area networks [58, 65], 4) Mobile cellular networks [16, 18, 59, 66], 5) Wireless

multimedia networks [22, 24, 29, 27, 61], 6) Indoor propagation channels [54, 7, 32, 67], and 7)

Multiple input multiple output channels [56]. Finite state Markov models have been applied to

the following types of channel fading: 1) Large scale fading [59], 2) Small scale dual time and

frequency non selective fading [20, 21, 22, 23, 5, 24, 16, 29, 64], 3) Small scale frequency non-

selective and time selective fading [68], 4) Small scale dual time and frequency selective fading

po[27], and 5) Hybrid combinations [18].

Based on this considerable literature survey, the proposed CSM and application of HMMs to CSR

is novel and unique.

A.8 Channel State Recognition Literature Review

Table A.2 summaries a substantial, broad, temporally diverse, body of keyword indexed research

literature collected primarily from the IEEE Xplorer database on the topics of mobile wireless

channel state models and mobile wireless channel state distortion estimation.

There are a number of assumptions given in this body of literature summarized below:
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Table A.2: CSR Literature Review Summary
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• Quasi-static channel conditions– ten of these articles assume a length of time when the chan-

nel is stationary and unchanging [69, 70, 71, 72, 73, 74, 75, 76, 77, 78],

• Channel state definition– 23 of these articles directly assume a channel state defined by finite

impulse response gain given as the ratio of the channel output amplitude to the channel input

amplitude [79, 80, 81, 82, 73, 74, 83, 84, 85, 12, 86, 87, 88, 89, 90, 91, 58, 92, 93, 94, 95, 96],

• Specific waveform or channel configuration– 56 of these articles directly assume a specific

waveform characteristics (e.g. OFDM, CDMA, BPSK, etc.) [97, 98, 99, 100, 101, 71, 81,

102, 103, 104, 105, 106, 83, 107, 108, 12, 109, 110, 111, 112, 113, 114, 22, 115, 116, 117,

118, 119, 86, 120, 87, 121, 57, 122, 123, 124, 125, 126, 127, 128, 129, 91, 130, 131, 132,

92, 93, 133, 134, 135, 94, 95, 136, 96, 137] while 35 assume a specific channel configuration

(e.g. MIMO, MISO, SISO, etc.) [100, 101, 104, 105, 138, 139, 106, 83, 84, 85, 108, 109,

110, 140, 117, 141, 119, 120, 142, 121, 143, 88, 144, 123, 124, 75, 125, 126, 127, 91, 130,

132, 93, 135, 136] and 42 assume a specific channel state (ie. Nondispersive, Frequency

nonselective, Frequency Selective, etc.) [69, 97, 99, 81, 72, 102, 103, 73, 74, 145, 84, 107,

85, 146, 147, 12, 109, 148, 111, 140, 117, 149, 142, 121, 143, 88, 122, 124, 128, 90, 77, 78,

130, 131, 150, 58, 93, 133, 95, 136, 96, 137],

• Dependence upon accurate channel state estimates at RX or TX– 18 of these articles assume

a critical dependence upon accurate and timely channel state estimates at the receiver with/or

without feedback to the transmitter [98, 71, 151, 74, 83, 147, 12, 110, 148, 22, 118, 149, 123,

125, 129, 132, 92, 135],

• Channel state prediction– four of these articles assume channel state prediction which projects

past data samples into the future up to one wavelength [152, 151, 149, 75],

• Channel state tracking– 34 of these articles assume channel state tracking which enables

adaptive processing based on the current value of channel state [153, 80, 102, 103, 82, 152,

105, 138, 139, 106, 145, 83, 107, 114, 154, 115, 155, 141, 86, 87, 57, 88, 144, 124, 75, 126,
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128, 91, 130, 93, 156, 157, 96, 137],

• Training symbol sequence or pilot tone assisted channel state estimation– 19 of these articles

propose methods which rely upon sequences of time domain training symbols or presence

of frequency domain pilot tones [100, 101, 72, 106, 107, 108, 111, 118, 158, 122, 124, 125,

127, 131, 150, 58, 92, 93, 133],

• Blind channel state estimation– 14 of these articles propose methods which rely upon only

received channel output sequences. Semi-blind channel state estimation– four of these arti-

cles propose methods which rely upon a hybrid combining both training symbol sequences

and blind channel estimation approaches [70, 103, 104, 147, 159, 57, 76, 128, 129, 90, 78,

131, 134, 157],

• Semi-blind channel state estimation– four of these articles propose methods which rely upon

a hybrid approach that combines both data directed or pilot tone assisted and blind channel

state estimation [72, 111, 116, 141],

• Hidden Markov model (HMM) methods– six of these articles propose methods which are

based on hidden Markov models [82, 114, 154, 155, 18, 160],

• Cognitive or software defined radio architecture– three of these articles assume a cognitive

or software defined radio architecture [152, 76, 77],

• Neural Network methods– two of these articles assume a method based on neural networks

[146, 113],

• Adaptive processing applications– three of these articles propose a direct application to adap-

tive transmitter processing or resource allocation [110, 76, 71],

• Modulation classification applications– two of these articles propose modulation classifica-

tion [161, 134],

• Distortion estimation– one of these articles propose distortion estimation [78].
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There are a number of channel state processing advantages that are claimed by this body of litera-

ture including:

• Maximum Likelihood channel state estimation– one of these articles claims results based on

the maximum likelihood algorithm [79],

• High order HMM– one of these articles claims advantages of high order HMM processing

[160],

• Frequency selective wireless channels– four of these articles claim stable data rates under

frequency selective channel conditions [98, 108, 146, 93],

• Time invariant channel conditions– one of these articles claim consistent error rates with

time invariant channel conditions [137],

• Small time dispersion (Flat frequency) and Low mobility (slow time-varying conditions)–

eight of these articles claim robust performance under flat frequency and slow time varying

conditions [99, 83, 84, 115, 86, 129, 130, 134],

• Time dispersive (Flat frequency and frequency selective channel conditions) with low mo-

bility (small frequency dispersion)– nine of these articles claim robust capacity and BER

across both frequency nonselective and frequency selective cases [100, 145, 111, 116, 142,

121, 58, 107, 110],

• Fast time-varying conditions– one of these articles claim consistent error rates with fast

time-varying channel conditions [161],

• NonGaussian sources– one of these articles claim performance under nonGaussian signal

distribution [152],

• Channel state tracking– 16 of these articles claim a method which can track dynamic changes

in channel state [153, 138, 106, 114, 141, 149, 87, 57, 122, 144, 124, 75, 125, 128, 91, 157],
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• Robust synchronization– two of these articles claim stable synchronization under fading

channel conditions [85, 109],

• Robust spectral efficiency– two of these articles claim stable spectral efficiency under fading

conditions [127, 135],

• Reduced computational complexity– 13 of these articles claimed reduced computational

complexity [70, 104, 138, 147, 140, 118, 119, 143, 158, 76, 126, 90, 137] and two of

these articles claim reduced computational complexity while minimizing computational er-

ror [80, 96],

• Increased throughput– five of these articles claimed reduction of data overhead leading to

increases in throughput [147, 159, 120, 77, 131],

• Joint channel state estimation and data detection– nine of these articles claim joint channel

state estimation and data detection [111, 100, 101, 81, 103, 105, 107, 115, 116],

• Transmitter channel state estimation– two of these articles claim channel state information

at the transmitter for adaptive process control [71, 151],

• Low SNR conditions– one of these articles claim improved accuracy with low signal to noise

ratio cases [72],

• Fast time-varying conditions– seven of these articles claim channel state tracking in fast

time-varying conditions [102, 73, 139, 150, 133, 136, 96],

• Shortened training sequences– two of these articles claim minimum squared error perfor-

mance with shorter training sequences [82, 89],

• Convergence– five of these articles claim advantages of faster convergence for channel state

estimation methods [105, 154, 155, 143, 92],

• Global maximum– one of these articles claim advantages of converging to a global maximum

when estimating channel state [105],
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• Closed loop feedback– three of these articles claim timely and accurate channel state closed

loop feedback from the receiver to a transmitter [74, 22, 123],

• Reduced latency– two of these articles claim advantages of reduced channel state processing

latency [89, 132],

• Reduced channel state bandwidth– one of these articles claim the advantages of reduced

channel state bandwidth [132],

• Reduced error– two of these articles claim advantages from reduced channel state estimation

error [92, 94].

There are a number of channel state processing weaknesses that emerge from this body of literature

including:

• Degraded performance under dynamic channel conditions– 58 of these articles propose per-

formance with constraints defined by specific channel configurations such that if the channel

condition change, performance claims would be degraded [79, 98, 99, 100, 153, 80, 70, 101,

71, 152, 73, 105, 151, 74, 145, 83, 84, 107, 85, 108, 146, 147, 109, 110, 111, 116, 118, 119,

86, 120, 142, 87, 121, 57, 123, 124, 75, 125, 76, 126, 161, 127, 128, 129, 89, 91, 130, 18,

132, 150, 58, 93, 133, 135, 94, 136, 96],

• Degraded performance under dynamic waveform conditions– 34 of these articles propose

performance with constraints defined by specific waveform configurations such that if the

waveform changes, performance claims would be degraded [79, 98, 70, 101, 72, 152, 73,

147, 110, 111, 115, 116, 118, 86, 120, 142, 121, 57, 143, 122, 144, 123, 124, 125, 76, 127,

129, 89, 130, 132, 58, 133, 134, 137],

• Resource allocation– 11 of these articles propose methods that impact resource allocations

constrained by channel state such that if the channel state is dynamic, resource allocations

would be suboptimum [71, 73, 106, 145, 83, 84, 107, 146, 109, 119, 87],
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• Complexity– seven of these articles suffer from channel state estimation computational com-

plexity [160, 105, 138, 112, 159, 77, 157],

• Latency– three of these articles suffer from excessive channel state estimation latency [160,

106, 149],

• Accurate and timely channel state estimation– two of these articles assume that channel state

estimations are perfect and available when required [102, 138],

• Channel state estimate error– five of these articles ignore channel state estimation error [104,

139, 149, 92, 134],

• Constant velocity– one of these articles claim performance gains under constraint of constant

velocity such that if a mobile node does not maintain constant velocity performance would

be degraded [82],

• Neural Networks– one of these articles claim performance with neural network methods

which have limitations [113],

• Offline methods– three of these articles claim performance with offline or nonadaptive chan-

nel state estimation methods [154, 155],

• Reduced capacity– 16 of these articles rely upon online training symbols or pilot tones which

reduce throughput capacity, Training sequence length– one of these articles suffers from long

training sequence length [136, 100, 101, 73, 12, 148, 111, 140, 121, 158, 88, 124, 125, 150,

58, 92],

• Channel state estimation convergence– two of these articles suffer from channel state esti-

mation convergence [92, 94],

• Local maximum– one of these articles suffers from convergence to local maximum rather

than global maximum [94].
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There are a number of similarities to the Channel State Recognition algorithm that emerge from

this literature including:

• General channel state estimation– similar to the CSR algorithm, three of these articles claim

general channel state estimation [101, 145, 94],

• Block channel state estimation– similar to the CSR algorithm, 49 of these articles propose

block channel state estimation rather than streaming channel state estimation [69, 97, 99,

153, 80, 70, 81, 72, 102, 103, 73, 105, 138, 151, 74, 83, 84, 107, 108, 147, 12, 109, 110,

148, 111, 112, 140, 114, 22, 159, 117, 119, 149, 142, 57, 88, 123, 75, 76, 126, 89, 90, 77,

78, 131, 133, 156, 157, 96],

• Online feature recognition– similar to the CSR algorithm, 52 of these articles propose online

feature recognition [79, 153, 71, 72, 102, 105, 138, 74, 83, 84, 147, 12, 109, 110, 148, 111,

112, 140, 22, 115, 159, 117, 118, 141, 149, 86, 120, 142, 57, 158, 88, 122, 144, 123, 75, 125,

76, 126, 161, 127, 128, 129, 77, 130, 132, 93, 133, 156, 95, 136, 157, 96],

• HMM based processing– similar to the CSR algorithm, 7 of these articles propose HMM

based processing [160, 82, 114, 154, 159, 155, 18],

• Adaptive channel state estimation–similar to the CSR algorithm, 49 of these articles claim

some form of adaptive processing [98, 99, 100, 153, 80, 70, 71, 72, 102, 104, 105, 151, 139,

106, 83, 84, 107, 108, 146, 110, 114, 116, 118, 119, 86, 120, 87, 121, 143, 122, 123, 124,

125, 161, 127, 128, 129, 91, 130, 131, 132, 58, 92, 93, 134, 135, 156, 136, 137],

• Channel state tracking– similar to the CSR algorithm, 15 of these articles claim some form of

channel state tracking [81, 103, 82, 152, 107, 159, 141, 87, 158, 124, 125, 76, 126, 91, 157],

• Offline training– similar to the CSR algorithm, three of these articles propose methods that

require offline training sequences [138, 154, 155],
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• Feature recognition– similar to the CSR algorithm, 11 of these articles propose approaches

with waveform or channel feature recognition [74, 146, 147, 12, 148, 113, 140, 22, 57, 131,

134],

• Maximum likelihood (ML) methods– similar to the CSR algorithm, at least one of these

articles is based on the ML algorithm [158],

• Cognitive radio (CR) and/or software defined radio (SDR) architecture– similar to the CSR

algorithm, three of these articles are based on a CR or SDR architecture [77, 152, 76],

• Dual dispersive channel state estimation– similar to the CSR algorithm, one of these articles

propose dual dispersive channel estimation [150].

There are some observable differences between this body of literature and the Channel state recog-

nition (CSR) algorithm including:

• Channel state definition– unlike the CSR algorithm, 94 of these articles are based on a wire-

less channel finite impulse response definition of channel state [69, 79, 99, 100, 153, 80, 70,

101, 71, 72, 102, 103, 104, 82, 152, 73, 105, 138, 151, 139, 106, 74, 145, 83, 84, 107, 85,

108, 146, 147, 12, 109, 110, 148, 111, 112, 113, 140, 114, 154, 22, 115, 159, 116, 117, 118,

155, 141, 119, 149, 86, 120, 142, 87, 121, 57, 143, 158, 88, 122, 144, 123, 124, 75, 125, 76,

126, 161, 127, 128, 129, 89, 90, 77, 78, 91, 130, 18, 131, 132, 150, 58, 92, 93, 133, 134, 135,

94, 156, 95, 136, 157, 96, 137] which is significantly different than the CSR distortion state

definition,

• HMM processing– unlike the CSR algorithm, 92 of these articles are not based on any form

of an HMM [69, 79, 98, 99, 100, 80, 70, 101, 71, 72, 102, 103, 104, 82, 152, 73, 105, 138,

151, 139, 106, 74, 145, 83, 84, 107, 85, 108, 146, 147, 12, 109, 110, 148, 111, 112, 113, 140,

114, 22, 115, 159, 116, 117, 118, 141, 119, 149, 86, 120, 142, 87, 121, 57, 143, 158, 88, 122,

144, 123, 124, 75, 125, 76, 126, 161, 127, 128, 129, 89, 90, 77, 78, 91, 130, 18, 131, 132,

150, 58, 92, 93, 133, 134, 135, 94, 156, 95, 136, 157, 96, 137],
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• High order HMM– unlike the CSR algorithm, one of these articles is based on higher order

HMM processing [160],

• Distortion state awareness– unlike the CSR algorithm, 89 of these articles are not distortion

state aware [79, 98, 99, 153, 80, 70, 101, 71, 72, 102, 104, 152, 73, 105, 138, 151, 139, 106,

74, 145, 83, 84, 107, 85, 108, 146, 12, 109, 110, 111, 112, 113, 140, 114, 154, 22, 115, 159,

116, 118, 155, 141, 119, 149, 86, 120, 142, 87, 121, 57, 143, 158, 88, 122, 144, 123, 124,

125, 76, 126, 161, 127, 128, 129, 89, 90, 77, 78, 91, 130, 18, 131, 132, 150, 58, 92, 93, 133,

134, 135, 94, 156, 95, 136],

• Offline training– unlike the CSR algorithm, 41 of these articles propose methods which do

not require offline training [79, 98, 153, 102, 103, 152, 74, 84, 12, 109, 148, 140, 117, 141,

119, 149, 120, 87, 158, 88, 144, 123, 124, 75, 125, 76, 126, 127, 129, 130, 131, 132, 92, 93,

133, 134, 94, 156, 136, 96],

• Offline processing– unlike the CSR algorithm, six of these articles propose offline channel

state processing methods [160, 81, 154, 155, 90, 94],

• HMM training– unlike the CSR algorithm, one of these articles does not utilize the Baum

Welch algorithm for training [160],

• Online training– unlike the CSR algorithm, 15 of these articles describes methods which

utilize online training sequences or pilot tones which reduce throughput capacity [100, 101,

73, 12, 148, 111, 140, 121, 158, 88, 124, 125, 150, 58, 92],

• Adaptive channel state tracking– unlike the CSR algorithm, at least four of these articles do

not claim any type of channel state tracking [80, 117, 88, 77],

• HMM generators– unlike the CSR algorithm, two of these articles feature HMM as wave-

form generators rather than waveform recognition [81, 18],
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• Frequency dispersion– unlike the CSR algorithm, at least two of these articles claims only

time dispersion to the exclusion of frequency dispersion [146, 84],

• Exploitation of specific waveform or channel features– unlike the CSR algorithm, at least 18

of these articles exploit specific waveform or specific channel features [69, 97, 98, 81, 103,

106, 12, 148, 112, 140, 117, 141, 119, 86, 88, 122, 78, 95],

• Joint channel state estimation and symbol detection processing– unlike the CSR algorithm,

at least nine of these articles propose joint channel state estimation with symbol detection

processing [111, 100, 101, 81, 103, 105, 107, 115, 116].

From this body of literature, the following CSR claimed contributions are summarized below:

• CSR Channel State definition– The CSR algorithm uniquely defines wireless channel state

in terms of five distortion states (two distortionless and three distortion states): 1) nondis-

persive, 2) time nonselective+ frequency nonselective, 3) frequency nonselective and time

selective 4) frequency selective and time nonselective 5) time selective and frequency selec-

tive. Distortion state awareness– Most if not all of the proposed processing methods in this

body of literature, are environmentally sensitive. That is, they claim performance that de-

pends upon accurate and timely channel state awareness, and they assume favorable wireless

channel conditions. However, as traditionally defined, channel state models do not accu-

rately represent channel distortion, but rather wireless channel input to output gain. Wireless

channel distortion is a tacit assumption in most if not all of these processing methods given

that they constrain the application of their methods to either nondispersive, time, or fre-

quency dispersive channel conditions. By recognizing distortion state, the CSR algorithm

provides these environmentally sensitive processing methods environmental awareness; indi-

cating when channel conditions are favorable, and eliminating degraded performance when

applied under unfavorable channel conditions.

• Adaptive processing performance– Most if not all of these environmentally sensitive process-

ing methods assume a specific channel distortion state, which can be related to magnitude of
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time and frequency dispersion. Given that wireless channel dispersion is dynamic, if a pro-

cessing algorithm is only applied under favorable channel conditions, then peak performance

can be maintained. Furthermore, by eliminating application when unfavorable conditions ex-

ist, degraded performance is minimized. The CSR algorithm thus adaptively maintains peak

processing performance in a dynamic wireless channel state, while eliminating wasteful sub-

optimal performance if these processing methods are applied under unfavorable channel state

conditions.

• Adaptive resource allocation– Most if not all of these proposed processing methods consume

resources including: 1) memory, 2) processing cycles, 3) capacity, 4) bandwidth, 5) power,

and 6) spectrum. Given that wireless channel conditions are dynamic, some dispersive states

are favorable and others are unfavorable to performance. If an environmentally sensitive

processing method is applied under unfavorable channel conditions, peak performance de-

grades while associated resources are fixed, resulting in suboptimum resource utilization.

The CSR algorithm enables adaptive maintenance of peak resource allocation while elimi-

nating wasteful suboptimal resource allocation if these processing methods are applied under

unfavorable channel state conditions.

• Adaptive processing latency– Most if not all of these environmentally sensitive processing

methods require varying degrees of latency. Given that wireless channel state is dynamic,

degraded performance results if these methods are applied in unfavorable conditions, and if

associated latency is fixed, inefficient processing latency results. The CSR algorithm enables

adaptive maintenance of optimum processing latency while eliminating wasteful suboptimal

processing latency if these processing methods are applied under unfavorable channel state

conditions.
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Figure A.1: Algorithm Development Process

A.9 Algorithm Development

An algorithm is a defined computational procedure, that is a sequence of computational steps, that

transforms input data into output data. An algorithm can be considered as a tool for solving

well-specified computational problems. The problem statement specifies in general terms the

desired input/output relationship. Cormen et al. [44] explain the importance of algorithms for

design of efficient advanced computing processes such as networking, software compilation,

GUIs, and parallel computing architectures. The general algorithm development process shown in

Fig. A.1 has been developed by Goodman and Hedetniemi[162].

A.10 Prescriptive Mitigation Selections

Environmental sensing processes provide MWC waveform feature extraction and recognition;

feature extraction and state recognition functions effectively translate observable MWC features

into meaningful channel states which can be can be processed by the CPA. Given current MWC

distortion state, a cognitive processor can implement time-variant distortion mitigation policy.

This can be accomplished with a mitigation transform (Refer to FigureA.2) which maps channel

distortion states to associated mitigation processing. Refer to Sklar [49], Rappaport [3], and

Proakis [48] for discussion of fading mitigation. The distortion mitigation zones are defined as

regions of power efficiency for which common mitigation strategies will be effective. For

example, regions of QoS where SNR mitigation would be effective is labeled as the SNR zone.
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Figure A.2: Distortion Mitigation Transform

This zone is characterized by non-dispersive channel characteristics and selections that increase

signal energy or decrease noise power would be sufficient to maintain or improve link quality. In

this zone, distortion mitigation methods would waste resources. A second zone is associated with

nonselective dispersion states; in this zone equalization or interleaving mitigation would

compensate for distortion. In this zone, SNR mitigation methods would waste resources. A third

zone is associated with single or dual selective distortion states; in this zone switching to

noncoherent or OFDM modulation would be sufficient to mitigate distortion. In this zone, SNR or

nonselective distortion mitigation methods would waste resources. By recognizing the distortion

state, the cognitive processor can apply effective distortion mitigation selections to the adaptive

transmitter and/or receiver to maintain link quality based on current MWC conditions.

183



Figure A.3: State 1 AWGN CIR

A.11 Enhanced CSR Test Results

A.11.1 Channel State Waveform Generation

The discussion in this section is about the design of channel state waveforms that have been pro-

cessed through specific channel state characteristics. Each of these waveforms has been designed

in accordance with the Channel Coherence Model (CSM).

State 1 has been designed to be minimally time and frequency dispersive representative of AWGN

conditions. In Figure A.3 the state 1 CIR is shown. This CIR has been designed to provide minimal

time dispersion effects due to the low gain of delay components two through four. This results in a

channel that is frequency coherent because the channel frequency gain does not vary less than the

block rate of 20 KHz. The multipath delay vector is [0 .1e-6 .2e-6 .3e-6] while the multipath gain

vector is [0 -100 -100 -100] dB. The rms delay spread (DS) of state 1 is .294 e-6 seconds and the

associated BWc is ~68 KHz.

In Figure A.4 the state 1 scattering function (SF) is shown. This SF reflects the minimal frequency

dispersion effects due to the small diffuse Doppler spread (DP). The channel is considered time
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Figure A.4: State 1 AWGN Scattering Function

coherent due because the channel gain does not vary less than the block rate of 50 e-6 seconds.

The DP is .01 Hz and the associated Tc of this state is ~42 seconds.

State 2 has been designed to be time nonselective (TN) and frequency nonselective (FN). In Figure

A.5 the state 2 CIR is shown. This CIR has been designed to provide low time dispersion effects

resulting in FN (flat) conditions (refer to Figure A.6) due to the small delay of the multipath

components while the gain of these components has grown relative to state 1. While the frequency

response of state 2 does vary, it does not vary substantially less than the block rate of 20 Hhz. The

multipath delay vector is [0 .1e-6 .2e-6 .3e-6] while the multipath gain vector is [0 -3 -10 -20] dB.

The RMS DS of state 2 is .175 e-6 seconds and the associated BWc is ~114 KHz.

In Figure A.7 the state 2 SF is observed. This SF reflects the minimal time and frequency dispersion

effects due to the small diffuse Doppler spread (DP). Similar to state 1, the diffuse DP is .01 Hz

and the associated Tc of this state is ~42 seconds..

State 3 has been designed to be TS and FN. In Figures A.8 and A.9 a snapshot of the state 3 time-

variant CIR is shown while in Figures A.10 and A.11 a snapshot of the state 3 FR is shown. These

Figures highlight how the channel gain changes over time however the FR is nonselective. These

CIRs are designed similar to state 2 to provide low time dispersion effects resulting in FN (flat)
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Figure A.5: State 2 Channel Impulse Response

Figure A.6: State 2 Channel Frequency Response
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Figure A.7: State 2 Scattering Function

conditions due to the small delay of the multipath components relative to the block rate of 20 KHz.

The multipath delay vector is [0 .1e-6 .2e-6 .3e-6] while the multipath gain vector is [0 -3 -10 -20]

dB. Similar to state 2, the rms DS of state 3 is .175e-6 seconds and the associated BWc is ~114

KHz.

In Figure A.12 the state 3 SF is observed. This SF reflects the moderate frequency dispersion

effects due to the diffuse DP which is a substantial percentage of the block period of 50e-6 seconds.

For this state, the diffuse DP is 1 KHz and the associated Tc of this state is ~423e-6 seconds.

State 4 has been designed to be TN and FS. In Figure A.13 the state 4 CIR is shown while in

Figure A.14 FR is shown. These figures highlight how the channel gain does not vary over the

block period however the frequency response is selective less than the block rate of 20 KHz. For

this state, the multipath delay of this CIR has increased 10x over the previous states, and the

resulting time dispersion is a significant percentage of the block period resulting in FS conditions.

The multipath delay vector is [0 1e-6 2e-6 3e-6] while the multipath gain vector is [0 -3 -10 -20]

dB. For this case, the rms DS of state 4 is 1.75 e-6 seconds and the associated BWc is ~11.4 KHz.

In Figure A.15 the state 4 SF is observed. This SF reflects the minimal frequency dispersion effects

due to the diffuse DP which is a small percentage of the block rate of 20 KHz. Similar to states
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Figure A.8: State 3 Time-Variant Channel Impulse Response

Figure A.9: State 3 Time-Variant Channel Impulse Response
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Figure A.10: State 3 Channel Frequency Response

Figure A.11: State 3 Channel Frequency Response
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Figure A.12: State 3 Scattering Function

Figure A.13: State 4 Channel Impulse Response
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Figure A.14: State 4 Frequency Response

1-3, the diffuse DP is .01 KHz and the associated Tc of this state is ~42 seconds.

State 5 has been designed to be TS and FS. In Figures A.16 and A.17 snapshots of the state 5 time

variant CIR is shown while in Figures A.18 and A.19 snapshots of the time-variant FR is shown.

These figures highlight how the channel gain varies over the block period and how the frequency

response is selective less than the block rate of 20 KHz. For this state, the multipath delay of

this CIR is similar to state 3, and the resulting time dispersion is a significant percentage of the

block period resulting in FS conditions. The multipath delay vector is [0 1e-3 2e-3 3e-3] while the

multipath gain vector is [0 -3 -10 -20] dB. For this case, the RMS DS of state 3 is 1.75 e-3 seconds

and the associated BWc is ~11.4 Hz.

In Figure A.20 the state 5 SF is observed. This SF reflects the frequency dispersion effects due to

the diffuse DP which is a significant percentage of the block rate of 20 KHz. Similar to state 3 the

diffuse DP is 1 KHz and the associated Tc of this state is ~423e-6 seconds.
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Figure A.15: State 4 Scattering Function

Figure A.16: State 5 Time-Variant Channel Impulse Response
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Figure A.17: State 5 Time-Variant Channel Impulse Response

Figure A.18: State 5 Channel Frequency Response
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Figure A.19: State 5 Channel Frequency Response

Figure A.20: State 5 Scattering Function
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Figure A.21: State 1 Envelope

A.11.2 Waveform Statistical Feature Extraction

First Order Statistical Features

First order statistical features for the Coherence State Model (CSM), state 1 through state 5, are

shown in Figures A.21 to A.25. Each of these figures display the complex envelope magnitude and

phase PDF.

Waveform Second Order Statistical Features

State 1 Distributions The state 1 extracted waveform second order statistical features are shown

in FiguresA.26 to Figure A.29. The estimated Tc magnitude and phase PDF shown in Figure A.26

were computed by an autocorrelation applied to the time domain waveform samples.

The state 1 estimated DP magnitude and phase are shown in Figure A.27. These were computed

by applying an FFT to the Tc estimate.

The state 1 estimated BWc magnitude and phase are shown in Figure A.28. The BWc was esti-

mated by an autocorrelation applied to the frequency domain waveform which was computed by

applying an FFT the input waveform.

The state 1 estimated DS magnitude and phase are shown in Figure A.29. The DS was estimated
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Figure A.22: State 2 Envelope

Figure A.23: State 3 Envelope
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Figure A.24: State 4 Envelope

Figure A.25: State 5 Envelope
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Figure A.26: State 1 Tc

Figure A.27: State 1 DP
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Figure A.28: State 1 BWc

by an inverse FFT applied to the BWc estimate.

State 2 Distributions The state 2 estimated Tc magnitude and phase PDFs are shown in Figure

A.30 which were computed by an autocorrelation applied to the time domain input waveform

samples.

The state 2 estimated DP magnitude and phase are shown in Figure A.31. These were computed

by applying an FFT to the Tc estimate.

The state 2 estimated BWc magnitude and phase are shown in Figure A.32. The BWc was esti-

mated by applying an autocorrelation to the frequency domain waveform which was computed by

an FFT of the input waveform.

The state 2 estimated DS magnitude and phase are shown in Figure A.33. The DS was estimated

by an inverse FFT applied to the BWc estimate.

State 3 Distributions The state 3 estimated Tc magnitude and phase pdfs are shown in Figure

A.34 which were computed by an autocorrelation applied to the time domain input waveform

samples.

The state 3 estimated DP magnitude and phase are shown in Figure A.35. These were computed
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Figure A.29: State 1 DS

Figure A.30: State 2 Tc
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Figure A.31: State 2 DP

Figure A.32: State 2 BWc
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Figure A.33: State 2 DS

Figure A.34: State 3 Tc
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Figure A.35: State 3 DP

by applying an FFT to the Tc estimate.

The state 3 estimated BWc magnitude and phase are shown in Figure A.36. The BWc was esti-

mated by applying an autocorrelation to the frequency domain waveform which was computed by

an FFT of the input waveform.

The state 3 estimated DS magnitude and phase are shown in Figure A.37. The DS was estimated

by an inverse FFT applied to the BWc estimate.

State 4 Distributions The state 4 estimated Tc magnitude and phase PDFs are shown in Figure

A.38 which were computed by an autocorrelation applied to the time domain input waveform

samples.

The state 4 estimated DP magnitude and phase are shown in Figure A.39. These were computed

by applying an FFT to the Tc estimate.

The state 4 estimated BWc magnitude and phase are shown in Figure A.40. The BWc was esti-

mated by applying an autocorrelation to the frequency domain waveform which was computed by

an FFT of the input waveform.

The state 4 estimated DS magnitude and phase are shown in Figure A.41. The DS was estimated

by an inverse FFT applied to the BWc estimate.
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Figure A.36: State 3 BWc

Figure A.37: State 3 DS
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Figure A.38: State 4 Tc

Figure A.39: State 4 DP
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Figure A.40: State 4 BWc

Figure A.41: State 4 DS
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Figure A.42: State 5 Tc

State 5 Distributions The state 5 estimated Tc magnitude and phase PDFs are shown in Figure

A.42 which were computed by an autocorrelation applied to the time domain input waveform

samples.

The state 5 estimated DP magnitude and phase are shown in Figure A.43. These were computed

by applying an FFT to the Tc estimate.

The state 5 estimated BWc magnitude and phase are shown in Figure A.44. The BWc was esti-

mated by applying an autocorrelation to the frequency domain waveform which was computed by

an FFT of the input waveform.

The state 5 estimated DS magnitude and phase are shown in Figure A.45. The DS was estimated

by an inverse FFT applied to the BWc estimate.

A.11.3 State Likelihood Parameter Estimation

This section provides results for training each of the waveform statistical feature recognition

HMMs. Training an HMM is a process of submiting input sequences to the HMM and estimat-

ing the probability of transitions between states, and also estimating the conditional probability

between a state and the observable output. Two inputs were provided for each HMM training
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Figure A.43: State 5 DP

Figure A.44: State 5 BWc
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Figure A.45: State 5 DS

session: 1) sequence of symbols selected from a finite state alphabet with 200 symbols, and 2)

sequence of associated hidden states. The output of the training process is the state transition and

output probability matrices.

Complex Envelope Magnitude HMM

Figure A.46 provides the results of training the CEM HMM. The transition and output matrix are

shown after training the HMM with a 250K sample sequence comprising waveform CEM features

from state 1, 2, 3, 4, and 5. The output matrix is a 5x 200 element matrix whose rows have been

plotted independently. Note the diversity in the output matrix which enhances the sensitivity of

this HMM to changes between the MWC hidden states.

Envelope Phase HMM

Figure A.47provides the results of training the CEP HMM. The transition and output matrix are

shown after training the HMM with a 250K sample sequence comprising waveform envelope phase

features from state 1, 2, 3, 4, and 5. The output matrix is a 5x 200 element matrix whose rows have

been plotted independently. Note the diversity in the output matrix which enhances the sensitivity

of this HMM to changes between the MWC hidden states.
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Figure A.46: CEM HMM Parameters

Figure A.47: CEM
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Figure A.48: TcM HMM Parameters

Tc Magnitude HMM

Figure A.48provides the results of training the TcM HMM. The transition and output matrix are

shown after training the HMM with a 250K sample sequence comprising waveform Tc magnitude

features from state 1, 2, 3, 4, and 5. The output matrix is a 5x 200 element matrix whose rows

have been plotted independently. Note the lack of diversity in the magnitude output matrix which

degrades the sensitivity of this HMM to changes between the MWC hidden states reducing its

effectiveness.

Tc Phase HMM

Figure A.49provides the results of training the TcP HMM. The transition and output matrix are

shown after training the HMM with a 250K sample sequence comprising waveform TcP features

from state 1, 2, 3, 4, and 5. The output matrix is a 5x 200 element matrix whose rows have

been plotted independently. Note the partitioning of the output response into two groups that lack

diversity in the phase output matrix. This will degrade the sensitivity of this HMM to changes

between the MWC hidden states within each group reducing its effectiveness.
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Figure A.49: TcP HMM Parameters

Figure A.50: DPM HMM Parameters

Doppler Spread Magnitude HMM

Figure A.60provides the results of training the envelope magnitude HMM. The transition and out-

put matrix are shown after training the HMM with a 250K sample sequence comprising waveform

Doppler spread features from state 1, 2, 3, 4, and 5. The output matrix is a 5x 200 element matrix

whose rows have been plotted independently. Note the lack of diversity in the magnitude output

matrix which degrades the sensitivity of this HMM to changes between the MWC hidden states

reducing its effectiveness.
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Figure A.51: DPP HMM Parameters

Doppler Spread Phase HMM

Figure A.51provides the results of training the envelope magnitude HMM. The transition and out-

put matrix are shown after training the HMM with a 250K sample sequence comprising waveform

Doppler spread phase features from state 1, 2, 3, 4, and 5. The output matrix is a 5x 200 element

matrix whose rows have been plotted independently. Note the stratification of the magnitude out-

put matrix into two groups with similar features which degrades the sensitivity of this HMM to

changes between the MWC hidden states within each group reducing its effectiveness.

BWc Magnitude HMM

Figure A.52provides the results of training the envelope magnitude HMM. The transition and out-

put matrix are shown after training the HMM with a 250K sample sequence comprising waveform

BWM features from state 1, 2, 3, 4, and 5. The output matrix is a 5x 200 element matrix whose

rows have been plotted independently. Note the lack of diversity in the magnitude output matrix

which degrades the sensitivity of this HMM to changes between the MWC hidden states reducing

its effectiveness.
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Figure A.52: BWM HMM Parameters

Figure A.53: BWP HMM Parameters

BWc Phase HMM

Figure A.53provides the results of training the envelope magnitude HMM. The transition and out-

put matrix are shown after training the HMM with a 250K sample sequence comprising waveform

BWP features from state 1, 2, 3, 4, and 5. The output matrix is a 5x 200 element matrix whose

rows have been plotted independently. Note the diversity in the output matrix which enhances the

sensitivity of this HMM to changes between the MWC hidden states.
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Figure A.54: DSM HMM Parameters

Delay Spread Magnitude HMM

Figure A.64provides the results of training the envelope magnitude HMM. The transition and out-

put matrix are shown after training the HMM with a 250K sample sequence comprising waveform

delay spread features from state 1, 2, 3, 4, and 5. The output matrix is a 5x 200 element matrix

whose rows have been plotted independently. Note the lack of diversity in the magnitude output

matrix which degrades the sensitivity of this HMM to changes between the MWC hidden states

reducing its effectiveness.

Delay Spread Phase HMM

Figure A.65provides the results of training the envelope magnitude HMM. The transition and out-

put matrix are shown after training the HMM with a 250K sample sequence comprising waveform

delay spread features from state 1, 2, 3, 4, and 5. The output matrix is a 5x 200 element matrix

whose rows have been plotted independently. Note the lack of diversity in the magnitude output

matrix which degrades the sensitivity of this HMM to changes between the MWC hidden states

reducing its effectiveness.
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Figure A.55: DSP HMM Parameters

A.11.4 CSM State Likelihood Estimation

This section provides results generated by passing 5 different state sequences through each of

the trained HMMs. Given that each HMM has been trained with a sequence of features, any

input sequence to the HMM can be compared for likelihood that the input statistically matches the

training sequences. Responses that approach a value of 1 indicate a strong likelihood that the two

sequences stastically are similar will a value approaching 0 indicate a strong likelihood that the

two sample sequences are dissimilar.

State Sequence 12345

The results in this section show HMM recognition of states within the statistics of each feature

sequence.

Complex Envelope Magnitude Figure A.76 illustrates the detection of each state in the CEM

sequence. Note that this HMM successfully recognized the first 50K samples as state 1, the next

50K samples as state 2, etc. Note that there are some fluctuations within each state and false

detections within other states reducing accuracy and contributing to Type I and Type II errors.
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Figure A.56: CEM Sequence Recognition

Complex Envelope Phase Figure A.57 illustrates the detection of each state in the CEP se-

quence. Note that this HMM successfully recognized the first 50K samples as state 1, the next 50K

samples as state 2, etc. Note that there are some fluctuations within each state and false detections

within other states reducing accuracy and contributing to Type I and Type II errors.

Tc Magnitude Figure A.58 illustrates the detection of each state in the TcM sequence. Note

that this HMM did not recognize the first 50K samples as state 1, the next 50K samples were not

recognized as state 2, etc. Note that there is only a partial detection within each state and false

detections within other states reducing accuracy and contributing to Type I and Type II errors.

Tc Phase Figure A.59 illustrates the detection of each state in the TcP sequence. Note that this

HMM recognized the first 50K samples as state 1, the next 50K samples were recognized as state

2, etc. Note that there are fluctuations within each state and false detections within other states

reducing accuracy and contributing to Type I and Type II errors.

Doppler Spread Magnitude Figure A.60 illustrates the detection of each state in the DPM se-

quence. Note that this HMM recognized the first 50K samples as state 1, and the next 50K samples

were recognized as state 2, however, did not recognize states 3, 4, or 5. Note that there are partial
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Figure A.57: CEP Sequence Recognition

Figure A.58: TcM Sequence Recognition

218



Figure A.59: TcP Sequence Recognition

responses within each state and false detections within other states reducing accuracy and con-

tributing to Type I and Type II errors.

Doppler Spread Phase Figure A.61 illustrates the detection of each state in the DPP sequence.

Note that this HMM successfully recognized state 1, 3, and 5, however the performance for state 2,

and 4 was poor. Note that there are partial responses within each state and false detections within

other states reducing accuracy and contributing to Type I and Type II errors.

BWc Magnitude Figure A.72 illustrates the detection of each state in the BWM sequence. Note

that this HMM recognized the first 50K samples as state 1, but did poorly for state 2, 3, 4, and

5. Note that there are partial responses within each state and false detections within other states

reducing accuracy and contributing to Type I and Type II errors.

BWc Phase Figure A.60 illustrates the detection of each state in the BWP sequence. Note that

this HMM larely recognized the first 50K samples as state 1, and the next 50K samples were rec-

ognized as state 2, etc.. Note that there are partial responses within each state and false detections

within other states reducing accuracy and contributing to Type I and Type II errors.
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Figure A.60: DPM Sequence Recognition

Figure A.61: DPP Sequence Recognition
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Figure A.62: BWM Sequence Recognition

Figure A.63: BWP
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Figure A.64: DSM Sequence Recognition

Delay Spread Magnitude Figure A.64 illustrates the detection of each state in the DSM se-

quence. Note that this HMM recognized a portion of the first 50K samples as state 1, however

did a poor job discriminating state 1 from the other states and did as poorly with all the other

states. Note that there are partial responses within each state and false detections within other

states reducing accuracy and contributing to Type I and Type II errors.

Delay Spread Phase Figure A.65 illustrates the detection of each state in the DSP sequence.

Note that this HMM a partial response to state 1, however did a poor job discriminating state 1

from the other states. It did however, recognize a high percentage of state 4, but performed poorly

with all the other states. Note that there are partial responses within each state and false detections

within other states reducing accuracy and contributing to Type I and Type II errors.

State Sequence 23451

Figure A.86 illustrates the detection of each state in the CEM sequence. Note that this HMM

recognized the first 50K samples as state 2, the next 50K samples as state3, etc. Note that there are

partial responses within each state and false detections within other states reducing accuracy and
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Figure A.65: DSP Sequence Recognition

contributing to Type I and Type II errors.

Complex Envelope Magnitude

Complex Envelope Phase Figure A.77 illustrates the detection of each state in the CEP se-

quence. Note that this HMM recognized the first 50K samples as state 2, the next 50K samples as

state3, etc. Note that there are partial responses within each state and false detections within other

states reducing accuracy and contributing to Type I and Type II errors.

Tc Magnitude Figure A.78 illustrates the detection of each state in the TcM sequence. Note

that this HMM had only a partial response in the first 50K samples as state 2, and did a poor job

of discriminating state 2 from state 1. It did with the all the other states also. Note that there are

partial responses within each state and false detections within other states reducing accuracy and

contributing to Type I and Type II errors.

Tc Phase Figure A.79 illustrates the detection of each state in the TcP sequence. Note that this

HMM did recognize the first 50K samples as state 2, and the next 50K samples as state 3, etc. Note
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Figure A.66: CEM Sequence Recognition

Figure A.67: CEP Sequence Recognition
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Figure A.68: TcM Sequence Recognition

that there are partial responses within each state and false detections within other states reducing

accuracy and contributing to Type I and Type II errors.

Doppler Spread Magnitude Figure A.70 illustrates the detection of each state in the DPM se-

quence. Note that this HMM did a very poor job of recognizing any of the states in this feature

sequence and also did a poor job of discriminating between states.

Doppler Spread Phase Figure A.71 illustrates the detection of each state in the DPP sequence.

Note that this HMM performed poorly at recognizing any state and poorly at discriminating be-

tween states. Note that there are partial responses within each state and false detections within

other states reducing accuracy and contributing to Type I and Type II errors.

BWc Magnitude Figure A.72 illustrates the detection of each state in the BWM sequence. Note

that this HMM recognized a portion of the first 50K samples as state 2, but did not discriminate

between state 2 and the other states. It performed poorly on all the other states as well. Note

that there are partial responses within each state and false detections within other states reducing

accuracy and contributing to Type I and Type II errors.
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Figure A.69: TcP Sequence Recognition

Figure A.70: DPM Sequence Recognition
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Figure A.71: DPP Sequence Recognition

Figure A.72: BWM Sequence Recognition
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Figure A.73: BWP Sequence Recognition

BWc Phase Figure A.83 illustrates the detection of each state in the BWP sequence. Note that

this HMM recognized the first 50K samples as state 2, and the next 50K samples as state three,

etc.. Note that there are partial responses within each state and false detections within other states

reducing accuracy and contributing to Type I and Type II errors.

Delay Spread Magnitude Figure A.74 illustrates the detection of each state in the DSM se-

quence. Note that this HMM performed poorly at recognizing any state and poorly at discriminat-

ing between states.

Delay Spread Phase Figure A.75 illustrates the detection of each state in the DSP sequence.

Note that this HMM performed poorly at recognizing any state and poorly at discriminating be-

tween states.

State Sequence 34512

Figure A.76 illustrates the detection of each state in the CEM sequence. Note that this HMM

recognized the first 50K samples as state 3, the next 50K samples as state 4, etc.. Note that there
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Figure A.74: DSM

Figure A.75: DSP Sequence Recognition
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Figure A.76: CEM Sequence Recognition

are partial responses within each state and false detections within other states reducing accuracy

and contributing to Type I and Type II errors.

Complex Envelope Magnitude

Complex Envelope Phase Figure A.77 illustrates the detection of each state in the CEP se-

quence. Note that this HMM recognized the first 50K samples as state 3, the next 50K samples

as state 4, etc.. Note that there are partial responses within each state and false detections within

other states reducing accuracy and contributing to Type I and Type II errors.

Tc Magnitude Figure A.78 illustrates the detection of each state in the TcM sequence. Note that

this HMM partially recognized state 3 in the first 50K samples, but could not discriminate between

state 3 and the other states. It also performed poorly at recognizing any of the other states in the

TcM sequence. Note that there are partial responses within each state and false detections within

other states reducing accuracy and contributing to Type I and Type II errors.
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Figure A.77: CEP Sequence Recognition

Figure A.78: TcM Sequence Recognition
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Figure A.79: TcP Sequence Recognition

Tc Phase Figure A.79 illustrates the detection of each state in the TcP sequence. Note that this

HMM recognized the 50K samples as state 3, and the next 50K samples as state 4, etc.. Note

that there are partial responses within each state and false detections within other states reducing

accuracy and contributing to Type I and Type II errors.

Doppler Spread Magnitude Figure A.80 illustrates the detection of each state in the DPM se-

quence. Note that this HMM performed poorly at recognizing state 3 in the first 50K samples and

was unable to discriminate between states.

Doppler Spread Phase Figure A.81 illustrates the detection of each state in the DPP sequence.

Note that this HMM performed poorly at recognizing any of the states in the DPP sequence.

BWc Magnitude Figure A.82 illustrates the detection of each state in the BWM sequence. Note

that this HMM partially recognized state 3 in the first 50K samples, but could not discriminate

between state 3 and the other states. It also performed poorly at recognizing any of the other states

in the Tc magnitude sequence.
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Figure A.80: DPM Sequence Recognition

Figure A.81: DPP Sequence Recognition
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Figure A.82: BWM Sequence Recognition

BWc Phase Figure A.83 illustrates the detection of each state in the BWP sequence. Note that

this HMM partially recognized state 3 in the first 50K samples, and state 4 in the next 50K samples,

etc.. Note that there are partial responses within each state and false detections within other states

reducing accuracy and contributing to Type I and Type II errors.

Delay Spread Magnitude Figure A.84 illustrates the detection of each state in the DSM se-

quence. Note that this HMM performed poorly at recognizing any of the states in the DSM se-

quence.

Delay Spread Phase Figure A.85 illustrates the detection of each state in the Delay spread se-

quence. Note that this HMM performed poorly at recognizing any of the states in the DSP se-

quence.

State Sequence 45123

Complex Envelope Magnitude Figure A.86 illustrates the detection of each state in the CEM

sequence. Note that this HMM recognized the first 50K samples as state 4, the next 50K samples
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Figure A.83: BWP Sequence Recogntion

Figure A.84: DSM Sequence Recognition
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Figure A.85: DSP Sequence Recognition

as state5, etc. Note that there are partial responses within each state and false detections within

other states reducing accuracy and contributing to Type I and Type II errors.

Complex Envelope Phase Figure A.87 illustrates the detection of each state in the CEP se-

quence. Note that this HMM recognized the first 50K samples as state 4, the next 50K samples as

state5, etc. Note that there are partial responses within each state and false detections within other

states reducing accuracy and contributing to Type I and Type II errors.

Tc Magnitude Figure A.88 illustrates the detection of each state in the TcM sequence. Note

that this HMM recognized a portion of the first 50K samples as state 4, but did not effectively

discriminate between state 4 and other states. This HMM also performed poorly at recognizing all

the remaining states. Note that there are partial responses within each state and false detections

within other states reducing accuracy and contributing to Type I and Type II errors.

Tc Phase Figure A.89 illustrates the detection of each state in the TcP sequence. Note that this

HMM recognized the first 50K samples as state 4, the next 50K samples as state 5, etc. Note

that there are partial responses within each state and false detections within other states reducing
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Figure A.86: CEM Sequence Recognition

Figure A.87: CEP Sequence Recognition
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Figure A.88: TcM Sequence Recognition

accuracy and contributing to Type I and Type II errors.

Doppler Spread Magnitude Figure A.90 illustrates the detection of each state in the DPM se-

quence. Note that this HMM performed poorly at recognizing and discriminating between all the

states.

Doppler Spread Phase Figure A.91 illustrates the detection of each state in the DPP sequence.

Note that this HMM recognized a significant portion of the first 50K samples as state 4, but was

unable to discriminate between state 4 and the remaining states. This HMM also performed poorly

with the other states.

BWc Magnitude Figure A.92 illustrates the detection of each state in the BWM sequence. Note

that this HMM recognized a portion of the first 50K samples as state 4, but did not effectively

discriminate between state 4 and the remaining states. This HMM also performed poorly for the

other states.
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Figure A.89: TcP Sequence Recognition

Figure A.90: DPM Sequence Recognition
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Figure A.91: DPP Sequence Recognition

Figure A.92: BWM Sequence Recognition
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Figure A.93: BWP Sequence Recognition

BWc Phase Figure A.93 illustrates the detection of each state in the BWP sequence. Note that

this HMM recognized the first 50K samples as state 4, the next 50K samples as state5, etc. Note

that there are partial responses within each state and false detections within other states reducing

accuracy and contributing to Type I and Type II errors.

Delay Spread Magnitude Figure A.94 illustrates the detection of each state in the DSM se-

quence. Note that this HMM performed poorly at recognizing the first 50K samples as state 4 and

also did not discriminate between states.

Delay Spread Phase Figure A.95 illustrates the detection of each state in the DSP sequence.

Note that this HMM did recognize the first 50K samples as state 4, but did not discriminate between

state 4 and the remaining states. This HMM also performed poorly for all the other states.

State Sequence 51234

Figure A.96 illustrates the detection of each state in the CEM sequence. Note that this HMM

recognized the first 50K samples as state 2, the next 50K samples as state3, etc. Note that there are
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Figure A.94: DSM Sequence Recognition

Figure A.95: DSP Sequence Recognition
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Figure A.96: CEM Sequence Recognition

partial responses within each state and false detections within other states reducing accuracy and

contributing to Type I and Type II errors.

Complex Envelope Magnitude Figure A.96 illustrates the detection of each state in the CEM

sequence. Note that this HMM recognized the first 50K samples as state 5, the next 50K samples

as state1, etc. Note that there are partial responses within each state and false detections within

other states reducing accuracy and contributing to Type I and Type II errors.

Complex Envelope Phase Figure A.97 illustrates the detection of each state in the CEP se-

quence. Note that this HMM recognized the first 50K samples as state 5, the next 50K samples as

state1, etc. Note that there are partial responses within each state and false detections within other

states reducing accuracy and contributing to Type I and Type II errors.

Tc Magnitude Figure A.98 illustrates the detection of each state in the TcM sequence. Note

that this HMM recognized a portion of the first 50K samples as state 5, but was not effective at

discriminating between state 5 and the other states. This HMM performed poorly for the other

states. Note that there are partial responses within each state and false detections within other
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Figure A.97: CEP Sequence Recognition

states reducing accuracy and contributing to Type I and Type II errors.

Tc Phase Figure A.99 illustrates the detection of each state in the TcP sequence. Note that this

HMM recognized the first 50K samples as state 5, the next 50K samples as state1, etc. Note

that there are partial responses within each state and false detections within other states reducing

accuracy and contributing to Type I and Type II errors.

Doppler Spread Magnitude Figure A.100 illustrates the detection of each state in the DPM

sequence. Note that this HMM did not recognize the first 50K samples as state 5, and also poorly

at discriminating between any of the states.

Doppler Spread Phase Figure A.101 illustrates the detection of each state in the DPP sequence.

Note that this HMM failed to recognize the first 50K samples as state 5, and performed poorly at

discriminating among any of the states.

BWc Magnitude Figure A.102 illustrates the detection of each state in the BWM sequence. Note

that this HMM recognized a portion of the first 50K samples as state 5, but did recognize a large
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Figure A.98: TcM Sequence Recognition

Figure A.99: TcP Sequence Recognition
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Figure A.100: DPM Sequence Recognition

Figure A.101: DPP Sequence Recognition
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Figure A.102: BWM Sequence Recognition

portion of the next 50K samples as state 1. It did not discriminate between the remaining states.

BWc Phase Figure A.103 illustrates the detection of each state in the BWP sequence. Note that

this HMM recognized the first 50K samples as state 5, the next 50K samples as state1, etc. Note

that there are partial responses within each state and false detections within other states reducing

accuracy and contributing to Type I and Type II errors.

Delay Spread Magnitude Figure A.104 illustrates the detection of each state in the DSM se-

quence. Note that this HMM failed to recognize the first 50K samples as state 5, and performed

poorly at discriminating between all the states.

Delay Spread Phase Figure A.105 illustrates the detection of each state in the delay spread

sequence. Note that this HMM failed to recognize the first 50K samples as state 5, and was not

effective at discriminating between all the states.
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Figure A.103: BWP Sequence Recognition

Figure A.104: DSM Sequence Recognition
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Figure A.105: DSP Sequence Recognition

A.11.5 Extracted Feature State Likelihood vs Timeblock Estimates

This section defines the results of extracting state probabilities from each feature HMM output.

Each feature HMM estimates the likelihood that its input matches the training sequence and pro-

vides 5 conditional probability sequences which are accumulated and normalized to form an esti-

mate of the feature state probability for each timeblock. These values are displayed to provide the

likelihood that the input sequence agrees with the training sequence utilized to train the HMM.

State Sequence 12345

Figure A.106 displays the liklihood from the CEM HMM; the CSM state probabilities are shown

in each row while each timeblock is shown in each column. Note the state sequence 12345 was

recognized with an estimated likelihood greater than 99% along the diagonal of the matrix while

all other states were found to be not likely.

Figure A.107 displays the likelihoods from the CEP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 12345 was

recognized with an estimated likelihood greater than 99% along the diagonal of the matrix while
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Figure A.106: State Sequence 12345 CEM State Likelihood Estimates vs. Timeblocks

Figure A.107: State Sequence 12345 CEP State Likelihood Estimates vs. Timeblocks

all other states were found to be not likely.

Figure A.108 displays the likelihoods from the TcM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 12345 was not

recognized along the diagonal of the matrix while all other states were found to be nearly equally

likely.

Figure A.109 displays the likelihoods from the TcP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 12345 was

estimated with greater than 99% likelihood along the diagonal of the matrix while all other states

were found to be not likely.

Figure A.110 displays the likelihoods from the Doppler Spread magnitude HMM; the CSM state

likelihoods are shown in each row while each timeblock is shown in each column. Note while State

1 was recognized in Timeblock 1, the state sequence 12345 was not recognized along the diagonal

Figure A.108: State Sequence 12345 TcM State Likelihood Estimates vs. Timeblocks
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Figure A.109: State Sequence 12345 TcP State Likelihood Estimates vs. Timeblocks

Figure A.110: State Sequence 12345 DPM State Likelihood Estimates vs. Timeblocks

of the matrix while all other states were found to be equally likely.

Figure A.111 displays the likelihoods from the DPP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note while State 1 was recognized in

Timeblock 1, the state sequence 12345 was not recognized along the diagonal of the matrix while

all other states were found to be equally likely.

Figure A.112 displays the likelihoods from the BWM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note while State 1 was recognized in

Timeblock 1, the state sequence 12345 was not recognized along the diagonal of the matrix while

all other states were found to be equally likely.

Figure A.113 displays the likelihoods from the BWP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 12345 was

recognized along the diagonal of the matrix while all other states were found to be not likely.

Figure A.111: State Sequence 12345 DPP State Likelihood Estimates vs. Timeblocks
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Figure A.112: State Sequence 12345 BWM State Likelihood Estimates vs. Timeblocks

Figure A.113: State Sequence 12345 BWP State Likelihood Estimates vs. Timeblocks

Figure A.114 displays the likelihoods from the DSM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 12345 was not

recognized along the diagonal of the matrix while all other states were found to be equally likely.

Figure A.115 displays the likelihoods from the DSP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 12345 was not

recognized along the diagonal of the matrix while all other states were found to be equally likely.

State Sequence 23451

Figure A.116 displays the liklihood from the CEM HMM; the CSM state likelihoods are shown in

each row while each timeblock is shown in each column. Note the state sequence 23451 was

recognized with an estimated likelihood greater than 98% in each column while all other states

were found to be not likely.

Figure A.114: State Sequence 12345 DSM State Likelihood Estimates vs. Timeblocks
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Figure A.115: State Sequence 12345 DSP State Probablity Estimates vs. Timeblocks

Figure A.116: State Sequence 23451 CEM State Likelihood Estimates vs. Timeblocks

Figure A.117 displays the likelihoods from the CEP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 23451 was

recognized with an estimated likelihood greater than 99% in each column of the matrix while all

other states were found to be not likely.

Figure A.118 displays the likelihoods from the TcM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 23451 was

not recognized in the columns of the matrix while all other states were found to be nearly equally

likely.

Figure A.119 displays the likelihoods from the TcP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 23451 was

recognized in the columns of the matrix while all other states were found to be not likely.

Figure A.117: State Sequence 23451 CEP State Likelihood Estimates vs. Timeblocks

253



Figure A.118: State Sequence 23451 TcM State Likelihood Estimates vs. Timeblocks

Figure A.119: State Sequence 23451 TcP State Likelihood Estimates vs. Timeblocks

Figure A.120 displays the likelihoods from the Doppler Spread magnitude HMM; the CSM state

likelihoods are shown in each row while each timeblock is shown in each column. Note while

State 1 was estimated in Timeblock 1, it was not discrimated from the other states in timeblocks

2-5. Additionally, the state sequence 23451 was not recognized in the colums of the matrix while

all other states were found to be equally likely.

Figure A.121 displays the likelihoods from the DPP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 4 was estimted as most

likely in all timeblocks except timeblock 4. The state sequence 23451 was not recognized in the

columns of the matrix while all other states were found to be equally likely.

Figure A.122 displays the likelihoods from the BWM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 23451 was

Figure A.120: State Sequence 23451 DPM State Likelihood Estimates vs. Timeblocks
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Figure A.121: State Sequence 23451 DPP State Likelihood Estimates vs. Timeblocks

Figure A.122: State Sequence 23451 BWM State Likelihood Estimates vs. Timeblocks

not estimated in the columns of the matrix while all other states were found to be equally likely.

Figure A.123 displays the likelihoods from the BWP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 23451 was

recognized along the diagonal of the matrix while all other states were found to be not likely.

Figure A.124 displays the likelihoods from the DSM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 23451 was not

recognized along the diagonal of the matrix while all other states were found to be equally likely.

Figure A.125 displays the likelihoods from the DSP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 3 was estimated as most

likely in timeblocks 1-3 and state 4 in timeblock 4. The state sequence 23451 was not recognized

along the diagonal of the matrix while all other states were found to be equally likely.

Figure A.123: State Sequence 23451 BWP State Likelihood Estimates vs. Timeblocks
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Figure A.124: State Sequence 23451 DSM State Likelihood Estimates vs. Timeblocks

Figure A.125: State Sequence 23451 DSP State Probablity Estimates vs. Timeblocks

State Sequence 34512

Figure A.126 displays the liklihood from the CEM HMM; the CSM state likelihoods are shown in

each row while each timeblock is shown in each column. Note the state sequence 34512 was

recognized with an estimated likelihood greater than 98% in each column while all other states

were found to be not likely.

Figure A.127 displays the likelihoods from the CEP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 34512 was

recognized with an estimated likelihood greater than 99% in each column of the matrix while all

other states were found to be not likely.

Figure A.128 displays the likelihoods from the TcM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 5 recognized as most

Figure A.126: State Sequence 34512 CEM State Likelihood Estimates vs. Timeblocks
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Figure A.127: State Sequence 34512 CEP State Likelihood Estimates vs. Timeblocks

Figure A.128: State Sequence 34512 TcM State Likelihood Estimates vs. Timeblocks

likely in all timeblocks and that the state sequence 34512 was not recognized in the columns of the

matrix while all other states were found to be nearly equally likely.

Figure A.129 displays the likelihoods from the TcP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 34512 was

estimated with greater than 99% likelihood in the columns of the matrix while all other states were

found to be not likely.

Figure A.130 displays the likelihoods from the DPM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 2 was incorrectly esti-

mated as most likely in all timeblocks . Additionally, the state sequence 34512 was not recognized

in the columns of the matrix while all other states were found to be equally likely.

Figure A.129: State Sequence 34512 TcP State Likelihood Estimates vs. Timeblocks
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Figure A.130: State Sequence 34512 DPM State Likelihood Estimates vs. Timeblocks

Figure A.131: State Sequence 34512 DPP State Likelihood Estimates vs. Timeblocks

Figure A.131 displays the likelihoods from the DPP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 4 was incorrectly

estimated in all timeblocks. The state sequence 34512 was not recognized in the columns of the

matrix while all other states were found to be equally likely.

Figure A.132 displays the likelihoods from the BWM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note while State 1 was correclty

estimated in Timeblock 4, the state sequence 34512 was not recognized along the diagonal of the

matrix while all other states were found to be equally likely.

Figure A.133 displays the likelihoods from the BWP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 34512 was

estimated with greater than 95% likelihood along the columns of the matrix while all other states

Figure A.132: State Sequence 34512 BWM State Likelihood Estimates vs. Timeblocks
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Figure A.133: State Sequence 34512 BWP State Likelihood Estimates vs. Timeblocks

Figure A.134: State Sequence 34512 DSM State Likelihood Estimates vs. Timeblocks

were found to be not likely.

Figure A.134 displays the likelihoods from the DSM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 4 was incorrectly

estimated to be the most likely state in all timeblocks. The state sequence 34512 was not recognized

along the diagonal of the matrix while all other states were found to be equally likely.

Figure A.135 displays the likelihoods from the DSP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 4 was estimated as

most likely in all timeblocks. The state sequence 34512 was not recognized along the diagonal of

the matrix while all other states were found to be equally likely.

Figure A.135: State Sequence 34512 DSP State Probablity Estimates vs. Timeblocks
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Figure A.136: State Sequence 45123 CEM State Likelihood Estimates vs. Timeblocks

Figure A.137: State Sequence 45123 CEP State Likelihood Estimates vs. Timeblocks

State Sequence 45123

Figure A.136 displays the liklihood from the CEM HMM; the CSM state likelihoods are shown in

each row while each timeblock is shown in each column. Note the state sequence 45123 was

recognized with an estimated likelihood greater than 98% in each column while all other states

were found to be not likely.

Figure A.137 displays the likelihoods from the CEP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 45123 was

recognized with an estimated likelihood greater than 99% in each column of the matrix while all

other states were found to be not likely.

Figure A.138 displays the likelihoods from the TcM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 5 was incorrectly

estimated as most likely in all timeblocks except timeblock 1 and that the state sequence 45123

was not recognized in the columns of the matrix while all other states were found to be nearly

equally likely.

Figure A.139 displays the likelihoods from the TcP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 45123 was
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Figure A.138: State Sequence 45123 TcM State Likelihood Estimates vs. Timeblocks

Figure A.139: State Sequence 45123 TcP State Likelihood Estimates vs. Timeblocks

estimated wiht greater that 99% likelihood in the columns of the matrix while all other states were

found to be not likely.

Figure A.140 displays the likelihoods from the DPM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 2 was incorrectly esti-

mated as most likely in all timeblocks . Additionally, the state sequence 45123 was not recognized

in the colums of the matrix while all other states were found to be equally likely.

Figure A.141 displays the likelihoods from the DPP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 4 was incorrectly

estimated as most likely in all timeblocks except timeblock 1. The state sequence 45123 was not

recognized in the columns of the matrix while all other states were found to be equally likely.

Figure A.140: State Sequence 45123 DPM State Likelihood Estimates vs. Timeblocks
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Figure A.141: State Sequence 45123 DPP State Likelihood Estimates vs. Timeblocks

Figure A.142: State Sequence 45123 BWM State Likelihood Estimates vs. Timeblocks

Figure A.142 displays the likelihoods from the BWM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note while State 1 was correctly

estimated in Timeblock 3, the state sequence 45123 was not recognized along the diagonal of the

matrix while all other states were found to be equally likely.

Figure A.143 displays the likelihoods from the BWP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 45123 was

estimated with greater than 95% likelihood along the columns of the matrix while all other states

were found to be not likely.

Figure A.144 displays the likelihoods from the DSM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 1 was incorrectly

estimated to be the most likely state in all timeblocks. The state sequence 45123 was not recognized

Figure A.143: State Sequence 45123 BWP State Likelihood Estimates vs. Timeblocks
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Figure A.144: State Sequence 45123 DSM State Likelihood Estimates vs. Timeblocks

Figure A.145: State Sequence 45123 DSP State Probablity Estimates vs. Timeblocks

along the diagonal of the matrix while all other states were found to be equally likely.

Figure A.145 displays the likelihoods from the DSP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 4 was estimated as

most likely in all timeblocks except timeblock 4. The state sequence 45123 was not recognized

along the diagonal of the matrix while all other states were found to be equally likely.

State Sequence 51234

Figure A.146 displays the liklihood from the CEM HMM; the CSM state likelihoods are shown in

each row while each timeblock is shown in each column. Note the state sequence 51234 was

recognized with an estimated likelihood greater than 98% in each column while all other states

were found to be not likely.

Figure A.147 displays the likelihoods from the CEP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 51234 was

recognized with an estimated likelihood greater than 99% in each column of the matrix while all

other states were found to be not likely.
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Figure A.146: State Sequence 51234 CEM State Likelihood Estimates vs. Timeblocks

Figure A.147: State Sequence 51234 CEP State Likelihood Estimates vs. Timeblocks

Figure A.148 displays the likelihoods from the TcM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 5 was incorrectly

estimated as most likely in all timeblocks except timeblock 5 and that the state sequence 51234

was not recognized in the columns of the matrix while all other states were found to be nearly

equally likely.

Figure A.149 displays the likelihoods from the TcP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 51234 was

recognized with greater than 99% likelihood in the columns of the matrix while all other states

were found to be not likely.

Figure A.150 displays the likelihoods from the DPM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 2 was incorrectly esti-

Figure A.148: State Sequence 51234 TcM State Likelihood Estimates vs. Timeblocks
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Figure A.149: State Sequence 51234 TcP State Likelihood Estimates vs. Timeblocks

Figure A.150: State Sequence 51234 DPM State Likelihood Estimates vs. Timeblocks

mated as most likely in all timeblocks . Additionally, the state sequence 51234 was not recognized

in the colums of the matrix while all other states were found to be equally likely.

Figure A.151 displays the likelihoods from the DPP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 4 was incorrectly

estimated as most likely in all timeblocks except timeblock 1. The state sequence 51234 was not

recognized in the columns of the matrix while all other states were found to be equally likely.

Figure A.152 displays the likelihoods from the BWM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note while State 1 was correctly

estimated in Timeblock 2, the state sequence 51234 was not recognized along the diagonal of the

matrix while all other states were found to be equally likely.

Figure A.151: State Sequence 51234 DPP State Likelihood Estimates vs. Timeblocks
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Figure A.152: State Sequence 51234 BWM State Likelihood Estimates vs. Timeblocks

Figure A.153: State Sequence 51234 BWP State Likelihood Estimates vs. Timeblocks

Figure A.153 displays the likelihoods from the BWP HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note the state sequence 51234 was

estimated with greater than 95% likelihood along the columns of the matrix while all other states

were found to be not likely.

Figure A.154 displays the likelihoods from the DSM HMM; the CSM state likelihoods are shown

in each row while each timeblock is shown in each column. Note that state 1 was incorrectly

estimated to be the most likely state in all timeblocks. The state sequence 51234 was not recognized

along the diagonal of the matrix while all other states were found to be equally likely.

Figure A.155displays the likelihoods from the DSP HMM; the CSM state likelihoods are shown in

each row while each timeblock is shown in each column. Note that state 4 was estimated as most

likely in all timeblocks except timeblock 3. The state sequence 51234 was not recognized along

Figure A.154: State Sequence 51234 DSM State Likelihood Estimates vs. Timeblocks
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Figure A.155: State Sequence 51234 DSP State Probablity Estimates vs. Timeblocks

Table A.3: Feature Definitions
Feature Abreviation

Complex Envelope Magnitude CEM
Complex Envelope Phase CEP

Coherence Time Magnitude TcM
Coherence Time Phase TcP

Doppler Spread Magnitude DPM
Doppler Spread Phase DPP

Coherence Bandwidth Magnitude BWM
Coherence Bandwidth Phase BWP

Delay Spread Magnitude DSM
Delay Spread Phase DSP

the diagonal of the matrix while all other states were found to be equally likely.

A.11.6 CSR Feature State Estimates

This section provides graphs of feature hard decisions vs. timeblocks. Each feature is defined

in Table A.3. These features were extracted and aggregated from each of the feature state HMM

outputs to formulate the diagrams in this section.

State Sequence 12345

Each of the feature recognition HMM state hard decisions for the input state sequence 12345 from

the previous section were combined as shown in Figure A.156. Row 1correspondes to the first row

of Table A.3 (CEM) while row 10 corresponds to row 10 (DSP). Each of the columns correspond to

timeblock 1 to 5 consecutively. This information highlights the detection performance differences

between each feature recognition HMM in each of the timeblocks. Note that the CEM,CEP, Tc
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Figure A.156: State Sequence 12345 CSR Combined Feature State Decisions vs. Timeblocks

phase, and BWc phase tracked CSM states effectively while the remaining features did poorly.

Additionally, Figure A.157shows the same data as a surface plot, where the features that tracked

the input state sequence can be clearly identified.

State Sequence 23451

Each of the feature recognition HMM state hard decisions for the input state sequence 23451 from

the previous section were combined as shown in Figure A.158. Row 1 is mapped to first row of

Table A.3 (CEM) while row 10 is mapped to row 10 (DSP). Each of the columns correspond to

timeblock 1 to 5 consecutively. This information highlights the detection performance differences

between each feature recognition HMM in each of the timeblocks. Note that the CEM,CEP, Tc

phase, and BWc phase tracked CSM states effectively while the remaining features did poorly.

Additionally, Figure A.159shows the same data as a surface plot, where the features that tracked

the input state sequence can be clearly identified.
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Figure A.157: State Sequence 12345 Feature State Decisions vs. Timeblocks

Figure A.158: State Sequence 23451 CSR Combined Feature State Decisions vs. Timeblocks
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Figure A.159: State Sequence 23451 Feature State Decisions vs. Timeblocks

State Sequence 34512

Each of the feature recognition HMM state hard decisions for the input state sequence 34512 from

the previous section were combined as shown in Figure A.160. Row 1 corresponds to first row of

Table A.3 (CEM) while row 10 corresponds to row 10 (DSP). Each of the columns correspond to

timeblock 1 to 5 consecutively. This information highlights the detection performance differences

between each feature recognition HMM in each of the timeblocks. Note that the CEM,CEP, Tc

phase, and BWc phase tracked CSM states effectively while the remaining features did poorly.

Additionally, Figure A.161shows the same data as a surface plot, where the features that tracked

the input state sequence can be clearly identified.

State Sequence 45123

Each of the feature recognition HMM state hard decisions for the input state sequence 34512 from

the previous section were combined as shown in Figure A.162. Row 1 corresponds to first row of

Table A.3 (CEM) while row 10 corresponds to row 10 (DSP). Each of the columns correspond to

timeblock 1 to 5 consecutively. This information highlights the detection performance differences
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Figure A.160: State Sequence 34512 CSR Combined Feature State Decisions vs. Timeblocks

Figure A.161: State Sequence 34512 Feature State Decisions vs. Timeblocks
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Figure A.162: State Sequence 45123 CSR Combined Feature State Decisions vs. Timeblocks

Figure A.163: State Sequence 45123 Feature State Decisions vs. Timeblocks

between each feature recognition HMM in each of the timeblocks. Note that the CEM,CEP, Tc

phase, and BWc phase tracked CSM states effectively while the remaining features did poorly.

Additionally, Figure A.163shows the same data as a surface plot, where the features that tracked

the input state sequence can be clearly identified.
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Figure A.164: State Sequence 51234 CSR Combined Feature State Decisions vs. Timeblocks

State Sequene 51234

Each of the feature recognition HMM state hard decisions for the input state sequence 51234 from

the previous section were combined as shown in Figure A.164. Row 1 corresponds to first row of

Table A.3 (CEM) while row 10 corresponds to row 10 (DSP). Each of the columns correspond to

timeblock 1 to 5 consecutively. This information highlights the detection performance differences

between each feature recognition HMM in each of the timeblocks. Note that the CEM,CEP, Tc

phase, and BWc phase tracked CSM states effectively while the remaining features did poorly.

Additionally, Figure A.165 shows the same data as a surface plot, where the features that tracked

the input state sequence can be clearly identified.

A.11.7 CSR Output State Estimation

State Sequence 12345

Figure A.166 shows the timeblock 1 hard decision frequency distribution that were produced from

the FSE for the input state sequence 12345.

Figure A.167 shows the timeblock 2 hard decision frequency distribution that were produced from

the FSE for the input state sequence 12345.

Figure A.168 shows the timeblock 3 hard decision frequency distribution that were produced from
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Figure A.165: State Sequence 51234 Feature State Decisions vs. Timeblocks

Figure A.166: Timeblock 1 State Frequency Distribution for State Sequence 12345
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Figure A.167: Timeblock 2 State Frequency Distribution for State Sequence 12345

the FSE for the input state sequence 12345.

Figure A.169 shows the timeblock 4 hard decision frequency distribution that were produced from

the FSE for the input state sequence 12345.

Figure A.170 shows the timeblock 5 hard decision frequency distribution that were produced from

the FSE for the input state sequence 12345.

Figure A.171 shows the CSR algorithm output CSM CSE sequence that are the result of selecting

the maximum of the hard decision frequency distribution for each time block and the input state

sequence 12345.

State Sequence 23451

Figure A.172 shows the timeblock 1 hard decision frequency distribution that were produced from

the FSE for the input state sequence 12345.

Figure A.173 shows the timeblock 2 hard decision frequency distribution that were produced from

the FSE for the input state sequence 23451.

Figure A.174 shows the timeblock 3 hard decision frequency distribution that were produced from
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Figure A.168: Timeblock 3 State Frequency Distribution for State Sequence 12345

Figure A.169: Timeblock 4 State Frequency Distribution for State Sequence 12345

276



Figure A.170: Timeblock 5 State Frequency Distribution for State Sequence 12345

Figure A.171: CSR Output State Estimates for State Sequences 12345
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Figure A.172: Timeblock 1 State Frequency Distribution for State Sequence 23451

Figure A.173: Timeblock 2 State Frequency Distribution for State Sequence 23451
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Figure A.174: Timeblock 3 State Frequency Distribution for State Sequence 23451

the FSE for the input state sequence 23451.

Figure A.175 shows the timeblock 4 hard decision frequency distribution that were produced from

the FSE for the input state sequence 12345.

Figure A.176 shows the timeblock 5 hard decision frequency distribution that were produced from

the FSE for input sequence 23451.

Figure A.177 shows the CSR algorithm output CSM CSE sequence that are the result of selecting

the maximum of the hard decision frequency distribution for each time block and the input state

sequence 23451.

State Sequence 34512

Figure A.178 shows the timeblock 1 hard decision frequency distribution that were produced from

the FSE for the input state sequence 34521.

Figure A.179 shows the timeblock 2 hard decision frequency distribution that were produced from

the FSE for the input state sequence 34512.

Figure A.180 shows the timeblock 3 hard decision frequency distribution that were produced from
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Figure A.175: Timeblock 4 State Frequency Distribution for State Sequence 23451

Figure A.176: Timeblock 5 State Frequency Distribution for State Sequence 23451
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Figure A.177: CSR Output State Estimates for State Sequences 23451

Figure A.178: Timeblock 1 State Frequency Distribution for State Sequence 34512
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Figure A.179: Timeblock 2 State Frequency Distribution for State Sequence 34512

the FSE for the input state sequence 34512.

Figure A.181 shows the timeblock 4 hard decision frequency distribution that were produced from

the FSE for the input state sequence 34512.

Figure A.182 shows the timeblock 5 hard decision frequency distribution that were produced from

the FSE for input sequence 34512.

Figure A.183 shows the CSR algorithm output CSM CSE sequence that are the result of selecting

the maximum of the hard decision frequency distribution for each time block and the input state

sequence 34512.

State Sequence 45123

Figure A.184 shows the timeblock 1 hard decision frequency distribution that were produced from

the FSE for the input state sequence 45123.

Figure A.185 shows the timeblock 2 hard decision frequency distribution that were produced from

the FSE for the input state sequence 45123.

Figure A.186 shows the timeblock 3 hard decision frequency distribution that were produced from
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Figure A.180: Timeblock 3 State Frequency Distribution for State Sequence 34512

Figure A.181: Timeblock 4 State Frequency Distribution for State Sequence 34512
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Figure A.182: Timeblock 5 State Frequency Distribution for State Sequence 34512

Figure A.183: CSR Output State Estimates for State Sequences 34512
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Figure A.184: Timeblock 1 State Frequency Distribution for State Sequence 45123

Figure A.185: Timeblock 2 State Frequency Distribution for State Sequence 45123
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Figure A.186: Timeblock 3 State Frequency Distribution for State Sequence 45123

the FSE for the input state sequence 45123.

Figure A.187 shows the timeblock 4 hard decision frequency distribution that were produced from

the FSE for the input state sequence 45123.

Figure A.188 shows the timeblock 5 hard decision frequency distribution that were produced from

the FSE for input sequence 45123.

Figure A.189 shows the CSR algorithm output CSM CSE sequence that are the result of selecting

the maximum of the hard decision frequency distribution for each time block and the input state

sequence 45123.

State Sequene 51234

Figure A.190 shows the timeblock 1 hard decision frequency distribution that were produced from

the FSE for the input state sequence 51234.

Figure A.191 shows the timeblock 2 hard decision frequency distribution that were produced from

the FSE for the input state sequence 51234.

Figure A.192 shows the timeblock 3 hard decision frequency distribution that were produced from
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Figure A.187: Timeblock 4 State Frequency Distribution for State Sequence 45123

Figure A.188: Timeblock 5 State Frequency Distribution for State Sequence 45123
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Figure A.189: CSR Output State Estimates for State Sequences 45123

Figure A.190: Timeblock 1 State Frequency Distribution for State Sequence 51234
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Figure A.191: Timeblock 2 State Frequency Distribution for State Sequence 51234

the FSE for the input state sequence 51234.

Figure A.193 shows the timeblock 4 hard decision frequency distribution that were produced from

the FSE for the input state sequence 51234.

Figure A.194 shows the timeblock 5 hard decision frequency distribution that were produced from

the FSE for input sequence 51234.

Figure A.195 shows the CSR algorithm output CSM CSE sequence that are the result of selecting

the maximum of the hard decision frequency distribution for each time block and the input state

sequence 51234.
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Figure A.192: Timeblock 3 State Frequency Distribution for State Sequence 51234

Figure A.193: Timeblock 4 State Frequency Distribution for State Sequence 51234
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Figure A.194: Timeblock 5 State Frequency Distribution for State Sequence 51234

Figure A.195: CSR Output State Estimates for State Sequences 51234
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