500 research outputs found

    The application of a new PID autotuning method for the steam/water loop in large scale ships

    Get PDF
    In large scale ships, the most used controllers for the steam/water loop are still the proportional-integral-derivative (PID) controllers. However, the tuning rules for the PID parameters are based on empirical knowledge and the performance for the loops is not satisfying. In order to improve the control performance of the steam/water loop, the application of a recently developed PID autotuning method is studied. Firstly, a 'forbidden region' on the Nyquist plane can be obtained based on user-defined performance requirements such as robustness or gain margin and phase margin. Secondly, the dynamic of the system can be obtained with a sine test around the operation point. Finally, the PID controller's parameters can be obtained by locating the frequency response of the controlled system at the edge of the 'forbidden region'. To verify the effectiveness of the new PID autotuning method, comparisons are presented with other PID autotuning methods, as well as the model predictive control. The results show the superiority of the new PID autotuning method

    Modeling and supervisory control design for a combined cycle power plant

    Get PDF
    The traditional control strategy based on PID controllers may be unsatisfactory when dealing with processes with large time delay and constraints. This paper presents a supervisory model based constrained predictive controller (MPC) for a combined cycle power plant (CCPP). First, a non-linear dynamic model of CCPP using the laws of physics was proposed. Then, the supervisory control using the linear constrained MPC method was designed to tune the performance of the PID controllers by including output constraints and manipulating the set points. This scheme showed excellent tracking and disturbance rejection results and improved performance compared with a stand-alone PID controller’s scheme

    Distributed model predictive control of steam/water loop in large scale ships

    Get PDF
    In modern steam power plants, the ever-increasing complexity requires great reliability and flexibility of the control system. Hence, in this paper, the feasibility of a distributed model predictive control (DiMPC) strategy with an extended prediction self-adaptive control (EPSAC) framework is studied, in which the multiple controllers allow each sub-loop to have its own requirement flexibility. Meanwhile, the model predictive control can guarantee a good performance for the system with constraints. The performance is compared against a decentralized model predictive control (DeMPC) and a centralized model predictive control (CMPC). In order to improve the computing speed, a multiple objective model predictive control (MOMPC) is proposed. For the stability of the control system, the convergence of the DiMPC is discussed. Simulation tests are performed on the five different sub-loops of steam/water loop. The results indicate that the DiMPC may achieve similar performance as CMPC while outperforming the DeMPC method

    The potential of fractional order distributed MPC applied to steam/water loop in large scale ships

    Get PDF
    The steam/water loop is a crucial part of a steam power plant. However, satisfying control performance is difficult to obtain due to the frequent disturbance and load fluctuation. A fractional order model predictive control was studied in this paper to improve the control performance of the steam/water loop. Firstly, the dynamic of the steam/water loop was introduced in large-scale ships. Then, the model predictive control with an extended prediction self adaptive controller framework was designed for the steam/water loop with a distributed scheme. Instead of an integer cost function, a fractional order cost function was applied in the model predictive control optimization step. The superiority of the fractional order model predictive control was validated with reference tracking and load fluctuation experiments

    A robust PID autotuning method for steam/water loop in large scale ships

    Get PDF
    During the voyage of the ship, disturbances from the sea dynamics are frequently changing, and the ship's operation mode is also varied. Hence, it is necessary to have a good controller for steam/water loop, as the control task is becoming more challenging in large scale ships. In this paper, a robust proportional-integral-derivative (PID) autotuning method is presented and applied to the steam/water loop based on single sine tests for every sub-loop in the steam/water loop. The controller is obtained during which the user-defined robustness margins are guaranteed. Its performance is compared against other PID autotuners, and results indicate its superiority

    Nonlinear predictive control applied to steam/water loop in large scale ships

    Get PDF
    In steam/water loop for large scale ships, there are mainly five sub-loops posing different dynamics in the complete process. When optimization is involved, it is necessary to select different prediction horizons for each loop. In this work, the effect of prediction horizon for Multiple-Input Multiple-Output (MIMO) system is studied. Firstly, Nonlinear Extended Prediction Self-Adaptive Controller (NEPSAC) is designed for the steam/water loop system. Secondly, different prediction horizons are simulated within the NEPSAC algorithm. Based on simulation results, we conclude that specific tuning of prediction horizons based on loop’s dynamic outperforms the case when a trade-off is made and a single valued prediction horizon is used for all the loops

    Model predictive fuzzy control of a steam boiler

    Get PDF
    This thesis is devoted to apply a Model Predictive Fuzzy Controller (MPC and Takagi-Sugeno) to a specific Steam Boiler Plant. This is a very common problem in control. The considered plant is based on the descriptions obtained from the data of a referenced boiler in the combined cycle plant as Abbot in Champaign, Illinois. The idea is to take all the useful data from the boiler according to its performance and capability in different operation points in order to model the most accurate plant for control. The considered case study is based in a modification of a model proposed by Pellegrinetti and Bentsman in 1996, considering to be tested under the demands of the Control Engineering Association (CEA). The system is Multi-Input and Multi-Output (MIMO), where each controlled output has a specific weight in order to measure the performance. The objective is to minimize cost index but also make it operative and robust for a wide range of variables, discovering the limits of the plant and its behaviour. The model is supposed to manage real data and was constructed under real physical descriptions. However, this model is not a white box, so the analysis and development of the model to be used with the MPC strategy have to be identified to continue with the evaluation of the controlled plant. There are some physical variables that have to be taken into account (Drum Pressure, Excess of Oxygen, Water Level, Water Flow, Fuel Flow, Air Flow and Steam Demand) to know if these variables and other parameters are evolving in the correct way and satisfy the logic of the mass and energy balances in the system. After measuring and analysing the data, the model is validated testing it for different values of steam demands. The controller is tuned for every one of the considered demands. Once tuned, the controller computes the manipulated variables receiving information from the controlled ones, including their references. Finally, the resulting controller is a combination of a set of local controllers using the Takagi-Sugeno approach using the steam demand setpoint as scheduling variable. To apply this approach, a set of local models approximating the non-linear boiler behaviour around a set of steam demand set-points are obtained and then their a fused using the Takagi-Sugeno approach to approximate any unknown steam demand located in the valid range of values

    Internet based data logging and supervisory control of boiler drum level using LabVIEW

    Get PDF
    This work describes a framework of a Internet based data logging and supervisory control of boiler drum level system. The design and implementation of this process is done by the LabVIEW software. The data of the process variables (Temperature and Level) from the boiler system need to be logged in a database for further analysis and supervisory control. A LabVIEW based data logging and supervisory control program simulates the process and the generated data are logged in to the database as text file with proper indication about the status of the process variable (normal or not normal. Three different types of boiler drum level control system are designed in the Circuit Design and Simulation toolkit of LabVIEW. This work provides the knowledge about the Fuzzy Adaptive PID Controller and the various PID controller design methods such as Zeigler-Nichol method, Tyreus-Luyben method, Internal Model Control (IMC). Comparative study is made on the performance of the PID and Fuzzy Adaptive PID controller for better control system design. The internet plays a significant and vital role in the real time control and monitoring of the industrial process. Internet based system control and monitor the plant system remotely from anywhere without any limitation to any geographical region. Internet based boiler control system is developed by a Web Publishing tool in LabVIEW. The use of internet as a communication medium provides the flexible and cost- effective solution. Now, to analyse the performance of boiler drum level control system, Internet based data logging and supervisory control system is designed. Hence, anyone can control and monitor the boiler plant globally

    Effect of control horizon in model predictive control for steam/water loop in large-scale ships

    Get PDF
    This paper presents an extensive analysis of the properties of different control horizon sets in an Extended Prediction Self-Adaptive Control (EPSAC) model predictive control framework. Analysis is performed on the linear multivariable model of the steam/water loop in large-scale watercraft/ships. The results indicate that larger control horizon values lead to better loop performance, at the cost of computational complexity. Hence, it is necessary to find a good trade-off between the performance of the system and allocated or available computational complexity. In this original work, this problem is explicitly treated as an optimization task, leading to the optimal control horizon sets for the steam/water loop example. Based on simulation results, it is concluded that specific tuning of control horizons outperforms the case when only a single valued control horizon is used for all the loops

    Steam Package Boiler Expert System for Control and Maintenance of Fertilizer Plants using Rule-Base Fuzzy Logic

    Get PDF
    Generally, expert systems have been found very useful and even in fertilizer plants it has been deployed in handling operations in critical sections, such as material handling systems, online detection systems, granulation, air compressor among others. This paper presents research work for steam package boiler expert system for control and maintenance of fertilizer plants using rule-base fuzzy logic hybrid system, which has not been benefited much from expert system. The system handles cause of boiler failures in terms of controlling and maintaining the functional chemical components of the boiler drum and feed water parameters. validation on the system consistency, correctness, and its precision with six (6) steam package boiler parameters test value cases was conducted involving fourteen (14) fertilizer plant boiler domain partitioners. The boiler drum and feed water qualities with less or higher test value worst-cases validates the boiler system, showing each of the parameters bar turns red, as displayed on the boilers panel, while on test value best-cases, validates the system, displaying green on the boilers panel bar as users entered the right value of parameters as design specification. The expert system prevents damaged and malfunctioning as control the alkalinity, prevent scaling, both mechanica
    corecore