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Abstract—This paper aims at developing an automatic al-
gorithm for moth recognition from trap images in real-world
conditions. This method uses our previous work for detection [1]
and introduces an adapted classification step. More precisely,
SVM classifier is trained with a multi-scale descriptor, Histogram
Of Curviness Saliency (HCS). This descriptor is robust to
illumination changes and is able to detect and to describe the
external and the internal contours of the target insect in multi-
scale. The proposed classification method can be trained with
a small set of images. Quantitative evaluations show that the
proposed method is able to classify insects with higher accuracy
(rate of 95.8%) than the state-of-the art approaches.

I. INTRODUCTION

Insecticides are expensive and dangerous for plants and

humans. Therefore, farmers attempt to survey insect species

and to evaluate their density in the fields in order to adapt and

to reduce the use of insecticides. For this purpose, it is needed

to catch insects and then, to manually count these insects in

order to analyze the evolution of the insect population and to

take the decision for using insecticides or not. Unfortunately,

manual counting of these insects from trap images is slow,

expensive, and sometimes error-prone. Thus, developing a

system, which can achieve a completely automated detection,

and that can recognize and count insects is very advantageous.

In the field of detection/segmentation of objects, many

computer vision techniques have been introduced. These

techniques are, to name a few, edge detection [2], snake

contour detection [3], clustering with k-means [4] and mean-

shift [5]. For recognition/classification, usual and well-known

techniques concern: Support Vector Machine [6], and more

recently Deep Learning [7], sometimes based on well known

descriptor, such as Histogram Of Gradient, HOG [8] or Scale

Invariant Feature Transform (SIFT) descriptor [9].

Insect classification is a challenge because it needs to rec-

ognize a small object with poor color and shape characteristics

in a non-homogeneous background that can contain some

difficulties. In particular, trap images may contain noise: very

small insects or herbs, the pheromone cap or some lines of

glue, see Fig. 1. Moreover, since the trap is installed in outdoor

environment, the trap images are also affected by illumination

changes [10]. Finally, touching and overlapping insects can

also be found in the trap yielding a complex counting task.

(a)

(b)

Fig. 1. An example of (a) an input image and the elements to classify,
and then, (b) the classification result obtained. (a) contains the insects of
interest, i.e., Lobesia Botrana, Eudemis, a European wine moth (inside the
green circle). Unfortunately, it also contains some difficulties that we generally
called noise, i.e., pheromone cap, herbs and small insects (blue circles).
Finally, some of the insects of interest are too close to be separated (red
circle), i.e. they are touching, and this problem has to be taken into account.
(b) contains the detected noise (blue rectangle), possible touching insects (red
rectangle), Eudemis (green rectangle) and other insects (black rectangle).

For insect recognition/classification, many methods have

been applied to butterfly classification, like [11], [12] but

few publications are dedicated to agricultural insects. We can

consider two different possibilities for doing this task. On

one side, methods have considered insect specimens [11],

[13] where images contain few difficulties and are at high

resolution. In this case, classification can be applied directly

without the need of a segmentation step [14]. On the other

side, in wild trap images, two steps are needed: a first insect

segmentation before applying a classification approach in a

second part. These methods encounter many challenges: low



image quality, illumination, movement of the trap, movement

of the moth, camera out of focus and presence of noise

(such as leaves, broken wings, etc). In this work, we are

interested in working with trap images. In the literature,

for the segmentation, the authors can used color, shape and

texture features [15], [16], active contour segmentation [15]

or morphological-based segmentation [17]. All these methods

do not consider the presence of touching insects in the trap.

Most of descriptors used are not robust to illumination changes

and do not detect occluded contours. So, this is why, in our

previous work [1], we both propose to use features that use

most of the characteristics of the moth and to take into account

the problem of touching insects.

For the classification, many techniques have been tested,

like k-nearest neighbor classification [15] or Support vector

machine, SVM [16]. In [17], the authors even consider a pose

estimation-dependent classification using deep learning. Deep

learning based methods need large training datasets that are

not always available for agricultural insects. And, in particular,

in this work, we do not have such a database.

This work aims to study the invasion of a particular moth,

which is Lobesia Botrana (Eudemis), a European vine moth,

for adapting the pesticide treatment of grape culture. More

precisely, wine producers usually capture this particular moth,

they count the number of insects and then they analyze

the evolution of this counting in order to confirm the use

of the pesticides or not. Consequently, in this paper, we

propose an automatic algorithm for moth classification in

trap images. First, a hybrid segmentation approach, introduced

in our previous ork [1], is used to eliminate noise and to

separate touching insects. Then, a SVM classifier is trained

with a proposed multi-scale descriptor, named Histogram Of

Curviness Saliency (HCS) [18]. This descriptor is robust to

illumination changes and is able to describe the external

and the internal contours of the target insect in multi-scale.

Moreover, the proposed classification method can be trained

with a small set of images.

In the next section, the proposed method for insect recogni-

tion is presented. To demonstrate its effectiveness, experimen-

tal results with a comparative study are detailed in Section III

before the conclusion and perspectives, in Section IV.

II. SVM RECOGNITION BASED ON HCS DESCRIPTION

A. Overview

The method allows to recognize individual moths in images

of a trap that contain many difficulties (noise, touching moths

and elements that are not insects), as presented in Fig. 1. The

method that starts by detecting any kind of insects, steps (1)

and (2), that have been previously published and described

in [1] and then classifies the insects of interest, Lobesia

Botrana, Eudemis, from the other insects, like, for example,

flies or spiders, see Fig. 2. This last step (3) corresponds to

the main contribution presented in this paper. However, for

the interest of the reader, we briefly described the previous

published steps (1) and (2).
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Fig. 2. Overview of the proposed approach. First, a robust contour detection
is applied to detect the different contours in the input image. Then, a k-
means algorithm is applied to classify the estimated contours into different
categories: contours due to noise (class 1), contours related to individual
insects (class 2) and contours that contain touching insects (class 3 to k).
Then, the obtained touching insects are separated by applying a region-
based segmentation that contains three ordered steps: the contour dilation,
the region merging algorithm and the watershed segmentation. Finally, and
this is the contribution of this paper, the individual insects are classified
into two categories, moths (class 1) and other insects (class 2), by using
an approach based on Support Vector Machine (SVM) and the introduction
of a new descriptor based on Histogram Of Gradient (HOG).

(1) Robust contour detection – First of all, we apply a

robust contour detection [18]. Then, we apply a k-means

algorithm to classify the previous estimated contours into

different categories. On this step, our previous work introduces

an adapted criterion: the shape of the surface included in a

closed contour. In fact, the shape is a significant characteristic

to separate the different types of elements in this kind of

scenes, i.e., it helps to distinguish between contours due to

noise (class 1), contours related to individual insects (class

2) and contours that contain touching insects (class 3 to k).

Moreover, in comparison to the state-of-the-art methods, in

this approach, the number of classes is automatically selected

by using the Elbow method [19].

(2) Region-based segmentation – After this automated

clustering step, the next task attempts to separate the ob-

tained possible touching insects by applying a region-based

segmentation. The idea is to use the contours classified into

class 3 to k that delimit regions as seeds for the watershed

algorithm [20]. This region-based segmentation part contains

three ordered steps: the contour dilation, the region merging

and the watershed segmentation. In fact, contour dilation is



used to remove discontinuities of the detected contours while

the region merging step avoids the over-segmentation of the

watershed algorithm. Finally, two results are possible:

(a) The watershed algorithm detects two or more regions

inside the contour, thus touching insects will be separated

to two or more insects.

(b) The algorithm detects only one big region and the shape

of this insect is just refined.

All this previous work provided an encouraging detection.

More precisely, the qualitative results obtained are: 87% of

noises or objects that are not insects are detected as noises,

70% of insects are detected as insects and 82% of touching

insects are detected as touching insects. Moreover, the pro-

posed method classifies 13% of noises as insects, however, no

noise is detected as touching insects. Then, 13% of insects are

detected as noises, and 17% of insects are detected as touching

insects. Finally, 18% of touching insects are detected as insects

and no touching insects are detected as noise.

(3) Insect classification – The next and final step, that

corresponds to the contribution presented in this paper, con-

cerns the insect classification. For that purpose we introduce

an approach based on Support Vector Machine (SVM) that

uses the Histogram Of Curviness Saliency (HCS). In the rest

of the section, we will present the two aspects: how HCS is

adapted to this specific recognition and how this descriptor is

introduced in the SVM techniques.

B. Histogram of Curviness Saliency (HCS)

In the aforementioned detection step, we used the detector

proposed in [18] and based on curviness saliency that is

an estimation of curvature. This detector generates both the

magnitude and the orientation of curvature features. Thus, we

naturally expand the concept of the famous classical HOG,

Histogram Of Gradient [8], widely used in the feature descrip-

tion literature, to work on these curviness saliency features

as proposed in [21]. More precisely, the orientation and the

magnitude of the curviness saliency are used for building a

descriptor called the Histogram of Curviness Saliency (HCS).

That HCS is used in a sliding window fashion in a Region Of

Interest (ROI) (i.e., in this work a detected insect) to generate

dense features based on binning the curvature orientation over

a spatial region. The orientation and the magnitude of the

curviness saliency can be computed, as described in [21], with:

CS = ((Ixx − Iyy)
2 + 4I2xy), (1)

where Ixx, Iyy and Ixy are the second derivatives of the

image. Using this curviness saliency in multi-scale leads to

this equation, as illustrated in [18]:

−−−→
MCS = MCS−→e1 . (2)

It means that the multi-scale of CS (MCS) of a ROI is

multiplied by the eigenvector e1 corresponding to the curviness

saliency of a pixel.

Using the same principle of HCS presented in [21], we pro-

pose a descriptor that contains the orientation of the curvature

of MCS binned into sparse per-pixel histograms.

C. SVM classification based on HCS

We used SVM [6] to construct a hyperplane that separates

the two classes of training data HCS descriptors (moths and

other insects). Consequently, to be adapted to the problem, we

suppose that the two classes are not linearly separable, and,

so, the function of this surface is given by:

f(~x) = sgn(

p∑

i=1

α∗

i yik(~xi, ~x) + w0), (3)

where (~xi, yi) is related to the training data, ~xi is the p-

dimensional HCS descriptor, ~yi ∈ {−1, 1} is the class label, k

is a kernel function, α∗

i are optimal Lagrange multiplier and w0

is the bias. For the kernel function, many kernels are possible,

see [6] to have an overview. In this work, the polynomial

kernel function of degree 6 defined as:

k(~xi, ~xj) = (~xi. ~xj + 1)6, (4)

provided the best classification rate.

III. EXPERIMENTATION

A. Dataset

We have collected annotated image patches (2865 negative

patches and 746 positive patches) from moth trap images. In

these images, captured under different illumination conditions,

there are many insects of varying types and sizes, different

elements that can induce false detections (herbs, very small

insects, lines of glue, pheromone cap, etc.), see Fig. 3.

We performed data augmentation to increase the number

of positive patches from 746 to 3577. This allows also to

incorporate invariance to basic geometric transformations and

to noise into the classifier. Therefore, the data augmentation

that we used consists in applying geometric transformations

(rotation and translation), blurring, adding Gaussian noise and

aspect ratio transformations to the original patches [14].

To select training and testing sets from collected patches,

we used a 5-fold cross-validation that avoids over-learning

and under-learning. Patches are randomly partitioned into 5

subsamples. The cross-validation process is then repeated 5

times. In each iteration, one of the 5 subsamples is retained

as the validation data for testing the model, and the remaining

4 subsamples are used as training data. This is the standard

algorithm for validating any classification approach [22].

B. Parameter study

In the proposed approach, the parameters for computing

HSC descriptor are:

1) detection window

2) block size

3) block stride

4) cell size

5) number of bins per cell

These parameters are explained in details in [18] and [21]. The

parameter for SVM is the soft margin C. In these experiments,

detection window are set to (64 × 48), and block size to

(8 × 8). In addition, block stride are set to (4 × 4) and cell



(a)

(b)

Fig. 3. Results with real trap image data set. (a) Image containing light
reflections. (b) Low resolution image.

size to (4× 4). Number of bins per cell equals 9, like in the

initial publication of HOG [8]. Finally, the number of bins per

the final descriptor equals 5940 bins. We set the soft margin

parameter C to 0.1 to allow imperfect separation of classes

with penalty multiplier C for outliers. More precisely, in the

experiments, C has been tested for values in ]0, 0.5] and the

best results are obtained with 0.1.

C. Experimental Results

In Fig 3, we present visual results obtained. As shown,

most insects (green and purple rectangles) and noise (blue

rectangles) are detected by the segmentation algorithm. In

addition, touching insects (red rectangles) are separated in

most of the cases. The recognition step correctly separates

moths (green rectangles) to other insects (black rectangles).

We implemented some approaches that have been presented

in section I and we compared them to the proposed approach

on our dataset. In table I, for all the tested methods, the

accuracy rates for all tested images have been computed. The

proposed method obtains the higher accuracy rate of 95%.

TABLE I
ACCURACIES OF SOME METHODS EVALUATED ON OUR DATASET.

Method Accuracy(%)

Proposed method 95.8 %

Ding et al. [14] 93.2 %

Yao et al. [16] 90.1 %

Yalcin et al. [15] 87.6 %

IV. CONCLUSION

In this paper, a classification method adapted to moth

recognition has been introduced. It first uses a detection that is

able to detect individual and touching insects from trap images.

Second, SVM classifier is trained with a proposed multi-scale

HCS descriptor which is robust to illumination changes in

multi-scale way. The proposed classification method can be

trained with a small set of images. Compared to state of the

art methods, this new method brings the best classification

rate. For future works, we plane to generalize all the proposed

method to other species of insects.
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