1,621 research outputs found

    Machine Learning Techniques for Credit Card Fraud Detection

    Get PDF
    The term “fraud”, it always concerned about credit card fraud in our minds. And after the significant increase in the transactions of credit card, the fraud of credit card increased extremely in last years. So the fraud detection should include surveillance of the spending attitude for the person/customer to the determination, avoidance, and detection of unwanted behavior. Because the credit card is the most payment predominant way for the online and regular purchasing, the credit card fraud raises highly. The Fraud detection is not only concerned with capturing of the fraudulent practices, but also, discover it as fast as they can, because the fraud costs millions of dollar business loss and it is rising over time, and that affects greatly the worldwide economy. . In this paper we introduce 14 different techniques of how data mining techniques can be successfully combined to obtain a high fraud coverage with a high or low false rate, the Advantage and The Disadvantages of every technique, and The Data Sets used in the researches by researcher

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    Data Driven Analysis for Electricity Theft Attack-Resilient Power Grid

    Get PDF
    The role of electricity theft detection (ETD) is critical to maintain cost-efficiency in smart grids. However, existing ETD methods cannot efficiently handle the sheer volume of data now available, being limited by issues such as missing values, high variance and non-linearity. An integrated infrastructure is also required for synchronizing diverse procedures in electricity theft classification. To help address such problems, a novel ETD framework is proposed that combines three distinct modules. The first module handles missing values, outliers, and unstandardized electricity consumption data. The second module employs a newly proposed hybrid class balancing approach to deal with highly imbalanced datasets. The third module utilises an improved artificial neural network (iANN) based classification engine, to predict electricity theft cases accurately and efficiently. We propose three distinctive mechanisms, including hyper-parameters tuning, regularization and skip connections, to improve the performance of standard ANN to handle more complex classification tasks using smart meter (SM) data. Furthermore, various structures of iANN are investigated to improve the generalization and function fitting capabilities of the final classification. Numerical results from real-world energy usage datasets confirm that the proposed ETD model has superior performance compared to existing machine learning and deep learning methods, and can effectively be applied to industrial applications

    Cyber Infrastructure Protection: Vol. III

    Get PDF
    Despite leaps in technological advancements made in computing system hardware and software areas, we still hear about massive cyberattacks that result in enormous data losses. Cyberattacks in 2015 included: sophisticated attacks that targeted Ashley Madison, the U.S. Office of Personnel Management (OPM), the White House, and Anthem; and in 2014, cyberattacks were directed at Sony Pictures Entertainment, Home Depot, J.P. Morgan Chase, a German steel factory, a South Korean nuclear plant, eBay, and others. These attacks and many others highlight the continued vulnerability of various cyber infrastructures and the critical need for strong cyber infrastructure protection (CIP). This book addresses critical issues in cybersecurity. Topics discussed include: a cooperative international deterrence capability as an essential tool in cybersecurity; an estimation of the costs of cybercrime; the impact of prosecuting spammers on fraud and malware contained in email spam; cybersecurity and privacy in smart cities; smart cities demand smart security; and, a smart grid vulnerability assessment using national testbed networks.https://press.armywarcollege.edu/monographs/1412/thumbnail.jp

    ANOMALY INFERENCE BASED ON HETEROGENEOUS DATA SOURCES IN AN ELECTRICAL DISTRIBUTION SYSTEM

    Get PDF
    Harnessing the heterogeneous data sets would improve system observability. While the current metering infrastructure in distribution network has been utilized for the operational purpose to tackle abnormal events, such as weather-related disturbance, the new normal we face today can be at a greater magnitude. Strengthening the inter-dependencies as well as incorporating new crowd-sourced information can enhance operational aspects such as system reconfigurability under extreme conditions. Such resilience is crucial to the recovery of any catastrophic events. In this dissertation, it is focused on the anomaly of potential foul play within an electrical distribution system, both primary and secondary networks as well as its potential to relate to other feeders from other utilities. The distributed generation has been part of the smart grid mission, the addition can be prone to electronic manipulation. This dissertation provides a comprehensive establishment in the emerging platform where the computing resources have been ubiquitous in the electrical distribution network. The topics covered in this thesis is wide-ranging where the anomaly inference includes load modeling and profile enhancement from other sources to infer of topological changes in the primary distribution network. While metering infrastructure has been the technological deployment to enable remote-controlled capability on the dis-connectors, this scholarly contribution represents the critical knowledge of new paradigm to address security-related issues, such as, irregularity (tampering by individuals) as well as potential malware (a large-scale form) that can massively manipulate the existing network control variables, resulting into large impact to the power grid

    A Comprehensive Survey on the Cyber-Security of Smart Grids: Cyber-Attacks, Detection, Countermeasure Techniques, and Future Directions

    Full text link
    One of the significant challenges that smart grid networks face is cyber-security. Several studies have been conducted to highlight those security challenges. However, the majority of these surveys classify attacks based on the security requirements, confidentiality, integrity, and availability, without taking into consideration the accountability requirement. In addition, some of these surveys focused on the Transmission Control Protocol/Internet Protocol (TCP/IP) model, which does not differentiate between the application, session, and presentation and the data link and physical layers of the Open System Interconnection (OSI) model. In this survey paper, we provide a classification of attacks based on the OSI model and discuss in more detail the cyber-attacks that can target the different layers of smart grid networks communication. We also propose new classifications for the detection and countermeasure techniques and describe existing techniques under each category. Finally, we discuss challenges and future research directions

    Harnessing Artificial Intelligence Capabilities to Improve Cybersecurity

    Get PDF
    Cybersecurity is a fast-evolving discipline that is always in the news over the last decade, as the number of threats rises and cybercriminals constantly endeavor to stay a step ahead of law enforcement. Over the years, although the original motives for carrying out cyberattacks largely remain unchanged, cybercriminals have become increasingly sophisticated with their techniques. Traditional cybersecurity solutions are becoming inadequate at detecting and mitigating emerging cyberattacks. Advances in cryptographic and Artificial Intelligence (AI) techniques (in particular, machine learning and deep learning) show promise in enabling cybersecurity experts to counter the ever-evolving threat posed by adversaries. Here, we explore AI\u27s potential in improving cybersecurity solutions, by identifying both its strengths and weaknesses. We also discuss future research opportunities associated with the development of AI techniques in the cybersecurity field across a range of application domains

    Big Data for All: Privacy and User Control in the Age of Analytics

    Get PDF
    We live in an age of “big data.” Data have become the raw material of production, a new source for immense economic and social value. Advances in data mining and analytics and the massive increase in computing power and data storage capacity have expanded by orders of magnitude the scope of information available for businesses and government. Data are now available for analysis in raw form, escaping the confines of structured databases and enhancing researchers’ abilities to identify correlations and conceive of new, unanticipated uses for existing information. In addition, the increasing number of people, devices, and sensors that are now connected by digital networks has revolutionized the ability to generate, communicate, share, and access data. Data creates enormous value for the world economy, driving innovation, productivity, efficiency, and growth. At the same time, the “data deluge” presents privacy concerns which could stir a regulatory backlash dampening the data economy and stifling innovation. In order to craft a balance between beneficial uses of data and individual privacy, policymakers must address some of the most fundamental concepts of privacy law, including the definition of “personally identifiable information,” the role of individual control, and the principles of data minimization and purpose limitation. This article emphasizes the importance of providing individuals with access to their data in usable format. This will let individuals share the wealth created by their information and incentivize developers to offer user-side features and applications harnessing the value of big data. Where individual access to data is impracticable, data are likely to be deidentified to an extent sufficient to diminish privacy concerns. In addition, since in a big data world it is often not the data but rather the inferences drawn from them that give cause for concern, organizations should be required to disclose their decisional criteria

    Big Data for All: Privacy and User Control in the Age of Analytics

    Get PDF
    We live in an age of “big data.” Data have become the raw material of production, a new source for immense economic and social value. Advances in data mining and analytics and the massive increase in computing power and data storage capacity have expanded by orders of magnitude the scope of information available for businesses and government. Data are now available for analysis in raw form, escaping the confines of structured databases and enhancing researchers’ abilities to identify correlations and conceive of new, unanticipated uses for existing information. In addition, the increasing number of people, devices, and sensors that are now connected by digital networks has revolutionized the ability to generate, communicate, share, and access data. Data creates enormous value for the world economy, driving innovation, productivity, efficiency, and growth. At the same time, the “data deluge” presents privacy concerns which could stir a regulatory backlash dampening the data economy and stifling innovation. In order to craft a balance between beneficial uses of data and individual privacy, policymakers must address some of the most fundamental concepts of privacy law, including the definition of “personally identifiable information,” the role of individual control, and the principles of data minimization and purpose limitation. This article emphasizes the importance of providing individuals with access to their data in usable format. This will let individuals share the wealth created by their information and incentivize developers to offer user-side features and applications harnessing the value of big data. Where individual access to data is impracticable, data are likely to be de-identified to an extent sufficient to diminish privacy concerns. In addition, since in a big data world it is often not the data but rather the inferences drawn from them that give cause for concern, organizations should be required to disclose their decisional criteria

    Technological nightmares: Frederick S. Pardee distinguished lecture, October 2003

    Full text link
    A version of this essay was delivered in October 2003 as the Frederick S. Pardee Distinguished Lecture at Boston University.Paul Streeten, 2003–2004 Pardee Visiting Professor of Future Studies at the Pardee Center for the Study of the Longer-Range Future, discusses the topic of technological progress—namely, the negative consequences often attributed to such progress. Advancements in technology are unfairly tied to things like pollution and environmental degradation, he says, and for decades, doomsayers have wrongly predicted that the world is coming to an end. Streeten insists that economic progress doesn’t have to have negative results. For starters, it’s important to remember that there are benefits to technological advancements, he says, such as the production of new goods, prolonged life, better health, and more. These advancements improve society. There are also other ways to accomplish economic growth, Streenten says. Our society can opt to produce different kinds of goods, such as hydrogen-fueled cars that don’t pollute the air. Or, quality of goods aside, perhaps we can promote faster production of goods to compensate for negative production effects. Streeten offers several growth options, discussing the merit and practicality of each
    • …
    corecore