9 research outputs found

    Advances in nonlinear process modeling using block-oriented exact solution techniques

    Get PDF
    Application of the Hammerstein Block-oriented Exact Solution Technique (H-BEST) to a real industrial process is presented. The methodology is extended to processes with a Wiener structure, and named the Wiener block-Oriented Exact Solution Technique (W-BEST). The W-BEST methodology is presented in detail and applied to a simulated continuous-stirred tank reactor with complex dynamic behavior. W-BEST is then compared to another continuous-time Wiener-based model found in the literature and applied to an example process. The results of the two methods are compared using a test input sequence applied to the example process

    Continuous-time block-oriented nonlinear modeling with complex input noise structure

    Get PDF
    The continuous-time closed-form algorithms to sinusoidal input changes are proposed and presented for single-input, single-output (SISO) Hammerstein and Wiener systems with the first-order, second-order, and second-order plus lead dynamics. By simulation on theoretical Hammerstein and Wiener systems, the predicted responses agree exactly with the true process values. They depend on only the most recent input change. The algorithms to SISO Hammerstein and Wiener systems can be conveniently extended to the multiple-input, multiple-output (MIMO) systems as shown by the two-input, two-output examples and demonstrated by the simulated seven-input, five-output continuous stirred tank reactor (CSTR). The predictions and the simulated theoretical responses agree exactly and the predicted multiple CSTR outputs are close to the true process outputs. The proposed algorithms can predict the responses closer to the true values when comparing with the piece-wise step input approximation of the sinusoidal input changes on a simulated MIMO CSTR. In addition, as the noisy process input could be decomposed as summation of sinusoidal signals imposed on a step input change; the proposed algorithms can be employed to predict outputs for the noisy process inputs once the decomposition is done and the predicted noisy process outputs are shown to be close to the true ones, and are much better than the predictions based on the perfect filtering of the input signals.;The estimating equations based on the moment method are proposed for the Wiener dynamic process with stochastically correlated process input disturbances or noises and they work well for the parameter estimation. No one has ever proposed such method before. This approach has led to stable and robust estimators that have reasonable estimation errors and there is no need to measure the input disturbances or noises, or to calculate the time derivative of the observed output variable. Only the original process output observations over time are needed. The original model can be shifted to an approximate model under some conditions. This approximation is acceptable based on some analysis and derivation. The estimating equation methodology was shown to work well for the approximate model, while other existing methods do not work at all

    Modelling and Control of Chemical Processes using Local Linear Model Networks

    Get PDF
    Recently, technology and research in control systems have made fast progress in numerous fields, such as chemical process engineering. The modelling and control may face some challenges as the procedures applied to chemical reactors and processes are nonlinear. Therefore, the aim of this research is to overcome these challenges by applying a local linear model networks technique to identify and control temperature, pH, and dissolved oxygen. The reactor studied exhibits a nonlinear function, which contains heating power, flow rate of base, and the flow rate of air as the input parameters and temperature, pH, and dissolved oxygen (pO2) the output parameters. The local linear model networks technique is proposed and applied to identify and control the pH process. This method was selected following a comparison of radial basis function neural networks (RBFNN) and adaptive neuro-fuzzy inference system (ANFIS). The results revealed that local linear model networks yielded less mean square errors than RBFNN and ANFIS. Then proportional-integral (PI) and local linear model controllers are implemented using the direct design method for the pH process. The controllers were designed on the first order pH model with 4 local models and the scaling factor is 20. Moreover, local linear model networks are also used to identify and control the level of dissolved oxygen. To select the best method for system identification, a gradient descent learning algorithm is also used to update the width scaling factor in the network, with findings compared to the manual approach for local linear model networks. However, the results demonstrated that manually updating the scaling factor yielded less mean square error than gradient descent. Consequently, PI and local linear model controllers are designed using the direct design method to control and maintain the dissolved oxygen level. The controllers were designed on first and second order pO2 model with 3 local models and the scaling factor is 20. The results for the first order revealed good control performance. However, the results for second order model lead to ringing poles which caused an unstable output with an oscillation in the input. This problem was solved by zero cancellation in the controller design and these results show good control performance. Finally, the temperature process was identified using local linear model networks and PI and local linear model controllers were designed using the direct design method. From the results, it can be observed that the first order model gives acceptable output responses compared to the higher order model. The control action for the output was behaving much better on the first order model when the number of local models M=4, compared with M=3 and M=5. Furthermore, the results revealed that the mean square error became less when the number of local models M=4 in the controller, compared with having number of local models M=3 and M=5

    Measuring, modelling and controlling the pH value and the dynamic chemical state

    Get PDF
    pH value is a challenging quantity to measure, model and control. In fact, pH value is a mere one-dimensional projection of a multi-dimensional quantity called chemical state and measuring, modelling and controlling the chemical state is much more challenging. This thesis contributes to all aspects of pH processes. A new method for measuring the pH value under difficult conditions (pressure and flow variations in thick pulp) is presented. Classical physico-chemical modelling of chemical systems is extended with a concept of population principle which is a new formulation of the "reaction invariant - reaction variant" structure. Self-organising fuzzy controller (SOC) is modified to suit pH-processes better (high frequency noise and oscillations are damped more efficiently). All the methods described above were tested with practical applications that include a pilot neutralisation process, an industrial ammonia scrubber and a paper machine wet end. The new methods showed such a significant improvement that they were installed permanently on the industrial applications.reviewe

    Robust Empirical Model-Based Algorithms for Nonlinear Processes

    Get PDF
    This research work proposes two robust empirical model-based predictive control algorithms for nonlinear processes. Chemical process are generally highly nonlinear thus predictive control algorithms that explicitly account for the nonlinearity of the process are expected to provide better closed-loop performance as compared to algorithms based on linear models. Two types of models can be considered for control: first-principles and empirical. Empirical models were chosen for the proposed algorithms for the following reasons: (i) they are less complex for on-line optimization, (ii) they are easy to identify from input-output data and (iii) their structure is suitable for the formulation of robustness tests. One of the key problems of every model that is used for prediction within a control strategy is that some model parameters cannot be known accurately due to measurement noise and/or error in the structure of the assumed model. In the robust control approach it is assumed that processes can be represented by models with parameters' values that are assumed to lie between a lower and upper bound or equivalently, that these parameters can be represented by a nominal value plus uncertainty. When this uncertainty in control parameters is not considered by the controller the control actions might be insufficient to effectively control the process and in some extreme cases the closed-loop may become unstable. Accordingly, the two robust control algorithms proposed in the current work explicitly account for the effect of uncertainty on stability and closed-loop performance. The first proposed controller is a robust gain-scheduling model predictive controller (MPC). In this case the process is represented within each operating region by a state-affine model obtained from input-output data. The state-affine model matrices are used to obtain a state-space based MPC for every operating region. By combining the state-affine, disturbance and controller equations a closed-loop representation was obtained. Then, the resulting mathematical representation was tested for robustness with linear matrix inequalities (LMI's) based on a test where the vertices of the parameter box were obtained by an iterative procedure. The result of the LMI's test gives a measure of performance referred to as γ that relates the effect of the disturbances on the process outputs. Finally, for the gain-scheduling part of the algorithm a set of rules was proposed to switch between the available controllers according to the current process conditions. Since every combination of the controller tuning parameters results in a different value of γ, an optimization problem was proposed to minimize γ with respect to the tuning parameters. Accordingly, for the proposed controller it was ensured that the effect of the disturbances on the output variables was kept to its minimum. A bioreactor case study was presented to show the benefits of the proposed algorithm. For comparison purposes a non-robust linear MPC was also designed. The results show that the proposed algorithm has a clear advantage in terms of performance as compared to non-robust linear MPC techniques. The second controller proposed in this work is a robust nonlinear model predictive controller (NMPC) based on an empirical Volterra series model. The benefit of using a Volterra series model for this case is that its structure can be split in two sections that account for the nominal and uncertain parameter values. Similar to the previously proposed gain-scheduled controller the model parameters were obtained from input-output data. After identifying the Volterra model, an interconnection matrix and its corresponding uncertainty description were found. The interconnection matrix relates the process inputs and outputs and is built according to the type of cost function that the controller uses. Based on the interconnection representing the system a robustness test was proposed based on a structured singular value norm calculation (SSV). The test is based on a min-max formulation where the worst possible closed-loop error is minimized with respect to the manipulated variables. Additional factors that were considered in the cost function were: manipulated variables weighting, manipulated variables restrictions and a terminal condition. To show the benefits of this controller two case studies were considered, a single-input-single-output (SISO) and a multiple-input-multiple-output (MIMO) process. Both case studies show that the proposed controller is able to control the process. The results showed that the controller could efficiently track set-points in the presence of disturbances while complying with the saturation limits imposed on the manipulated variables. This controller was also compared against a non-robust linear MPC, non-robust NMPC and non-robust first-principles NMPC. These comparisons were performed for different levels of uncertainty and for different values of the suppression or control actions weights. It was shown through these comparisons that a tradeoff exists between nominal performance and robustness to model error. Thus, for larger weights the controller is less aggressive resulting in more sluggish performance but less sensitivity to model error thus resulting in smaller differences between the robust and non-robust schemes. On the other hand when these weights are smaller the controller is more aggressive resulting in better performance at the nominal operating conditions but also leading to larger sensitivity to model error when the system is operated away from nominal conditions. In this case, as a result of this increased sensitivity to model error, the robust controller is found to be significantly better than the non-robust one

    Robust Nonlinear Model Predictive Control using Polynomial Chaos Expansions

    Get PDF
    The performance of model predictive controllers (MPCs) is largely dependent on the accuracy of the model predictions as compared to the actual plant outputs. Irrespective of the model used, first-principles (FP) or empirical, plant-model mismatch is unavoidable. Consequently, model based controllers must be robust to mismatch between the model predictions and the actual process behavior. Controllers that are not robust may result in poor closed loop response and even instability. Model uncertainty can generally be formulated into two broader forms, parametric uncertainty and unstructured uncertainty. Most of the current robust nonlinear MPC have been based on FP-model where only robustness to bounded disturbances rather than parametric uncertainty has been addressed. Systematically accounting for parametric uncertainty in the robust design has been difficult in FP-models due to varying forms in which uncertain parameters occur in the models. To address parametric uncertainty robustness tests based on Structured Singular Value (SSV) and Linear Matrix Inequalities (LMI) have been proposed previously, however these algorithms tend to be conservative because they consider worst-case scenarios and they are also computationally expensive. For instance the SSV calculation is NP-hard and as a result it is not suitable for fast computations. This provides motivation to work on robust control algorithms addressing both parametric and unstructured uncertainty with fast computation times. To facilitate the design of robust controllers which can be computed fast, empirical models are used in which parametric uncertainty is propagated using Polynomial Chaos Expansion (PCE) of parameters. PCE assists in speeding up the computations by providing an analytical expression for the L^2-norm of model predictions while also eliminating the need to design for the worst-case scenario which results in conservatism. Another way of speeding up computations in MPC algorithms is by grouping subsets of available the inputs and outputs into subsystems and by controlling each of the subsystems by MPC controllers of lower dimensions. This latter approach, referred in the literature as Distributed MPC, has been tackled by different strategies involving different degrees of coordination between subsystems but it has not been studied in terms of robustness to model error. Based on the above considerations the current work investigates different robustness aspects of predictive control algorithms for nonlinear processes with special emphasis on the following three situations, i) a nonlinear predictive control based on a Volterra series model where the uncertain parameters are formulated as PCE’s, ii) The application of a PCE-based approach to control and optimization of bioreactors where the model is based on dynamic flux metabolic models, and iii) A Robust Distributed MPC with a robust estimator that is needed to account for the interactions between sub-systems in distributed control

    CONTROL PREDICTIVO SUJETO A RESTRICCIONES POLIÉDRICAS NO CONVEXAS: SOLUCIÓN EXPLÍCITA Y ESTABILIDAD

    Full text link
    En esta tesis doctoral se aborda el problema del control predictivo sujeto a restricciones definidas como la unión no convexa de varios poliedros. Los controladores propuestos son de utilidad, por un lado, para procesos que presentan de manera natural restricciones de dicha forma y, por otra parte, como una alternativa al control predictivo no lineal cuando períodos de muestreo bajos no permiten la aplicación de programación no lineal. En los primeros capítulos del trabajo se demuestra la existencia de una solución explícita a los problemas de optimización que aparecen al plantear este tipo de controladores predictivos. Dicha solución es afín a tramos definidos mediante desigualdades lineales y cuadráticas. Se introducen dos metodologías diferentes para la obtención de esta solución explícita: la metodología de intersección, división y unión y la de la envolvente convexa. La primera de estas metodologías se basa en formular subproblemas con las restricciones convexas cuya unión forma las restricciones originales y obtener la solución explícita del problema original a partir de las soluciones de dichos subproblemas. La segunda metodología planteada se basa en el cálculo de la envolvente convexa de los conjuntos de restricciones y la obtención de la solución explícita del problema convexo definido por estas nuevas restricciones. Se demuestra como parte de las regiones de la solución explícita del problema original coinciden con las del nuevo problema, y se propone un procedimiento para identificarlas y obtener el resto de regiones, completando la solución explícita buscada. Se estudian también algoritmos eficientes para la implementación en línea de leyes de control explícitas como las obtenidas. En particular, se propone un algoritmo basado en un árbol binario de una partición lineal y una comparación de índices de costes en las regiones en las que sea necesario.Pérez Soler, E. (2011). CONTROL PREDICTIVO SUJETO A RESTRICCIONES POLIÉDRICAS NO CONVEXAS: SOLUCIÓN EXPLÍCITA Y ESTABILIDAD [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/9315Palanci
    corecore