650 research outputs found

    Butterfly Detection and Classification Based on Integrated YOLO Algorithm

    Full text link
    Insects are abundant species on the earth, and the task of identification and identification of insects is complex and arduous. How to apply artificial intelligence technology and digital image processing methods to automatic identification of insect species is a hot issue in current research. In this paper, the problem of automatic detection and classification recognition of butterfly photographs is studied, and a method of bio-labeling suitable for butterfly classification is proposed. On the basis of YOLO algorithm, by synthesizing the results of YOLO models with different training mechanisms, a butterfly automatic detection and classification recognition algorithm based on YOLO algorithm is proposed. It greatly improves the generalization ability of YOLO algorithm and makes it have better ability to solve small sample problems. The experimental results show that the proposed annotation method and integrated YOLO algorithm have high accuracy and recognition rate in butterfly automatic detection and recognition.Comment: 13th ICGEC 2019: Qingdao, Chin

    How automated image analysis techniques help scientists in species identification and classification?

    Get PDF
    Identification of taxonomy at a specific level is time consuming and reliant upon expert ecologists. Hence the demand for automated species identification incre­ased over the last two decades. Automation of data classification is primarily focussed on images while incorporating and analysing image data has recently become easier due to developments in computational technology. Research ef­forts on identification of species include specimens’ image processing, extraction of identical features, followed by classifying them into correct categories. In this paper, we discuss recent automated species identification systems, mainly for categorising and evaluating their methods. We reviewed and compared different methods in step by step scheme of automated identification and classification systems of species images. The selection of methods is influenced by many variables such as level of classification, number of training data and complexity of images. The aim of writing this paper is to provide researchers and scientists an extensive background study on work related to automated species identification, focusing on pattern recognition techniques in building such systems for biodiversity studies. (Folia Morphol 2018; 77, 2: 179–193

    Butterfly Image Classification Using Color Quantization Method on HSV Color Space and Local Binary Pattern

    Get PDF
    A lot of methods are used to develop on image research. Image detection to relay back new information, widely used in various research field, such as health, agriculture or other field research. Various methods are used and developed to get better results. A combination of several methods is performed for testing as part of the research contribution. In this study will perform the combination results of the process color feature extraction with texture features. In color feature extraction using HSV color space method that gets 72 feature extraction and on texture feature extraction using local binary pattern that gets 256 feature extraction. The process of merging the two extracted results gets 328 new feature extractions. The result of combining color feature extraction and texture feature extraction is further classified. Results from image classification of butterflies get an accuracy score of 72%. The results obtained will be tested performance. The results obtained from performance testing get precision value, recall and f-measure respectively 76%, 72% and 74

    Reliable and Automatic Recognition of Leaf Disease Detection using Optimal Monarch Ant Lion Recurrent Learning

    Get PDF
    Around 7.5 billion people worldwide depend on agriculture production for their livelihood, making it an essential component in keeping life alive on the planet. Negative impacts are being caused on the agroecosystem due to the rapid increase in the use of chemicals to combat plant diseases. These chemicals include fungicides, bactericides, and insecticides. Both the quantity and quality of the output are impacted when there is a high-scale prevalence of diseases in crops. Plant diseases provide a significant obstacle for the agricultural industry, which has a negative impact on the growth of plants and the output of crops. The problem of early detection and diagnosis of diseases can be solved for the benefit of the farming community by employing a method that is both quick and reliable regularly. This article proposes a model for the detection and diagnosis of leaf infection called the Automatic Optimal Monarch AntLion Recurrent Learning (MALRL) model, which attains a greater authenticity. The design of a hybrid version of the Monarch Butter Fly optimization algorithm and the AntLion Optimization Algorithm is incorporated into the MALRL technique that has been proposed. In the leaf image, it is used to determine acceptable aspects of impacted regions. After that, the optimal characteristics are used to aid the Long Short Term Neural Network (LSTM) classifier to speed up the process of lung disease categorization. The experiment's findings are analyzed and compared to those of ANN, CNN, and DNN. The proposed method was successful in achieving a high level of accuracy when detecting leaf disease for images of healthy leaves in comparison to other conventional methods

    Support Vector Machine (SVM) Recognition Approach adapted to Individual and Touching Moths Counting in Trap Images

    Get PDF
    This paper aims at developing an automatic algorithm for moth recognition from trap images in real-world conditions. This method uses our previous work for detection [1] and introduces an adapted classification step. More precisely, SVM classifier is trained with a multi-scale descriptor, Histogram Of Curviness Saliency (HCS). This descriptor is robust to illumination changes and is able to detect and to describe the external and the internal contours of the target insect in multi-scale. The proposed classification method can be trained with a small set of images. Quantitative evaluations show that the proposed method is able to classify insects with higher accuracy (rate of 95.8%) than the state-of-the art approaches

    A Survey on the State of Art Approaches for Disease Detection in Plants

    Get PDF
    Agriculture is the main factor for economy and contributes to GDP. The growth of the economy of many countries is based on agriculture. As a result, the yield factor, quality and volume of agricultural products, play a critical role in economic development. Plant diseases and pests have become a major determinant of crop yields throughout the years, as such illnesses in plants offer a serious threat and impediment to higher yields or production in the agriculture industry. As a result, From the outset, it becomes the major duty to correctly monitor the plants, to detect diseases thoroughly, and to determine methods of controlling or monitoring these plant diseases pests in order to achieve a higher rate of production growth and minimal crop damage. Using machine vision, deep learning methods and tools for extracting and classifying features, It could be possible to build a reliable disease detection system. Numerous researchers have created and deployed various ways for detecting plant diseases and pests. The potential of these methods has been examined in this work
    • …
    corecore