
Robust Nonlinear Model Predictive

Control using Polynomial Chaos

Expansions

by

Divya Kumar

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Chemical Engineering

Waterloo, Ontario, Canada, 2015

© Divya Kumar 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

AUTHOR'S DECLARATION

This thesis consists of material all of which I authored or co-authored: see Statement of Contributions

included in the thesis. This is a true copy of the thesis, including any required final revisions, as

accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

STATEMENT OF CONTRIBUTION

Chapter 3 is based on published work by Kumar et al. entitled, “Robust Nonlinear MPC

based on Volterra series and Polynomial Chaos Expansions”, in Journal of Process Control,

(2014) 24, 304-317 . The entire work in this publication has been done by thesis author under

direct supervision of PhD supervisor Dr. H. Budman.

Chapter 4 is partly based on refereed conference processdings by Kumar et al. entitled,

“Robust nonlinear predictive control for a bioreactor based on a Dynamic Metabolic Flux

Balance model”, in IFAC 2015, Vancouver, Canada. The entire work in this publication has

been done by thesis author under direct supervision of PhD supervisor Dr. H. Budman.

Chapter 5 is based on refereed conference proceedings by Kumar et al. entitled, “Robust-

distributed MPC with robust observer to handle communication loss”, in IFAC 2012,

Singapore. The entire work in this publication has been done by thesis author under direct

supervision of PhD supervisor Dr. H. Budman and co-author Dr. Walid Al-Gherwi.

 iv

Abstract

The performance of model predictive controllers (MPCs) is largely dependent on the

accuracy of the model predictions as compared to the actual plant outputs. Irrespective of the

model used, first-principles (FP) or empirical, plant-model mismatch is unavoidable.

Consequently, model based controllers must be robust to mismatch between the model

predictions and the actual process behavior. Controllers that are not robust may result in poor

closed loop response and even instability. Model uncertainty can generally be formulated

into two broader forms, parametric uncertainty and unstructured uncertainty. Most of the

current robust nonlinear MPC have been based on FP-model where only robustness to

bounded disturbances rather than parametric uncertainty has been addressed. Systematically

accounting for parametric uncertainty in the robust design has been difficult in FP-models

due to varying forms in which uncertain parameters occur in the models. To address

parametric uncertainty robustness tests based on Structured Singular Value (SSV) and Linear

Matrix Inequalities (LMI) have been proposed previously, however these algorithms tend to

be conservative because they consider worst-case scenarios and they are also

computationally expensive. For instance the SSV calculation is NP-hard and as a result it is

not suitable for fast computations. This provides motivation to work on robust control

algorithms addressing both parametric and unstructured uncertainty with fast computation

times. To facilitate the design of robust controllers which can be computed fast, empirical

models are used in which parametric uncertainty is propagated using Polynomial Chaos

Expansion (PCE) of parameters. PCE assists in speeding up the computations by providing

an analytical expression for the ℒ2-norm of model predictions while also eliminating the

need to design for the worst-case scenario which results in conservatism. Another way of

speeding up computations in MPC algorithms is by grouping subsets of available the inputs

and outputs into subsystems and by controlling each of the subsystems by MPC controllers of

lower dimensions. This latter approach, referred in the literature as Distributed MPC, has

been tackled by different strategies involving different degrees of coordination between

subsystems but it has not been studied in terms of robustness to model error.

 v

Based on the above considerations the current work investigates different robustness aspects

of predictive control algorithms for nonlinear processes with special emphasis on the

following three situations, i) a nonlinear predictive control based on a Volterra series model

where the uncertain parameters are formulated as PCE’s, ii) The application of a PCE-based

approach to control and optimization of bioreactors where the model is based on dynamic

flux metabolic models, and iii) A Robust Distributed MPC with a robust estimator that is

needed to account for the interactions between sub-systems in distributed control.

 vi

Acknowledgements

First, I would like to thank Prof. Hector Budman for his support, inspiration and guidance

throughout my PhD. Thank you Hector for the patience, trust and support during the

numerous skype sessions in the final years I spent flying coast to coast.

Next, I would like to thank the committee members: Dr. Prashant Mhaskar, Dr. Kirsten

Morris, Dr. Luis Sandoval and Dr. Eric Croiset for their comments and creating a space for

healthy discussion during the exam.

Thanks to Liz Bevan, Judy Caron, Rose Guderian and Ingrid Sherrer; who helped me get

through all the paperwork easily. Dennis Herman and Ravindra Singh have been of immense

help for timely support with computational resources.

I am also grateful to the NSERC funding provided for this work.

I would like to thank my colleagues at University (Kaveh, Jasdeep, Hengameh and

Yuncheng) for insightful discussions, server reboots and making my time at UW fun.

I would like to thank Ali Esmaili, my manager at Air Products and Chemicals, for providing

me flexible hours.

Last but not the least, the love and support from my family has made this day possible and I

feel blessed having them in my life. I cannot forget Ma/Pa’s constant reminders of my

schedule, Amma/Appa’s encouragement and Mahesh’s support. Samiksha, Arjun and

Mahesh: you are AWESOME!

 vii

Dedication

To Ma, Pa, Mahesh, Arjun and Samiksha

 viii

Table of Contents
AUTHOR'S DECLARATION ... ii

STATEMENT OF CONTRIBUTION ... iii

Abstract .. iv

Acknowledgements .. vi

Dedication ... vii

Table of Contents ... viii

List of Figures .. xi

List of Tables .. xii

Chapter 1 Introduction .. 1

Chapter 2 Background and Literature Review.. 7

2.1 Model Predictive Control .. 7

2.2 Robust Nonlinear Model Predictive Control (MPC) .. 10

2.2.1 LMI’s for Robust Control ... 11

2.2.2 SSV for Robust Control .. 12

2.2.3 Literature Review on Robust NMPC.. 14

2.3 Polynomial Chaos Expansion.. 17

2.4 Bioreactor control and optimization .. 20

2.5 Metabolic Flux Model ... 23

2.6 Robust Distributed MPC with loss of communication.. 25

Chapter 3 Robust Nonlinear MPC based on Volterra series and Polynomial Chaos

Expansions .. 28

3.1 Introduction ... 28

 ix

3.2 Definitions and Methodology.. 30

3.2.1 Closed-loop Prediction Model using Volterra series .. 30

3.2.2 Prediction of 𝓛𝓛-norm in presence of model uncertainty using PCE 32

3.3 Robust controller formulation and cost function... 36

3.4 Case Study ... 39

3.5 Conclusion ... 48

Chapter 4 Applications of Polynomial Chaos Expansions in optimization and control of

bioreactors based on Dynamic Metabolic Flux Balance models .. 51

4.1 Introduction ... 51

4.2 Mathematical Background .. 53

4.2.1 Dynamic Flux Balance Model .. 53

4.2.2 Polynomial Chaos Expansion ... 54

4.3 Robust Control .. 55

4.3.1 Modeling with uncertainty .. 55

4.3.2 Nominal Control Formulation .. 59

4.3.3 Robust Control Formulation ... 60

4.4 Case Study on Robust Control .. 61

4.5 Robust Optimization ... 66

4.5.1 Modeling with uncertainty .. 68

4.5.2 Nominal Optimization Formulation ... 69

4.5.3 Robust Optimization Formulation .. 70

4.6 Case Study on Robust Optimization ... 71

4.7 Conclusions ... 75

 x

Chapter 5 Robust Distributed MPC using robust observer during communication loss 77

5.1 Introduction ... 77

5.2 Definitions and Methodology.. 80

5.2.1 Robust DMPC Algorithm (Al-Gherwi et al., 2011) ... 80

5.2.2 Loss of Communication.. 82

5.2.3 Summary of the Robust DMPC Algorithm with loss of communication............... 84

5.2.4 Convergence and Robust Stability Analysis of Robust-DMPC Algorthm with loss

of communication .. 86

5.3 Case Studies .. 88

5.3.1 Case Study 1 ... 88

5.3.2 Case Study 2 ... 94

5.4 Conclusions ... 99

Chapter 6 Conclusions and Future Work .. 101

6.1 PCE-based Robust NMPC .. 101

6.2 PCE Applications in Robust Control and Optimization of batch bioreactor 101

6.3 Robust Observer for Distributed MPC .. 103

6.4 Future Work .. 104

Bibliography ... 106

Appendix A Interconnection Matrix ... 114

Appendix B Model Parameters for Reactor-Separator Case Study 116

Appendix C MATLAB Codes .. 119

 xi

List of Figures
Figure 2.1 LFT between exogenous input and output .. 14

Figure 3.1 pH neutralisation system ... 41

Figure 3.2 Setpoint tracking and Disturbance rejection at different operating conditions 43

Figure 3.3 [𝐶𝐶,𝑛] = 8.25, 0.5, PCE-RNMPC with input constraints 44

Figure 3.4 Disturbance and Set-point profile used for testing robustness of different

controllers ... 46

Figure 3.5 𝐶𝐶,𝑛 = 8.75, 0.5, 𝑤1,𝑤2 = [0.25, 0.2], Comparison of different controllers at

nominal operating conditions .. 47

Figure 3.6 [𝐶𝐶,𝑛] = 9.25, 0.55, 𝑤1,𝑤2 = [0.2, 0.4], Comparison of different controllers . 48

Figure 4.1 Simplified Metabolic Network for E.Coli growth on Glucose: Flux balances and

stoichiometric coefficients .. 61

Figure 4.2: Robust vs. Nominal Controller: Feeding, Perfusion, Biomass and Glucose

trajectories ... 66

Figure 4.3: Input-output mapping to develop PCE for 𝑋𝑋𝑋 .. 69

Figure 4.4: Cumulative pdf of 𝑋(𝑋𝑓) for Nominal and Robust Optimization......................... 73

Figure 4.5 Histogram of 𝑋(𝑋𝑓) for Nominal (top) and Robust (bottom) Optimization 74

Figure 4.6 Feeding and Perfusion profiles for Robust and Nominal Optimization 75

Figure 5.1 Communication Loss Profile, Lost = 0 ... 89

Figure 5.2 Comparison of Robust Observer (Solid) vs Non-Robust (Dashed) 93

Figure 5.3: DMPC Scheme of Reactor-Separator Case Study ... 94

Figure 5.4: Communication Loss Profile, 𝑇 = 3,4,5 .. 97

Figure 5.5: Control Actions for Plant Δ1 ,Δ2 = [−0.4,−0.25] and loss period = 5 98

Figure 5.6: System Response to the control inputs for Plant Δ1,Δ2 = [−0.4,−0.25] and loss

period = 5 .. 100

 xii

 List of Tables
Table 3.1 Other NMPC schemes ... 40

Table 3.2 Process dynamics for ph neutralisation system ... 42

Table 3.3 Operating Conditions .. 42

Table 3.4 Values for Normalisation... 42

Table 3.5 Comparison of IAE for different controllers ... 50

Table 4.1 : Process Parameters for E.Coli growth on Glucose and Acetate used for

Robust/Nominal Controller ... 64

Table 4.2: Robust Controller vs Nominal Controller Performance .. 64

Table 4.3 : Process Parameters for E.Coli growth on Glucose and Acetate for

Robust/Nominal Optimization .. 72

Table 5.1: Robust Observer vs Nominal Observer ... 91

Table 5.2: Robust Observer vs Non-robust for Nash Scheme ... 92

Table 5.3: Process Parameters and corresponding Steady-State values 96

Table 5.4: Cost function value for Robust vs. Non-robust Observer in Case Study 2 98

 1

Chapter 1
Introduction

The performance of a model-based controller is largely dependent on the accuracy of model

predictions as compared to actual plant outputs. Plant dynamics can be either represented by

first-principles or empirical models. First-principles’ models, which refer to models based on

material and energy balances are in general considered superior for predicting behavior

outside of the window of data used for calibration because they include underlying physics of

the process as opposed to empirical models which are trying to map a relationship between

available plant input and output data. However, developing first-principles model is not

always possible given the complex nature of chemical plants. On the other hand empirical

models are easier to develop, but can have structural errors due to missing physical insight of

the process and therefore are less accurate for extrapolating behavior beyond the window of

operation used for model calibration. Model Predictive Control (MPC) is one of the most

prominently used model-based control methodology in the process industries. MPC

calculates a set of future moves by minimizing the error between predefined set-points or

reference trajectories and future plant outputs predicted on the basis of a model over a

prediction horizon. Since the control actions are obtained by solving an optimization

problem, input and output constraints can be included as part of this problem. Most of the

applications of MPC in industry are based on linear models which are empirical in nature and

are identified from input-output experimental data. This trend is attributed to the fact that

MPC based on first-principles (FP) models are both expensive to develop and to implement.

Instead, several predictive control algorithms based on nonlinear empirical models such as

Volterra series, Weiner series and Hammerstein series have been proposed since they are

easier to develop and implement (Doyle et al., 1995, Fruzzetti et al., 1997, Maner and Doyle,

1997, Norquay et al., 1999).

Irrespective of the type of model used, i.e. empirical or first-principles, plant-model

mismatch is unavoidable. Consequently, model-based controllers must be robust to mismatch

between the model predictions and the actual process behavior. Controllers that are not

 2

robust may result in poor closed loop response and even instability. Model uncertainty can

generally be formulated into two broader forms, parametric uncertainty and unstructured

uncertainty. Parametric uncertainty is referred as structured since it involves errors in model

parameters within a model of a given structure. On the other hand, unstructured uncertainty is

used to represent model error that cannot be related to specific model parameters.

One of the biggest drawback when designing an FP-model based control strategy for

robustness is the fact that the uncertainty in parameters often appears in functional forms, e.g.

in exponential Arrhenius terms, that are not amenable for traditional robustness tests such as

infinity norms based tests (McFarlane and Glover, 1992, Kwakernaak, 1993). On the other

hand since in empirical models the outputs are often linear with respect to parameters,

parametric uncertainty can be more easily propagated into the model predictions and

traditional robustness tests can be used. These considerations are motivating the development

of robust control schemes based on empirical models as in the current work. Assuming that

model parametric uncertainty defines a family of models to be referred as an uncertainty set,

a robust controller design involves satisfying stability and a level of performance for the

entire set of uncertainty. Then, the resulting robustness tests are referred to as robust stability

and robust performance tests. To this end robust control tools such as Structured Singular

Value (SSV, μ) and Linear Matrix Inequalities (LMI) can be used to formulate such tests.

Various nonlinear robust control design approaches previously reported in the literature, such

as designing robust “tubes” around a nominal optimal trajectory (Mayne et al., 2011, Mayne

et al., 2005, Mayne et al., 2006) or Newton-type robust algorithms (Diehl et al., 2008a,

Zavala and Biegler, 2009), are primarily based on mechanistic (first principles) models where

the uncertainty is related to unmeasured disturbances. Thus, in these previously reported

approaches parametric uncertainty has not been explicitly considered mostly because, as

mentioned above, the models are nonlinear with respect to parameters thus ruling out the

application of available robustness tests. To address the problem of parametric uncertainty in

nonlinear predictive control Diaz-Mendoza and Budman, 2010b, proposed an algorithm

based on a nonlinear empirical Volterra series model where the output is linear with respect

to parameters thus allowing for the effect of parametric uncertainty to be accounted for by

 3

calculating a worst prediction error using an SSV norm. Then, optimal control actions were

obtained from the minimization of this norm with constraints. However, this earlier approach

was found to have disadvantages in terms of conservatism and computational expense. The

conservatism of the controller was mostly related to the use of the worst possible error over

the horizon as the cost function to be minimized. The high computational cost was due to the

time needed to calculate the SSV norm for uncertain model predictions over the entire

prediction horizon. The above drawbacks in the work of Diaz-Mendoza and Budman, 2010b

has motivated the first part of this research, in which a novel predictive controller was

developed by using an empirical Volterra model, as in Diaz-Mendoza and Budman, but

where the uncertain coefficients were represented by Polynomial Chaos Expansion (PCE)

which significantly facilitates the propagation of parametric uncertainty onto the output. By

using PCE, an uncertain output can be represented by a spectral expansion of orthogonal

polynomials in terms of of the manipulated variables. Due to the availability of analytical

formulae for propagating the effect of uncertainty onto the output, this method has been

proposed in the current work as an approach to formulate a robust controller. Furthermore,

being PCE’s able to quickly produce estimates of the probability density function of the

predicted outputs, they open the novel possibility of formulating algorithms that are based on

probabilities’ distributions which can be potentially less conservative and more realistic as

compared to algorithms based on worst bounds. Based on these considerations the current

work has investigated different applications of PCE’s in nonlinear predictive control

algorithms with special emphasis on the following three situations,

1. A nonlinear predictive control based on a Volterra series model where the uncertain

parameters are formulated as PCE’s.

2. Applications of PCE’s in optimization and control of bioreactors where the process

model is based on dynamic flux metabolic models which is a mechanistic (first

principle model), that is becoming increasingly popular in the pharmaceutical

industry,

 4

3. In order to speed up computations and to ease implementation and/or maintenance

most of the industrial applications of MPCs rely on implementing distributed control

strategies in contrast to one global control strategy. However distributed control

systems also may be sensitive to model errors. Distributed controllers are applied to

subsets of inputs and outputs which interact with each other. Hence, the overall

performance of the system heavily relies not only on the local plant model but also on

the interactions between each sub-system. Hence the third objective of this thesis is to

design distributed MPC algorithms that are robust to model errors.

Overall the thesis is organized into six chapters. Introduction and research objectives are

discussed in Chapter 1. Chapter 2 discusses the background and literature review pertinent

for the research objectives, like robust control using LMI’s and SSV, Polynomial chaos

expansion, control and optimization of bioreactors, Metabolic flux model and distributed

model predictive control. Chapters 3-5 are presented in manuscript format and present the

findings of three research objectives earlier discussed. Chapter 6 reviews the key

contributions of this thesis and how it can be extended in future research.

Chapter 3 discusses the development of a robust nonlinear model predictive controller

(NMPC) based on a Volterra series. PCE is used to represent the uncertainty in Volterra

series coefficients and this uncertainty is then propagated onto the output predictions, which

is used to formulate a 𝓛𝓛-based norm as the cost function. Input constraints and stability of

the controller is guaranteed using a SSV-based test. Finally the controller performance and

computational time is compared to a SSV-based robust controller and a nominal controller.

The results of this chapter have been published in the Journal of Process Control, (Kumar and

Budman, 2014).

In chapter 4, the PCE approach is used to develop an offline-robust optimization and an

online-robust control methodology for batch biochemical processes, based on dynamic

metabolic flux models. The robust controller uses an economic objective function to

determine the control actions. The performance of the robust controller is compared to that of

nominal controller for several operating conditions and it was found to be superior in terms

 5

of disturbance rejection capabilities. The proposed robust optimization study involves with

the maximization of the probability of an end-point property of the batch, based on a PCE-

surrogate model of the process. The results of the robust controller case study presented in

this chapter have been accepted in ADCHEM 2015 (Refereed Conference Proceedings), and

the entire chapter combining the robust control and the robust optimization approaches has

been prepared for submission as a journal paper.

Chapter 5 discusses the development of a robust distributed MPC strategy that treats both

uncertainty in model error as well as uncertainty related to the information exchanged

between the sub-controllers arising due to a loss of communication. Distributed control was

pursued as a means to speed up calculations of robust MPC algorithms. The intention was

initially to apply the distributed controller with both linear and nonlinear models. However,

since the PCE based approach proved to be highly computationally efficient, the distributed

controller was developed for linear models only. Accordingly, a robust estimator was

developed and combined with a linear distributed MPC that is both robust to model error as

well as to errors in the information exchanged between subsystems during periods of

communication loss. The performance of the controller that uses a robust estimator is

compared to that of nominal estimator for two different processes: i) A classical 2x2

distillation column and ii) A Reactor-separator process consisting of 3 sub-systems, 9 states

and 4 manipulated variables. The results and formulation of the distributed controller and the

robust estimator have been published in ADCHEM 2012, Kumar et al., 2012. After

publication of that work the performance of the robust estimator was further improved by

using a bilinear program solver and also by extending the application to the larger reactor-

separator system to show online-feasibility of the controller

Refereed Conference Proceedings:

• Kumar, D., Al-Gherwi, W. & Budman, H. 2012. Robust-distributed MPC with robust

observer to handle communication loss. IFAC 2012. Singapore.

• Kumar, D. & Budman, H. 2015. Robust nonlinear predictive control for a bioreactor

based on a Dynamic Metabolic Flux Balance model. IFAC 2015. Vancouver, Canada.

 6

Non-refereed Conference Presentations:

• Kumar, D., Al-Gherwi, W. & Budman, H. 2012. Robust-distributed MPC with robust

observer to handle communication loss. 62nd Canadian Chemical Engineering

Conference, Vancouver, October 14-17.

• Kumar, D. & Budman, H. 2014. Robust nonlinear MPC based on volterra series and

polynomial chaos expansions. 61st Canadian Chemical Engineering Conference,

London, October 23-26.

 7

Chapter 2
Background and Literature Review

2.1 Model Predictive Control

Model Predictive Control (MPC) is a widely used control design technique in the process

industries. MPC performs predictions that can be based on either a linear or nonlinear model.

When a nonlinear model is used for prediction the resulting control strategy is referred to as

Nonlinear Model Predictive Control (NMPC). As explained in Chapter 1, , since plant-model

mismatch is unavoidable, it becomes important to design a control strategy which is robust to

model uncertainty. While there exist a variety of techniques to analyze robustness of

controllers that are based on linear models, the design of robust nonlinear controllers such as

NMPC is challenging and it is currently an active field of research (Allgower et al., 2004,

Magni and Scattolini, 2010). Most of the robust control techniques developed for linear

system, like SSV (Structured Singular Value or μ) and LMI’s (Linear Matrix Inequalities)

based tests, are not directly applicable to nonlinear systems. On the other hand, the use of a

nonlinear model for prediction within a predictive control algorithm is desirable since it is

expected to result in better closed loop performance when controlling chemical processes

which are generally highly nonlinear (Allgower et al., 2004). Accounting for robustness to

model errors has been identified as one of the key challenges in the research of NMPC

controllers (Allgower et al., 2004).

In general model predictive control refers to a class of control algorithms in which a

performance criterion is optimised along a prediction horizon while satisfying a set of

input/output constraints. A nominal dynamic process model, linear or nonlinear, is used to

predict the outputs along the horizon and a norm of these outputs is used to quantify the

closed loop performance. While the decision variables for optimization in MPC may consist

of a certain number of future control moves, where this number is referred to as the control

horizon, only the first control action is actually implemented into the plant and the

optimization is then solved all over again in the following time interval (Findeisen et al.,

2003, Henson, 1998). By repeating the calculation at every time step the controller is able to

 8

correct for unmeasured disturbances that may enter the process at each new time interval and

to compensate for the effect of model error that leads to the incorrect predictions obtained

with the nominal model. In a Linear MPC algorithm, the nominal model used for prediction

is linear with respect to the manipulated variables and correspondingly, the input and output

constraints are also formulated as linear equalities or inequalities. The cost function in linear

MPC is generally quadratic with respect to the inputs thus the corresponding optimization

problem is a QP (quadratic programming) for which a global optimum can be found in a

finite number of iterations. A comprehensive review of Linear MPC, its development and

applications are provided in Qin and Badgwell, 2003. On the other hand, for NMPC the

nominal model used for prediction as well as the constraints may be linear or nonlinear with

respect to the manipulated variables. In general, MPC scheme which are based on either a

nonlinear process model or nonlinear input/output constraints or with a non-quadratic cost

function are considered as NMPC strategies. The main steps of an NMPC algorithm are as

follows:

1. Using a nonlinear model of the form,

�̇� = 𝑋�𝑥(𝑋),𝑢(𝑋)�

𝑦� = 𝑔(𝑥,𝑢)
2.1

where 𝑥 is plant states, and 𝑦 is plant output, 𝑋 and 𝑔 are nonlinear vector functions

of plant inputs and outputs and starting from a current output measurement 𝑦𝑘 to

correct for unmeasured disturbances, future predictions of the outputs are generated

over a prediction horizon, 𝑝, using as a function of a sequence of inputs defined over

a control horizon 𝑚, where 𝑚 ≤ 𝑝.

2. The cost function to be minimized with respect to the decision variables, i.e. the

optimal control actions, is in general assumed as a weighted sum of the errors in

future predictions with respect to a reference trajectory (or set-point profile) and plant

inputs, where the latter are included in the cost to avoid excessive control actions.

Accordingly, the typical cost used in predictive control algorithms is as follows:

 9

𝐽 = 𝑚𝑚𝑛
𝒖(𝒌+𝟏|𝒌),𝒖(𝒌+𝓛|𝒌),…,𝒖(𝒌+𝒎|𝒌)

�[(𝒚�(𝑘 + 𝑚|𝑘) − 𝒚𝑠𝑠)𝑇𝑸(𝒚�(𝑘 + 𝑚|𝑘) − 𝒚𝒔𝒔)]
𝑖=𝑠

𝑖=1

+ �𝒖(𝑘 + 𝑚|𝑘)𝑇𝑹𝒖(𝑘 + 𝑚|𝑘)
𝑚

𝑖=1

Where 𝑝,𝑚,𝑄,𝑅 are tuning parameters.

2.2

3. The solution of the optimisation problem shown in (2.2) is 𝑚 control actions but as

explained before only the first control action, i.e. 𝑢(𝑘 + 1|𝑘) is implemented in the

plant.

4. After implementation of the control action, new plant measurements are obtained and

step 1 to 4 are repeated for the next sampling interval.

The algorithm outlined above does not guarantee stability unless additional stability

constraints are enforced. One way proposed in the literature to ensure stability is to require

that the error between the predictions and setpoints are eliminated at the end of an infinite

control horizon. This approach, referred to as a terminal constraint condition, is

computationally demanding (Findeisen et al., 2003, Chen and Allgower, 1998) and it may be

infeasible in the presence of input constraints. Two possible ways to enforce stability while

maintaining a finite control horizon have been suggested:

• Inclusion of a terminal equality constraint within the optimization problem as per

equation (2.3). However, the solution of the optimisation problem (2.2) in the

presence of this constraint becomes computationally expensive and in some cases

may be infeasible and hence is not desirable.

𝒚�(𝑘 + 𝑝|𝑘) − 𝒚𝒔𝒔(𝑘 + 𝑚) = 0 2.3

• A second approach is to include a terminal inequality constraint and terminal cost 𝐸,

into problem (2.2). The terminal inequality constraint forces the terminal output

prediction to be within certain prespecified error, 𝛿, of the reference trajectory rather

than to be equal to the reference as in the previous approach. Then, the error between

 10

the terminal output prediction and the reference is penalized within the cost function

as follows (2.4).

𝐽 = 𝑚𝑚𝑛
𝒖(𝒌+𝟏|𝒌),

 𝒖(𝒌+𝓛|𝒌),…,
𝒖(𝒌+𝒎|𝒌)

�[(𝒚�(𝑘 + 𝑚|𝑘) − 𝒚𝑠𝑠)𝑻𝑸(𝒚�(𝑘 + 𝑚|𝑘) − 𝒚𝑠𝑠)]
𝑖=𝑠

𝑖=1

+ �[𝒖(𝑘 + 𝑚|𝑘)𝑇𝑹𝒖(𝑘 + 𝑚|𝑘)]
𝑚

𝑖=1

+ (𝒚�(𝑘 + 𝑝|𝑘) − 𝒚𝑠𝑠)𝑇𝑬(𝒚�(𝑘 + 𝑝|𝑘) − 𝒚𝑠𝑠)

ℰ: {𝑦|‖𝑦 − 𝑦𝑠𝑠‖2 ≤ 𝛿}

2.4

Several studies have focused on the design of the terminal region ℰ, and terminal penalty, 𝑬

(Chen and Allgower, 1998, Michalska and Mayne, 1993). The terminal penalty weight 𝑬,

forces the output to reach the region ℰ, and if ℰ is selected properly then the plant output will

eventually converge to the reference trajectory.

Robustness remains a key challenge for the design of NMPC algorithms (Findeisen et al.,

2003, Magni and Scattolini, 2010). Model/plant mismatch arises due to inaccurate knowledge

of parameters, uncertainty resulting from simplifications regarding model structure or model

reduction, disturbances in the plant or lack of knowledge about certain physical mechanisms

of the process like interactions among systems. Hence, robustness needs to be addressed

explicitly in the design of NMPC schemes.

2.2 Robust Nonlinear Model Predictive Control (MPC)

The conservatism of a robust MPC controller is directly related to the level of model error

considered in the design. If the uncertainty description is overly conservative the resulting

robust controller will be also conservative. Accordingly it is desired to select a nominal

model for prediction that is accurate enough so the associated uncertainty is small. Two

desired properties of closed-loop system are robust stability and robust performance. Thus,

along with the properties of nominal stability and nominal performance to be satisfied when

the uncertainty is ignored, robust stability and robust performance must be also satisfied in

 11

the presence of model error. Different mathematical tools are available to test for robust

stability and performance that are reviewed in the following sections.

2.2.1 LMI’s for Robust Control

Linear Matrix Inequalities (LMI’s) provides a means of formulating various inequalities

related to stability and performance conditions as convex constraints. LMI’s are an attractive

choice for solving complex problems because they can be solved using convex optimization

algorithms (VanAntwerp and Braatz, 2000, Boyd, 1994). In control theory, three main types

of problems are solved using LMI, i) Feasibility problem ii) Generalised Eigenvalue

problem, and iii) Linear programming problem. Since robust performance and stability tests

together with input and output constraints can be formulated as LMI’s (Kothare et al., 1996),

this mathematical tool has gained significant interest in the control community. In general a

linear matrix inequality can be expressed as follows:

𝐹(𝑥) = 𝐹0 + �𝑥𝑖𝐹𝑖

𝑚

𝑖=0

> 0 2.5

where 𝐹𝑖 ∈ ℝ𝑛𝑛𝑛, 𝑚 = 0, 1, … ,𝑚 are symmetric and real matrices and defined by the

problem, 𝑥 ∈ ℝ𝑚 is a variable, and the inequality means that 𝐹(𝑥)is a positive definite

matrix. When the problem involves multiple LMI’s, it can be converted into a single LMI of

higher dimension as follows: 𝐺𝑚𝐶𝐺𝑛:𝐹1(𝑥),𝐹2(𝑥), … ,𝐹𝑠(𝑥) > 0, becomes

𝑑𝑚𝑑𝑔(𝐹1(𝑥),𝐹2(𝑥), … ,𝐹𝑠(𝑥)) > 0. The Schur’s complement Lemma can be used to

convert nonlinear constraints occurring in control problems to an LMI as follows:

Given: 𝑅(𝑥) > 0, 𝑄(𝑥) − 𝑆(𝑥)𝑅(𝑥)−1𝑆(𝑥)𝑇 > 0 2.6

where, 𝑄(𝑥) and 𝑅(𝑥) are symmetric and 𝑆(𝑥) depends on 𝑥 affinely. Then the Schur’s

complement lemma can be used to convert equation (2.6) to an equivalent LMI (2.7). Proof

for this lemma can be found in VanAntwerp and Braatz, 2000.

�
𝑄(𝑥) 𝑆(𝑥)
𝑆(𝑥)𝑇 𝑅(𝑥)� > 0 2.7

 12

Kothare et al., 1996, proposed a formal theoretical approach for synthesis of robust MPC by

using an infinite horizon and for different forms of model uncertainty (polytope and

structured uncertainty). This approach was extended in the same work to include input/output

constraints using a norm approach as proposed in (Boyd, 1994). Al-Gherwi et al., 2011

extended this work to the design of Robust Distributed MPC for polytopic uncertainty in both

time-varying and time-invariant models, where the term distributed refers to the application

of several MPC’s to different subsets of inputs and outputs while communication is

exchanged among these controllers. In the current work, the topic of loss of communication

has been addressed in the algorithm of Al-Gherwi et al., 2011 with a robust estimator based

on LMI’s. Distributed MPC has been studied in this work as a possible way to reduce

complexity of computation in the algorithms to be investigated in the current work. LMI’s

are widely used for robust control of linear systems. They have also been considered to

investigate robustness of nonlinear processes where the nonlinearity is approximated by

uncertainty polytopes with respect to a nominal linear model. However, identifying

polytopic uncertainty to describe the actual nonlinear process is challenging and may result

in overly conservative uncertainty descriptions (Doyle et al., 1989). For instance one

possibility to bound the nonlinearity is to calculate bounds on the terms of the Jacobian

matrix of the nonlinear model describing the process but this generally results in conservative

uncertainty descriptions (VanAntwerp and Braatz, 2000).

2.2.2 SSV for Robust Control

The Structured Singular Value (SSV) norm also referred as μ is an additional mathematical

tool developed for assessing stability and performance of controllers based on uncertain

models with either structured and unstructured uncertainties. When using 𝜇 norms based

analysis, the idea is to split the uncertain part of the model from the nominal part of the

model and then develop a Linear Fractional Transformation (LFT) relation between the

inputs and outputs that can be schematically described by an interconnection matrix given in

Figure 2.1. Then for a given structure of the resulting interconnection matrix (𝑀) and the

uncertainty description 𝛥, the 𝜇 norm provides a measure of the smallest perturbation within

the given uncertainty set, that can destabilize the plant. It is also possible to use this norm to

 13

test robust performance by calculating a norm based bound on the outputs for bounded closed

loop inputs, i.e. disturbances and set-points. This feature will be used in this work to

calculate worst deviations of the output with respect to the set-point along the prediction

horizon in the predictive control strategy. The definition of the SSV norm is as follows.

𝜇Δ(𝑴) =
1

min
Δ∈𝚫

{𝜎�(𝚫)| det(𝑰 −𝑴𝚫) = 0}
 2.8

In the case there is no Δ ∈ 𝚫, for which det(𝑰 −𝑴𝑴) becomes singular, then 𝜇𝚫(𝑴) = 0. A

key advantage of μ norms as compared to general singular value norms is that it explicitly

accounts for the structure in the uncertainty thus producing less conservative bounds. As a

result, less conservative controllers can be obtained using μ (Bates and Postlethwaite, 2002)

as compared to designs that are based on norms that do not take the structure of the

uncertainty into account. Since Δ contains information about both structured and unstructured

uncertainty, the Δ block used for calculation of the SSV includes both scalar as well as

complex uncertainty elements as follows:

𝚫 = {𝑑𝑚𝑑𝑔[𝛿1𝑰𝒓𝟏, … , 𝛿𝑆𝑰𝒓𝒓,𝚫𝒓+𝟏, … ,𝚫𝒓+𝑭] ∶ 𝛿𝑖 ∈ ℂ,𝚫𝒓+𝒋 ∈ ℂ
𝑚𝑗𝑛𝑚𝑗 , 1 ≤ 𝑚 ≤ 𝑆, 1

≤ 𝑗 ≤ 𝐹
2.9

where S and F are repeated scalar blocks and full complex blocks respectively.

As mentioned above, robust stability and performance tests can be formulated in terms of μ

norm. For the example in Figure 2.1, 𝑑and 𝑟 are the exogenous inputs and outputs

respectively. In closed loop the exogeneous inputs are set-points and disturbances whereas

the outputs are the controlled variables or other variables that should be kept within limits.

 14

Figure 2.1 LFT between exogenous input and output

After partitioning 𝑀 with dimensions compatible with Δ, the equations describing the system

are

�𝒛𝒓� = �𝑴𝟏𝟏 𝑴𝟏𝓛
𝑴𝓛𝟏 𝑴𝓛𝓛

� �𝒘𝒅�

𝑤 = Δ𝑧

𝑑 = 𝐹𝑢(𝑴,𝚫)𝒓 = (𝑴𝓛𝓛 + 𝑴𝓛𝟏𝚫(𝑰 −𝑴𝟏𝟏𝚫)−1𝑴𝟏𝓛)𝒓

2.10

The input-output relationship derived using the LFT can be chosen to investigate robust

stability or robust performance. The worst case bound related to the input-output relationship

defined in 2.10 can be calculated with 𝜇Δ(𝑴).

2.2.3 Literature Review on Robust NMPC

Design of robust nonlinear predictive controllers has been generally based on the solution of

a minmax problem, where the maximisation is done with respect to model uncertainties or

disturbances and the minimisation of the cost is done to determine the control actions (Magni

and Scattolini, 2010, Findeisen et al., 2003). A recently proposed approach, referred to as the

“tube” approach, has been proposed to determine nominal inputs (control actions) using an

auxiliary controller based on a nominal model and then input deviations from the nominal

inputs are calculated to guarantee that actual outputs’ trajectories are bounded within tubes

around the nominal output trajectories (Mayne et al., 2011, Magni et al., 2006). As such the

algorithm can be viewed as a combination of a feedforward controller corresponding to the

calculations performed with the nominal model and a feedback controller corresponding to

the calculations related to the deviations form the nominal trajectories. The tubes around the

 15

nominal trajectories are determined at every time step by including certain state constraints

necessary to ensure Lyapunov stability in the presence of bounded disturbances. Variations of

this scheme have been proposed involving various modifications of the cost function, e.g. by

including the terminal equality constraint only in the auxilliary controller rather than in the

entire cost, (Mayne, 2011) by optimising for the initial condition used in the cost function

(Mayne et al., 2005), or by including a robustly stable observer (Mayne et al., 2006). An

additional modification of the tubes’ approach (Cannon et al., 2011) involved successive

linearization of the nonlinear model for every prediction in the horizon. Then, the effects of

model errors on cost function and constraints were bounded using robust tubes and the sizes

of the tubes were included as decision variables in the optimisation problem. In general,

algorithms based on the “tube” approach have used mechanistic models and they have only

considered uncertainty in disturbances thus making it difficult to generalize this analysis to

any type of nonlinearity and to parametric uncertainty. For these reasons the tubes’ approach

has not been adopted in the current project where a key objective is to design a robust NMPC

in the presence of parametric uncertainty.

An alternative approach to the tubes’ method that has been gaining significant attention for

tackling the problem of robust NMPC involves simplification of the optimisation problem to

obtain a faster online solution. For example, Diehl et al., 2008b represented parametric

uncertainty by a bounded set, replaced the inner maximisation problem with necessary first

order optimality conditions and then assumed that the worst case solution occurs on the

bounds of the uncertainty set. However, this approach assumes that a perfect model is

available and it requires a mechanistic model along with the derivatives of the objective

function, constraints and uncertainty set. Zavala and Biegler, 2009 compute a preliminary

estimate of the control actions at a given time step by using the nominal model. In this work,

computation was sped-up by determining the nominal solution in between sampling times.

Finally a quick correction to the nominal solution was provided by NLP (Nonlinear

programming) sensitivity concepts. Yet again parametric uncertainty was not considered in

this approach and the model for prediction was a mechanistic one.

 16

On the other hand, minmax formulations dealing with parametric uncertainty as proposed in

the current work have been few. Regarding optimization algorithms in the presence of

uncertainty based on the minmax formulation two different approaches have been proposed

in the literature, (i). A simulation based approach involving the minimization of (Kawohl et

al., 2007) the weighted contribution of the first two statistical moments of an objective

function using Monte Carlo simulations, where the goal was robust optimization under

uncertainty rather than control per se; (ii)- an analytical approach in which parametric

uncertainty is propagated using Taylor series, and the worst case deviation as determined by

using Structured Singular Values (SSV) (Ma and Braatz, 2001, Ma et al., 1999, Nagy and

Braatz, 2003) is minimized with respect to the decision variables. This latter methodology

was found useful when first order estimates are not sufficient to quantify uncertainty and

second order or higher order estimates are required for determining worst case scenario in the

presence of model uncertainty. Using this method Diaz-Mendoza and Budman, 2010b

presented an RNMPC strategy based on SSV norms for continuous processes, in which the

cost function is formulated as a function of an SSV norm where the latter provides a bound

on the worst possible output deviation with respect to the setpoint in the presence of model

errors. The minimization of this cost with respect to the future control actions, ensured also

satisfaction of inputs and terminal constraints. This algorithm was based on empirical

Volterra models with uncertain coefficients. Empirical models were selected in that previous

work as well as in the current study because, as mentioned above, it is difficult to formulate a

general robust approach for mechanistic models due to the various forms in which

nonlinearities appear in these models. Since computation of the SSV-norm is a NP-hard type

of problem, the computational time of the algorithm previously proposed by Diaz-Mendoza

and Budman, 2010b increases exponentially as the dimensions of the process in terms of

inputs and outputs increase. Also since the controller was based on worst case outputs’

deviations with respect to the set-point it resulted in conservative performance.

To address these limitations, in the current work an alternative approach is proposed whereby

parametric uncertainty is propagated onto the outputs using Polynomial Chaos Expansions

(PCE). Few studies on the use of PCE for control design have been reported. For example in

 17

Hover and Triantafyllou, 2006 a PCE was used to perform stability analysis of a particular

nonlinear system with random initial conditions or random parameters and to propagate the

uncertainty onto the output, thereby reducing computational time as compared to an

alternative Monte Carlo simulations’ based approach. In Smith et al., 2009 an LQG controller

was designed based on PCE approximations of the parametric uncertainty, but that study was

limited to linear systems.

2.3 Polynomial Chaos Expansion

A Polynomial Chaos Expansion (PCE) describes a random process as a spectral expansion of

random variables(θi), using orthogonal basis functions, Φ𝑖 (Ghanem and Spanos, 1990,

Ghanem and Spanos, 1997). For example, any second-order (finite variance) random

process 𝑦𝑑, can be described using a PCE as follows:

𝑦𝑑 = 𝑑0𝑑Φ0 + � 𝑑𝑖1𝑑 Φ1�𝜃𝑖1�
∞

𝑖1=1
+ � � 𝑑𝑖1𝑖2

𝑑 Φ2�𝜃𝑖1 ,𝜃𝑖2 �
𝑖1

𝑖2=1

∞

𝑖1=1

+ � � � 𝑑𝑖1𝑖2𝑖3
𝑑 Φ3�𝜃𝑖1 ,𝜃𝑖2 ,𝜃𝑖3�

𝑖2

𝑖3=1

𝑖1

𝑖2=1

∞

𝑖1=1

2.11

where 𝑑𝑖1𝑑 are deterministic coefficients for each term in the expansion. Since the basis

functions Φ𝑖, are orthogonal, the first term in (2.11), 𝑑0𝑑 is the nominal value of 𝑦𝑑and its

variance can be obtained from ∑ (𝑑𝑖1𝑑)2 ∞
𝑖=1 + ∑ ∑ (𝑑𝑖1𝑖2

𝑑)2𝑖1
𝑖2=1

∞
𝑖1=1 + … . Based on the

Cameron-Martin theorem these expansions are convergent in the ℒ2-norm (Xiu and

Karniadakis, 2002, Xiu, 2010, Najm, 2009) and for practical application they can be

truncated to a finite number of terms. When a random process is described via a truncated

PCE, then the dimensionality 𝑛0 and the maximum polynomial order for the basis function,

𝑞, need to be defined. The number of independent sources of random variables (θi1 ,θi2 , θi3),

generally defines the dimensionality, 𝑛0. The number of terms in expansion 𝑃𝑃𝑃𝑃, is then

given by (𝑛0 + 𝑞)!/(𝑛0! 𝑞!) − 1. Using these notations a truncated PCE expansion can be

represented as follows:

 18

𝑦𝑑 ≈� 𝑑𝑖𝑑Φi(θ)
𝑃𝑃𝑃𝑃

𝑖=1
 2.12

Due to the orthogonality of the basis functions, Φi, inner product of polynomial functions in

the space spanned by the basis functions {Φ𝑖}𝑖=0
𝑃𝑃𝑃𝑃, is non-zero only with respect to the same

Φi.

〈ΦiΦj〉 = �Φi(θ)Φj(θ)ρθ(θ)dθ = δij〈Φi
2〉 2.13

This orthogonality property is the basis of the calculation of the coefficients when

propagating uncertainty from the input random variables(θi1 ,θi2 , θi3), to the output random

variables (𝑦𝑑). The choice of the basis functions Φ𝑖 depends on the type of stochastic

distribution to be represented, i.e. normal or uniform. In Xiu and Karniadakis, 2002, Xiu,

2010, Xiu and Tartakovsky, 2004 the Askey scheme is proposed which determines the

optimum polynomial functions to be used for each type of stochastic distribution to be

modeled. For example if the random variables (θi), are of Gaussian distribution then Hermite

polynomials will describe the probability distribution with the least number of terms, because

the weighting function of Hermite polynomials are the same as for the Gaussian probability

density function. However, if Hermite polynomials are used to describe non-Gaussian

behavior then the expansion would require second-order polynomial terms as well.

The coefficients of the PCE’s which are used to approximate particular data are calculated as

follows. Given a process model with uncertain output, 𝑦 = 𝑋(𝑥; 𝜆), where 𝑥 is the uncertain

input and 𝜆 is the uncertain parameter, the aim is to quantify uncertainty in 𝑦(𝜃) from

𝑥(𝜃), 𝜆(𝜃) using the process model. Then the first step is to construct PCE’s of 𝑥(𝜃), and

𝜆(𝜃), by determining their PCE coefficients 𝑥𝑖 and 𝜆𝑖.

𝑥(𝜃) = � 𝑥𝑖Φi(θ)
𝑃𝑃𝑃𝑃

𝑖=1

𝜆(𝜃) = � 𝜆𝑖Φi(θ)
𝑃𝑃𝑃𝑃

𝑖=1

𝒙𝒊 =
∫𝒙𝝓𝒊(𝜽)𝒈(𝜽)𝒅𝜽

〈𝚽𝐢
𝓛〉

𝝀𝒊 =
∫𝝀𝝓𝒊(𝜽)𝒈(𝜽)𝒅𝜽

〈𝚽𝐢
𝓛〉

2.14

where 𝑔(𝜃) is probability distribution function (pdf) of 𝜃. Since 𝑥 and 𝜆 are not directly

 19

related to 𝜃 , so a map has to be built for evaluation of 𝑥𝑖 and 𝜆𝑖. This is done by

transforming both the uncertainty 𝜃 and uncertain parameter 𝑥𝑖 to another uniformly

distributed space, 𝑈(0,1), such that it represents the cumulative distribution function (CDF)

of both 𝑥 and 𝜃 Xiu and Karniadakis, 2002.

𝑢 = �𝑋(𝑥)𝑑𝑥
𝑛

−∞

= �𝑔(𝜃)𝑑𝜃
𝜃

−∞

 2.15

where 𝑋(𝑥) is the pdf of 𝑥 and 𝑢 is the uniformly distributed variable. After determining 𝑥

(and 𝜆) and 𝜃 for the corresponding 𝑢, 𝑥𝑖(and 𝜆𝑖) can be determined using (2.14). The next

step is to develop PCE for 𝑦(𝜃) from 𝑥(𝜃) and 𝜆(𝜃), which can be done by evaluating the

inner product of 𝑦(𝜃)with each basis functions Φ𝑖 to determine the 𝑚𝑡ℎ- PCE coefficient 𝑦𝑖.

𝑦𝑖 =
〈𝑦Φi〉
〈Φi

2〉 =
〈𝑋(𝑥; 𝜆)Φi〉

〈Φi
2〉 2.16

Evaluating the inner product 〈𝑦Φi〉, requires computation of multi-dimensional integrals

which can be performed by one of two approaches referred to as non-intrusive and intrusive.

Non-intrusive, as the name suggests, estimates the integral based on 𝑁 samples of the whole

space of basis functions and evaluates 〈𝑦Φi〉 at those predetermined points 𝜃𝑗 according to

Eq. (2.17). Non-intrusive techniques require 3 steps to determine (Najm, 2009), 𝑦𝑖 as per Eq.

2.17, i) a methodology to generate the 𝑁 samples for 𝜃𝑗 ii) evaluating the function 𝑦𝑗 =

𝑋(𝑥; 𝜆) at 𝜃𝑗 , and iii) evaluating the integral represented in Eq. 2.17, using numerical

techniques. The sampling techniques can be random based sampling like Monte Carlo (MC),

or probability based methods or quadrature based methods like Smolyak or different

collocation methods have been suggested to this end. A thorough review of existing non-

intrusive techniques can be found elsewhere (Najm, 2009). In the current work, Gaussian

quadratures have been used to develop surrogate models based on non-intrusive methods.

The computational demand of developing non-intrusive based PCE’s is determined by

𝑦𝑗 = 𝑋(𝑥; 𝜆) at 𝜃𝑗 . Thus the choice of sampling strategy determines the computation load for

non-intrusive techniques.

 20

𝑦𝑖 =
1

〈Φi
2〉

1
𝑁
�𝑦𝑗Φ𝑖�𝜃𝑗�
𝑁

𝑗=1

, 𝑚 = 1, 2, … ,𝑃𝑃𝑃𝑃 2.17

In the intrusive method the integral is evaluated by using the Galerkin projection approach

and by employing the property of orthogonality of the basis functions. For example if 𝑦 =

𝜆𝑥, then after substituting the PCE’s for 𝑥 and 𝜆 in (2.16), the PCE coefficients 𝑦𝑖 for the

output, is as follows:

𝑦𝑖 = � � 𝜆𝑗𝑥𝑘
〈ΦiΦjΦk〉
〈Φi

2〉

𝑃𝑃𝑃𝑃

𝑘=1

𝑃𝑃𝑃𝑃

𝑗=1

, 𝑚 = 1, 2, … ,𝑃𝑃𝑃𝑃 2.18

The tensor

𝐶𝑖𝑗𝑘 =
〈ΦiΦjΦk〉
〈Φi

2〉 2.19

is a known property of the basis functions, which can be computed once and stored for

offline computations. This approach however needs modification depending on the different

forms of nonlinearity occurring in the process model.

2.4 Bioreactor control and optimization

A main application to be investigated in this work is control of bioreactors. Modeling of

biological systems is generally very challenging due to the inherent nonlinear behavior of

these systems and to the inaccuracy in data used for model calibration. Hence, the uncertainty

associated to these models is generally very large. Accordingly, robust control design is of

key importance for this type of application. Bioreactors have traditionally been operated in

three different modes, batch, fed-batch and continuous. The most popular mode of operation

in the pharmaceutical industry has been the fed-batch mode (eg. production of baker’s yeast,

food additives and penicillin production), in which substrate is slowly fed to the reactor and

the product is only drawn at the end of the batch. This mode of operation helps mitigating the

inhibitory effects of high substrate concentration or by-products such as ammonia or lactate.

For example, high ethanol concentration inhibits yeast growth, so by operating the reactor in

fed-batch mode ethanol production can be enhanced since the substrate is supplied gradually

 21

rather than in high concentration at the start of the batch. Also since the product is drawn

only at the end, it becomes easier to maintain sterilized conditions, (Rani and Rao, 1999).

Therefore, since pharmaceutical applications will be considered for this study the focus of

this part of the review is on fed-batch reactor operation and control.

Traditionally fed-batch bioreactors have been controlled via simple PID controllers, to

maintain operating temperature, pH or dissolved oxygen (DO) concentration at their set-

points (Lee et al., 1999) by manipulating the substrate feed-rate. This limited control

strategies has been the norm in the industry mostly because of two factors: i) Poorly known

nonlinear dynamics of bioprocesses and the estimated parameters ii) Measurements of

metabolites are rarely available on-line and the available measurements, e.g. pH and oxygen,

are insufficient for estimation of the states. Product/cell concentration measurements are

usually done offline, because of unreliable online analyzers (Lubbert and Jorgensen, 2001,

Rani and Rao, 1999, Smets et al., 2004). However recent advances in online measurements

combined with stringent FDA guidelines regarding bioprocess operations may facilitate

future implementations of model-based controllers for biochemical processes (Henson,

2010).

A common fed-batch optimization problem has been that of determining substrate feeding

policy by optimizing the final product concentration or a cost function. This objective can be

achieved offline via dynamic optimization and is applied online to a fed-batch reactor in an

open-loop fashion, i.e. without accounting for feedback errors. To this end numerous studies

have been proposed (Frahm et al., 2002, Hjersted and Henson, 2006, Banga et al., 1997)

using different optimization problems. Banga et al., 1997 recognized the drawbacks of not

including feedback and suggested to perform periodic online recalculation of feed-profiles

especially in the presence of large disturbances.

Very few studies have included the feedback error within the optimal control problem

(Smets et al., 2004 and Chen et al., 1995). These studies are based on the idea that Fed-batch

reactor controllers do not have to globally stabilize the system, but instead keeps the unstable

system under control for the duration of the process which is finite, (Smets et al., 2004 and

 22

Chen et al., 1995). Chen et al., 1995 have presented a nonlinear adaptive control strategy

based on the feedback linearization idea that was used to simplify the model relating product

concentration to substrate feed rate. Smets et al., 2004 developed an optimal adaptive control

strategy, in which a suboptimal solution to the cost function is used to formulate a nonlinear

linearizing controller. Also biomass concentration measurements are used to estimate the

specific growth rate using an observer. The importance of robustness for fed-batch bioreactor

control has been stressed in (Kuhlmann et al., 1998), due to i) parametric uncertainty

occurring because parameters are generally identified as time invariant though in reality they

should be considered time varying, e.g. due to biological adaptation mechanisms of the cells

ii) unmodeled dynamics, iii) large disturbances occurring in the process.

To address robustness, Renard et al., 2006 proposed a robust controller based on a Youla

parametrization in which two stable transfer functions are designed one for rejecting

disturbances during the exponential cell growth and one for robustness against unstructured

uncertainties. However this technique did not include parametric uncertainty and also the

controller was applied to an operating condition where the linear process model was

considered sufficiently accurate to describe the process dynamics.

However, bioreactors’ operations in the pharmaceutical industries generally lack

sophisticated online-measurement techniques required for implementation of online control

and are often limited by certification procedures in terms of the types of control and

monitoring systems that they can rely upon. In these cases off-line optimization would be

preferred over on-line feedback control strategies. Then, a single offline-robust optimization

calculation can be performed to obtain an optimal feeding recipe. Hence it becomes

important to consider the effect of plant-model mismatch and disturbances (Srinivasan et al.,

2003) on recipes resulting from robust optimization calculations. For most of the off-line

robust optimization techniques uncertainty propagation methods are required and then a

probability distribution of the objective function is used to define the cost. Studies have been

proposed where the objective function consists of i) the expected or extremum value of a

terminal property Dewasme et al., 2011, ii) a worst-case scenario of the cost, Ma et al., 1999,

iii) a weighted function of the expected value and variance of the terminal property, Nagy

 23

and Braatz, 2003, Nagy and Braatz, 2004, iv) a probabilistic objective function to meet a

certain quality criteria, Terwiesch et al., 1998, or v) a linearization of the objective function

around the nominal conditions combined with bounds of the model uncertainties Logist et

al., 2011. Most of these mentioned studies either rely on first-principles model for

uncertainty quantification and propagation or use Monte Carlo sampling methods (which is

computationally heavy). All constraints in these formulations are transformed to

corresponding robust counterparts. On the other hand if measurements are available along the

batch, they can be used to counter the effect of uncertainties by adapting the model to be used

for subsequent batches (Mandur and Budman, 2015, Srinivasan and Bonvin, 2007,

Srinivasan et al., 2003). In the current work, PCE’s is used for uncertainty quantification and

propagation, which are known to facilitate quick computation of statistical measures and

uncertainty propagation.

2.5 Metabolic Flux Model

Model based control of bioreactors requires an appropriate dynamic model of the process.

Dynamic models for bioreactors can be generally classified as unstructured and structured

based on the amount of detail included in the model regarding to cellular metabolism. The

unstructured models are generally based on simplistic substrate and biomass balances but

they do not account for the detailed interaction existent between the different nutrients such

as amino-acids, e.g glucose, glutamine, aspargine, and by-products such as ammonia, lactate

and carbon dioxide. A general dynamic unstructured model for a substrate inhibited enzyme

kinetic model is shown in 2.20. On the other hand structured models are referred as such

since they are based on the metabolic reactions corresponding to the organism under study.

Hence, structured models are always more complex than unstructured ones but they correctly

describe the relations between the different metabolites participating in the process.

𝑑𝑑
𝑑𝑋

= 𝐹 ,
𝑑[𝑋]
𝑑𝑋

= 𝜇[𝑋],

𝑑[𝑆]
𝑑𝑋

= 𝐹[𝑆]𝑖𝑛 −
𝜇𝑋
𝑌𝑋|𝑆

 ,
𝑑[𝑃]
𝑑𝑋

=
𝜇[𝑋]𝑌𝑃|𝑆

𝑌𝑋|𝑆
 ,

𝐹 Feed Rate, 𝑑 Batch Volume
[𝑋] Concentration of Biomass
𝜇 Rate of cell growth,
[𝑆] Substrate concentration
[𝑃] Product concentration
𝜇𝑚𝑚𝑛 Maximum growth rate

2.20

 24

𝜇 =
𝜇𝑚𝑚𝑛[𝑆]

𝐾𝑚 + [𝑆] + [𝑆]2/𝐾𝐼

𝐾𝑚 Substrate Saturation constant
𝐾𝐼 Substrate inhibition constant
𝑌𝑋|𝑆,𝑌𝑃|𝑆 Yield coefficients

Metabolic flux analysis (MFA) modeling is a method to develop structured models based on

flux balance of metabolites at quasi-steady state (Varma and Palsson, 1994). It is assumed

that intracellular metabolite dynamics are much faster than the cell growth and the dynamics

of extracellular metabolites thus justifying a quasi steady-state assumption for the

intracellular species. MFA consists of formulating a stoichiometric matrix (𝑨𝒎𝒎𝒎) for the

corresponding vector of reaction fluxes (𝝂𝒎𝒙𝟏) and formulating mass balances of

extracellular metabolites as per the following equation:

𝑨𝝂 = 𝒃 2.21

where 𝑏𝑚𝑛1represents a vector of consumption or production rate of extracellular

metabolites, i.e. nutrients and by-products. Generally the number of metabolites is less than

the number of fluxes. Thus, equation 2.22 describes an under-determined system of equations

to solve for the fluxes. To convert the problem into a determined one, assumptions or

additional constraints have to be made. Varma and Palsson, 1994 suggested that it is

reasonable to assume that the organism as a result of natural evolution is continuously trying

to maximize growth and allocate resources in order to accomplish this task. This assumption

is especially reasonable for bacterial cells whereas in mammalian cells a large amount of

nutrients are consumed to provide for maintenance energy of the cells. Following this

assumption, and assuming that the growth μ is to be maximized, the problem can be

approached as a Linear Programming (LP) problem, with the flux balances’ equation (2.22)

imposed as constraints:

𝜇 = max
𝜈𝑖

�𝑤𝑖𝜈𝑖

𝑛

𝑖=1

𝑠𝑋. 𝑨𝝂 = 𝒃

2.22

Then, assuming that at every time step the growth rate is maximized by the organism the

consumption or production of species can be calculated with time as follows:

 25

max
𝑛,𝝂

𝜇

𝑠. 𝑋.
𝑑𝒛
𝑑𝑋

= 𝑨𝝂𝑥,
𝑑𝑥
𝑑𝑋

= 𝜇𝑥, 𝜇 = 𝒘𝑇𝝂
2.23

Where, 𝑥 and 𝒛 are the current biomass and metabolites’ concentrations respectively. This

dynamic modeling approach of the cell metabolism, referred to as Dynamic Flux Balance

Modeling (DFBM) has been applied successfully by Mahadevan et al., 2002, to explain the

microbial growth of Escherichia coli in a batch reactor. Hjersted and Henson, 2006, have

used DFBM to determine the glucose (substrate) feeding policy for a fed-batch bioreactor

producing ethanol with the yeast Saccharomyces cerevisiae. In both Mahadevan and Hjersted

studies, additional kinetic rate constraints are imposed in order to achieve realistic flux

distribution, 𝜈 and metabolite concentration,𝑧. It should be noticed that dynamic flux models

have not been used as yet for predictive control as proposed in the current work. Since these

models are gaining increasing acceptability by the pharmaceutical research community it is

very timely to investigate their application for control and optimization.

2.6 Robust Distributed MPC with loss of communication

One of the key challenges for the industrial implementation of robust MPC algorithms is the

high computational costs related to the online calculations required for testing robustness.

Previous work by our research group has demonstrated that the real time implementation of

robust predictive controllers may become prohibitive when dealing with systems of large

dimensions, many inputs and outputs, either with SSV based tests (Diaz-Mendoza and

Budman, 2010b) or LMI based approaches (Al-Gherwi et al., 2011). The use of PCEs for fast

on-line calculations of output variance proposed in Chapter 3 is one of the approaches

pursued in this thesis to reduce the computational burden of MPC. However, there is a good

motivation to search for additional methods to speed up the calculations involved in robust

predictive control strategies. One possible way to speed up the algorithms is by approaching

the problem in a distributed fashion. In general, the use of one central controller to control

highly interconnected process units in chemical plants is generally computationally

challenging and difficult to implement and hence, a more practical approach is to partition

 26

the process into smaller subsystems and to design lower dimensional controllers for each

subsystem (Scattolini, 2009). This distributed control approach referred to as Distributed

Model Predictive Control (DMPC) has gained significant attention from the research

community with various algorithms being proposed which can be broadly classified with

type of, i) cost function (local vs. global), ii) solution procedure being used (non-iterative,

single iteration) and iii) degree of exchange of information Scattolini, 2009. Venkat et al.,

2005 proposed a method of cooperative distributed control that permits to recover the

performance of a centralised controller when convergence of the distributed algorithm

occurs. Other DMPC algorithms that have been proposed are Zhang and Li, 2007, Liu et al.,

2009, Scheu and Marquardt, 2011.

Within the framework of DMPC, it is also important to consider robustness to plant-model

mismatch. To provide for robustness Al-Gherwi et al., 2011 assumed the plant model of each

subsystem to be included within a polytopic model and the control action was based on the

minimisation of a robust performance bound where this latter minimisation step is conducted

iteratively for every subsystem in a cooperative manner. Robust DMPC using the “tubes”

concept (Trodden and Richards, 2006) consists of developing invariant regions (tubes) at

each time instant for linear time invariant models with interactions between subsystems

treated as bounded disturbance, though plant-model mismatch has not been explicitly

included as yet in that approach.

A key component of most previously proposed DMPC algorithms is the exchange of state

information at the beginning of all iterations. This exchange is required at every time step,

thus a situation where communication is lost because of dropped packets or poor signal needs

to be explicitly addressed (Rawlings and Stewart, 2008). It is also a very common event in

the chemical industry that sub-controllers controlling a particular section of a process are

momentarily stopped for maintenance or to address a particular alarm. Using a nominal

model based estimator, de la Pena and Christofides, 2008 designed for communication loss

within the cost function of Lyapunov based MPC which guaranteed stability and included

constraints for the length of the data loss period. Maestre et al., 2009 designed DMPC where

each agent developed and communicated various options for future control action and they

 27

cooperated towards the central optimisation problem. However, during communication loss

the system acted like a decentralised controller. Heidarinejad et al., 2011 developed a scheme

to ensure stability with communication loss by including a feasibility problem and assuming

zero control action for other subsystems in case of communication loss. Sun and El-Farra,

2008 proposed a model-based control method based on a decentralised approach and low

communication requirements. In this scheme subsystems would interact with each other at

predetermined time instants, and for remaining time instants a nominal model is used as a

state estimator, essentially acting as an open loop network. Distributed MPC in the presence

of communication loss and model error is addressed in the current study by the use of a

robust estimator of the states.

 28

Chapter 3
Robust Nonlinear MPC based on Volterra series and Polynomial

Chaos Expansions1

(Published in Journal of Process Control)

3.1 Introduction

Model Predictive Control (MPC) is a widely used control design technique in the process

industries. MPC may be designed based on either a linear or nonlinear models where the

latter design is referred to as Nonlinear Model Predictive Control (NMPC). Model based

controllers must be robust to mismatch between the model predictions and the actual process

behavior. While there exist a variety of techniques to analyze robustness of controllers that

are based on linear models, design of robust nonlinear controllers such as NMPC is

challenging and it is currently an active field of research (Allgower et al., 2004, Magni and

Scattolini, 2010).

Some robust-NMPC (RNMPC) algorithms have been reported and they can be classified into

two main groups: i) - algorithms that are based on minmax formulation Diaz-Mendoza and

Budman, 2010b, and ii) - algorithms for which nominal inputs are computed using an

auxiliary controller and then input deviations from the nominal inputs are calculated to

guarantee that actual outputs’ trajectories are bounded within a tube around the nominal path

(Mayne et al., 2011, Magni et al., 2006). Algorithms based on the “tube” approach have used

mechanistic models thus making it difficult to generalize the analysis to general forms of

nonlinearity. Consequently, the tube approach have only considered uncertain disturbances

rather than parametric uncertainty. On the other hand, minmax formulations involving

minimization of worst plant performance with respect to model uncertainties have considered

both unmeasured disturbances and parametric uncertainty. For minmax formulation of robust

optimization problems two approaches have been proposed : i. a simulation based approach

with the goal of minimizing (Kawohl et al., 2007) the weighted contribution of the first two

1 Adapted from Kumar, D. & Budman, H. 2014.

 29

statistical moments of an objective function using Monte Carlo simulations. This approach is

computationally expensive due to the use of Monte Carlo and such studies have concentrated

on robust optimization rather than robust control or ii- an analytical approach (Nagy and

Braatz, 2003) based on bounds calculated by using Structured Singular Values (SSV or μ).

In Diaz-Mendoza and Budman, 2010b presented an RNMPC strategy based on Structured

Singular Value norms (SSV) for continuous processes, in which the cost function is

formulated as an SSV norm calculation to produce worst closed-loop predictions in the

presence of uncertainty which are used to satisfy input and terminal constraints. This

algorithm was based on empirical Volterra models with uncertain coefficients. Empirical

models were selected in that previous work because, as mentioned above, it is difficult to

formulate a general robust approach for mechanistic models due to the various forms in

which nonlinearities appear in these models. Also, since computation of the SSV-norm is a

NP-hard type of problem, the computational time of the algorithm previously proposed by

Mendoza and Budman increases exponentially as the dimensions of the process in terms of

inputs and outputs increase. Moreover, since the controller based on SSV calculations

minimizes worst case maximal deviations it results in conservative performance.

In the current work an alternative approach is proposed whereby parametric uncertainty is

propagated onto the outputs using Polynomial Chaos Expansions (PCE). Few studies on the

use of PCE for control design have been reported. For example in Hover and Triantafyllou,

2006 a PCE was used to perform stability analysis of a particular nonlinear system with

random initial conditions or random parameters where the output was determined with

similar accuracy to Monte Carlo simulations but with much reduced computational burden.

In Smith et al., 2009 an LQG controller was designed where parametric uncertainty and

bounded disturbances were represented by PCE, but the study was limited to linear systems.

In the current study a minmax type online robust controller is proposed based on an empirical

Volterra series’ model, in which parametric uncertainty is represented by PCE’s and it is

propagated onto the variance. The key idea for using PCE’s is that the variance of the

predicted outputs can be rapidly calculated by an analytical expression thus critically

reducing computational times as compared to the approach previously used by Diaz-

 30

Mendoza and Budman, 2010b. In the current approach an SSV calculation has to be still

performed to enforce a terminal condition and input constraints; but it does not have to be

applied to the entire prediction horizon, as in the previous work, thus significantly reducing

the computational load as compared to the previous study of Diaz-Mendoza and Budman,

2010b. Furthermore, since in the current approach a variance of the predicted outputs is

minimized instead of a worst error considered in the previous work this approach will be

shown to be less conservative. To illustrate the approach a 2x2 pH neutralization system is

simulated and the closed loop performance of the algorithm is then compared with the

performance of three NMPC controllers previously proposed i) non-robust NMPC based on

first principles’ model ii) non-robust NMPC based on nominal Volterra series model iii)

robust NMPC controller also based on a nominal Volterra model for which the worst error

along the prediction horizon is calculated via a Structured Singular Value (SSV or μ) test.

These three controllers will be referred heretofore as FP-NMPC, non-robust NMPC and μ-

based RNMPC respectively. In contrast to these three controllers, the robust algorithm

presented in the current study will be referred to as PCE-based RNMPC since the nominal

model used for prediction is still a Volterra series but robustness to model uncertainty is

addressed via PCE expansions. This chapter is organized as follows; Section 3.2 discusses

the prediction model development based on Volterra series, relevant background on PCE

expansions and how to propagate model uncertainty onto the outputs’ predictions. The

determination of the variance in model predictions in the presence of model uncertainty using

PCE and the μ calculations related to the formulation of the terminal condition and input

constraints, along with the cost function to be minimized at every time step is presented in

Section 3.3. Finally in section 3.4 the Robust NMPC is applied to the pH-neutralisation case

study and is compared with the three controllers mentioned above.

3.2 Definitions and Methodology

3.2.1 Closed-loop Prediction Model using Volterra series

An input-output empirical model based on an auto-regressive Volterra (ARX Volterra) series,

known for its ability to describe nonlinear behavior Parker et al., 2001, is used to predict the

 31

outputs of the process to be controlled. The possibility to separate these series into nominal

and uncertain parts and the linearity of the output with respect to the parameters’ uncertainty

bounds facilitates the calculation of robust norms. The use of an autoregressive term, results

in a model with a lower number of parameters as compared to Volterra series without such

term thus reducing model sensitivity to noise in the data. A feedback correction term is

included in the closed-loop prediction model to account for this mismatch. As commonly

done for both linear and nonlinear predictive control algorithms, the feedback correction in

the current study is calculated as the difference of the measured plant output (𝑦𝑘−1𝑟𝑟𝑚𝑟) and a

nominal output prediction (𝑦�(𝑘 − 1)). The model accounting for the feedback correction and

for multiple input variables is given as follows:

𝑦�𝜒(𝑘 + 1) = � ℎ𝑞𝜒𝑦�𝜒(𝑘 + 1 − 𝑞) +
𝑛𝐴𝐴𝐴

𝑞=1

� ℎ𝑛(𝜒,1)𝑢1(𝑘 + 1 − 𝑛)
𝑀−1

𝑛=0

+ � � ℎ𝑖,𝑗(𝜒,1)𝑢1(𝑘 + 1 − 𝑚)𝑢1(𝑘 + 1 − 𝑗)
𝑀−1

𝑗=𝑖

𝑀−1

𝑖=0

+ ⋯

+ � ℎ𝑛(𝜒,𝑛𝑢)𝑢𝑛𝑢(𝑘 + 1 − 𝑛)
𝑀−1

𝑛=0

+ � � ℎ𝑖,𝑗(𝜒,𝑛𝑢)𝑢𝑛𝑢(𝑘 + 1 − 𝑚)𝑢𝑛𝑢(𝑘 + 1 − 𝑗)
𝑀−1

𝑗=𝑖

𝑀−1

𝑖=0

+ 𝑤𝑘

3.1

where, 𝑦�𝜒(𝑘 + 1) is the output prediction at time instant 𝑘 + 1, 𝑛𝐴𝐴𝑋is the number of auto-

regressive terms, 𝑛𝜒,𝑛𝑢 are the number of outputs and inputs in the system respectively,

𝑢1,2,…,𝑛𝑢 are the inputs to the system, 𝑀 is the Volterra series memory, ℎ𝑖’s are Volterra

series coefficients and 𝑤𝑘 is the feedback term. To account for parametric uncertainty, Eq.

3.1 can be written by expressing the coefficients, ℎ𝑖’s, with their corresponding nominal and

uncertainty bounds as follows:

 32

𝑦�𝜒(𝑘 + 1) = � (ℎ𝑞𝜒 ± 𝛿ℎ𝑞𝜒)𝑦𝜒(𝑘 + 1 − 𝑞)
𝑛𝐴𝐴𝐴

𝑞=1

+ ��ℎ𝑛(𝜒,1) ± 𝛿ℎ𝑛(𝜒,1)�𝑢1(𝑘 + 1 − 𝑛)
𝑀−1

𝑛=0

+ � ��ℎ𝑖,𝑗(𝜒,1) ± 𝛿ℎ𝑖,𝑗(𝜒,1)�𝑢1(𝑘 + 1 − 𝑚)𝑢1(𝑘 + 1 − 𝑗)
𝑀−1

𝑗=𝑖

𝑀−1

𝑖=0

+ ⋯

+ ��ℎ𝑛(𝜒,𝑛𝑢) ± 𝛿ℎ𝑛(𝜒,𝑛𝑢)�𝑢𝑛𝑢(𝑘 + 1 − 𝑛)
𝑀−1

𝑛=0

+ � ��ℎ𝑖,𝑗(𝜒,𝑛𝑢) ± 𝛿ℎ𝑖,𝑗(𝜒,𝑛𝑢)�𝑢𝑛𝑢(𝑘 + 1 − 𝑚)𝑢𝑛𝑢(𝑘 + 1 − 𝑗)
𝑀−1

𝑗=𝑖

𝑀−1

𝑖=0

+ 𝑤𝑘

3.2

To identify the Volterra series coefficients, the procedure presented in Diaz-Mendoza and

Budman, 2010a was used whereby a persistently exciting input signal and a nonlinear

optimization is used to solve for the model’s coefficients. For a Nth order Volterra series, a

N+1 level Pseudo-Random Multilevel Signal (PRMS) has been shown to provide sufficient

excitation Nowak and Vanveen, 1994 for identifying the Volterra series parameters. To

determine both the nominal and uncertain parts of Volterra series parameters, PRMS

sequences are applied in the inputs around different operating points corresponding to

different values of actual process parameters such as flow rates, inlet compositions etc. Then,

the series’ coefficients identified for each of these PRMS inputs are averaged to determine

nominal values of the parameters of Volterra series and their variances are used as

uncertainty bounds. These uncertainty bounds, associated to each of the individual

parameters of the Volterra series, can then be used to compute variances for the outputs’

predictions along the prediction horizon as explained in the following section.

3.2.2 Prediction of 𝓛𝓛-norm in presence of model uncertainty using PCE

In the current work each Volterra series’ parameter is considered uncertain and it is assumed

 33

to be described using a PCE as follows:

ℎ𝑖𝑗 = � ℎ𝑖𝑗,𝑟

𝑃𝑃𝑃𝑃−1

𝑟=0

Φ𝑟 3.3

where ℎ𝑖𝑗 is the uncertain parameter and ℎ𝑖𝑗,𝑟 is the deterministic coefficient multiplying the

corresponding basis function Φ𝑟. Although in reality the uncertainty coefficients are not

purely random and the assumption of randomness may result in conservatism, this

assumption is used since it greatly facilitates the quantification of output variance.

Accordingly, the nominal part of the uncertain coefficient is given by the first term in the

expansion, ℎ𝑖𝑗,0, while the variance is equated to the sum of squares of remaining PCE

coefficients i.e. ∑ (ℎ𝑖𝑗,𝑟)2 𝑃𝑃𝑃𝑃−1
𝑟=1 . In the current study, the basis functions Φ𝑟, are assumed to

be dependent on only one uncertain variable 𝜉, thus each Volterra series parameter is

represented for simplicity as a one-dimensional PCE. Although there can be multiple sources

of uncertainty, (𝜉𝑖: 𝑚 ∈ 1,2, … ∞) such as changes in operating conditions, hardware related

uncertainties, one single random variable was selected here for simplicity. Another key

assumption is related to the distribution of the random variable 𝜉, as the type of basis

functions used in (3.3) depends on this distribution. For simplicity a Gaussian distribution for

𝜉 was assumed and following the Askey scheme mentioned above, Hermite polynomials

were chosen as the basis functions. In general, a formal identification of the distribution of

the random variables could be obtained by off-line Monte Carlo based identification of the

parameters and uncertainty bounds and then different basis functions could be chosen to

match the obtained distributions however this is beyond the scope of the current study which

focuses on the control strategy.

To illustrate on how the uncertainty in the model parameters is propagated into the output

variance, the method is illustrated for the first prediction interval and then is generalized to

all intervals along the prediction horizon. The calculation of the first plant output prediction

along the prediction horizon, 𝑦�𝜒(𝑘 + 1) with the uncertain model described using Eq. 3.3 and

3.4 is given as follows:

 34

𝑦�𝜒(𝑘 + 1) = � � � ℎ𝑞𝜒,𝑟Φ𝑟

𝑃𝑃𝑃𝑃−1

𝑟=0

� 𝑦�𝜒(𝑘 + 1 − 𝑞) +
𝑛𝐴𝐴𝐴

𝑞=1

� � � ℎ𝑛(𝜒,1),𝑟Φ𝑟

𝑃𝑃𝑃𝑃−1

𝑟=0

� 𝑢1(𝑘 + 1 − 𝑛)
𝑀−1

𝑛=0

+ � �� � ℎ𝑖,𝑗(𝜒,1),𝑟Φ𝑟

𝑃𝑃𝑃𝑃−1

𝑟=0

�𝑢1(𝑘 + 1 − 𝑚)𝑢1(𝑘 + 1 − 𝑗)
𝑀−1

𝑗=𝑖

𝑀−1

𝑖=0

+ ⋯

+ �� � ℎ𝑛(𝜒,𝑛𝑢),𝑟Φ𝑟

𝑃𝑃𝑃𝑃−1

𝑟=0

�𝑢𝑛𝑢(𝑘 + 1 − 𝑛)
𝑀−1

𝑛=0

+ � �� � ℎ𝑖,𝑗(𝜒,𝑛𝑢),𝑟Φ𝑟

𝑃𝑃𝑃𝑃−1

𝑟=0

�𝑢𝑛𝑢(𝑘 + 1 − 𝑚)𝑢𝑛𝑢(𝑘 + 1 − 𝑗)
𝑀−1

𝑗=𝑖

𝑀−1

𝑖=0

+ 𝑤𝑘

3.4

To propagate the uncertainty in parameters to the output, the plant output, 𝑦�𝜒(𝑘 + 1) is also

represented by a PCE based on the same basis functions Φ𝑟 chosen to describe the uncertain

parameters of the Volterra model. Then, the uncertain output represented by a PCE is equated

to the uncertain Volterra model given in (3.5) resulting in the following equation:

� 𝑦�𝜒,𝑟(𝑘 + 1)Φ𝑟

𝑃𝑃𝑃𝑃−1

𝑟=0

= � � � ℎ𝑞𝜒,𝑟Φ𝑟

𝑃𝑃𝑃𝑃−1

𝑟=0

� 𝑦�𝜒(𝑘 + 1 − 𝑞)
𝑛𝐴𝐴𝐴

𝑞=1

+ �� � ℎ𝑛(𝜒,1),𝑟Φ𝑟

𝑃𝑃𝑃𝑃−1

𝑟=0

� 𝑢1(𝑘 + 1 − 𝑛)
𝑀−1

𝑛=0

+ � �� � ℎ𝑖,𝑗(𝜒,1),𝑟Φ𝑟

𝑃𝑃𝑃𝑃−1

𝑟=0

�𝑢1(𝑘 + 1 − 𝑚)𝑢1(𝑘 + 1 − 𝑗)
𝑀−1

𝑗=𝑖

𝑀−1

𝑖=0

+ ⋯

+ �� � ℎ𝑛(𝜒,𝑛𝑢),𝑟Φ𝑟

𝑃𝑃𝑃𝑃−1

𝑟=0

�𝑢𝑛𝑢(𝑘 + 1 − 𝑛)
𝑀−1

𝑛=0

+ � �� � ℎ𝑖,𝑗(𝜒,𝑛𝑢),𝑟Φ𝑟

𝑃𝑃𝑃𝑃−1

𝑟=0

�𝑢𝑛𝑢(𝑘 + 1 − 𝑚)𝑢𝑛𝑢(𝑘 + 1 − 𝑗)
𝑀−1

𝑗=𝑖

𝑀−1

𝑖=0

+ 𝑤𝑘

3.5

In Eq. 3.5, the LHS represents the PCE used to model the first output prediction along the

prediction horizon. Similarly the PCE model can be developed for further predictions along

 35

the prediction horizon. Each PCE coefficient in the LHS expansion for the output is denoted

as 𝑦�𝑘+𝑠,𝑟
𝜒 , where 𝑝 is the prediction horizon and 𝑘 is the current time interval. To calculate

these PCE coefficients, a Galerkin projection is used as follows. For simplicity of notation,

let the Volterra series model in Eq. 3.5 RHS be represented by

𝑋�𝑦�𝑘
𝜒, … ,𝑦�𝑘+1−𝑛𝐴𝐴𝐴

𝜒 ,𝑢𝑘+1,𝑢𝑘 , …𝑢𝑘+2−𝑀,∑ ℎ𝑖𝑗,𝑟Φ𝑟
𝑃𝑃𝑃𝑃−1
𝑟=0 �. Then to determine each PCE

coefficient for the model output associated with basis function Φ𝑟, a Galerkin projection of

the Eq. 3.5 is calculated with respect to each basis function (also shown in Eq. 2.16)

〈� � 𝑦𝑘+1,𝑟Φl

𝑃𝑃𝑃𝑃−1

𝑟=0

� ,Φ𝑟〉

= 〈𝑋 �𝑦�𝑘
𝜒, … ,𝑦�𝑘+1−𝑛𝐴𝐴𝐴

𝜒 ,𝑢𝑘+1,𝑢𝑘 , …𝑢𝑘+2−𝑀, � ℎ𝑖𝑗,𝑟Φ𝑟

𝑃𝑃𝑃𝑃−1

𝑟=0

,𝑤𝑘� ,Φ𝑟〉

3.6

where 〈𝑥, 𝑦〉 denotes inner product. Then, for the first prediction along the horizon, due to

orthogonality of the basis functions, the PCE coefficient for the output is obtained as follows:

𝑦𝑘+1,𝑟 =
〈𝑋�𝑦�𝑘

𝜒, … ,𝑦�𝑘+1−𝑛𝐴𝐴𝐴
𝜒 ,𝑢𝑘+1,𝑢𝑘 , …𝑢𝑘+2−𝑀,∑ ℎ𝑖𝑗,𝑟Φ𝑟

𝑃𝑃𝑃𝑃−1
𝑟=0 ,𝑤𝑘�,Φ𝑟〉

〈Φ𝑟 ,Φ𝑟〉
�

∀𝑙 ∈ [0,𝑃𝑃𝑃𝑃 − 1]

3.7

where in Eq. 3.7 the output predictions at previous sampling intervals, 𝑦�𝑘
𝜒, … ,𝑦�𝑘+1−𝑛𝐴𝐴𝐴

𝜒 are

also uncertain and are each represented by a corresponding PCE, thus resulting in the

following general expression:

𝑦�𝑘+1,𝑟 =

〈𝑋 �
∑ �𝑦�𝑘,𝑟

𝜒 Φ𝑟�
𝑃𝑃𝑃𝑃−1
𝑟=0 , … ,∑ �𝑦�𝑘+1−𝑛𝐴𝐴𝐴,𝑟

𝜒 Φ𝑟�
𝑃𝑃𝑃𝑃−1
𝑟=0 ,𝑢𝑘+1,𝑢𝑘, … ,𝑢𝑘+2−𝑀,

∑ �ℎ𝑖𝑗,𝑟Φ𝑟�
𝑃𝑃𝑃𝑃−1
𝑟=0

� ,Φ𝑟〉

〈Φ𝑟 ,Φ𝑟〉

∀𝑙 ∈ [0,𝑃𝑃𝑃𝑃 − 1]

3.8

For subsequent predictions, expressions similar to Eq. 3.8 can be developed but are not

shown for brevity. The calculations of the inner products between basis functions in Eq. 3.8

require evaluation of 𝑛0-dimensional integrals which can be done using Gaussian

 36

quadratures. Although Gaussian quadratures are computationally expensive with increasing

number of dimensions of the PCE, in the current work these integrals need to be computed

only once and thus they can be conducted offline. Then, analytical expressions for every PCE

coefficient of the model output for all output predictions along the prediction horizon, can be

determined as a function of the control inputs, 𝑢𝑘+1, … ,𝑢𝑘+1,𝑢𝑘 , … ,𝑢𝑘+2−𝑀, the PCE

coefficients representing each of the Volterra series parameters ℎ𝑖𝑗,𝑟, and the feedback error,

𝑤𝑘as per Eq. 3.8.

3.3 Robust controller formulation and cost function

Using a Volterra series model, Diaz-Mendoza and Budman, 2010b developed a test to find

the model ,within a family of models representing the actual process, for which a worst

closed loop performance is obtained. The rationale for this test is that if the worst

performance is bounded by a performance index then all other possible models within the

uncertainty set of models will satisfy it as well. The key disadvantage of this formulation was

its conservatism, as the possibility of the worst model behavior occurring in the actual

process might be low as compared to the nominal model. To remove some of this

conservatism, the controller in the current work is designed based on a variance calculated

for all possible models within the uncertainty set rather than on a worst error.

In section 3.2 it was shown how parametric uncertainty can be propagated onto the output

using PCE expansions. Since the basis functions for the spectral expansion are orthogonal,

the ℒ2-norm of each prediction represented using PCE (𝑦𝑘+𝑖 = ∑ 𝑦𝑘+𝑖,𝑟Φ𝑟
𝑃𝑃𝑃𝑃−1
𝑟=0 ,∀𝑚 ∈

[1, 𝑝]), is the sum of squares of its PCE coefficients as follows:

�𝑦�𝑘+𝑖,𝑟
𝜒 �

ℒ2 = � �𝑦�𝑘+𝑖,𝑟
𝜒 �2

𝑃𝑃𝑃𝑃−1

𝑟=0

,∀𝑚 ∈ [1,𝑝]

��𝑦�𝑘+𝑖,𝑟
𝜒 �

ℒ2

𝑠

𝑖=1

= � � �𝑦�𝑘+𝑖,𝑟
𝜒 �2

𝑃𝑃𝑃𝑃−1

𝑟=0

𝑠

𝑖=1

3.9

3.10

 37

and correspondingly an analytical expression can be obtained for 𝑦�𝑘+𝑖,𝑟
𝜒 as shown in Section

3.2. Based on this analytical calculation of variance it is possible to design a control law

based on the on line solution of the following optimization problem:

min
𝑈

𝐽 𝐽 = �
� �𝑦�𝑘+𝑖,𝑟

𝜒 �
ℒ2

𝑠

𝑖=1
𝑊∆𝑈
𝑘𝑆𝑆𝑆

�

∞

max
𝑤𝑟𝑡 𝐻𝐿,𝐻𝑁𝐿

�𝑘𝑆𝑆𝑆 ∗ 𝑢/𝑢𝑟𝑖𝑚𝑖𝑡𝑠
𝑋𝑡 �

∞
⇔ max

𝑤𝑟𝑡 𝑘𝑆𝑆𝑆
𝑠𝑡 𝜇∆(𝑀)≥𝑘𝑆𝑆𝑆

(𝑘𝑆𝑆𝑆)

3.11

According to problem 3.11, the first two terms in the cost function 𝐽 to be minimized at every

time step includes the ℒ2-norm of the outputs over the prediction horizon and weighted input

changes, 𝑊∆𝑈. ℒ2-norm of the outputs over the prediction horizon can be calculated by an

analytical expression given by Eq. 3.10. Weighted input changes, 𝑊∆𝑈, is computed as it is

generally done in other predictive control formulation, as a product of weighting factor and

difference in successive control actions (3.12)

𝑊Δ𝑈 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑊1

Δu1[𝑢1(𝑘) − 𝑢1(𝑘 − 1)]
⋮

𝑊m
Δu1[𝑢1(𝑘 + 𝑚) − 𝑢1(𝑘 + 𝑚 − 1)]

⋮
𝑊1

Δunu�𝑢𝑛𝑢(𝑘)− 𝑢𝑛𝑢(𝑘 − 1)�
⋮

𝑊m
Δunu�𝑢𝑛𝑢(𝑘 + 𝑚)− 𝑢𝑛𝑢(𝑘 +𝑚 − 1)�⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 3.12

The third term in the cost function 3.11 is a calculated bound denoted as 𝑘𝑆𝑆𝑆, which is used

to impose constraints on manipulated variables and to enforce a terminal condition

represented by 𝑋𝑡 which corresponds to the last deviation between the output and the set-

point along the prediction horizon as per the Eq. 3.13. This bound (𝑘𝑆𝑆𝑆), is calculated by a

Skewed Structure Singular Value calculation (skewed μ, Braatz et al., 1994) for which details

are given in the Appendix A, The last equation in problem (3.11) ensures that in the limit

either 𝑢/𝑢𝑟𝑖𝑚𝑖𝑡𝑠 or 𝑋𝑡 can be at most equal to 𝑘𝑆𝑆𝑆. By including this bound within the cost

function 𝐽, the aim is to minimize it along with the variance and the weighted input changes.

 38

𝑋𝑡 = �
𝑋𝑡1
⋮
𝑋𝑡𝜒

�

𝑋𝑡𝜒 = 𝑦�𝜒(𝑘 + 𝑝)
𝑘𝑆𝑆𝑆
𝜖

=
𝑘𝑆𝑆𝑆
𝜖

�� (ℎ𝑞𝜒 ± 𝛿ℎ𝑞𝜒)𝑦�𝜒(𝑘 + 𝑝 − 𝑞) +
𝑛𝐴𝐴𝐴

𝑞=1

��ℎ𝑛(𝜒,1) ± 𝛿ℎ𝑛(𝜒,1)�𝑢1(𝑘 + 𝑝 − 𝑛)
𝑀−1

𝑛=0

+ � ��ℎ𝑖,𝑗(𝜒,1) ± 𝛿ℎ𝑖,𝑗(𝜒,1)�𝑢1(𝑘 + 𝑝 − 𝑚)𝑢1(𝑘 + 𝑝 − 𝑗)
𝑀−1

𝑗=𝑖

𝑀−1

𝑖=0

+ ⋯

+ ��ℎ𝑛(𝜒,𝑛𝑢) ± 𝛿ℎ𝑛(𝜒,𝑛𝑢)�𝑢𝑛𝑢(𝑘 + 𝑝 − 𝑛)
𝑀−1

𝑛=0

+ � ��ℎ𝑖,𝑗(𝜒,𝑛𝑢) ± 𝛿ℎ𝑖,𝑗(𝜒,𝑛𝑢)�𝑢𝑛𝑢(𝑘 + 𝑝 − 𝑚)𝑢𝑛𝑢(𝑘 + 𝑝 − 𝑗)
𝑀−1

𝑗=𝑖

𝑀−1

𝑖=0

+ 𝑤𝑘�

3.13

However, to calculate (3.11), bounds for the autoregressive term 𝑦�𝑘+𝑠−1
𝜒 needs to be

determined. These bounds are determined using the corresponding PCE for 𝑦�𝑘+𝑠−1
𝜒 . The key

difference between the current approach and the previous work of Diaz-Mendoza and

Budman, 2010b is, in that work worst bounds 𝑘𝑆𝑆𝑆’s were computed for each one of the

output predictions along the horizon (Refer to Table 3.1 which summarizes different

controllers compared in the current work), whereas in the present work the bound was

computed only for the terminal condition. The performance cost related to the intermediate

outputs along the horizon was quantified in the current study with an analytical expression

for variance based on the PCE approach thus dramatically reducing the computational cost as

compared to the algorithm used by Diaz-Mendoza and Budman, 2010b.

Offset Removal: As with other minmax approaches involving the minimization of worst case

scenarios the current controller does not eliminate offset. To illustrate the occurrence of offset

consider the scenario, when steady state is reached and input constraints are not active, i.e.

𝑦𝑘+1
𝜒 = 𝑦𝑘

𝜒 and 𝑢1(𝑘 + 1) = 𝑢1(𝑘),𝑢2(𝑘 + 1) = 𝑢2(𝑘) …𝑢𝑛𝑢(𝑘 + 1) = 𝑢𝑛𝑢(𝑘). In that

case the cost function reduces to the following equation,

𝐽 = �𝑦�(𝑘 + 1)𝛿 − 𝑦𝑠𝑠(𝑘) + 𝑦𝑠𝑟𝑚𝑛𝑡(𝑘)− 𝑦�(𝑘)�2 3.14

 39

where 𝑦�(𝑘 + 1)𝛿, represents the prediction of robust model (based on Eq.3.4) at time instant

𝑘 + 1 when uncertainty is considered, and 𝑦�(𝑘) is the nominal model prediction (based on

Eq.3.1) at time instant 𝑘. Since these two quantities, i.e., 𝑦�(𝑘 + 1)𝛿 and 𝑦�(𝑘), are never equal

hence 𝑦𝑠𝑟𝑚𝑛𝑡(𝑘) is never equal to 𝑦𝑠𝑠(𝑘), consequently an offset is observed even when 𝐽 in

3.11 is driven to zero. To remove this offset the concept of dual controller proposed by Chen

and Allgower, 1998 is used whereby whenever the system approaches steady state a

controller based on a nominal model is used, i.e. at steady state 𝑦�(𝑘 + 1)𝛿 = 𝑦�(𝑘), hence if

the cost 𝐽 is driven to zero 𝑦𝑠𝑟𝑚𝑛𝑡(𝑘) = 𝑦𝑠𝑠(𝑘). To assess the closeness to steady state, an

ad-hoc test is applied whereby a difference in plant output for three successive time steps are

compared to a predefined small number; e.g.at time 𝑘, if �𝑦𝑘𝑟𝑟𝑚𝑟 − 𝑦𝑘−1𝑟𝑟𝑚𝑟�, �𝑦𝑘−1𝑟𝑟𝑚𝑟 −

𝑦𝑘−2𝑟𝑟𝑚𝑟�, �𝑦𝑘−2𝑟𝑟𝑚𝑟 − 𝑦𝑘−3𝑟𝑟𝑚𝑟� ≤ 𝛿, 𝛿 = 1𝐺 − 3, then a nominal controller is used.

3.4 Case Study

The PCE-based RNMPC (RNMPC) controller was applied to a pH-neutralisation process and

then compared to a robust controller based on a Structured Singular Value test (μ-based

RNMPC), to a non robust controller based on a nominal Volterra model (non-robust NMPC)

and to a non-robust controller based on a nominal first principle model (FP-NMPC)

corresponding to the differential equations model given in Table 3.2.

The NMPC schemes used in the comparisons are summarized in Table 3.1 in terms of cost,

model used for output prediction and whether an observer is used for estimation of

unmeasured states. The last row in Table 3.1 is related to how the uncertainty is considered

 40

Table 3.1 Other NMPC schemes

 FP-NMPC non-Robust NMPC μ-based RNMPC PCE-based RNMPC

Model Predictions 𝑥(𝑘 + 1) = 𝑋(𝑥𝑘 ,𝑢𝑘)
𝑦𝑘 = 𝑔(𝑥𝑘 ,𝑢𝑘)

Nominal volterra series
model (Eq.3.1)

Uncertain Volterra series
prediction (Eq.3.2)

Uncertain Volterra series
prediction with PCE

(Eq.3.5)

Observer Equations
𝑥��𝑘� + 1� = 𝑋(𝑥�𝑘 ,𝑢𝑘)
𝑦�𝑘 = 𝑔(𝑥�𝑘 ,𝑢𝑘) + 𝑤𝑘
𝑤𝑘 = 𝑦𝑘−1

𝑠𝑟𝑚𝑛𝑡 − 𝑦�𝑘−1

None
 None None

Cost
Function

𝑚𝑚𝑛
𝑤𝑟𝑡 𝑈

��
𝑌� − 𝑌𝑠𝑠
𝑊∆𝑈
𝑘𝑆𝑆𝑆

�

∞

�

max
𝑤𝑟𝑡 𝐻𝐿,𝐻𝑁𝐿

�𝑘 ∗ 𝑢/𝑢𝑟𝑖𝑚𝑖𝑡𝑠
𝑋𝑡 �

∞
= max

𝑤𝑟𝑡 𝑘𝑆𝑆𝑆
𝑠𝑡 𝜇∆(𝑀)≥𝑘𝑆𝑆𝑆

(𝑘𝑆𝑆𝑆)

𝑚𝑚𝑛
𝑤𝑟𝑡 𝑈

��
𝑌𝑛𝑛𝑚𝑖𝑛𝑚𝑟 − 𝑌𝑠𝑠

𝑊∆𝑈
𝑘𝑆𝑆𝑆

�

∞

�

max
𝑤𝑟𝑡 𝐻𝐿,𝐻𝑁𝐿

�𝑘 ∗ 𝑢/𝑢𝑟𝑖𝑚𝑖𝑡𝑠
𝑋𝑡 �

∞
= max

𝑤𝑟𝑡 𝑘𝑆𝑆𝑆
𝑠𝑡 𝜇∆(𝑀)≥𝑘𝑆𝑆𝑆

(𝑘𝑆𝑆𝑆)

min
𝑤𝑟𝑡 𝑈

� max
𝑤𝑟𝑡 𝐻𝐿,𝐻𝑁𝐿

�
𝑌�𝑘+𝑖𝑢𝑛𝑛 –𝑌𝑠𝑠
𝑊∆𝑈

𝑘 ∗ 𝑢/𝑢𝑟𝑖𝑚𝑖𝑡𝑠
𝑋𝑡

�

∞

= min
𝑤𝑟𝑡 𝑈

� max
𝑤𝑟𝑡 𝑘𝑆𝑆𝑆

𝑠𝑡 𝜇∆(𝑀)≥𝑘𝑆𝑆𝑆

(𝑘𝑆𝑆𝑆)�

min
𝑤𝑟𝑡 𝑈

⎝

⎛�
� �𝑦�𝑘+𝑖,𝑟

𝜒 �
𝐿2

𝑠

𝑖=1
𝑊∆𝑈
𝑘𝑆𝑆𝑆

�

∞⎠

⎞

max
𝑤𝑟𝑡 𝐻𝐿,𝐻𝑁𝐿

�𝑘 ∗ 𝑢/𝑢𝑟𝑖𝑚𝑖𝑡𝑠
𝑋𝑡 �

∞
= max

𝑤𝑟𝑡 𝑘𝑆𝑆𝑆
𝑠𝑡 𝜇∆(𝑀)≥𝑘𝑆𝑆𝑆

(𝑘𝑆𝑆𝑆)

Terminal Cost Uncertain Volterra Series
Prediction (Eq. 3.13)

Uncertain Volterra Series
Prediction (Eq. 3.13)

Uncertain Volterra Series
Prediction (Eq. 3.13)

Uncertain Volterra Series
Prediction (Eq. 3.13)

Uncertainty in
𝑦�𝑘+𝑠−1
𝜒

(autoregressive term
for calculation of
terminal cost in
Eq. 3.13)

• Nominal Prediction
using First Principles.

• Feedback is based on
First Principles

• Nominal Penultimate
prediction from Volterra
Series Model (Eq. 3.1)

• Uncertain Penultimate
Prediction using Volterra

Series (Eq. 3.2)
• It is part of μ-calculation.

• Bounds on Penultimate
Prediction, determined
using PCE for output

(Eq. 3.5)

 41

(or ignored) for the autoregressive term in equation (3.11) used for the calculation of the

terminal condition.

The pH-neutralization system is shown in Figure 3.1, in which an acid, base and buffer

streams enter the tank and are mixed uniformly. The control problem consists of maintaining

the height of liquid, 𝑦1, in the tank and pH of the effluent, 𝑦2, at their set-point, by

manipulating the flowrates of acid and base flows, 𝑢1 and 𝑢2, respectively. Changes in the

buffer flowrate, 𝑞2, are assumed to be the sole source of disturbances and changes to valve

characteristics, 𝐶𝑣 and 𝑛, during operation were considered to be the sources of unmodeled

dynamics. Thus, nominal values in 𝐶𝑣 and 𝑛 were chosen to define the nominal model and

deviations from these nominal values were considered in the numerical simulations to test for

robustness. The ODEs governing the process are shown in Table 3.2. The operating

conditions for the process are listed in Table 3.3. The Volterra series model and the controller

schemes were designed using variables normalized with respect to the values presented in

Table 3.4.

Figure 3.1 pH neutralisation system

q2 Wa2 Wb2
Buffer stream

q1 Wa1 Wb1
Acid stream

q3 Wa3 Wb3
Base stream

q4 Wa4 Wb4

 42

Table 3.2 Process dynamics for pH neutralisation system

𝐴
𝑑ℎ
𝑑𝑋

= 𝑞1 + 𝑞2 + 𝑞3 − 𝑞4 𝑞4 = 𝐶𝑣(ℎ)𝑛

𝐴ℎ
𝑑𝑊𝑚4

𝑑𝑋
= 𝑞1(𝑊𝑚1 −𝑊𝑚4) + 𝑞2(𝑊𝑚2 −𝑊𝑚4) + 𝑞3(𝑊𝑚3 −𝑊𝑚4) 𝑊𝑚𝑖 = [𝐻+]𝑖 − [𝑂𝐻−]𝑖 − [𝐻𝐶𝑂3−]𝑖

− 2[𝐶𝑂32−]𝑖

𝐴ℎ
𝑑𝑊𝑏4

𝑑𝑋
= 𝑞1(𝑊𝑏1 −𝑊𝑏4) + 𝑞2(𝑊𝑏2 −𝑊𝑏4) + 𝑞3(𝑊𝑏3 −𝑊𝑏4) 𝑊𝑏𝑖 = [𝐻2𝐶𝑂3]𝑖 + [𝐻𝐶𝑂3−]𝑖 + [𝐶𝑂32−]𝑖

𝑊𝑚 + 10𝑠𝐻−14 + 𝑊𝑏
1 + 2 ∗ 10𝑠𝐻−𝑠𝐾2

1 + 10𝑠𝐾1−𝑠𝐻 + 10𝑠𝐻−𝑠𝐾2
– 10−𝑠ℎ = 0

The identification of nominal and uncertain Volterra series parameters is performed following

the approach in Diaz-Mendoza and Budman, 2010a which is briefly reviewed here. Since the

goal of this work is to assess robustness of the NMPC algorithms where the model error is

related to changes in valve characteristics, different combinations of 𝐶𝑣 and 𝑛 values were

considered in the simulations of the closed loop system. Correspondingly, a total of 𝑛𝑛𝑠 = 9

operating regions were considered corresponding to all combinations of 3 different levels of

values of 𝐶𝑣 and 𝑛. For each such combination PRMS with 𝑁 + 1 levels was applied to the

system 𝑟𝑠𝑟𝑞times, where 𝑟𝑠𝑟𝑞is the number of times PRMS is applied on each operating

region.

Table 3.3 Operating Conditions

Table 3.4 Values for Normalisation

Variable Vp Vd

y1, height 14 5

y2, pH 7 3

q1, acid flow q1 0.2q1
ss

q3, base flow q3 0.225q3
ss

In the current work a 2nd order Volterra series was used to model the system, hence 3 levels

of PRMS were deemed sufficient for identification. For each PRMS, the corresponding

Volterra series parameters were obtained using nonlinear optimization. Thus a total of

A 207cm2 Wa1 3 × 10-3

pK1 6.35

 Wa2 -3 × 10-2

pK2 10.25 Wa3 -3.05 × 10-3

q1 3 × 10-3 M HNO3 Wb2 3 × 10-2

q2 3 × 10-2 M NaHCO3 Wb3 5 × 10-5

q3 3 × 10-3 M NaOH +

 5 × 10-5 M NaHCO3

 43

𝑛𝑛𝑠𝑟𝑠𝑟𝑞 parameters were identified. The standard deviation identified for each parameter was

assumed to be equal to the uncertainty and it was used to determine the corresponding PCE

coefficients.

The identification of PCE expansion’s coefficients used to represent each one of the Volterra

series parameters was based on the following assumptions: (i) the number of terms in the

PCE expansion used to describe each Volterra series parameter is assumed to be 2, hence

only a first order PCE is developed, 𝑞 = 1, (ii) 𝜉 is assumed to be normally distributed and

correspondingly Hermite Polynomials were chosen as basis functions (Xiu and Karniadakis,

2002). Following these assumptions each of the Volterra series parameters was represented

by a PCE with only two terms with corresponding coefficients denoted as ℎ𝑖𝑗,0 and ℎ𝑖𝑗,1

respectively. Thus the first term ℎ𝑖𝑗,0 corresponds to the nominal part of the parameter and

the second term ℎ𝑖𝑗,1 is associated with the variance according to ℎ𝑖𝑗,1 = √𝐶𝑑𝑟(ℎ𝑖𝑗).

Figure 3.2 Setpoint tracking and Disturbance rejection at different operating conditions

As preliminary test of the proposed algorithm, its set-point tracking and disturbance rejection

capabilities were tested around different operating conditions corresponding to different

combinations of the valve parameters, 𝐶𝑣 and 𝑛. The set-point change in pH were from 7 to 6

0 10 20 30 40 50 60
-0.1

0

0.1

0.2

0.3

0.4

0.5

Sampling Instant

q 2,B
uf

fe
r F

lo
w

0 10 20 30 40 50 60
-0.4

-0.3

-0.2

-0.1

0

0.1

Sampling Instant

pH

0 10 20 30 40 50 60
-0.4

-0.3

-0.2

-0.1

0

0.1

Sampling Instant

Pl
an

t O
ut

pu
t

Height
pH

0 10 20 30 40 50 60
-2

-1

0

1

2

Sampling Instant

Pl
an

t I
np

ut

u1 u2

 44

and the disturbance was a step change in the buffer flowrate from 𝑞2 =0.55 to 0.825. Figure

3.2a and Figure 3.2b shows the disturbance and set point step-like changes respectively

considered in the simulations. Controlled and manipulated variable response for different

operating conditions i.e. different combinations of 𝐶𝑣 and 𝑛 are shown in Figure 3.2c and

Figure 3.2d respectively. The bound on the terminal condition used is 𝜀 = 0.4 in terms of the

normalized output variables defined in Table 3.4, i.e.|𝑦𝑛𝑛𝑟𝑚𝑚𝑟𝑖𝑠𝑟𝑑| < 𝜀. These simulations

show that after the plant output approaches a steady state, the controller switches to a

nominal model based controller, which is the non-Robust NMPC presented in Table 3.1, thus

resulting in zero offset, irrespective of the operating condition as explained at the end of

section 3.3.

Next the controller performance was tested in the presence of input constraints. The

controller was simulated for 𝐶𝑣 = 8.25 and 𝑛 = 0.5, with a step-like disturbance for 𝑞2

changing from 0.55 to 0.8, and |𝑢2(𝑘)| ≤ 0.3. Figure 3.3 shows the performance of

controller with and without input constraints. These simulations verified that the formulation

of the skewed-μ formulation given by (3.11) ensures compliance with input constraints.

Figure 3.3 [𝑪𝒗,𝒎] = 𝟖.𝓛𝟐,𝟎.𝟐, PCE-RNMPC with input constraints

0 10 20 30
0

0.05

0.1

0.15

0.2

Sampling Instant

he
ig

ht

|u2|≤ 0.3

Unconstrained

0 10 20 30
0

0.05

0.1

0.15

0.2

Sampling Instant

pH

0 10 20 30
-0.5

-0.4

-0.3

-0.2

-0.1

Sampling Instant

u 1

0 10 20 30
-0.5

-0.4

-0.3

-0.2

-0.1

Sampling Instant

u 2

 45

As mentioned in the section 3.1 a key motivation of the current work was to improve over a

previously proposed robust NMPC algorithm referred to as μ-based RNMPC (Diaz-Mendoza

and Budman, 2010b) that was found to be prohibitive in terms of computational load and

often conservative. Hence, the performance of the currently proposed technique PCE-

RNMPC was compared to μ-based RNMPC in terms of computational effort and

conservativeness. The two controllers were compared for the disturbance and pH set-point

profiles in Figure 3.2a and Figure 3.2b for different operating conditions corresponding to the

different combinations of 𝐶𝑣 and 𝑛 values. In terms of computational time, PCE-RNMPC

required an average of 1hr to complete the entire calculation as compared to >5 days required

for the μ-based RNMPC. Both the simulations were started from the same steady state

condition at 𝑝ℎ = 7 and ℎ = 14𝑡𝑚, and the same initial guesses for optimization were used

for both algorithms. The IAE for PCE-RNMPC was 2.29 and 2.7 for the μ-based RNMPC

(average of completed runs). Thus beyond the dramatic reduction in computations, the PCE-

RNMPC turns out to be less conservative.

Subsequently PCE was compared to 2 additional algorithms defined in the first two columns

in Table 3.1, i.e. FP-NMPC based on a first principle (differential equations’) model of the

system and non-robust NMPC based on the nominal Volterra series model identified for the

system under study. To conduct this comparison the 9 valve’s parameters’ values 𝐶𝑣 and

𝑛 combinations were varied to assess controller performances under varying operating

conditions. The rationale for simulating the system for different combinations of the

parameters’ values was to assess the performance of robust and non-robust controllers in the

presence of model error since the model used for control was based on nominal values of 𝐶𝑣

and 𝑛 whereas the plant was simulated for different values of these parameters. The

parameter values used for the model simulating the actual plant are referred to as 𝐶𝑣,𝑠𝑟𝑚𝑛𝑡 and

𝑛𝑠𝑟𝑚𝑛𝑡 whereas the nominal values used in the nominal model are 𝐶𝑣,𝑚𝑛𝑑𝑟𝑟 = 8.75 and

𝑛𝑚𝑛𝑑𝑟𝑟 = 0.5. Each NMPC algorithm accounted for these nominal values in a different

manner. The FP-NMPC algorithm, being based on the differential equations describing the

process, used these values explicitly. On the other hand, for PCE-RNMPC and non-Robust

NMPC based on empirical Volterra series’ models, 𝐶𝑣,𝑚𝑛𝑑𝑟𝑟and 𝑛𝑚𝑛𝑑𝑟𝑟 were accounted for

 46

implicitly through the identification of the average values of the Volterra model coefficients

from input-output data of the simulated plant. The Integral of Absolute Error (IAE) was used

to measure the controller performance in the simulations for different combinations of input

movement weighting factors’ values. Six combinations of weighting factors were studied as

follows: case 1 [0.20, 0.25], case 2 [0.20, 0.35], case 3 [0.20, 0.40], case 4 [0.25, 0.20], case

5 [0.35, 0.20] and case 6 [0.40, 0.20]. Figure 3.4, presents the disturbance (buffer flow, 𝑞2)

and pH set-point changes considered for these simulations. A terminal region was chosen as

ε=0.8, i.e. |𝑦𝑛𝑛𝑟𝑚𝑚𝑟𝑖𝑠𝑟𝑑| < 𝜀 for all the controllers. Table 3.5 shows the IAE values for the

aforementioned 6 cases.

Figure 3.4 Disturbance and Set-point profile used for testing robustness of different controllers

Out of the 6 cases that were studied, in 5 of these cases PCE-RNMPC performed better, in

terms of the IAE averaged over all simulations, than FP-NMPC. Also, the average over the 6

cases 𝐼𝐴𝐸�����𝐹𝑃−𝑁𝑀𝑃𝑃is higher than 𝐼𝐴𝐸�����𝑃𝑃𝑃−𝐴𝑁𝑀𝑃𝑃. This is attributed to the rapid disturbance

changes in buffer flow due to which a significant plant-model mismatch occur and

consequently the robust PCE-based RNMPC algorithm performs better than the non-robust

FP-NMPC. As compared to the non-Robust NMPC, PCE-RNMPC always performed better,

which means that considering uncertainty along the prediction horizon is essential even when

0 5 10 15 20 25 30 35

-0.5

0

0.5

1

q2
, B

uf
fe

r S
tr

ea
m

 (N
or

m
al

is
ed

)

0 5 10 15 20 25 30 35
6

6.5

7

Sampling Instant

pH
 P

ro
fil

e

 47

operating in the neighborhood of the nominal operating conditions. For example, Figure 3.5

compares the responses for PCE-RNMPC with FP-NMPC and non-Robust NMPC, for

𝑤1 = 0.25 and 𝑤2 = 0.2 around the nominal operating condition.

For all the case studies corresponding to different combinations of input weights it was

observed that the average 𝐼𝐴𝐸�����𝑃𝑃𝑃−𝐴𝑁𝑀𝑃𝑃 was consistently lower than that of 𝐼𝐴𝐸�����𝐹𝑃−𝑁𝑀𝑃𝑃

and 𝐼𝐴𝐸�����𝑛𝑛𝑛−𝐴𝑛𝑏𝑢𝑠𝑡 𝑁𝑀𝑃𝑃. At lower values of these weights, it was observed that the

difference between non-Robust NMPC and PCE-RNMPC was very high (~20% and ~ 30%

for case study 1 and 4 respectively) while, as expected, these differences decrease with

increasing weights to ~10% for both case studies 3 and 6. This corroborates the fact that as

the two controllers, i.e. non-Robust NMPC and PCE-RNMPC, become more aggressive for

lower input weights values they turn increasingly more sensitive to plant-model mismatch.

Figure 3.5 [𝑪𝒗,𝒎] = 𝟖.𝟕𝟐,𝟎.𝟐, [𝒘𝟏,𝒘𝓛] = [𝟎.𝓛𝟐,𝟎.𝓛], Comparison of different controllers at

nominal operating conditions

For PCE-RNMPC, the 𝐼𝐴𝐸�����𝑃𝑃𝑃−𝐴𝑁𝑀𝑃𝑃 was not very sensitive to the changes in the input

weighting factors. On the other hand the effect of the input weights on the difference in

performance between PCE-RNMPC and FP-NMPC was less consistent although PCE-

0 5 10 15 20 25 30 35
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Sampling Instant

he
ig

ht

PCE-RNMPC
non-Robust NMPC
FP-NMPC

0 5 10 15 20 25 30 35
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Sampling Instant

pH

0 5 10 15 20 25 30 35
-0.2

0

0.2

0.4

0.6

0.8

1

Sampling Instant

u 1

0 5 10 15 20 25 30 35
-1.5

-1

-0.5

0

0.5

Sampling Instant

u 2

 48

RNMPC performed consistently better. For instance, the difference between the two

controllers appears to be the largest for intermediate values of the input weights (cases 2 and

5).

The PCE-RNMPC performed better than the non-Robust NMPC in 32/48 cases and in 39/48

cases when compared to FP-NMPC. The importance of accounting for robustness is best

demonstrated in case study 3, with 𝑤1 = 0.2,𝑤2 = 0.4 and for 𝐶𝑣,𝑠𝑟𝑚𝑛𝑡 = 9.25 and 𝑛𝑠𝑟𝑚𝑛𝑡 =

0.55, where the difference in performance of PCE-based RNMPC and FP-NMPC was found

to be ~80%. The corresponding responses for this latter case are shown in Figure 3.6.

Figure 3.6 [𝑪𝒗,𝒎] = 𝟗.𝓛𝟐,𝟎.𝟐𝟐, [𝒘𝟏,𝒘𝓛] = [𝟎.𝓛,𝟎.𝟒], Comparison of different controllers

In summary, the average difference in performance of PCE-based RNMPC and FP-NMPC is

~20% and between PCE-RNMPC and non-Robust NMPC is ~10%. Also in comparison to

the previously proposed μ-based RNMPC, the PCE-based RNMPC was shown to be both

less conservative and less computationally onerous.

3.5 Conclusion

A new Robust-NMPC algorithm was developed based on Polynomial Chaos Expansions of

the uncertain parameters of a Volterra series model. The key advantage of the algorithm is

0 5 10 15 20 25 30 35
-0.4

-0.2

0

0.2

0.4

Sampling Instant

he
ig

ht

0 5 10 15 20 25 30 35
-1

-0.5

0

0.5

Sampling Instant

pH

PCE-RNMPC
non-Robust NMPC
FP-NMPC

0 5 10 15 20 25 30 35
-1

0

1

2

3

Sampling Instant

u 1

0 5 10 15 20 25 30 35
-0.5

0

0.5

1

1.5

Sampling Instant

u 2

 49

that the variance along the prediction horizon can be quickly calculated using analytical

formulae. This variance calculation is combined with an SSV-based norm calculation to

enforce robust constraints for manipulated variable suppression and a terminal condition at

the end of the control horizon. The average performance of the proposed controller is

compared in simulations with other non-Robust controllers based on the IAE over a wide

range of model parameter uncertainty and for different input weights values. The

comparative study showed that 𝐼𝐴𝐸�����𝑃𝑃𝑃−𝐴𝑁𝑀𝑃𝑃 is consistently lower than

𝐼𝐴𝐸�����𝐹𝑃−𝑁𝑀𝑃𝑃 and 𝐼𝐴𝐸�����𝑛𝑛𝑛−𝐴𝑛𝑏𝑢𝑠𝑡. Also by comparing PCE-RNMPC to SSV-based RNMPC,

where in the latter a worst error is calculated for the entire prediction horizon by an SSV-test,

it was shown that PCE-RNMPC is both computationally less expensive and less

conservative.

 50

Table 3.5 Comparison of IAE for different controllers

Weighting Factor w1 = 0.2, w2 =0.25 w1 = 0.2, w2 =0.35 w1 = 0.2, w2 =0.40

Plant Valve

Characteristics

non-

Robust

PCE-

RNMPC

FP-

NMPC

non

Robust

PCE-

RNMPC

FP-

NMPC

non

Robust

PCE-

RNMPC

FP-

NMPC

Cv = 8.25, n =0.45 5.40 3.52 3.70

4.89 4.54 7.24

3.48 4.77 4.35

Cv = 8.25, n =0.5 3.66 3.26 3.58

3.39 3.31 3.76

3.00 3.30 3.99

Cv = 8.25, n =0.55 3.93 3.37 4.00

4.10 3.78 3.85

3.98 3.52 3.91

Cv = 8.75, n =0.45 3.58 4.73 5.10

3.45 4.42 4.20

3.75 3.70 4.14

Cv = 8.75, n =0.5 5.92 3.12 3.26

3.94 3.36 5.99

5.34 3.43 3.35

Cv = 8.75, n =0.55 6.29 5.15 5.78

5.01 4.44 5.79

4.73 4.43 4.88

Cv = 9.25, n =0.45 3.29 3.39 3.14

3.68 3.47 3.61

3.38 3.34 3.41

Cv = 9.25, n =0.5 5.12 3.39 4.70

4.06 3.11 3.55

4.63 3.90 4.72

Cv = 9.25, n =0.55 6.13 6.46 5.63

4.77 5.14 8.66

5.57 5.17 9.73

Average 4.81 4.04 4.32

4.14 3.95 5.19

4.21 3.95 4.72

 Weighting Factor w1 = 0.25, w2 =0.2 w1 = 0.35, w2 =0.2 w1 = 0.40, w2 =0.2

Plant Valve

Characteristics

non

Robust

PCE-

RNMPC

FP-

NMPC

non

Robust

PCE-

RNMPC

FP

NMPC

non

Robust

PCE-

RNMPC

FP-

NMPC

Cv = 8.25, n =0.45 7.53 3.59 3.93

3.99 3.85 3.95

3.32 3.65 4.04

Cv = 8.25, n =0.5 4.95 2.90 3.21

3.58 3.23 3.34

5.15 3.31 3.90

Cv = 8.25, n =0.55 4.31 3.17 4.47

3.61 3.99 4.45

4.37 3.96 3.90

Cv = 8.75, n =0.45 3.38 4.23 3.76

3.44 3.66 4.23

3.08 3.52 4.14

Cv = 8.75, n =0.5 5.08 2.79 3.52

4.70 3.31 3.49

4.68 3.54 3.58

Cv = 8.75, n =0.55 7.35 4.62 4.59

3.86 4.20 5.58

4.91 5.14 4.76

Cv = 9.25, n =0.45 3.93 2.59 3.12

3.63 2.93 3.81

4.18 3.55 3.88

Cv = 9.25, n =0.5 4.31 3.36 4.56

6.47 3.50 3.99

3.98 3.41 5.19

Cv = 9.25, n =0.55 6.46 7.82 7.85

6.53 7.71 13.90

5.07 5.31 9.31

Average 5.25 3.90 4.33

4.42 4.04 5.19

4.30 3.93 4.74

Overall Average 4.52 3.97 4.75

 51

Chapter 4
Applications of Polynomial Chaos Expansions in optimization and
control of bioreactors based on Dynamic Metabolic Flux Balance

models2

4.1 Introduction

This work proposes model-based control and optimization approaches for bioreactor

processes that are robust to model error. The key challenge in addressing robustness to model

error is to propagate the uncertainty in model parameters onto the control or optimization

objectives. When using nonlinear dynamic first principles’ models such propagation requires

the use of Monte Carlo algorithms which are computationally demanding. To reduce the

computational load we propose the use of Polynomial Chaos Expansions that permit quick

calculation of the variance resulting from the process model mismatch. Two different

problems are tackled: i- on-line robust predictive control with an economic objective and ii-

off-line robust optimization of an end point property.

Most of the reported studies on optimal operation of bioreactors involve offline model based

optimization (Banga et al., 1997), without accounting for feedback corrections, (Frahm et al.,

2002, Hjersted and Henson, 2006, Banga et al., 1997) or for robustness to model errors. The

objective of these optimization strategies have been generally the maximization of a property

at the end of the batch such as the productivity.

Traditionally, studies of optimization of bioreactors have used unstructured models that are

based on simplistic substrate and biomass balances thus not accounting for detailed

interactions between different nutrients. On the other hand, structured models that explicitly

account for detailed interactions between nutrients and products, have gained increasing

acceptance in the pharmaceutical industry motivating their use for control and optimization.

For example, Dynamic Flux Balance Modeling (DFBM) has been applied successfully by

Mahadevan et al., 2002, as an extension of MFA to describe the dynamic growth of E.coli on

2 Part of this work has been adapted from Kumar, D. & Budman, H. 2015

 52

glucose and acetate. Hjersted and Henson, 2006 used DFBM models representing the growth

of Saccharomyces Cerevisae and Ethanol production on glucose for offline optimization of

the fed-batch operation by implementing an optimal substrate feeding policy while reducing

batch time or/and increasing productivity. A key advantage of DFBM models is that they

require solving an LP problem with a relatively small number of rate limiting kinetic

constraints as compared to other unstructured models that require the calibration of a larger

number of kinetic expressions with many corresponding parameters. Thus, DFBMs are

potentially less sensitive to experimental noise than other models but they can be sensitive to

parametric uncertainty. Also, during fed-batch operation, a combination of factors such as

non-ideal mixing or the presence of froth may contribute to additional model error and

process disturbances. The importance of robustness for fed-batch bioreactor control has been

stressed in (Kuhlmann et al., 1998), due to i) time varying behavior, ii) un-modeled

dynamics and iii) large disturbances occurring in the process.

Nagy and Braatz, 2007 have shown that Polynomial Chaos Expansions (PCE) is a

computationally efficient alternative to Monte Carlo simulations for propagating uncertainty

in dynamic models. The computational advantages of PCEs for robust control and

optimization (Kumar and Budman, 2014, Nagy and Braatz, 2007, Kim et al., 2012) derive

from the availability of analytical formulae to compute the statistical moments (mean,

variance, etc.) of variables described by such expansions.

In the current study, two applications of Polynomial Chaos Expansions to propagate

uncertainty onto a quality of interest are pursued: i) an on-line robust optimal control for a

bioreactor in which the economic objective is to maximize the amount of biomass at the end

of the batch and ii) an off-line robust optimization of a fed-batch bioreactor using a

probabilistic objective function. For both applications the process dynamics are modelled

using DFBM and the parametric uncertainty is propagated using a PCE based approach.

Since the DFBM model involves an LP, the resulting control strategy is obtained from the

solution of a bi-level optimization problem involving the maximization of the economic

objective subject to the LP solution. This bi-level optimization formulation poses challenges

to the design of a robust strategy; and a PCE based approach is proposed to address them.

 53

The proposed controller can be used in real-time application due to the low computational

complexity resulting from the use of PCEs.

The manuscript is organized as follows. Section 4.2 introduces background material on

DFBM and PCE which are then used in Section 4.3 to develop the robust-model predictive

controller and Section 4.5 to formulate the robust optimization problem. Section 4.4 presents

the control case study and Section 4.6 presents the robust optimization case study.

4.2 Mathematical Background

4.2.1 Dynamic Flux Balance Model

DFBM is based on an a priori known network of 𝑚 metabolites, 𝒛𝒎𝒙𝟏, participating in 𝑛

different reactions. Each reaction is associated to a flux, 𝝂𝒎𝒙𝟏 given in units of mM of

metabolite/hr/mM of cell. This network of reactions can be mathematically expressed in

terms of a stoichiometric matrix (𝑨𝒎𝒎𝒎) for the corresponding vector of reaction fluxes

(𝝂𝒎𝒙𝟏). The DFBM approach assumes that the cell acts as an agent that strives to optimally

allocate available resources (nutrients) to maximize a given objective, e.g. the cellular growth

rate 𝜇. Other optimization objectives have also been reported, e.g. the redox potential, but

this study considers only the cell growth. Using the defined stoichiometric matrix and fluxes

it is assumed that the cell maximizes the growth subject to constraints on fluxes or

metabolites’ concentrations as follows:

max
𝒎,𝝂,𝒛

𝜇 = 𝒘𝑇𝝂

𝑠. 𝑋.
𝑑𝒛
𝑑𝑋

= 𝑨𝝂𝑋,
𝑑𝑋
𝑑𝑋

= 𝜇𝑋, 𝑨𝝂 ≤ 𝒃

|�̇�| ≤ �̇�𝒎𝒎𝒙, 𝝂, 𝒛 ≥ 0

(4.1)

where 𝒃𝑚𝑛1represents a vector of bounds on consumption or production rates of extracellular

metabolites 𝒛, i.e. nutrients and by-products, 𝑋, is the concentration of biomass, 𝒘 is the

contribution of each reaction flux towards cell growth (Mahadevan et al., 2002). Constraints

related to the flux rate or change of flux rate can be introduced so as to obtain better fitting of

 54

the model to data. Dynamic flux models have not been used before for predictive control as

proposed in the current work.

4.2.2 Polynomial Chaos Expansion

A Polynomial Chaos Expansion (PCE) describes a random process as a spectral expansion of

random variables, (𝜃𝑖), using orthogonal basis functions, 𝛷𝑖 (Ghanem and Spanos, 1990).

For example, a second-order (finite variance) random variable 𝑦𝑑, is described using a PCE

in (2), where 𝑑𝑖1𝑑 are deterministic coefficients for each term in the expansion. Since the basis

functions Φ𝑖, are orthogonal, the first term in ((4.2), 𝑑0𝑑 is the output (𝑦𝑑) mean and the

output variance can be obtained from ∑ (𝑑𝑖1𝑑)2 ∞
𝑖=1 + ∑ ∑ (𝑑𝑖1𝑖2

𝑑)2𝑖1
𝑖2=1

∞
𝑖1=1 + … (Ghanem and

Spanos, 1990, Ghanem and Spanos, 1997).

𝑦𝑑 = 𝑑0𝑑Φ0 + � 𝑑𝑖1𝑑 Φ1�𝜃𝑖1�
∞

𝑖1=1
+ � � 𝑑𝑖1𝑖2

𝑑 Φ2�𝜃𝑖1 ,𝜃𝑖2 �
𝑖1

𝑖2=1

∞

𝑖1=1

+ � � � 𝑑𝑖1𝑖2𝑖3
𝑑 Φ3�𝜃𝑖1 ,𝜃𝑖2 ,𝜃𝑖3�

𝑖2

𝑖3=1

𝑖1

𝑖2=1

∞

𝑖1=1

(4.2)

For practical applications, random variables are approximated using truncated PCEs: 𝑦𝑑 ≈

∑ 𝑑𝑖𝑑Φi(θ)𝑛𝑃𝑃𝑃
𝑖=1 . The truncated series are defined by: i) dimensionality, 𝑛0, number of

independent sources of random variables (θi1 ,θi2 , θi3) and ii) maximum polynomial order

for the basis function, 𝑞, (dependent on the nonlinearity of the random process). The number

of terms in the expansion 𝑛𝑃𝑃𝑃, is then given by 𝑛𝑃𝑃𝑃 = (𝑛0 + 𝑞)!/(𝑛0!𝑞!) − 1. The basis

functions Φ𝑖 are chosen from the Askey scheme (Xiu and Karniadakis, 2002) depending on

the type of stochastic distribution of the random variables (θ𝑖) that is considered in the

model, e.g. Hermite functions are selected if θ𝑖 is normal, so as to preserve orthogonality.

Given a process model with an uncertain output, 𝑦 = 𝑋(𝑥; 𝜆), where 𝑥 is an input and 𝜆 is an

uncertain parameter, the aim is to propagate the uncertainty in 𝜆(𝜃) onto 𝑦(𝜃)using the

process model. Assuming that PCE’s of 𝜆(𝜃), are known a priori or are identified from data

(Xiu and Karniadakis, 2002), a corresponding PCE expansion for the output can be

calculated by a projection (inner product) operation with respect to each of the orthogonal

 55

basis functions, Φ𝑖, (Xiu and Karniadakis, 2002). For example, after substitution of a PCE of

𝜆(𝜃), into the equation 𝑦 = 𝑋(𝑥; 𝜆) and assuming 𝑦(𝜃) = ∑ 𝑦𝑖Φi(θ)𝑛𝑃𝑃𝑃
𝑖=1 , the inner product

of 𝑦(𝜃) with respect to each basis functions Φ𝑖 is used to determine the 𝑚𝑡ℎ- PCE coefficient

𝑦𝑖 as follows:

𝑦𝑖 =
〈𝑦Φi〉
〈Φi

2〉 =
〈𝑋(𝑥; 𝜆)Φi〉

〈Φi
2〉 (4.3)

Two approaches referred to as non-intrusive and intrusive can be used to evaluate the inner

product 〈𝑦Φi〉. The non-intrusive method does not explicitly uses the model 𝑋 and it only

uses specific input and corresponding output values that define an empirical input-output

mapping referred to as a surrogate model (Najm, 2009). In contrast, in the intrusive method,

the integral 〈𝑋(𝑥; 𝜆)Φi〉 in (4.3) is evaluated by using Galerkin projections where the PCE

coefficients of 𝑋(𝑥; 𝜆) in (4.3) are calculated analytically using the nonlinear dynamic model

f. Both intrusive and non-intrusive methods are used in different steps in the current study.

Additional details on the use of each method are provided in the next section.

4.3 Robust Control

4.3.1 Modeling with uncertainty

The goal of the current study is to develop a robust-MPC for a bioreactor operated both with

feeding and perfusion; based on a DFBM model given in (4.1). During perfusion there is a

continuous effluent stream from the bioreactor which only consists of the metabolites while

all the biomass is retained in the bioreactor. To this purpose, dynamic mass balances that

account for the feeding rate 𝐹, perfusion rate 𝑃 and resulting volume changes can be written

in terms of the fluxes’ vector 𝝂 (Eq.(4.4)- (4.6)), where, 𝑑 is the volume of the reactor,

 𝒛𝑓𝑟𝑟𝑑 is the concentration of metabolites in the feed and functions 𝑋 and 𝑔 are the RHS of

ODE’s for metabolites, 𝒛 (Eq.(4.5)) and biomass, 𝑋(Eq.(4.6)) respectively. To solve for the

fluxes’ vector 𝝂, a DFBM model is posed as an LP that can be solved at each time interval 𝑘

 56

𝑑𝑑
𝑑𝑋

= 𝐹 − 𝑃, (4.4)

𝑑𝒛
𝑑𝑋

= 𝑨𝝂𝑋 +
𝐹�𝒛𝒇𝒇𝒇𝒅 − 𝒛�

𝑑
= 𝑋(𝑨,𝐹,𝑑,𝑃,𝒘, 𝒛𝒇𝒇𝒇𝒅,𝝂,𝑋, 𝒛) (4.5)

𝑑𝑋
𝑑𝑋

= 𝜇𝑋 −
𝑋(𝐹 − 𝑃)

𝑑
= 𝑔(𝑨,𝐹,𝑑,𝑃,𝒘, 𝒛𝒇𝒇𝒇𝒅,𝝂,𝑋, 𝒛) (4.6)

as shown in (4.7). The positivity constraints are obtained from the discretized versions of the

ODE’s in (4.4)- (4.6).

max
𝝂

𝜇(𝑘) = 𝒘𝑇𝝂(𝑘)

𝑠. 𝑋. 𝑨𝝂(𝑘) ≤ 𝒃(𝒛(𝒌 − 𝟏),𝜷)

�
𝜈(𝑘) − 𝜈(𝑘 − 1)

Δ𝑋
� ≤ �̇�𝑚𝑚𝑛,

𝝂(𝑘),𝒛(𝑘),𝑋(𝑘) ≥ 0

(4.7)

The constraints in problem (4.7) involve bounds on flux rates, positivity of species’

concentrations calculated from the discretized form of the process equations given in (4.4)-

(4.6), Δ𝑋 is a discretization time step, 𝑘, is the current time interval. The functional form of 𝒃

depends on the type of metabolite; 𝒃 can be zero implying that there is no external exchange

nor accumulation of the metabolite, and in other cases it is a function of parameters such as

uptake rates, substrate inhibition constant, and concentration of metabolites 𝒛. As a result

𝒃(𝑘 − 1) = 𝑏(𝜷,𝒛) is a function of 𝒛(𝑘 − 1). The material balance of 𝒛 and 𝑋 is used in

continuous form (4.4)-(4.6) for calculating predictions for the controller until the end of the

batch; and in their discretized form within the LP (4.7) for formulating the positivity

constraints on metabolite concentrations, i.e. 𝒛(𝒌) >= 0.

Rather than tracking a prescribed trajectory, an economic objective is used for control in this

study consisting of maximizing the cellular amount at the end of the fed-batch 𝑋𝑑(𝑋𝑓), where

 𝑋𝑓 represents batch end time. Also it is assumed that the biomass 𝑋(𝑘) and glucose, the main

 57

metabolite, can be measured online. Thus, Eqs. (4.4)-(4.6) are used to predict 𝑋(𝑘) until the

end of the batch and is solved in 2 steps; 1) the LP is solved at every time step to determine

𝝂(𝑘). 2) Then, the ODE’s in (4.4)-(4.6) are solved using the ode45 solver in MATLAB for

calculating output predictions until the end of the batch.

In the current study the parameters’ vector 𝜷 is assumed as the main source of uncertainty in

the model and hence it is characterized as a random variable by a PCE as 𝜷 = 𝜷𝟎𝜙0 +

𝜷𝟏𝜙1 + 𝜷𝓛𝜙2 = ∑ 𝜷𝒊𝜙𝑖
𝒎𝑷𝑪𝑬−𝟏
𝒊=𝟎 . In correspondence with the two step solution explained

above for Problem (4.4)-(4.6) and (4.7), the uncertainty propagation is also done in two steps

by noticing that 𝜷 impacts the ODE’s predictions through the LP in (4.7) as follows: step 1- a

PCE expansion for the reaction fluxes can be determined, 𝝂 = 𝝂𝟎𝜙0 + 𝝂𝟏𝜙1 + 𝝂𝓛𝜙2 =

∑ 𝝂𝒊𝜙𝑖
𝒎𝑷𝑪𝑬−𝟏
𝒊=𝟎 from the LP with a non-intrusive approach, step 2- The PCE expansions in 𝝂 is

substituted into the system of ODE’s in (4.4)-(4.6) to solve for PCE expansions of 𝒛,𝑋 using

an intrusive method. From this substitution it is possible to obtain ODE’s for the PCE

coefficients of 𝒛 and 𝑋, 𝒛𝟎, 𝒛𝟏, 𝒛𝓛,𝑋0, 𝑋1, 𝑋2 respectively. These two steps for uncertainty

propagation are further described below.

4.3.1.1 Propagation of uncertainty onto fluxes (non-intrusive PCE approach) using LP in

(4.7)

Because the constraints in the LP problem are nonlinear with respect to 𝜷, the solution of the

LP is nonlinear with respect to the coefficients of the PCEs representing these parameters 𝜷.

Hence, in the current study it is proposed to replace the LP with a surrogate model (non-

intrusive PCE approach) for directly relating the PCE expansion of the uncertain parameter 𝜷

to a PCE expansion of flux vector 𝝂 = 𝝂𝟎𝜙0 + 𝝂𝟏𝜙1 + 𝝂𝓛𝜙2. This surrogate model needs

to be developed in real-time for every time step in the prediction horizon. To this purpose, an

input (𝜷) and outputs 𝝂 mapping is created using samples of input values 𝜷𝒋, and solving the

𝐿𝑃𝑗 , as shown in Eq. (4.8) derived from (4.7) for each of those values to determine

corresponding output, 𝝂𝒋. 𝝂𝒋 are PCE coefficients of 𝝂 as per the equality constraint in Eq.

(4.8), where 𝜷𝑗,𝐺𝑚𝑢𝑠𝑠 are specific collocation points necessary for Gaussian Quadrature,

 58

𝑤𝑗,𝑖,𝐺𝑚𝑢𝑠𝑠 are standard Gaussian quadrature weights corresponding to 𝜷𝑗,𝐺𝑚𝑢𝑠𝑠, 𝑛𝐺𝑚𝑢𝑠𝑠 is

dependent on dimensionality of 𝜷 and nonlinear dependence of 𝝂 on 𝜷.

𝐿𝑃𝑗 = max
𝝂𝒋

𝜇(𝑘) = 𝒘𝑇𝝂(𝑘)

𝑠. 𝑋.𝑨𝝂(𝑘) ≤ 𝒃�𝒛(𝒌 − 𝟏),𝜷𝒋�

𝝂(𝑘),𝒛(𝑘) ≥ 0

𝜈𝑖 = � 𝑤𝑗,𝑖,𝑔𝑚𝑢𝑠𝑠𝜈𝑗(𝜷𝒋)
𝑛𝐺𝐺𝑢𝐺𝐺

𝑗=1

, 𝑚 ∈ [1, . . ,𝑛𝑃𝑃𝑃], 𝑗 ∈ [1,2, … ,𝑛𝐺𝑚𝑢𝑠𝑠]

(4.8)

4.3.1.2 Propagation of uncertainty in fluxes into the predictions of 𝒛 and 𝑋

Assuming PCEs of 𝒛 and 𝑋 can be described by 𝒛 = 𝒛𝟎𝜙0 + 𝒛𝟏𝜙1 + 𝒛𝓛𝜙2 and 𝑋 = 𝑋0𝜙0 +

 𝑋1𝜙1 + 𝑋2𝜙2, this step consists of obtaining expressions for the PCE coefficients 𝒛𝒊,𝑋𝑖, 𝑚 ∈

[0,1, …𝑛𝑃𝑃𝑃 − 1], by using the ODE’s in (4.4)-(4.6). To this end, ODE’s for each of

𝒛𝒊,𝑋𝑖, 𝑚 ∈ [0,1, …𝑛𝑃𝑃𝑃 − 1], are obtained by substituting the PCE’s for 𝜷 (given), 𝝂 from

(4.8) and assuming PCEs for 𝑋 and 𝒛 into the functions 𝑋 and 𝑔 in equations (4.5) and (4.6)

as follows:

𝑑𝒛
𝑑𝑋

= 𝑋 �𝑨,𝐹,𝑃,𝑑, 𝒛𝑓𝑟𝑟𝑑 ,� 𝒛𝒊𝜙𝑖� 𝝂𝒊𝜙𝑖
𝒎𝑷𝑪𝑬−𝟏

𝒊=𝟎

𝒎𝑷𝑪𝑬−𝟏

𝒊=𝟎
, � 𝑋𝑖𝜙𝑖

𝑛𝑃𝑃𝑃−1

𝑖=0
,𝒘� (4.9)

𝑑𝑋
𝑑𝑋

= 𝑔(𝒘,� 𝝂𝒊𝜙𝑖
𝒎𝑷𝑪𝑬−𝟏

𝒊=𝟎
,� 𝑋𝑖𝜙𝑖

𝑛𝑃𝑃𝑃−1

𝑖=0
,𝐹,𝑃,𝑑)

(4.10)

𝑑𝒛𝟎
𝑑𝑋

=
〈𝑋�𝑨,𝐹,𝑃,𝑑, 𝒛𝑓𝑟𝑟𝑑 ,∑ 𝒛𝒊𝜙𝑖 ∑ 𝝂𝒊𝜙𝑖

𝒎𝑷𝑪𝑬−𝟏
𝒊=𝟎

𝒎𝑷𝑪𝑬−𝟏
𝒊=𝟎 ,∑ 𝑋𝑖

𝑛𝑃𝑃𝑃−1
𝑖=0 ,𝒘�,𝜙0〉

〈𝜙02〉
 (4.11)

𝑑𝒛𝒊
𝑑𝑋

=
〈𝑋�𝑨,𝐹,𝑃,𝑑, 𝒛𝑓𝑟𝑟𝑑 ,∑ 𝒛𝒊𝜙𝑖 ∑ 𝝂𝒊𝜙𝑖

𝒎𝑷𝑪𝑬−𝟏
𝒊=𝟎

𝒎𝑷𝑪𝑬−𝟏
𝒊=𝟎 ,∑ 𝑋𝑖

𝑛𝑃𝑃𝑃−1
𝑖=0 ,𝒘�,𝜙i〉

〈𝜙i2〉
 (4.12)

Similar equations can be formulated to calculate the PCE coefficients for the biomass 𝑋.

 59

𝑑𝑋0
𝑑𝑋

=
〈𝑔�𝒘,∑ 𝝂𝒊𝝓𝒊

𝒎𝑷𝑪𝑬−𝟏
𝒊=𝟎 ,∑ 𝑋𝑖

𝑛𝑃𝑃𝑃−1
𝑖=0 ,𝐹,𝑃,𝑑�,𝜙0〉

〈𝜙02〉
 (4.13)

𝑑𝑋𝑖
𝑑𝑋

=
〈𝑔�𝒘,∑ 𝝂𝒊𝜙𝑖

𝒎𝑷𝑪𝑬−𝟏
𝒊=𝟎 ,∑ 𝑋𝑖

𝑛𝑃𝑃𝑃−1
𝑖=0 ,𝐹,𝑃,𝑑�,𝜙i〉

〈𝜙i2〉
 (4.14)

4.3.1.3 Prediction with uncertainty until the end of the batch by combining step 1 and step 2

above

At a given time step 𝑘, provided that the feeding rate 𝐹(𝑘 + 𝑙|𝑘) and perfusion rate

𝑃(𝑘 + 𝑙|𝑘) ∀𝑙 ∈ �0,1,2 … ,𝑛𝑓�are available, where 𝑋𝑓 = 𝑘 + 𝑛𝑓 and 𝑋𝑓 corresponds to the end

of the batch, then the steps for uncertainty propagation until the end of batch are as follows:

1. 𝑚 = 0,𝐹(𝑘 + 𝑙|𝑘), and 𝑃(𝑘 + 𝑙|𝑘) are known, so are 𝜷,𝝂𝒊(𝒌 − 𝟏), 𝜇(𝑘 − 1),

𝒛𝒊(𝑘 − 1),𝑋𝑖(𝑘 − 1).

2. Determine 𝝂𝒊(𝒌 + 𝒍), 𝜇𝑖(𝑘 + 𝑙) using 𝜷,𝝂𝒊(𝒌 + 𝒍 − 𝟏), 𝜇(𝑘 + 𝑙 − 1), 𝒛𝒊(𝑘 + 𝑙 −

1),𝐹(𝑘 + 𝑙),𝑃(𝑘 + 𝑙),𝑋𝑖(𝑘 + 𝑙 − 1) by replacing LP with a surrogate model using

Gaussian quadratures (section 4.3.1.1).

3. Determine 𝒛𝒊(𝒌 + 𝒍),𝑋𝑖(𝑘 + 𝑙) using 𝜷,𝝂𝒊(𝒌 + 𝒍), 𝜇(𝑘 + 𝑙), 𝒛𝒊(𝑘 + 𝑙 − 1),𝑋𝑖(𝑘 +

𝑙 − 1) and 𝐹(𝑘 + 𝑙|𝑘), 𝑃(𝑘 + 𝑙|𝑘) from step 2 above and section 4.3.1.2

4. If 𝑙 ≥ 𝑛, then break; else 𝑙 = 𝑙 + 1 and go to Step 2 and 3; end if.

4.3.2 Nominal Control Formulation

In the current study an economic objective function is used for fed-batch control that consists

of maximizing the amount of biomass at the end of the batch, time 𝑋𝑓, 𝑋�𝑋𝑓 = 𝑘 + 𝑛𝑓� ∗

𝑑(𝑋𝑓) by manipulating the nutrient feed-rate 𝐹(𝑘 + 𝑙|𝑘),∀𝑙 ∈ [1,2,3 …𝑛𝑓] and the perfusion

rate, 𝑃(𝑘 + 𝑙|𝑘),∀𝑙 ∈ [1,2,3 …𝑛𝑓], for the process model in Eqs. (4.4)-(4.6). In the model

(4.4)-(4.6), it is assumed that the amount of biomass, 𝑋𝑚𝑠(𝑘) and the 𝑝𝑡ℎ nutrient

manipulated by the controller 𝑧𝑠𝑚𝑠(𝑘), can be measured at each time interval Δ𝑋, and are

available for use as feedback by the controller. Thus, the open-loop prediction model can be

updated with the feedback values [𝑋𝑚𝑠(𝑘) 𝑧𝑠𝑚𝑠(𝑘)], at every time step. The feedback,

 60

𝑋𝑏𝑘 = 𝑋𝑚𝑠(𝑘) − 𝑋(𝑘|𝑘 − 1) is used to update predictions: 𝑋(𝑘 + 𝑙) = 𝑔(𝑘 + 𝑙) + 𝑋𝑏𝑘, and

the manipulated nutrient 𝑝 is updated using the current measurement, 𝑧𝑠(𝑘|𝑘) = 𝑧𝑠𝑚𝑠(𝑘).

The resulting equations for the Nominal Control Problem, i.e. a controller that does not

consider model error, with feedback are shown in (4.15). The problem posed in Eq. (4.15) is

a bi-level optimization problem where the inner level (problem (4.7)) solves for the model

fluxes and the outer level solves the control problem to determine the optimal feeding and

perfusion rates.

max
𝐹(𝑘+𝑟|𝑘),𝑃(𝑘+𝑟|𝑘),𝑘+𝑟≤𝑡𝑓

𝑋𝑑�𝑋𝑓�

𝑠. 𝑋. 𝑃𝑟𝑃𝑏𝑙𝐺𝑚 ((4.4) − (4.7))

𝑋𝑏𝑘 = 𝑋𝑚𝑠(𝑘) − 𝑋(𝑘|𝑘 − 1)

𝑋�𝑋𝑓�𝑘� = 𝑔(𝑋𝑓|𝑘) + 𝑋𝑏𝑘

𝑧𝑠(𝑘|𝑘 − 1) = 𝑧𝑠𝑚𝑠(𝑘)

(4.15)

With respect to time along the batch, it should be noticed that the outer level optimization

seeks to maximize the biomass at the end of the batch whereas in the inner optimization level

the growth is maximized at each instant. In the current work, the outer level is solved using

fmincon in MATLAB, and the inner level (problem (4.7)) is solved with linprog in

MATLAB.

4.3.3 Robust Control Formulation

The robust optimization involves a modified cost consisting of a weighted sum of the

expectation and variance of a cost function. In the current work, since the uncertainty is

propagated using PCE, both the expectation and variance can be quickly calculated online

using analytical expressions. Similar to the nominal control formulation given in (4.15), the

biomass prediction is updated using feedback, 𝑋𝑏𝑘 = 𝑋𝑚𝑠(𝑘) − 𝑋0(𝑘|𝑘 − 1) with only the

nominal prediction 𝑋(𝑘 + 𝑙) = 𝑔(𝑘 + 𝑙) + 𝑋𝑏𝑘 and assuming remaining PCE coefficients

𝑋𝑖(𝑘|𝑘) = 0, where 𝑚 ∈ [1,2, …𝑛𝑃𝑃𝑃 − 1]; the manipulated nutrient 𝑝 is updated using the

current measurement, 𝑧𝑠,0(𝑘|𝑘) = 𝑧𝑠𝑚𝑠(𝑘) and similarly 𝑧𝑠,𝑖(𝑘|𝑘) = 0.

 61

max
𝐹(𝑘+𝑟|𝑘),𝑃(𝑘+𝑟|𝑘)

𝑤1𝐸 �𝑋𝑑�𝑋𝑓�� − 𝑤2𝑑𝑑𝑟 �𝑋𝑑�𝑋𝑓��

𝑠. 𝑋.𝐸𝑞𝑠. (4.7) − (4.14)

𝑋𝑏𝑘 = 𝑋𝑚𝑠(𝑘) − 𝑋0(𝑘|𝑘 − 1)

𝑋𝑖(𝑘|𝑘 − 1) = 0, 𝑚 ∈ [1,2, …𝑛𝑃𝑃𝑃 − 1]

𝑋0�𝑋𝑓�𝑘� = 𝑋0�𝑋𝑓�𝑘� 𝑋𝑟𝑃𝑚 (5 − 12) + 𝑋𝑏𝑘

�̂�𝑠,0(𝑘|𝑘 − 1) = 𝑧𝑠(𝑘)

�̂�𝑠,𝑖(𝑘|𝑘 − 1) = 0, 𝑚 ∈ [1,2, …𝑛𝑃𝑃𝑃 − 1]

(4.16)

Eq. (4.16) presents the robust control problem formulation with economic objective function

and uncertain model predictions where 𝑤1,𝑤2, represents the weights assigned to the

nominal and robust performance respectively. The problems in (4.15) or (4.16) are solved

with a combination of linprog and fmincon in MATLAB for the inner and outer

optimizations respectively.

4.4 Case Study on Robust Control

To illustrate the proposed controller, a simplified DFBM model developed by Mahadevan et

al., 2002 for growth of E.coli on glucose is used. Figure 4.1 shows the simplified metabolic

network, with glucose (Glcxt), acetate (Ac) and oxygen (O2) as the input and biomass (𝑋) as

the output.

𝜈1 39.43 𝐴𝑡 + 35 𝑂2 → 𝑋

𝜈2 9.46 𝐺𝑙𝑡𝑥𝑋 + 12.92 𝑂2 → 𝑋

𝜈3 9.84 𝐺𝑙𝑡𝑥𝑋 + 12.73 𝑂2 → 1.24 𝐴𝑡 + 𝑋

𝜈4 19.23 𝐺𝑙𝑡𝑥𝑋 → 12.12𝐴𝑡 + 𝑋

Figure 4.1 Simplified Metabolic Network for E.Coli growth on Glucose: Flux balances

and stoichiometric coefficients

It consists of 4 fluxes given by the vector 𝝂 and 3 metabolites given by the vector 𝒛 (Glcxt,

Ac, O2). The growth rate, 𝜇 as a function of the fluxes and 𝐴3𝑛4, the stoichiometric matrix

related to the 3 metabolites participating in the reactions leading to the biomass growth, are

presented as follows:

 62

𝑨 = �
0 −9.46 −9.84 −19.23

−35 −12.92 −12.73 0
−39.43 0 1.24 12.12

�
(4.17)

and, 𝜇 = ∑ 𝜈𝑖4
𝑖=1

Eq. (4.18) and (4.19) represents the corresponding mass balances and DFBM model for

E.Coli growth on Glucose and Acetate. In a batch reactor, there are 3 distinct growth phases

of E.coli, viz. i) Aerobic growth on Glucose, ii) Anaerobic growth on Glucose, and iii)

Anaerobic growth on a second metabolite, acetate. In the current study the original model

(Mahadevan et al., 2002), has been expanded with two additional parameters: glucose

inhibition constant 𝐾𝐼 , and the effect of perfusion rate 𝑃. As generally reported in the

literature the parameter 𝐾𝐼 is used to describe the inhibitory effect of high concentration of

glucose on growth. The perfusion rate 𝑃 ensures that the negative impact on growth by

accumulation of high levels of acetate and glucose is avoided. Eq. (4.18) and (4.19) can then

be used with the economic objective function proposed in (4.15) to formulate a nominal

controller that uses feedback signals of 𝑋𝑚𝑠(𝑘) and 𝑍𝑔𝑟𝑚𝑠(𝑘). The uncertainty in the model is

assumed for simplicity to be associated to the maximum uptake rate constraints, 𝐺𝑈𝑅𝑚𝑚𝑛.

The robust controller is then developed by extending the nominal model of Eq. (4.18 and

(4.19)) to account for robustness as described insection4.3.

𝑑𝑧𝐺𝑟
𝑑𝑋

= 𝑨𝝂𝑋 + 𝐹�𝒛𝑮𝒍,𝒊𝒎 − 𝑧𝐺𝑟�

𝑑𝑧𝑂2
𝑑𝑋

= 𝐴𝑂2𝝂𝑋 −
𝐹𝑧𝑂2
𝑑

+ 𝑘𝐿𝑑(0.21 − 𝑧𝑂2)

𝑑𝑧𝐴𝑛
𝑑𝑋

= 𝐴𝐴𝑛𝝂𝑋 −
𝐹𝑧𝐴𝑛
𝑑

𝑑𝑋
𝑑𝑋

= 𝜇𝑋 −
𝑋(𝐹 − 𝑃)

𝑑
,

𝑑𝑑
𝑑𝑋

= 𝐹 − 𝑃

(4.18)

 63

max
𝑋,𝝂𝑖

 𝜇 = � 𝜈𝑖
4

𝑖=1

𝑧𝑖, ≥ 0,∀𝑚 ∈ [1,3], 𝜈𝑖 ≥ 0,∀𝑚 ∈ [1,4]

|𝐴𝐺𝑟𝑛𝑛𝑡𝝂| ≤
𝐺𝑈𝑅𝑚𝑚𝑛 𝑍𝐺𝑟𝑛𝑛𝑡

𝐾𝑚 + 𝑍𝐺𝑟𝑛𝑛𝑡 + 𝑍𝐺𝑟𝑛𝑛𝑡2

𝐾𝐼

𝑚𝑚𝑃𝑙
𝑔𝑑𝑤 − ℎ𝑟

−𝐴𝑂2𝝂 ≤ 𝑂𝑈𝑅𝑚𝑚𝑛 ,

𝐴𝐴𝑛𝝂 ≤ 100

(4.19)

To test the controller in terms of its ability to reject disturbances, changes in the mass transfer

coefficient 𝑘𝐿𝑑 are considered as unmeasured disturbances to the process. Then, the

objective is defined as to maximize the biomass at the end of the batch by manipulating the

glucose feeding and the perfusion rate in the presence of disturbances in 𝑘𝐿𝑑. To develop the

robust controller, a PCE for the uncertain parameter, 𝐺𝑈𝑅𝑚𝑚𝑛, is assumed to be a priori

known. Hermite Polynomials are chosen as the basis functions for the PCE expansion of

𝐺𝑈𝑅𝑚𝑚𝑛which is assumed to be a normally distributed variable with PCE coefficients 𝛽0 ,𝛽1

that can be shown to be equal to the mean and variance of 𝐺𝑈𝑅𝑚𝑚𝑛 respectively (Ghanem

and Spanos, 1990). Then, 𝑛𝑑𝑖𝑚 = 1 and 𝑛𝑛𝑟𝑑𝑟𝑟 = 2 are used for uncertainty propagation

using PCE. Table 4.1 shows the nominal parameter values along with the variance used for

the case study. The changes in 𝑘𝐿𝑑 are assumed to be of sinusoidal form with amplitude of

0.05 and with different mean values defined below.

The goal of the case study is to compare the performance of nominal and robust controller in

terms of their disturbance rejection ability. The weights in the cost function in Eq. (4.16)

were kept constant to 𝑤𝑟𝑛𝑏𝑢𝑠𝑡 = 10,𝑤𝑛𝑛𝑚𝑖𝑛𝑚𝑟 = 20. Three different mean values of

disturbances are used to compare the controllers’ performances (2.4, 4.0 and 5.6). To check

for the effect of 𝐺𝑈𝑅𝑚𝑚𝑛, 6 different values of 𝐺𝑈𝑅𝑚𝑚𝑛are considered where each of these

values remains constant along a fermentation i.e. during one run of the batch 𝐺𝑈𝑅𝑚𝑚𝑛does

not changes its value.

 64

Table 4.1 : Process Parameters for E.Coli growth on Glucose and Acetate used for

Robust/Nominal Controller

Name Value

[𝑘𝐿𝑑�����,𝜎𝑘𝐿𝑚

[4.0, 0.8]ℎ𝑟−1

𝐾𝑚 0.015 𝑚𝑀

[𝐺𝑈𝑅𝑚𝑚𝑛,𝜎] [6.5, 1.3]𝑚𝑀/𝑔

𝑂𝑈𝑅𝑚𝑚𝑛 12.0 𝑚𝑀/𝑔 − 𝑑𝑤/ℎ𝑟

𝑋𝑓 ,Δ𝑋 [11.0, 0.5]ℎ𝑟

 𝑧𝐺𝑟,𝑖𝑛, 𝑧𝐴𝑛,𝑖𝑛, 𝑧𝑂2,𝑖𝑛 [5.00, 0, 0]

[𝑑𝑚𝑖𝑛,𝑑𝑚𝑚𝑛] [0.2𝐿, 0.4𝐿]

 [𝑧𝐺𝑟,0, 𝑧𝑂2,0, 𝑧𝐴𝑛,0] [0.40, 0.21,0.20]

[𝑋0,𝑑0] [1𝐺 − 3, 0.3 𝐿]

Table 4.2: Robust Controller vs Nominal Controller Performance

𝐺𝑈𝑅𝑚𝑚𝑛

𝑘𝐿𝑚 = 2.4 𝑘𝐿𝑚����� = 4.0 𝑘𝐿𝑚 = 5.6

Robust Nominal Robust Nominal Robust Nominal

Cost Cost Cost Cost Cost Cost

3.90 0.0222 0.0214 0.0202 0.0204 0.0250 0.0211

5.20 0.0532 0.0534 0.0653 0.0558 0.0524 0.055

5.85 0.0732 0.0748 0.0877 0.0931 0.0855 0.0899

6.50 0.1015 0.1063 0.123 0.1213 0.1227 0.1268

7.15 0.1153 0.1198 0.1114 0.0958 0.1385 0.1108

7.80 0.1255 0.0791 0.1407 0.0805 0.1284 0.0812

Ratio 1.09 1.17 1.15

 65

In the closed-loop control calculations the robust model prediction uses the nominal value

and the associated uncertainty information whereas the nominal model, used for the nominal

controller, only uses the nominal value of 6.5 for 𝐺𝑈𝑅𝑚𝑚𝑛. Both the nominal and robust

controllers use the nominal mean value of the disturbance i.e. 𝑘𝐿𝐴����� = 4.0. Thus, a total of 18

cases are simulated for the nominal and robust controller corresponding to the different

combinations of values of 𝐺𝑈𝑅𝑚𝑚𝑛and 𝑘𝐿𝑑. Table 4.2 lists the amount of biomass produced

at the end of the batch using the nominal and robust controller respectively. It is evident

looking from the biomass values, that the biomass production is more sensitive to 𝐺𝑈𝑅𝑚𝑚𝑛

than to 𝑘𝐿𝑑. Also when increasing the value of 𝐺𝑈𝑅𝑚𝑚𝑛for the plant, the total biomass

production (𝑋𝑡𝑓𝑑𝑡𝑓) increases, irrespective of the kind of controller. Accordingly, it is

important that when the actual value of 𝐺𝑈𝑅𝑚𝑚𝑛is low, the biomass production will meet

certain production targets, or else the entire batch production might have to be discarded. In

that case the robust controller becomes particularly effective since it predicts the possibility

that productivity will be low thus increasing the glucose feeding beyond the amount

calculated by the nominal controller. For instance, when 𝐺𝑈𝑅𝑚𝑚𝑛 ≈ 3.9, the average

performance of the robust controller for three disturbances is better than the nominal

controller by 7%. For the 6 cases where 𝐺𝑈𝑅𝑚𝑚𝑛 > 𝐺𝑈𝑅𝑚𝑚𝑛,𝑛𝑛𝑚𝑖𝑛𝑚𝑟, the robust controller

performs better than nominal controller. Also, since the robust controller accounts for the

case that 𝐺𝑈𝑅𝑚𝑚𝑛 can be large, it avoids overfeeding of glucose that results in growth

inhibition. For the remaining cases where 𝐺𝑈𝑅𝑚𝑚𝑛 ≈ 𝐺𝑈𝑅𝑚𝑚𝑛,𝑛𝑛𝑚𝑖𝑛𝑚𝑟, the robust controller

performance is similar to that of the nominal controller. The ratio of the average cost of the

robust and the nominal controllers for each mean value of the disturbance is shown at the

bottom of Table 4.2 indicating consistently better productivity (cost) for the robust controller

with an average improvement of ~15%, that can be very significant in bio-manufacturing

operations.

Figure 4.2 shows a typical Feeding and Perfusion profile for both the robust and nominal

controllers for 𝐺𝑈𝑅𝑚𝑚𝑛 = 5.2 and for the process disturbance corresponding to a mean value

of 𝑘𝐿𝑑 = 4.0. In the initial phase until 𝑋 < 6 ℎ𝑟, biomass growth occurs on glucose and the

 66

nominal and robust controllers show similar performance. During the interval 6 ≤ 𝑋 ≤ 9 ℎ,

the nominal controller starts both feeding and perfusion, resulting in high 𝑧𝐺𝑟 for that time

period, as compared to the robust controller, which only starts feeding at comparatively

lower rates so as to avoid glucose inhibition. Also, during 6 ≤ 𝑋 ≤ 9 ℎ, the robust controller

maintains a constant level of 𝑧𝐺𝑟, indicating a balance between the metabolic glucose uptake

rate and glucose from the feed while the nominal controller results in higher glucose levels

which are inhibiting the growth. In the last phase of the batch, 𝑋 ≥ 9ℎ, both the robust and

the nominal controller increase feeding rate of glucose significantly in order to maximize the

final biomass amount.

Figure 4.2: Robust vs. Nominal Controller: Feeding, Perfusion, Biomass and Glucose

trajectories

4.5 Robust Optimization

An off-line robust optimization approach is proposed for a fed-batch bioreactor using

probabilistic objective function. Due to the plant-model mismatch and the disturbances

 67

occurring in batch processes, robust optimization has become important for improving

process productivity in the presence of model error (Srinivasan et al., 2003). Different

approaches to robust optimization have been reported depending on the availability of

measurements along the batch (Srinivasan et al., 2003). In the absence of measurements a

single offline-robust optimization calculation can be performed to obtain an optimal feeding

recipe. On the other hand if measurements are available along the batch, they can be used to

counter the effect of uncertainties for adapting the model to be used for subsequent batches

or for on-line feedback calculations (Mandur and Budman, 2015, Srinivasan and Bonvin,

2007, Srinivasan et al., 2003) as done for the robust controller presented above.

In this section we assume that measurements are not available during the batch and therefore

a single off-line robust optimization calculation is performed to obtain an optimal feeding

recipe. For most of the off-line robust optimization techniques uncertainty propagation

methods are required and then a probability distribution of the objective function is used to

define the cost. Studies have been proposed where the objective function consists of i) the

expected or extremum value of a terminal property Dewasme et al., 2011, ii) a worst-case

scenario of the cost, Ma et al., 1999, iii) a weighted function of the expected value and

variance of the terminal property, Nagy and Braatz, 2003, Nagy and Braatz, 2004, iv) a

probabilistic objective function to meet a certain quality criteria, Terwiesch et al., 1998, or v)

a linearization of the objective function around the nominal conditions combined with

bounds of the model uncertainties Logist et al., 2011. Most of these mentioned studies either

rely on first-principles model for uncertainty quantification and propagation or use Monte

Carlo sampling methods (which is computationally heavy). All constraints in these

formulations are transformed to corresponding robust counterparts. On the other hand if

measurements are available along the batch, they can be used to counter the effect of

uncertainties by adapting the model to be used for subsequent batches (Mandur and Budman,

2015, Srinivasan and Bonvin, 2007, Srinivasan et al., 2003). In the current work, PCE’s is

used for uncertainty quantification and propagation, which are known to facilitate quick

computation of statistical measures and uncertainty propagation.

 68

In the current study a probabilistic based objective function is used to provide a minimum

amount of biomass at the end of the batch. A surrogate model for the biomass amount is

developed using a non-intrusive PCE approach, which is then used to define the statistical

measures required for the objective function. Section 4.2.1 and 4.2.2 already introduced the

background material on DFBM and PCE which is used to develop the robust-model for

optimization. Section 4.6 presents a comparison of the robust and nominal optimization

performances for an E.Coli fermentation case study.

4.5.1 Modeling with uncertainty

The goal of the robust optimization is to compute optimal recipes for both feeding and

perfusion rates whereby a DFBM model given in (4.1) is used to model the process

dynamics. The DFBM model for the bioreactor has been described by equations (4.4)-(4.7).

As shown in section 4.3, this model can be turned into a robust model using PCE via 2 steps,

i) first developing non-intrusive models for the fluxes 𝝂 at every time step 𝑘, ii) And then

propagating the uncertainty into ODE’s for 𝒛,𝑋,𝑑 using intrusive methods. However, for the

purpose of robust optimization (RO), if the objective is solely to optimize an end-point

property then it is sufficient to formulate a robust model relating the end-point property of

interest to the decision variables and uncertainties thus by-passing the need to develop PCE

models for each of the metabolites as done above for robust control. In the current case study

the probability for meeting a minimum biomass amount, 𝑋𝑑�𝑋𝑓�, is maximized. Towards this

goal, a robust model is developed using a non-intrusive PCE to determine 𝑋𝑑�𝑋𝑓� for a given

combination of the decision variables, i.e. feeding (𝐹) and perfusion (𝑃) rates of glucose to

the bioreactor, as a function of the parametric uncertainties. This non-intrusive PCE is often

referred in the literature as a surrogate model since it replaces the original first-principles

based model.

In the current study variations in elements of the parameters’ vector 𝜷 are assumed to be the

main source of uncertainty in the model. To this purpose, a map between the input (𝜷) and

outputs 𝑋 is created using samples of input values 𝜷𝒋, and solving the Eqs. (4.4)-(4.7) for

each of those 𝜷𝒋, to determine the corresponding output, 𝑋𝑗. 𝑋𝑖 are PCE coefficients of 𝑋

 69

calculated by Eq. (4.20), where 𝜷𝑗,𝐺𝑚𝑢𝑠𝑠 are specific collocation points necessary for

Gaussian Quadrature, 𝑤𝑗,𝑖,𝐺𝑚𝑢𝑠𝑠 are standard Gaussian quadrature weights corresponding to

𝜷𝑗,𝐺𝑚𝑢𝑠𝑠, 𝑛𝐺𝑚𝑢𝑠𝑠 is chosen based on the dimensionality of 𝜷 and nonlinear dependence of 𝑋

with respect to 𝜷. Equation (4.21) represents the surrogate model ℎ relating end-point

biomass with the uncertain parameters 𝜷𝒋, for given combinations of feeding and perfusion

rates. Figure 4.3 pictorially depicts how the distribution of uncertain parameters 𝜷𝒋 is used to

develop the surrogate model ℎ for 𝑋(𝑋𝑓). The calculation of 𝑋 and 𝑑 in the cost 𝑋𝑑�𝑋𝑓� is

done separately. A surrogate model is created as explained above (and shown in section

4.3.1.1) for a given combination of 𝐹 and 𝑃, between the uncertain parameters 𝜷 and the

output 𝑋�𝑋𝑓� whereas the volume 𝑑 is calculated separately with the overall mass balance

Eq. (4.18) as a function of 𝐹and 𝑃.

𝑋𝑖 = � 𝑤𝑗,𝑖,𝑔𝑚𝑢𝑠𝑠𝑋𝑗(𝜷𝒋)
𝑛𝐺𝐺𝑢𝐺𝐺

𝑗=1

, 𝑚 ∈ [1, . . ,𝑛𝑃𝑃𝑃], 𝑗 ∈ [1,2, … ,𝑛𝐺𝑚𝑢𝑠𝑠] (4.20)

𝑋�𝑋𝑓� = ℎ�𝜷𝒋,𝐹,𝑃� (4.21)

Figure 4.3: Input-output mapping to develop PCE for 𝒎𝒕𝒇

4.5.2 Nominal Optimization Formulation

The objective is to maximize the amount of biomass at the end of the batch, i.e 𝑋𝑑�𝑋𝑓�.

Hence in the case of nominal optimization, it is same as the nominal control problem solved

 70

in section 4.3.2 at the first time step when no feedback is considered. The equations for

nominal optimization problem are as follows:

max
𝐹(𝑘),𝑃(𝑘),0≤𝑘≤𝑡𝑓

𝑋𝑑�𝑋𝑓�

𝑠. 𝑋. 𝑃𝑟𝑃𝑏𝑙𝐺𝑚(4.4) − (4.7)
(4.22)

Problem (4.22) is a bilevel optimization problem, where the inner level problem solves for

the model fluxes and the outer level maximizes production to determine the optimal feeding

and perfusion rates’ profiles. It should be noticed that the outer level optimization seeks to

maximize the biomass at the end of the batch whereas in contrast, in the inner level problem

the growth is maximized at every time step. In the current work, the outer level optimization

(4.22) is solved using fmincon in MATLAB, and the inner level problem (4.7) is solved with

linprog in MATLAB.

4.5.3 Robust Optimization Formulation

Since bioreactors’ in pharmaceutical industries are generally costly to operate, it becomes

critical to meet certain minimum productivity at the end of each batch. Based on this target a

probabilistic objective function is used for the purposes of robust optimization, whereby the

probability of producing a minimum amount of product is maximized with respect to the

feeding 𝐹 and perfusion 𝑃 profiles. It is assumed in this work that the biomass is the product

of the process under consideration. The objective function used for robust optimization is

derived from a Chebyshev Inequality, as shown in (4.23).

𝑃𝑟[|𝑌 − 𝐸[𝑌]| ≥ 𝜆] ≤
𝑑𝑑𝑟[𝑌]
𝜆2

 𝑃𝑟,

 𝑃𝑟[𝑌 ≥ 𝜆] ≤ 𝑆𝑚𝑟[𝑌]
(𝑃[𝑌]−𝜆)2

(4.23)

Where, 𝑌 is a random variable and 𝜆 is a threshold chosen to be greater than (𝑑𝑑𝑟[𝑌])0.5. In

the current work, since the uncertainty is propagated using PCE, both the expectation and

variance can be quickly calculated using analytical expressions as compared to alternative

Monte Carlo approaches that are computationally costly. The random variable in the current

 71

study is the end-point total biomass 𝑋𝑑�𝑋𝑓� and the threshold value 𝜆 is the biomass amount

at the end of the batch 𝜆 = 𝑋𝑑𝑚𝑖𝑛�𝑋𝑓�. Thus the robust optimization problem can be

formulated as follows:

max
𝐹(𝑘),𝑃(𝑘),0≤𝑘≤𝑡𝑓

𝑑𝑑𝑟�𝑋𝑑�𝑋𝑓��

�𝐸�𝑋𝑑�𝑋𝑓�� − 𝜆�
2

𝑠. 𝑋.𝐸𝑞. (4.20) 𝑑𝑛𝑑 (4.21)

(4.24)

In Eq. (4.24), 𝜆 = 𝑋𝑑𝑚𝑖𝑛�𝑋𝑓� is chosen based on process knowledge. To solve problem

(4.24) a surrogate model ℎ needs to be developed at every iteration of the optimization

search. Robust optimization problem involves two important steps. First, for a given

combination of 𝐹 and 𝑃, develop a surrogate model ℎ for 𝑋𝑑�𝑋𝑓� using the information about

the uncertain parameter 𝜷. The number of input-output samples that should be used for

developing ℎ, depends on nonlinearity of the model and the sources of uncertainty 𝜷.

Second, analytical formulae for the statistical means are used in the objective function. In the

current study, only the parameters are considered uncertain. However in general bioreactor

applications the initial concentration of biomass in the reactor is often uncertain due to lack

of sensor sensitivity and the proposed approach can be extended to include this uncertainty as

well. Based on the surrogate model, problem (4.24) can be solved to determine the

probability of meeting the minimum threshold 𝜆. This problem is solved using fmincon in

MATLAB.

4.6 Case Study on Robust Optimization

To illustrate the proposed robust optimization scheme, the simplified DFBM model

developed by Mahadevan et al., 2002 for growth of E.coli on glucose presented in Section

4.4 is used.

Two parameters, mass transfer coefficient 𝑘𝐿𝑑, and maximum glucose uptake rate 𝐺𝑈𝑅𝑚𝑚𝑛

are considered to be uncertain and as a result 𝑛𝑑𝑖𝑚 = 2. To account for nonlinearity between

the uncertain parameters, 𝑘𝐿𝑑 and 𝐺𝑈𝑅𝑚𝑚𝑛 , and 𝑋�𝑋𝑓�, the order for PCE is chosen as

𝑛𝑛𝑟𝑑𝑟𝑟 = 2. Hermite polynomials are chosen as the basis functions for the PCE expansion of

 72

𝑋�𝑋𝑓�. Table 4.3 shows the nominal parameter values along with their variances used for the

case study.

Table 4.3 : Process Parameters for E.Coli growth on Glucose and Acetate for

Robust/Nominal Optimization

Name Value
�𝑘𝐿𝑑�����,𝜎𝑘𝐿𝑚�

[4.0, 0.8]ℎ𝑟−1
𝐾𝑚, [0.015 𝑚𝑀]

[𝐺𝑈𝑅𝑚𝑚𝑛,𝜎] [6.5, 1.3]𝑚𝑀/𝑔

𝑂𝑈𝑅𝑚𝑚𝑛 12.0 𝑚𝑀/𝑔 − 𝑑𝑤/ℎ𝑟
𝑋𝑓,Δ𝑋 [11.0, 0.1]ℎ𝑟

𝑧𝐺𝑟,𝑖𝑛, 𝑧𝐴𝑛,𝑖𝑛 , 𝑧𝑂2,𝑖𝑛 [5.00, 0, 0]𝑚𝑀

[𝑑𝑚𝑖𝑛,𝑑𝑚𝑚𝑛] [0.2𝐿, 0.4𝐿]

[𝑧𝐺𝑟,0, 𝑧𝑂2,0, 𝑧𝐴𝑛,0] [0.40, 0.21,0.20]𝑚𝑀

[𝑋0,𝑑0] [1𝐺 − 3𝑔/𝐿, 0.3 𝐿]
𝐾𝐼 [1.0 𝑚𝑀/𝑔 − 𝑑𝑤/ℎ𝑟]
𝜆 [0.03] 𝑔

The goal of the case study is to compare the performance of the nominal and robust

optimization formulations in terms of number of cases for which either the robust or nominal

optimal feeding/perfusion profiles failed to meet the minimum biomass amount. The nominal

optimization problem (4.22) is solved to maximize the amount of biomass at the end of the

batch using nominal operating conditions and hence disregarding any kind of uncertainty in

the system. The robust optimization problem (4.24) is solved to maximize the number of

batches meeting the minimum biomass at the end of the batch condition, while accounting

for the uncertainty in 𝑘𝐿𝑑 and 𝐺𝑈𝑅𝑚𝑚𝑛. 𝐹𝑛𝑛𝑚𝑖𝑛𝑚𝑟and 𝑃𝑛𝑛𝑚𝑖𝑛𝑚𝑟 denote the solution of

Problem (4.22) for feeding and perfusion respectively, and similarly 𝐹𝑟𝑛𝑏𝑢𝑠𝑡and 𝑃𝑟𝑛𝑏𝑢𝑠𝑡

denote the solution to Problem (4.24). These solutions are shown in Figure 4.6 for the

parameters shown in Table 4.3. Both the solutions are then used to determine the distribution

of 𝑋�𝑋𝑓�. The latter is calculated by first creating sample input space of uncertain parameters

𝜷𝒋consisting of 1000 points, and then using the simulated model equations for the calculated

optimal feeding and perfusion profiles. The histograms of 𝑋�𝑋𝑓� for the robust and nominal

optimizations respectively are shown in Figure 4.5. It can be observed that the distribution of

 73

𝑋�𝑋𝑓� for nominal optimization is near uniform but for the robust optimization the

distribution is closer to a normal distribution. The amount of violation of the lower constraint

imposed on biomass can be assessed from the cumulative distributions which are shown in

Figure 4.4. In the case of the nominal optimization 𝑋�𝑋𝑓� ≥ 0.03, the feeding profiles

resulted in a violation of the lower constraint in ~18% (Figure 4.4) of the runs while the

robust optimization resulted in violation of this constraint for only 4% (Figure 4.4) of the

cases.

Figure 4.4: Cumulative pdf of 𝒎�𝒕𝒇� for Nominal and Robust Optimization

The improved performance of the robust optimization versus the nominal optimization can

also be interpreted from the differences in the feeding and perfusion profiles for the two

approaches (shown in Figure 4.6). In both the cases there are three distinct phases of time to

characterize the process behavior. In the initial phase 𝑋 ≤ 6ℎ, both for the nominal and the

robust optimization there is negligible amount of feeding and perfusion since glucose is

present and biomass growth is primarily occurring on the available glucose. During the

second phase 6 ≤ 𝑋 ≤ 9ℎ, 𝐹𝑛𝑛𝑚𝑖𝑛𝑚𝑟shows a sudden increase to compensate for the nominal

depletion of glucose while 𝑃𝑛𝑛𝑚𝑖𝑛𝑚𝑟 is kept at low levels. On the other hand for the solution

of the robust optimization there are minor changes in 𝐹𝑟𝑛𝑏𝑢𝑠𝑡and 𝑃𝑟𝑛𝑏𝑢𝑠𝑡, and both are kept

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

m
u
la

ti
v
e
 p

d
f

fo
r

E
n
d
 p

o
in

t
B

io
m

a
s
s

Biomass, g

Nominal
Robust Optmzn 2-D

 74

close to each other. High 𝐹𝑛𝑛𝑚𝑖𝑛𝑚𝑟 during this second phase has a significant impact on the

distribution of 𝑋�𝑋𝑓�. Since 𝐺𝑈𝑅𝑚𝑚𝑛is assumed to be uncertain, for the cases when

Figure 4.5 Histogram of 𝒎�𝒕𝒇� for Nominal (top) and Robust (bottom) Optimization

𝐺𝑈𝑅𝑚𝑚𝑛 < 𝐺𝑈𝑅𝑚𝑚𝑛,𝑛𝑛𝑚; the remaining glucose concentration 𝑍𝑔𝑟 may be very high and

additional glucose feeding will lead to significant growth inhibition and reduced amount of

biomass at the end. The robust algorithm correctly predicts the possibility of glucose

overfeeding thus the glucose feeding required by the robust solution is lower. However, high

𝐹𝑛𝑛𝑚𝑖𝑛𝑚𝑟during second phase, may lead to gains in the maximum amount of biomass that can

be produced using 𝐹𝑛𝑛𝑚𝑖𝑛𝑚𝑟 and 𝑃𝑛𝑛𝑚𝑖𝑛𝑚𝑟 for the cases that 𝐺𝑈𝑅𝑚𝑚𝑛 is close to 𝐺𝑈𝑅𝑚𝑚𝑛,𝑛𝑛𝑚.

During the third phase 𝑋 ≥ 9ℎ, all the rates 𝑃𝑟𝑛𝑏𝑢𝑠𝑡,𝐹𝑟𝑛𝑏𝑢𝑠𝑡,𝑃𝑛𝑛𝑚𝑖𝑛𝑚𝑟 and 𝑃𝑛𝑛𝑚𝑖𝑛𝑚𝑟, increase

significantly since by then the initial glucose amount has been depleted thus necessitating

additional feeding in order to maximize the biomass amount at the end of the batch.

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40
Nominal Optimization

X(tf), g

N
um

be
r o

f S
am

pl
es

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0

100

200

300

400
Robust Optimization

X(tf), g

N
um

be
r o

f S
am

pl
es

 75

4.7 Conclusions

Robust and nominal control algorithms are presented for a fed-batch reactor modeled using

DFBM model for maximizing an economic objective function. The economic objective was

chosen as the final biomass amount. The robust controller showed better final productivity

(biomass level) than the nominal controller by an average of 13% that can be significant in

bio-manufacturing. The use of PCE to propagate parametric uncertainty is computationally

very efficient as compared to Monte Carlo and thus it is instrumental for online

implementation of the proposed robust algorithm. The controller requires the use of feedback

corrections in glucose and biomass. The implementation of the algorithm requires the use of

both an intrusive PCE model to predict the effect of uncertainty on the metabolites and a non-

intrusive PCE model for end of batch biomass.

Figure 4.6 Feeding and Perfusion profiles for Robust and Nominal Optimization

The offline-robust optimization approach presented is based on the minimization of the

violation of a lower bound on end point biomass level. A surrogate model of end-point

biomass is developed using non-intrusive PCE approach which permitted quick calculation

0 2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

time, hr

Fe
ed

in
g/

P
er

fu
si

on
 ra

te
, L

/h
r

Nominal Feeding
Nominal Perfusion
Robust Feeding
Robust Perfusion

 76

of the variance by analytical formula. The nominal optimization failed to meet the minimum

end-point biomass lower limit for 18% of the cases as opposed to 4% violation for robust

optimization.

Both the robust optimization and control algorithms have shown superior performance to

their nominal counterparts. In practice the choice between robust control and robust

optimization will depend on the degree of confidence of plant personnel on the available

measurements and on process certification constraints. In the past, pharmaceutical companies

have generally avoided on line control in manufacturing operations due to safety concerns

and to comply with tight operating procedures that resulted from long certification

procedures. In these cases, a robust optimization approach will be more suitable for

implementation. However, recent changes in FDA guidelines have increased the acceptability

of on-line control strategies of pharmaceutical processes such as the one proposed in this

work. The approach presented in robust optimization can also be extended to optimize for a

quality property along the process, however, this will require a combination of both intrusive

and non-intrusive propagation of uncertainty using PCE.

 77

Chapter 5
Robust Distributed MPC using robust observer during

communication loss3

The initial motivation for doing robust-distributed MPC was to implement the PCE-based

RNMPC presented in Chapter 3 for a nonlinear system in a distributed fashion, where the

robust control would account for the uncertainty in plant-model mismatch and also the errors

in model interactions occurring between each of the subsystems. However since the PCE-

based RNMPC turned out to be computationally efficient the work in this Chapter was done

for linear systems but it was not expanded further for the PCE based NMPC algorithm. Thus,

the integration of a robust observer with PCE-based RNMPC, where the robust observer can

be used to determine the bounds on model interactions has been left for future work. Part of

the work presented in this Chapter has been accepted as a refereed publication in the

conference proceedings of ADCHEM 2012. That paper included a simplified version of the

current Chapter and it only presented the distillation column example. Since that conference,

the solution of the robust observer has been improved by integrating MATLAB with an

external bilinear solver from YALMIP. Also, the methodology based on the bilinear

optimization has been applied to a larger system of 9 states and 4 inputs in a reactor-separator

system to illustrate the computational feasibility of the approach for systems with several

states and inputs.

5.1 Introduction

The use of one central controller to control highly interconnected process units in chemical

plants is often computationally challenging and difficult to implement. Hence, a more

practical approach is to partition the process into smaller subsystems and to design lower

dimensional controllers for each subsystem (Scattolini, 2009). This distributed control

approach referred to as Distributed Model Predictive Control (DMPC) has gained significant

attention from the research community with various algorithms being proposed which can be

3 Part of this work is adapted from Kumar, D., Al-Gherwi, W. & Budman, H. 2012

 78

broadly classified according to different features: i) type of cost function (local vs. global),

ii) solution procedure being used (non-iterative, single iteration) and iii) degree of exchange

of information between the subsystems (Scattolini, 2009). Venkat et al., 2005 proposed a

method of cooperative distributed control that permits to recover the performance of a

centralized controller when the proposed iterative algorithm converges. Other DMPC

algorithms have been reported (Zhang and Li, 2007, Liu et al., 2009, Scheu and Marquardt,

2011).

Considering the importance of the model for MPC algorithms in general and DMPC in

particular, it is also important to consider robustness to plant-model mismatch. To provide

for robustness Al-Gherwi et al., 2011 assumed the plant model of each subsystem to be

included within a polytopic model and the control action was based on the minimization of a

robust performance bound where this latter minimization is conducted iteratively for every

subsystem in a cooperative manner. Other robust DMPC algorithms use the “tubes” concept

(Trodden and Richards, 2006) that consists of developing invariant regions (tubes) at each

time instant for linear time invariant models with interactions between subsystems treated as

bounded disturbances. However, plant-model mismatch has not been explicitly included as

yet in the tubes’ based approach.

A key requirement in most previously proposed DMPC algorithms is the exchange of state

information at the beginning of all iterations. Since this exchange is required at every time

step, a loss in communication due to dropped packets or poor signal needs to be explicitly

addressed (Rawlings and Stewart, 2008). Using a nominal model based estimator, de la Pena

and Christofides, 2008 accounted for communication loss within the cost function of an MPC

algorithm with guaranteed stability and included constraints for the length of the data loss

period. Maestre et al., 2009 designed DMPC where each agent (sub-system) calculated and

communicated various options for future control actions and these actions were then

coordinated based on the solution of a central optimization problem. However, during

communication loss, the system acted like a decentralized controller. Heidarinejad et al.,

2011 developed a scheme to ensure stability with communication loss by assuming zero

control actions for other subsystems in case of communication loss. Sun and El-Farra, 2008,

 79

proposed a model-based control method based on a decentralized approach and low

communication requirements. In this scheme subsystems would interact with each other at

predetermined time instants, and for remaining time instants a nominal model is used as state

estimator thus essentially converting the strategy into an open loop one.

The goal of the current work is to address the issue of communication loss within Robust

DMPC by explicitly accounting for model plant mismatch. When communication is lost

between subsystems, the new algorithm computes state bounds to account for model errors

and includes these in the formulation of Linear Matrix Inequalities (LMI) that are used to

calculate an optimal state feedback predictive control law. When there is a prolonged loss of

communication the state bounds calculated at a previous time instant are used as estimates to

recursively determine new states’ bounds in the presence of model errors. Then, using the

bounds on states’ estimates corresponding bounds on closed loop performance are minimized

based on the worst performing plant. A brief description of the Robust DMPC developed by

Al-Gherwi et al., 2011, that was used as the basis of the current approach, is presented in

Section 5.2.1, followed by the development of a robust observer to be used in the presence of

loss of communication (Section 5.2.2) and a discussion on robust stability (Section 5.2.4) of

the proposed strategy. Section 5.3 presents case studies to illustrate the use of algorithm

involving a high purity distillation column example (Skogestad et al., 1988) with a high

condition number and a reactor separator process (Liu et al., 2009), in the presence of

intermittent communication losses. Conclusions are presented in Section 5.4.

Al-Gherwi et al., 2011 developed robust DMPC in which the plant models’ parameters of

each subsystem lie within a polytopic model and the control action was based on the

minimization of a robust performance bound where this latter minimization step is conducted

iteratively for every subsystem where the subsystems exchange state information at the

beginning of all iterations. To address the issue of communication loss, the new algorithm

summarized in this chapter computes state bounds in the presence of model errors and

includes these in the formulation of Linear Matrix Inequalities (LMI) that are used to

calculate an optimal state feedback predictive control law. Then, while communication is

absent, state bounds at previous time instant are used as estimates to recursively determine

 80

new states’ bounds, in the presence of model errors. Then, based on these states’ bounds, a

robust performance bound which corresponds to the worst performing plant is minimized.

5.2 Definitions and Methodology

5.2.1 Robust DMPC Algorithm (Al-Gherwi et al., 2011)

The process is represented by a linear time varying (LTV) model of the form,

𝒙(𝒌 + 𝟏) = 𝑨(𝒌)𝒙(𝒌) + 𝑩(𝒌)𝒖(𝒌) 5.1

where 𝒙 ∈ ℝ𝒎,𝒖 ∈ ℝ𝒎, are the process states and inputs respectively. It is assumed that the

time varying behaviour of the process can be effectively described by representing the state

matrices by a family of time invariants plants as per the following convex hull:

[𝑨(𝒌)𝑩(𝒌)] = � 𝛽𝑟�𝑨𝒍𝑩𝒍�
𝑳

𝒍=𝟏
 ; � 𝛽𝑟

𝐿

𝑟=1
= 1;𝛽𝑟 ≥ 0 5.2

where each vertex l corresponds to a linear model identified from data or obtained from

linearization around different operating conditions. This description implies that at any

moment the plant can be modelled by any convex combination of these l vertices or models.

In the original algorithm of Al-Gherwi et al., 2011 it was assumed that all the states are

known to all subsystems either through measurements or through estimation thus ignoring

the possibility of communication loss.

The system, states and inputs, can be divided into N subsystems each represented by

following equation

𝒙𝒊(𝒌 + 𝟏) = 𝑨𝒊(𝒌)𝒙𝒊(𝒌) + 𝑩𝒊(𝒌)𝒖𝒊(𝒌) + � 𝑩𝒋(𝒌)𝒖𝒋(𝒌)
𝑵

𝒋=𝟏
𝒋≠𝒊

 5.3

where, 𝒙𝒊 and 𝒖𝒊 include all the states and inputs local to subsystem i, and also states and

inputs of other subsystems j, that affect subsystem i, which values are communicated

between the subsystems. Hence, 𝒙𝒊 = [𝒙𝟏𝟏′ , … ,𝒙𝒊𝒊′ , … ,𝒙𝑵𝑵′]′, where 𝒙𝒊𝒊 are states locally

 81

measured within subsystem i. Similar to (5.2), the model of each subsystem is given by a

polytope defined as follows:

�𝑨𝒊(𝒌)𝑩𝒊(𝒌). .𝑩𝒋(𝒌). . � = � 𝜷𝒍�𝑨𝒊
(𝒍)𝑩𝒊

(𝒍) . . 𝑩𝒋
𝒍 . . �

𝑳

𝒍=𝟏
 ∀𝒋 ∈ {𝟏, …𝑵}, 𝒋 ≠ 𝒊 5.4

Kothare et al., 1996 proposed the minimization of a robust performance objective for a

centralized formulation where the plant was represented by a polytope. Al-Gherwi et al.,

2011 extended that formulation by simultaneously minimizing robust performance objectives

in a distributed fashion for each of the 𝑁 subsystems as per the following constrained min-

max problem:

𝑚𝑚𝑛
𝒖𝒊(𝒌+𝒎|𝒌)

𝑚𝑑𝑥
�𝑨𝒊(𝒌+𝒎)𝑩𝒊(𝒌+𝒎)𝑩𝒋(𝒌+𝒎)�,𝑛≥0

𝐽𝑖(𝑘) 5.5

𝒔. 𝒕. |𝒖𝒊(𝒌 + 𝒎|𝒌)| ≤ 𝒖𝒊𝒎𝒎𝒙,𝒎 ≥ 𝟎

where 𝐽𝑖(𝑘) is local cost function for each subsystem defined as

𝐽𝑖(𝑘) = � �𝒙𝒊′(𝒌 + 𝒎|𝒌)𝒓𝒊𝒙𝒊(𝒌 + 𝒎|𝒌) + 𝒖𝒊′(𝒌 + 𝒎|𝒌)𝑹𝒊𝒖𝒊(𝒌 + 𝒎|𝒌)
n=∞

n=0

+ � 𝒖𝒋•
′(𝒌 + 𝒎|𝒌)𝑹𝒋𝒖𝒋•(𝒌 + 𝒎|𝒌)

𝑁

𝑖=1
𝑖≠𝑗

�
5.6

where 𝒓𝒊 > 𝟎,𝑹𝒊 > 𝟎,𝑹𝒋 > 𝟎 and 𝒖𝒋• is the control action calculated for subsystems j in the

previous iteration and remains constant within the current iteration. The local objective

function 𝑱𝒊, can be formulated to consider different objectives: i- a global objective function,

referred to as cooperative control, that corresponds to the case where 𝒓𝒊,𝑹𝒊,𝑹𝒋 > 𝟎 and

these matrices are all diagonal for each subsystem or ii- a strictly local objective function,

e.g. as needed to achieve a Nash equilibrium, that corresponds to the case of 𝑹𝒋 = 𝟎.

The problem of finding the control action 𝒖𝒊 = 𝑭𝒊𝒙𝒊 was then formulated as finding a

control law 𝑭𝒊that is determined by simultaneously minimizing for all subsystems a robust

 82

performance criteria, 𝜸𝒊, 𝒊 ∈ {𝟏, … ,𝑵} subject to a set of LMI’s constraints corresponding to

stability and input constraints for the polytopic model in (5.4):

𝑚𝑚𝑛
𝛾𝑖,𝑸𝒊,𝒀𝒊

𝛾𝑖 5.7

𝑠. 𝑋. � 1 𝒙𝒊′(𝒌)
𝒙𝒊(𝒌) 𝑸𝒊

� ≥ 0 5.7a

⎣
⎢
⎢
⎢
⎡𝑸𝒊 𝑸𝒊𝑨�𝒊

′(𝒍) + 𝒀𝒊′𝑩𝒊
′(𝒍) 𝑸𝒊𝒓�𝒊

𝟏
𝓛 𝑸𝒊

′𝑹𝒊
𝟏
𝓛

∗ 𝑸𝒊 𝟎 𝟎
∗ ∗ 𝜸𝒊𝑰 𝟎
∗ ∗ ∗ 𝜸𝒊𝑰 ⎦

⎥
⎥
⎥
⎤
≥ 𝟎 ∀𝒍 ∈ {𝟏, … ,𝑳} 5.7b

�
(𝒖𝒊𝒎𝒎𝒙)𝓛𝑰 𝒀𝒊

𝒀𝒊′ 𝑸𝒊
� ≥ 𝟎 5.7c

where 𝑭𝒊 = 𝒀𝒊′𝑸𝒊
−𝟏, and 𝑸𝒊 = 𝛾𝑖𝑷𝒊−𝟏, and the matrix 𝑷𝒊 (is p.d.) is used to bound the cost

function of each subsystem according to 𝐽𝑖(𝑘) ≤ 𝒙𝒊′𝑷𝒊𝒙𝒊 = 𝑑𝑖(𝑘). The control laws 𝑭𝒊′𝒔,

calculated for each subsystem from the minimization problem above, are then exchanged

among the subsystems at each iteration of a Jacobi iterative solution scheme with relaxation

until the calculations converge for all the subsystems. The exchange of information among

the subsystems is conducted at each time step. Additional details on this iterative algorithm

are given in Al-Gherwi et al., 2011.

5.2.2 Loss of Communication

Since the above methodology assumes perfect communication for all iterations at each time

step, to address the effect of communication loss it is necessary to modify the above control

scheme. The basic idea proposed in this study is that each subsystem is equipped with an

observer, based on the closed loop model, which is used to recursively provide bounds on the

states while communication is absent. Thus, during periods of communication loss, the

robust observer of each subsystem computes bounds for each of the plant states. For each

plant state, a bound vector, 𝒙𝒃,𝒊(𝒌) = �𝑥𝑖,𝑟(𝑘) 𝑥𝑖,ℎ(𝑘)�
′
,∀𝑚 ∈ [1, … ,𝑛] is defined where

𝑥𝑖,𝑟(𝑘) and 𝑥𝑖,ℎ(𝑘) are lower and higher bounds on ith plant state (𝑥𝑠,𝑖) respectively and are

 83

based on state bounds calculated in the previous time interval according to the following

constrained optimization problems:

𝒙𝒊,𝒍(𝒌 + 𝟏) = 𝒎𝒊𝒎
𝑨(𝒌),𝑩(𝒌),𝒙𝒃,𝟏(𝒌),…,𝒙𝒃,𝒎(𝒌)

𝒙𝒔,𝒊(𝒌+ 𝟏)

𝒙𝒊,𝒉(𝒌+ 𝟏) = 𝒎𝒎𝒙
𝑨(𝒌),𝑩(𝒌),𝒙𝒃,𝟏(𝒌),…,𝒙𝒃,𝒎(𝒌)

𝒙𝒔,𝒊(𝒌 + 𝟏) ∀𝒊 ∈ [𝟏, … ,𝒎]

𝑠. 𝑋. 𝒙(𝒌+ 𝟏) = (𝑨(𝒌) + 𝑩(𝒌)𝑭)𝒙(𝒌)

[𝑨(𝒌)𝑩(𝒌)] = � 𝛽𝑟�𝑨𝒍𝑩𝒍�
𝑳

𝒍=𝟏
 ; � 𝛽𝑟

𝐿

𝑟=1
= 1;𝛽𝑟 ≥ 0

𝑥𝑖,𝑟(𝑘) ≤ 𝑥𝑠,𝑖(𝑘) ≤ 𝑥𝑖,ℎ(𝑘)

5.8

Where, the decision variables are the bounds at the previous interval 𝒙𝒃,𝒊(𝒌) and the elements

of the system matrices within the polytopic model (5.2) which result in lower or upper values

of each state when solving (5.8) above. In the time interval occurring immediately following

communication loss, the last available measurement of the state 𝒙(𝒌) is used for computing

new bounds 𝒙𝒃,𝒊(𝒌+ 𝟏). The optimisation problems in (5.8) have a bilinear cost with respect

to the decision variables according to the first constraint in (5.8), i.e. closed loop model, that

involves products between decision variables and thus the problem becomes NP-hard.

Bilinear solver algorithm based on “mountain climbing” methods have been proposed

(Konno, 1976) or, alternatively, global solvers can be used. In the current work, the DMPC

problem is solved using the LMI toolbox of MATLAB and the bilinear solver of YALMIP

(Lӧfberg, 2004) is used to solve (5.8).

The calculated state bounds, 𝒙𝒃,𝒊(𝒌),∀𝑚 ∈ [1, … ,𝑛], are then included as additional LMI

constraints for computing the controllers 𝑭𝒊’s according to (5.7). The additional LMI’s

corresponding to the states’ bounds are kept fixed during all the iterations at a given time

step. It is important to note that the additional LMI’s included in the optimization problem

(5.7) solved within each subsystem are not only based on bounds of local subsystem states x𝒊,

but includes the bounds on all the plant states x ∈ ℝ𝒎 and since each state has a lower and an

 84

upper bound, the number of additional LMI constraints becomes, 2n-1. Thus, instead of a

single LMI in (5.7a), 2n LMIs are used as follows:

�
1 𝒙𝒔

𝒋 (𝒌)′

𝒙𝒔
𝒋 (𝒌) 𝑸𝒊

� ≥ 0 ∀𝑗 ∈ [1, … , 2𝑛],𝒙𝒔
𝒋 (𝒌) ∈ ℝ𝑛 5.9

where, 𝒙𝒔
𝒋 (𝒌) is a total of 2n different vectors corresponding to all possible combinations of

the lower and upper bounds’ values contained in the vectors 𝒙𝒃,𝒊(𝒌),∀𝑚 ∈ [1, … ,𝑛].

The key idea behind the combined robust controllers and robust observers proposed here is

that since the states’ values used by a robust observer in each subsystem i are initialized with

the same plant measurements when communication is lost, the state bounds determined by

the observers during periods of communication loss will be the same across all subsystems.

Furthermore, since during periods of communication loss all subsystems use the same set of

LMI’s with the same bounds’ values on all the states for determining control laws 𝑭𝒊, 𝑚 ∈

{1, … ,𝑁} all control laws are identical to each other despite the loss in communication.

To account for the limited states’ measurements available to each subsystem during

communication loss, the control actions 𝒖𝒊 for each subsystem i are based on the measured

local states,𝒙𝒊𝒊, and the means of the state bounds for the states of the other subsystems,

𝒙𝒊𝒋, 𝒋 ∈ {𝟏, … ,𝑵}, 𝒋 ≠ 𝒊 that are unavailable due to communication loss as follows:

𝒖𝒊(𝒌) = 𝑭𝒊𝒊𝒙𝒊𝒊(𝒌) + � 𝑭𝒊𝒋 �𝒙𝒊𝒋,𝒍(𝒌) + 𝒙𝒊𝒋,𝒉(𝒌)� 𝓛⁄
𝑵

𝒊=𝟏
𝒊≠𝒋

 5.10

Where, 𝑭𝒊𝒊 and 𝑭𝒊𝒋 are defined as the sub-matrices of 𝑭𝒊’s that relate the control actions of the

local subsystem 𝑚 to the local states 𝒙𝒊𝒊 and the other states 𝒙𝒊𝒋 respectively.

5.2.3 Summary of the Robust DMPC Algorithm with loss of communication

The robust DMPC algorithm when communication is lost between subsystems is summarized

as follows:

 85

Algorithm 1 (RDMPC with loss of communication)

Step0 (initialization): at control interval k=0 set 𝑭𝒊 = 𝟎

Step1 (updating)

 if (beginning of loss of communication)

at the beginning of control interval (k), if there is no communication then solve all 2n

optimization problems to determine 𝒙𝒃,𝒊(𝒌),∀𝑚 ∈ [1, … ,𝑛],(5.8)

 else

at the beginning of control interval (k) all the controllers exchange their local states

measurements and initial estimates 𝐹𝑖’s via communication,

 end if

 set iteration t = 0 and 𝑭𝒊 = 𝑭𝒊
(𝟎).

Step2 (iterations)

while t ≤ tmax

Solve all N LMI problems in parallel to obtain the minimizers 𝒀𝒊𝒕+𝟏, Q𝒊
𝒕+𝟏 used to estimate

the feedback solutions 𝑭𝒊𝒕+𝟏 = 𝒀𝒊
′(𝒕+𝟏)Q𝒊

−𝟏(𝒕+𝟏). If problem in a particular iteration is

infeasible set, 𝑭𝒊
(𝒕) = 𝑭𝒊

(𝒕−𝟏). Check the convergence for a specified error tolerance 𝜀𝑖 for all

the controllers

 if �𝑭𝒊
(𝒕+𝟏) − 𝑭𝒊

(𝒕)� ≤ 𝜀𝑖 ∀𝑚 ∈ {1, … ,𝑁}

 break

 end if

Exchange the solutions 𝑭𝒊’s and set t = t + 1

end while

Step3 (implementation)

 86

 if (loss of communication)

apply the control actions 𝒖𝒊 = 𝑭𝒊𝒊𝒙𝒊𝒊 + ∑ 𝑭𝒊𝒋�𝒙𝒊𝒋,𝒍+𝒙𝒊𝒋,𝒉�
𝓛

𝑵
𝒊=𝟏
𝒊≠𝒋

 to the corresponding subsystems,

increase the control interval k = k + 1, return to step1 and repeat the procedure.

 else

apply the control actions 𝒖𝒊 = 𝑭𝒊𝒙𝒊 to the corresponding subsystems, increase the control

interval k = k + 1, return to step1 and repeat the procedure.

 end if

5.2.4 Convergence and Robust Stability Analysis of Robust-DMPC Algorthm with loss
of communication

Lemma 1 (Al-Gherwi et al., 2011). For a cooperative control objective, defined in section

5.2, each one of the N convex problems defined in Algorithm1 will converge to the same

solution which is the solution of the centralized problem, i.e 𝛾1 = ⋯ = 𝛾𝑖 = ⋯ = 𝛾𝑁 = 𝛾,

where 𝛾, is the performance upper bound of centralized MPC (see Al-Gherwi et al., 2011).

In the absence of communication at each time step, identical controllers 𝑭𝒊’s are computed

within each subsystem from the minimization of robust performance criterion in each

subsystem, i.e. 𝛾1 = ⋯ = 𝛾𝑖 = ⋯ = 𝛾𝑁 = 𝛾. However, in this case 𝛾 is a performance upper

bound calculated based on bounds rather than on the actual state measurements.

For the purpose of proving the robust stability of the proposed algorithm the following

definitions are needed:

Definition 1 (Invariant Set for Quadratic Stability) Boyd, 1994. The set 𝜀 = {𝒙 ∈

ℝ𝒎|𝒙′𝑸−𝟏𝒙 ≤ 1} is said to be an invariant set for 𝒙(𝒌 + 𝟏) = 𝜱(𝒌)𝒙(𝒌) where 𝜱(𝒌) =

(𝑨(𝒌) + ∑ 𝑩𝒊(𝒌)𝑭𝒊(𝒌)𝑵
𝒊=𝟏) , iff 𝑸−𝟏 satisfies 𝑸−𝟏 –𝜱′(𝒍)𝑸−𝟏𝜱(𝒍) ≥ 0, 𝑙 ∈ {1, … , 𝐿}. As a

result if 𝒙(𝒌) ∈ 𝜀, then 𝒙(𝒌+ 𝟏) ∈ 𝜀.

 87

Definition 2 (Intersection of Invariant sets). If the sets 𝜀𝑖 = �𝒙 ∈ ℝ𝒎�𝒙′𝑸𝒊
−𝟏𝒙 ≤ 1�∀𝑚 ∈

{1, … ,𝑁}, exist then there is a set ε = ⋂ εiN
i=1 defined as 𝜀 = {𝒙 ∈ ℝ𝒎|𝒙′𝑸−𝟏𝒙 ≤ 1} where

0 < 𝑸−𝟏 ≤ ∑ 𝜏𝑖𝑸𝒊
−𝟏 ,𝑁

𝑖=1 ∑ 𝜏𝑖 𝑁
𝑖=1 = 1, 0 ≤ 𝜏𝑖 ≤ 1.

Then, the robust stability of Algorithm1 is given in Theorem 1.

Theorem 1. At sampling time k and any iteration t > 0, the state feedback solutions

𝑭𝒊
(𝒕)(𝒌) = 𝒀𝒊

′(𝒕)(𝒌)𝑸𝒊
−𝟏(𝒕), 𝑚 ∈ {1, … ,𝑁}, obtained from Algorithm 1, robustly stabilize the

closed loop system 𝒙(𝒌+ 𝟏) = 𝜱(𝒌)𝒙(𝒌) where 𝑨(𝒌) and 𝑩(𝒌) belong to the polytopic

description defined in (2).

Proof. In the presence of communication the stability proof provided in Al-Gherwi et al.,

2011 applies. When communication is lost if the problem posed in (5.7) is feasible and all the

process disturbances can be bounded by the parametric uncertainties considered in modeling,

since 𝑸𝒊
−𝟏 > 0 and (5.9) is satisfied i.e. 𝒙𝒔

𝒋 (𝒌)′𝑸𝒊
−𝟏𝒙𝒔

𝒋 (𝒌) ≤ 1,∀𝑗 ∈ {1, … , 2𝑛}, then due to

convexity and the bounds of the states 𝒙′𝑸𝒊
−𝟏𝒙 ≤ 𝒙𝒔

𝒋 (𝒌)′𝑸𝒊
−𝟏𝒙𝒔

𝒋 (𝒌) ≤ 1,∀𝑗 ∈ {1, … , 2𝑛}, and

the condition of definition 2 (intersection of invariant sets) is satisfied. Thus, the robust

stability criterion based on the intersection of invariant sets given by definition 2 and used in

the robust stability proof of Al-Gherwi et al., 2011 is also satisfied here. Accordingly,

𝑸−𝟏 −𝚽(𝒍)′𝑸−𝟏𝚽(𝐥) ≥ 0 ∀𝑙 ∈ {1, … ,𝑁}, which satisfies the conditions of definition 1 and

thus 𝒙(𝒌+ 𝒎),𝑛 > 0 belong to the invariant set 𝜀 = {𝒙 ∈ ℝ𝒎|𝒙′𝑸−𝟏𝒙 ≤ 1}.

One key aspect to note is that although the controller action is implemented using the mean

of the bounds, as determined by the robust observer, the resulting controller is stable since

the actual state of the other subsystem is bounded within its respective upper and lower

bound; and both lower/upper bound has been included in the formulation of robust controller

as a state constraint.

 88

5.3 Case Studies

5.3.1 Case Study 1

To illustrate the proposed algorithm in the absence of communication between subsystems, a

high purity distillation column example from Skogestad et al., 1988 was studied. The system

consists of two inputs, reflux and boil-up ratio, and two outputs, composition of top and

bottom products. Due to the high condition number this process has been often used to study

the effects of uncertainty on closed loop control stability and performance. The state space

model consists of 2 states, 2 inputs and 2 outputs, and the actual plant is being represented by

a polytope with 4 vertices. 𝑩(1),(2),(3),(4) represents the 4 vertices of convex hull within which

the plant lies.

𝐴(1) = 𝐴(2,3,4) �0.9231 0
0 0.9231�, 5.11

𝐵𝑠𝑟𝑚𝑛𝑡 = �0.1013 0.0332
0.1248 0.0421� ∗ �

1 ± ∆1 0
0 1 ± ∆2

� 5.11a

Where, ∆= [∆1,∆2],∆1∈ [−0.75,0.75],∆2∈ [−0.8,1.4]

𝐵1 = �0.1755 0.0066
0.2163 0.0084� , 𝐵2 = �0.1755 0.0797

0.2163 0.1011� 5.11b

𝐵3 = �0.0270 0.0066
0.0333 0.0084� , 𝐵4 = �0.0270 0.0797

0.0333 0.1011�

Both inputs were assumed to be constrained by, |𝑢1(𝑘)| < 4.5, |𝑢2(𝑘)| < 4.0. The system

was subdivided into two subsystems as 𝑢1 − 𝑦1 and 𝑢2 − 𝑦2. The importance of considering

robustness of a centralized controller to model errors for this particular process has been

demonstrated in previous studies Skogestad et al., 1988 and it is not illustrated here.

Instead, since the key point of the proposed algorithm is to provide for robustness in the

presence of communication loss, it is relevant to compare a robust controller combined with

a robust observer to a robust controller that is combined with a nominal observer where the

latter is solely based on a nominal model thus ignoring model errors. Accordingly, these two

controllers will be referred heretofore by the observer type that is used, i.e. robust observer

 89

versus nominal observer respectively, where the robust observer based configuration is the

one proposed in the current study (equations 5.8-5.10 above).

To compare the performance of these controllers, two cost functions were used first one

related to the overall control effort, 𝐽𝑢 = ∑ ∑ (𝑢𝑖′(𝑗)𝑢𝑖(𝑗))𝑁
𝑖=1

𝑁𝐺
𝑗=1 , and the second one related

to the output variables, 𝐽𝑦 = ∑ ∑ (𝑦𝑖′(𝑗)𝑆𝑖𝑦(𝑗))𝑁
𝑖=1

𝑁𝐺
𝑗=1 , where 𝑁𝑆 is the simulation time.

Nine different plants realizations were chosen by simulating the plant model with

different 𝑩 matrices included within the uncertainty values used for the robust controller

given by (11) above: ∆=[-0.7,0.7], [-0.7,0], [-0.7,0.4], [0,0.7], [0,0], [0,-0.4], [0.7,0.7],

[0.7,0], [0.7,-0.4]. It should be emphasized that for the simulations the robust controller is

always based on the same uncertainty bounds values given in (5.11), whereas the model used

to emulate the actual process is varied according to the nine combinations of ∆′𝑠 given

above to simulate the operation of the robust controller around different operating conditions.

To test the effect of duration of communication loss, this loss was assumed to be periodic as

shown in Figure 5.1 where presence or loss of communication between the subsystems is

Figure 5.1 Communication Loss Profile, Lost = 0

indicated by values of 1 or 0 respectively. The controller parameters used in simulation for

comparing robust control and observer with the controller with the non-robust observer are:

𝑆1 = 1, 𝑆2 = 1,𝑅1 = 2,𝑅2 = 2, 𝜀1 𝑑𝑛𝑑 𝜀2 = 10−2. A set-point change of [-15,-20] is

conducted for the plant outputs, 𝑦1 and 𝑦2, respectively. The results for these two

configurations were compared for a set-point change based on the two cost functions 𝐽𝑢 and

𝐽𝑦 given above.

10 20 30 40 50 60
0

1

 90

Table 5.1 presents results for the set-point change with varying periods of communication

loss and various plant realizations. As shown in Table 5.1 when the loss of communication

period 𝑇 is 6 or 5, and for any of the plants’ uncertainty realizations considered in the

simulation, the control actions’ cost 𝐽𝑢,𝑛𝑛𝑛−𝑟𝑛𝑏𝑢𝑠𝑡 is 6.0-7.0 times more than that of 𝐽𝑢,𝑟𝑛𝑏𝑢𝑠𝑡.

For 𝑇 = 3, both non-Robust and Robust perform similarly for 6 out of 9 cases and for 3 out

of 9 cases 𝐽𝑢,𝑛𝑛𝑛−𝑟𝑛𝑏𝑢𝑠𝑡 is again 1.7-1.8 times of 𝐽𝑢,𝑟𝑛𝑏𝑢𝑠𝑡. Thus, as the period of

communication loss increases, the difference in performance between the two controllers is

very significant.

Also, the differences in output performance, given by 𝐽𝑦 , between the two controllers changes

significantly with respect to the particular realization of the plant and it was noted that the

ratio of the two cost values defined for comparing the performance remain insensitive to

changes in ∆2, but significantly increase with respect to changes in ∆1. Figure 5.2 compares

the responses (plant ∆1,∆2= 0.7) for communication loss periods of 𝑇 = 3 and 5

respectively. For a loss period of 𝑇 = 3, the controlled variables do not show a significantly

different behavior (Jy,non-robust/Jy,robust ~ 1.1) but the plant inputs show a significantly different

profile. The robust controller with the non-robust observer exhibits a highly oscillatory

behavior as communication is lost and established back again. For communication loss

period of 5, both plant inputs and outputs, have drastically different closed loop performance

for the two controllers resulting in significant improvement of the performance when using

the robust controller with the robust observer. It should not be surprising that for 𝛥 =

[0.0, 0.0], the robust observer based controller performs better than the nominal counterpart

even though the nominal observer model matches the plant. The reason for this is that even

the robust controller with the nominal observer is tuned for the worst case model, which is

generally different from the nominal model used by the nominal observer.

 91

Table 5.1: Robust Observer vs Nominal Observer

Plant

Loss

Period

𝛥 = [−0.7, 0.7] 𝛥 = [−0.7, 0.0] 𝛥 = [−0.7,−0.4] 𝛥 = [0.0, 0.7] 𝛥 = [0.0, 0.0]

Robust
Non-

Robust
Robust

Non-

Robust
Robust

Non-

Robust
Robust

Non-

Robust
Robust

Non-

Robust

Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost

3
245

3209

235

3200

244

3188

236

3186

238

3195

231

3196

198

2562

193

2573

189

2555

183

2567

4
282

3285

847

3767

264

3228

791

3550

251

3222

768

3448

239

2669

627

3194

209

2623

566

2997

5
254

3254

1896

4538

229

3237

1594

3967

220

3239

1469

3711

203

2685

1588

4135

180

2658

1259

3495

6
245

3311

4351

6253

221

3280

2970

4618

209

3273

2506

4082

206

2680

5010

6982

182

2645

2982

4749

Plant

Loss

Period

𝛥 = [0.0,−0.4] 𝛥 = [0.7, 0.7] 𝛥 = [0.7, 0.0] 𝛥 = [0.7,−0.4]

Robust
Non-

Robust
Robust

Non-

Robust
Robust

Non-

Robust
Robust

Non-

Robust

Cost Cost Cost Cost Cost Cost Cost Cost

3
184

2556

177

2569

153

2052

269

2396

142

2026

259

2334

140

2022

255

2301

4
197

2609

541

2909

140

2092

784

3337

130

2083

659

2965

127

2080

606

2804

5
170

2651

1147

3342

123

2032

2105

4669

122

2023

1575

3871

118

2039

1316

3400

6
172

2633

2387

4071

126

2001

9013

10623

124

1992

4793

6526

121

2007

3511

5150

 92

Table 5.2: Robust Observer vs Non-robust for Nash Scheme

Plant

Loss

Period

𝛥 = [−0.7, 0.7] 𝛥 = [−0.7, 0.0] 𝛥 = [−0.7,−0.4] 𝛥 = [0.0, 0.7] 𝛥 = [0.0, 0.0]

Robust
Non-

Robust
Robust

Non-

Robust
Robust

Non-

Robust
Robust

Non-

Robust
Robust

Non-

Robust

Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost

 3
153

3485

366

6316

135

3446

346

6205

126

3449

336

6121

145

3173

308

6117

129

3187

296

6000

 5
106

3393

2080

7950

95

3376

1556

7017

91

3400

1336

6634

94

3001

2484

8760

87

2999

1812

7513

Plant

Loss

Period

𝛥 = [0.0,−0.4] 𝛥 = [0.7, 0.7] 𝛥 = [0.7, 0.0] 𝛥 = [0.7,−0.4]

Robust
Non-

Robust
Robust

Non-

Robust
Robust

Non-

Robust
Robust

Non-

Robust

Cost Cost Cost Cost Cost Cost Cost Cost

 3
119

3183

284

5896

146

2937

275

6001

130

2871

328

5805

120

2843

314

5759

 5
81

3020

1496

6945

87

2683

3541

10707

82

2671

2433

8546

77

2668

1952

7752

 93

Figure 5.2 Comparison of Robust Observer (Solid) vs Non-Robust (Dashed)

Since in many industrial implementations of distributed MPC, local control objectives are

enforced for each subsystem, comparison of input and output response was carried out using

a Nash equilibrium based scheme which is based on local control objectives that involve

local variables only, i.e. 𝑹𝒋 = 0, and 𝒓𝒋 is a diagonal weighting matrix where all the elements

are set to zero except for those elements which multiply the states which are measured

locally in each subsystem. Controller parameters used for this study are 𝑆1 = 1, 𝑆2 = 1,𝑅1 =

0.7,𝑅2 = 0.7,𝛼 = 1, 𝜀1 𝑑𝑛𝑑 𝜀2 = 10−2.

Table 5.2 presents 𝐽𝑢,𝑟𝑛𝑏𝑢𝑠𝑡, 𝐽𝑦,𝑟𝑛𝑏𝑢𝑠𝑡 and 𝐽𝑢,𝑛𝑛𝑛−𝑟𝑛𝑏𝑢𝑠𝑡, 𝐽𝑦,𝑛𝑛𝑛−𝑟𝑛𝑏𝑢𝑠𝑡 for a loss period of

𝑇 = 3,5 and for nine plant realizations. Even for the communication loss period 𝑇 = 3, the

ratio of the costs related to the control effort 𝐽𝑢,𝑛𝑛𝑛−𝑟𝑛𝑏𝑢𝑠𝑡/𝐽𝑢,𝑟𝑛𝑏𝑢𝑠𝑡 is between 1.8-2.6. And

this difference in performance monotonically grows with increasing loss period. Similarly for

Jy,non-robust/Jy,robust is between 1.7-2.0 for 𝑇 = 3. Hence for the Nash equilibrium based

scheme, where only local objective functions are optimized in each subsystem, the robust

controller with the robust observer provides significant improvement over the performance of

the robust controller with the nominal observer even for short periods of communication loss.

0 20 40 60
-20

-10

0
y1, loss period is 3

0 20 40 60
-20

-10

0
y2

20 40 60
-5
-3
0
3
5

u1

20 40 60
-5
-3
0
3
5

u2

k

0 20 40 60
-20

-10

0
y1, loss period is 5

0 20 40 60
-20

-10

0
y2

20 40 60
-5
-3
0
3
5

u1

20 40 60
-5
-3
0
3
5

u2

k

 94

5.3.2 Case Study 2

To test the practicality of the proposed robust observer based DMPC methodology to larger

systems we consider a reactor-separator process, where there are 3 process units, 2 CSTR’s

followed by a flash separator (see Figure 5.3). A polymerization reaction occurs in both the

CSTR’s, 𝐴−> 𝐵−> 𝐶, where A is the reactant, B is the desired product and C is an

undesired side product. Most of the vapors from the flash separator are condensed, recycled

and then a small part is purged out. The bottoms from the separator form the product. CSTR1

receives fresh feed, 𝐹10 comprising of the reactant 𝐴, the effluent from CSTR1 then flows

into the CSTR2 along with fresh feed 𝐹20consisting of the reactant 𝐴, and finally the effluent

from CSTR2 goes to the flash separator. Each of the process units is equipped with an

external heat input (𝑄1,𝑄2,𝑄3) in order to maintain the temperature conditions. This type of

process system has been previously used by Liu et al., 2009 with different steady-state

conditions to develop a stabilizing distributed MPC algorithm referred to as Lyapunov-based

MPC. The entire system consists of 9 states (𝑥𝐴1, 𝑥𝐵1,𝑇1, 𝑥𝐴2, 𝑥𝐵2,𝑇2, 𝑥𝐴3, 𝑥𝐵3,𝑇3) and 4

inputs (𝑄1,𝑄2,𝑄3,𝐹20).

Figure 5.3: DMPC Scheme of Reactor-Separator Case Study4.

4 Figure 5.3 has been adapted from Liu, J. et al., 2009..

DMPC1 DMPC2 DMPC3

T T T T T T

 95

Figure 5.3 shows the distributed control scheme assuming the partition of the process into

three subsystems. The input-output pairing of the first subsystem consists of the local states

and the heat input to the CSTR1: 𝑥𝐴1, 𝑥𝐵1,𝑇1,𝑄1; similarly for subsystem 3, the local states

and the heat input in the flash separator are the outputs and input respectively:

𝑥𝐴3, 𝑥𝐵3,𝑇3,𝑄3. Subsystem 2 consists of local states (𝑥𝐴1, 𝑥𝐵1,𝑇1) along with the heat input

and the amount of fresh feed supplied to CSTR2 (𝑄2,𝐹20) as inputs. This type of system is

highly nonlinear and for the purposes of this study is linearized around a steady state

condition (provided in Table 5.3), and then discretized in order to derive the LTI model

matrices of the entire system[𝑨,𝑩]. The robust model is then derived by assuming

uncertainty in 𝑨, and is defined by the convex hull of 4 matrices [𝑨(𝟏),(𝓛),𝟑,(𝟒)]

and [𝑩(𝟏),(𝓛),𝟑,(𝟒)]. The values of these matrices have been provided in Appendix B. The

structure of the robust model as derived from the nominal model is presented in Eq. 5.12,

where Δ1,Δ2,Δ3, define the uncertainty in respective subsystems, and the bounds on these

uncertainty elements are shown in Eq. 5.13.

𝑨 = 𝑨𝑛𝑛𝑚𝑖𝑛𝑚𝑟 ∗ �𝑰9𝑛9 + �
∆1𝑰3𝑛3 03𝑛3 03𝑛3

03𝑛3 ∆2𝑰3𝑛3 03𝑛3
03𝑛3 03𝑛3 Δ3𝑰3𝑛3

�� 5.12

�𝑩(𝟏),(𝓛),𝟑,(𝟒)� = 𝑩(𝟏) = 𝑩𝑛𝑛𝑚𝑖𝑛𝑚𝑟

−0.5 ≤ ∆1≤ 0.15, −0.5 ≤ ∆2≤ 0.3, Δ3 = 0 5.13

Linearization is done by using first-order Taylor Series expansion around steady-state

condition, followed by discretization using MATLAB command c2d with a time step of 3

minutes. The [𝑨(𝟏),(𝓛),𝟑,(𝟒)] and [𝑩(𝟏),(𝓛),𝟑,(𝟒)] matrices are determined by using different

pairings of, [Δ1,Δ2] = {[−0.5,−0.5], [−0.5, 0.3], [0.15,−0.5], [0.15, 0.3]}, respectively.

In order to compare the performance of robust observer based DMPC with the nominal

observer based DMPC, the system was disturbed from the steady-state and then the DMPC

scheme was investigated as for the previous case study for 3 different communication loss

profile, that differ by the duration of the communication loss period as 𝑇 = 3,4,5, (see Figure

 96

5.4) and for 6 different plant configurations within the convex hull defined by [𝑨(𝟏),(𝓛),𝟑,(𝟒)]

and [𝑩(𝟏)]. The cost function for comparison is defined as the weighted sum of

Table 5.3: Process Parameters and corresponding Steady-State values

Process Variables Description Steady-State Values

𝑥𝐴1, 𝑥𝐴2, 𝑥𝐴3 Mass Fractions of A in vessels 1,2,3 [0.865, 0.881, 0.750]

𝑥𝐵1,𝑥𝐵2, 𝑥𝐵3 Mass Fractions of B in vessels 1,2,3 [0.121, 0.117, 0.244]

𝑥𝑃1,𝑥𝑃2,𝑥𝑃3 Mass Fractions of C in vessels 1,2,3 [0.014, 0.002, 0.006]

𝑇1,𝑇2,𝑇3 Temperatures in vessels 1,2,3 [380.2, 376.07, 385.55] (𝐾)

𝑇10,𝑇20 Feed Stream Temperatures to vessels 1,2 [300, 300]𝐾

𝐹1,𝐹2 Effluent flowrate from vessels 1,2 [20.08, 25.12]𝑚3/𝑚𝑚𝑛

𝐹10,𝐹20 Steady-state feed stream flowrates to vessels 1, 2 [5.04, 5.04]𝑚3/𝑚𝑚𝑛

𝑑1,𝑑2,𝑑3 Volumes of vessels 1, 2 [1.0, 0.5, 1.0]𝑚3

𝐸1,𝐸2 Activation Energy for the reactions 1,2 [5𝑥104, 6𝑥104]𝐾𝐽/𝑘𝑚𝑃𝑙

𝑘1,𝑘2 Pre-exponential values for reactions 1, 2 [2.77𝑥103, 2.5𝑥103]𝑠−1

Δ𝐻1,Δ𝐻2 Heats of reactions for reactions 1, 2 [6𝑥104, 7𝑥104] 𝐾𝐽/𝑘𝑚𝑃𝑙

𝛼𝐴,𝛼𝐵,𝛼𝑃 Relative volatilities of 𝐴,𝐵,𝐶 [3.5, 1.0, 0.5]

𝑄1,𝑄2,𝑄3 Heat inputs to vessels 1, 2, 3 [1.08𝑥106, 1.14𝑥106]𝐾𝐽/ℎ,

 [1.0𝑥106] 𝐾𝐽/ℎ

𝐶𝑠,𝑅,𝜌 Heat Capacity, solution density, Gas Constant, [4.2 𝐾𝐽/𝑘𝑔/𝐾, 1000 𝑘𝑔
𝑚3

 ,

8.314 𝐾𝐽/𝑘𝑚𝑃𝑙/𝐾]

𝐽 = ∑ ∑ (𝑦𝑖′(𝑗)𝑆𝑖𝑦(𝑗)𝑁𝑦
𝑖=1

𝑁𝐺
𝑗=1) + ∑ ∑ (𝑢𝑖′(𝑗)𝑅𝑖𝑢𝑖(𝑗))𝑁𝑢

𝑖=1
𝑁𝐺
𝑗=1 , where in this case study 𝑆 =

0.3𝐼9𝑛9 and 𝑅 = 0.6𝐼9𝑛9. Also for the purposes of this case study, 𝐽𝑟𝑛𝑏𝑢𝑠𝑡refers to the value

of the cost for the robust observer based DMPC and 𝐽𝑛𝑛𝑚𝑖𝑛𝑚𝑟 refers to the cost function value

 97

for the nominal observer based DMPC. The process system of Figure 5.3 has 3 subsystems,

with uncertainty in 2 subsystems, resulting in 4 matrices which defines the convex hull

however, since the total number of states are 9, while solving Problem 5.7 with augmented

state constraints (Eq. 5.9), there are additional 29 − 1 = 511, LMI constraints added. The

robust control problem 5.7 is solved locally for each subsystem at every time step during the

loss of communication.

Figure 5.4: Communication Loss Profile, 𝑻 = 𝟑,𝟒,𝟐

Table 5.4 compares the value of the cost function for 6 different plants, for 3 different

communication loss profiles. Robust observer consistently does better than nominal observer

for all the cases considered by ~20%, i.e 𝐽𝑟𝑛𝑏𝑢𝑠𝑡 > 𝐽𝑛𝑛𝑚𝑖𝑛𝑚𝑟. On increasing the

communication loss period from 𝑇 = 3 𝑋𝑃 5, there is a marginal improvement in 𝐽�̅�𝑛𝑏𝑢𝑠𝑡over

𝐽�̅�𝑛𝑚𝑖𝑛𝑚𝑟, where 𝐽 ̅ represents the cost averaged over all the 6 plants for each of the

communication loss period. It can also be observed that as the value of the uncertainty grows,

the ratio of 𝐽𝑛𝑛𝑚𝑖𝑛𝑚𝑟/𝐽𝑟𝑛𝑏𝑢𝑠𝑡increases, for example for all the communication loss periods

considered, the robust observer based DMPC had the greatest positive impact on the plant

defined by Δ1,Δ2 = [−.4,−0.25] and the least impact on the plant defined by Δ1,Δ2 =

[−0.1, 0.25].

0 5 10 15 20 25 30
0

0.5

1

0 5 10 15 20 25 30
0

0.5

1

Lo
ss

 =
 0

, N
o

Lo
ss

 =
 1

0 5 10 15 20 25 30
0

0.5

1

Time Steps

 98

Table 5.4: Cost function value for Robust vs. Non-robust Observer in Case Study 2

Plant # Δ1 Δ2 Nominal Robust Nominal Robust Nominal Robust
1 -0.1 0.25 6.99 6.66 1.05 7.38 6.92 1.07 7.41 6.87 1.08
2 -0.1 -0.4 5.29 4.47 1.18 5.83 4.86 1.20 5.92 4.92 1.20
3 -0.4 -0.25 4.25 3.26 1.30 4.84 3.74 1.29 4.95 3.79 1.31
4 -0.4 0.25 4.67 3.72 1.25 5.29 4.18 1.26 5.43 4.25 1.28
5 -0.4 -0.4 4.15 3.16 1.31 4.72 3.64 1.30 4.83 3.68 1.31
6 -0.1 -0.25 5.56 4.79 1.16 6.07 5.16 1.18 6.16 5.20 1.19

1.21 1.22 1.23

J, loss period = 3 J, loss period = 4 J, loss period = 5State wt = 0.3, Input wt = 0.6

Figure 5.5 and Figure 5.6 compares the controller action and states for nominal and robust

observer for the plant defined by Δ1,Δ2 = [−0.4,−0.25], with communication loss period

𝑇 = 5. The value of all the states and control actions has been normalized. Since the system

is not starting from a steady-state condition, all the states and control actions exhibit a sudden

jump towards the origin, and then during communication loss they exhibit additional jumps

towards the steady-state before finally reaching the steady-state. While the controller is

trying to bring back the plant to steady-state, the nominal observer based DMPC algorithm

Figure 5.5: Control Actions for Plant 𝚫𝟏,𝚫𝓛 = [−𝟎.𝟒,−𝟎.𝓛𝟐] and loss period = 5

0 5 10 15 20 25 30
-0.5

0

0.5

1

Q
1

Time Steps

robust
nominal

0 5 10 15 20 25 30
-1

-0.5

0

0.5

F 20

Time Steps

robust
nominal

0 5 10 15 20 25 30
-0.2

0

0.2

0.4

0.6

Q
2

Time Steps

robust
nominal

0 5 10 15 20 25 30
-0.5

0

0.5

1

Q
3

Time Steps

robust
nominal

 99

results in a bigger jump away from the steady when compared with the robust observer based

algorithm. During steady-state operation both the nominal and robust observer based

algorithms results in similar control action. This can be attributed to the fact that during

steady-state operation, both the nominal observer and robust observer based DMPC provide

very similar solutions in terms of state estimates and state bounds respectively.

5.4 Conclusions

In this work a robust DMPC algorithm supplemented by a robust observer has been proposed

to handle communication loss. It is shown that a robust DMPC algorithm can be effectively

combined with a robust observer that is formulated by additional LMI constraints. The key

idea is that the robust observer is incorporated in each subsystem to determine bounds for all

the states, and since the starting point of the state estimates used by robust observer for each

subsystem after communication loss is same, it computes identical bounds for all subsystems

during periods loss of communication thus resulting in the same controller being calculated

for each subsystem. To account for the limited information available to each subsystem

during communication loss the control action for each subsystem is based on the local

measured states and on the mean values of the bounds of the unmeasured states. The

performance of the robust controller combined with the robust observer was shown to be

significantly better than that of a robust controller that uses a nominal model based observer

for two different case studies.

 100

Figure 5.6: System Response to the control inputs for Plant 𝚫𝟏,𝚫𝓛 = [−𝟎.𝟒,−𝟎.𝓛𝟐] and loss period = 5

0 5 10 15 20 25 30
-0.05

0

0.05

0.1

0.15
xa

1

Time Steps

robust
nominal

0 5 10 15 20 25 30
-1

-0.5

0

0.5

xb
1

Time Steps

robust
nominal

0 5 10 15 20 25 30
-0.2

-0.1

0

0.1

0.2

T 1

Time Steps

robust
nominal

0 5 10 15 20 25 30
-0.05

0

0.05

0.1

0.15

xa
2

Time Steps

robust
nominal

0 5 10 15 20 25 30
-1

-0.5

0

0.5

xb
2

Time Steps

robust
nominal

0 5 10 15 20 25 30
-0.2

-0.1

0

0.1

0.2

T 2

Time Steps

robust
nominal

0 5 10 15 20 25 30
-0.1

0

0.1

0.2

0.3

xa
3

Time Steps

robust
nominal

0 5 10 15 20 25 30
-0.6

-0.4

-0.2

0

0.2
xb

3

Time Steps

robust
nominal

0 5 10 15 20 25 30
-0.2

-0.1

0

0.1

0.2

T 3

Time Steps

robust
nominal

 101

Chapter 6
Conclusions and Future Work

6.1 PCE-based Robust NMPC

In Chapter 3, a robust controller is formulated using a PCE based model and a min-max

optimization. The motivation for this work comes from the conservative nature of previously

proposed worst-case type robust controller and from their computational complexity. The use

of PCE’s and nonlinear empirical models based on Volterra series facilitated the propagation

of parametric uncertainty and permitted quick calculation of the ℒ2-norm of the uncertain

closed-loop model predictions, thus removing the need for developing a worst-case controller

for intermediate predictions. Controller stability is still formulated using a worst-case

approach based on SSV test. The reduction in conservatism and computational burden of the

robust controller are key contributions of this work. A case study is presented comparing the

results of PCE-based RNMPC with an SSV-based RNMPC. The proposed controller was

also compared to two nonlinear nominal controllers based on first-principles model and an

empirical model using Volterra series that do not consider model error. The PCE-based

RNMPC was shown to be clearly superior in all cases when compared in terms of the IAE at

different operating conditions. The reduction in computational load of the proposed PCE

based RNMPC with the previously SSV-RNMPC was especially significant with executions

times of the order of 1 hour for the former versus more than 5 days for the latter. This

improvement makes the PCE based RNMPC controller suitable for implementation to

processes of larger complexity. The reliance of the proposed algorithm on an empirical

nonlinear model is of industrial interest since suitable mechanistic models are often not

available or are very difficult to develop.

6.2 PCE Applications in Robust Control and Optimization of batch bioreactor

In Chapter 4 two novel algorithms using PCE are presented for robust optimization and

control of a fed-batch reactor modeled using DFBM. The choice of control versus

optimization for bioreactor operation mainly depends on the availability of on-line

measurements during a batch and on the flexibility of standard operating procedures with

 102

respect to closed-loop control implementation. Assuming that online measurements are

available, an online robust control algorithm based on PCE is developed using an economic

objective function. In the case study the objective function was chosen as the end-point

biomass amount. Since the DFBM that was used is posed as an LP-based model and since the

resulting robust control problem also requires an optimization operation, the overall problem

is formulated as a bilevel optimization. The inner level optimization is then replaced using a

surrogate model between the fluxes to the uncertainty in model parameters using a non-

intrusive PCE approach. On the other hand the uncertainty is propagated onto the model

predictions along the control prediction horizon using intrusive methods, i.e. by explicitly

using the first principle equations of the system. The controller was applied to the process of

growth of E.Coli based on glucose and acetate and the control actions were calculated based

on feedback corrections of glucose and biomass. The robust controller showed better final

productivity (biomass level) than the nominal controller by an average of 13% that can be

significant in bio-manufacturing. The use of PCE to propagate parametric uncertainty was

shown to be computationally very efficient as compared to a Monte Carlo approach. This

computational efficiency is expected to be instrumental for the online implementation of the

proposed robust algorithm into an actual process.

The offline-robust optimization approach presented in Chapter 4 is based on the

minimization of the level of violation of a lower bound on the end point biomass level. This

type of objective is important in manufacturing of pharmaceuticals since batches are costly

and batch reactor time is extremely critical to supply high demand. A surrogate model of the

end-point biomass is developed using a non-intrusive PCE approach which allowed for quick

calculation of the variance by analytical formula. The nominal optimization failed to meet the

minimum end-point biomass lower limit for 18% of the cases as opposed to 4% violation for

robust optimization.

As mentioned above the choice between robust control and robust optimization will depend

on the quality of available measurements and on process certification constraints. In the past,

pharmaceutical companies have generally avoided on line control in manufacturing

operations due to safety concerns and inflexible operating procedures. In these cases, a robust

 103

optimization approach would be preferred. However, recent changes in FDA guidelines have

increased the acceptability of on-line control strategies for manufacturing of pharmaceuticals

such as the one proposed in this work.

6.3 Robust Observer for Distributed MPC

In previous chapters the topic of computational complexity was tackled by using PCE as a

quick mean to propagate uncertainty onto the objective functions and constraints. In Chapter

5 computational complexity is tackled by distributed control. In general, most of the

industrial implementations of MPC in the process industries rely on distributed control due to

computational and maintenance issues of one single centralized controller for a plant with a

large number of inputs and outputs. In Chapter 5 the concept of a robust observer is

introduced for linear models which can be used to address the issues of communication loss

between subsystems in a distributed control. The proposed robust observer determines upper

and lower bounds of all the plant states from the solution of a bilinear optimization problem.

The robust observer is then integrated with a robust DMPC algorithm to handle

communication loss. It is shown that the robust stability analysis of a robust DMPC

algorithm combined with the robust observer can be posed by a system of LMI constraints.

The key idea is that each subsystem is equipped with a robust observer to determine bounds

for all the states, and since the starting point of the state estimates used by robust observer for

each subsystem after communication loss is same, it computes identical bounds for all

subsystems’ states during periods of communication loss, thus resulting in the same

controller being calculated for each subsystem. To account for the limited information

available to each subsystem during communication loss the control action for each subsystem

is based on the local measured states and on the mean values of the bounds of the

unmeasured states. The performance of the robust controller combined with the robust

observer was shown to be significantly better than that of a robust controller which uses a

nominal model based observer for two different case studies: a distillation column and a

reaction-separation system. The impact of the use of the robust observer on closed loop

performance was particularly evident for the distillation column due to the ill conditioning of

the process and its resulting sensitivity to model error. The implementation of the robust

 104

controller and robust observer algorithm in the reactor system illustrated the computational

feasibility of the algorithm for a system with several states.

6.4 Future Work

The findings of this work have helped identify several new topics for further research as

follows:

1. Based on the results presented in Chapter 3 and Chapter 5, a distributed NMPC

scheme based on PCE can be explored, by combining the results of the two chapters.

This can be done by representing each local controller with a PCE-based Robust

NMPC and including the model interactions (critical for overall performance of the

distributed controller) as disturbances. These disturbances could be estimated by

using the robust observer concept developed for linear models in Chapter 5. The

robust observer developed in Chapter 5 can be computationally intensive for a large

system, and hence there might be a need to develop robust estimators for each

subsystem separately.

2. Pharmaceutical industries work under tight constraints on the amount of substrate

feeding that can occur during a batch. The robust control algorithm did not consider

this constraint because this limits the performance of the batch reactor drastically.

One way to develop robust controller would be to define the constraints on controller

actions using an offline robust optimization technique for the entire batch length. This

type of design on control actions is commonly considered as “Quality by Design”

where the control actions are developed by considering all the risks (uncertainty) in

the processes.

3. Investigate experimental implementation of the robust control algorithm in Chapter 4

first in a bench scale reactor and eventually in a production unit. Since the algorithm

takes into account constraints on input variables it could be implemented in an actual

certified process while the bounds on inputs could be set as specified by the

certification limits. Although tight constraints on inputs will limit the closed loop

 105

performance they may still provide a better outcome at the end of the batch since the

approach is based on the maximization of an end point quality.

 106

Bibliography

Al-Gherwi, W., Budman, H. & Elkamel, A. 2011. A robust distributed model predictive

control algorithm. Journal of Process Control, 21, 1127-1137.

Allgower, F., Findeisen, R. & Nagy, Z.K. 2004. Nonlinear model predictive control: From

theory to application. Journal of the Chinese Institute of Chemical Engineers, 35, 299-315.

Banga, J.R., Alonso, A.A. & Singh, R.P. 1997. Stochastic dynamic optimization of batch and

semicontinuous bioprocesses. Biotechnology Progress, 13, 326-335.

Boyd, S.P. 1994. Linear matrix inequalities in system and control theory, Philadelphia,

Society for Industrial and Applied Mathematics.

Braatz, R.P., Young, P.M., Doyle, J.C. & Morari, M. 1994. Computational-complexity of

mu-calculation. IEEE Transactions on Automatic Control, 39, 1000-1002.

Cannon, M., Buerger, J., Kouvaritakis, B. & Rakovic, S. 2011. Robust tubes in nonlinear

model predictive control. IEEE Transactions on Automatic Control, 56, 1942-1947.

Chen, H. & Allgower, F. 1998. A quasi-infinite horizon nonlinear model predictive control

scheme with guaranteed stability. Automatica, 34, 1205-1217.

Chen, L.B., Bastin, G. & V, V. 1995. A case-study of adaptive nonlinear regulation of fed-

batch biological reactors. Automatica, 31, 55-65.

De La Pena, D.M. & Christofides, P.D. 2008. Lyapunov-based model predictive control of

nonlinear systems subject to data losses. IEEE Transactions on Automatic Control, 53, 2076-

2089.

Dewasme, L., Srinivasan, B., Perrier, M. & Vande Wouwer, A. 2011. Extremum-seeking

algorithm design for fed-batch cultures of microorganisms with overflow metabolism.

Journal of Process Control, 21, 1092-1104.

Diaz-Mendoza, R. & Budman, H. 2010a. Design of a robust nonlinear model predictive

controller based on a hybrid model and comparison to other approaches. Industrial &

Engineering Chemistry Research, 49, 11482-11490.

 107

Diaz-Mendoza, R. & Budman, H. 2010b. Structured singular valued based robust nonlinear

model predictive controller using volterra series models. Journal of Process Control, 20,

653-663.

Diehl, M., Gerhard, J., Marquardt, W. & Monigmann, M. 2008a. Numerical solution

approaches for robust nonlinear optimal control problems. Computers & Chemical

Engineering, 32, 1279-1292.

Diehl, M., Gerhard, J., Marquardt, W. & Monnigmann, M. 2008b. Numerical solution

approaches for robust nonlinear optimal control problems. Computers & Chemical

Engineering, 32, 1279-1292.

Doyle, F.J., Ogunnaike, B.A. & Pearson, R.K. 1995. Nonlinear model-based control using

2nd-order volterra models. Automatica, 31, 697-714.

Doyle, F.J., Packard, A.K. & Morari, M. 1989. Robust controller-design for a nonlinear

CSTR. Chemical Engineering Science, 44, 1929-1947.

Findeisen, R., Imsland, L., Allgower, F. & Foss, B.A. 2003. State and output feedback

nonlinear model predictive control: An overview. European Journal of Control, 9, 190-206.

Frahm, B., Lane, P., Atzert, H., Munack, A., Hoffmann, M., Hass, V.C. & Portner, R. 2002.

Adaptive, model-based control by the open-loop-feedback-optimal (olfo) controller for the

effective fed-batch cultivation of hybridoma cells. Biotechnology Progress, 18, 1095-1103.

Fruzzetti, K.P., Palazoglu, A. & Mcdonald, K.A. 1997. Nonlinear model predictive control

using hammerstein models. Journal of Process Control, 7, 31-41.

Ghanem, R. & Spanos, P.D. 1990. Polynomial chaos in stochastic finite-elements. Journal of

Applied Mechanics-Transactions of the ASME, 57, 197-202.

Ghanem, R.G. & Spanos, P.D. 1997. Spectral techniques for stochastic finite elements.

Archives of Computational Methods in Engineering, 4, 63-100.

 108

Heidarinejad, M., Liu, J.F., De La Pena, D.M., Davis, J.F. & Christofides, P.D. 2011.

Handling communication disruptions in distributed model predictive control. Journal of

Process Control, 21, 173-181.

Henson, M.A. 1998. Nonlinear model predictive control: Current status and future directions.

Computers & Chemical Engineering, 23, 187-202.

Henson, M.A. 2010. Model-based control of biochemical reactors. In: Levine, W. S. (ed.)

The control handbook. Second ed.: CRC Press.

Hjersted, J.L. & Henson, M.A. 2006. Optimization of fed-batch saccharomyces cerevisiae

fermentation using dynamic flux balance models. Biotechnology Progress, 22, 1239-1248.

Hover, F.S. & Triantafyllou, M.S. 2006. Application of polynomial chaos in stability and

control. Automatica, 42, 789-795.

Kawohl, M., Heine, T. & King, R. 2007. A new approach for robust model predictive control

of biological production processes. Chemical Engineering Science, 62, 5212-5215.

Kim, K.K.K., Braatz, R.D. & Ieee 2012. Probabilistic analysis and control of uncertain

dynamic systems: Generalized polynomial chaos expansion approaches. 2012 American

Control Conference (Acc), 44-49.

Konno, H. 1976. Maximization of a convex quadratic function under linear constraints.

Mathematical Programming, 11, 117-127.

Kothare, M.V., Balakrishnan, V. & Morari, M. 1996. Robust constrained model predictive

control using linear matrix inequalities. Automatica, 32, 1361-1379.

Kuhlmann, C., Bogle, I.D.L. & Chalabi, Z.S. 1998. Robust operation of fed batch fermenters.

Bioprocess Engineering, 19, 53-59.

Kumar, D., Al-Gherwi, W. & Budman, H. 2012. Robust-distributed mpc with robust

observer to handle communication loss. IFAC 2012. Singapore.

Kumar, D. & Budman, H. 2014. Robust nonlinear mpc based on volterra series and

polynomial chaos expansions. Journal of Process Control, 24, 304-317.

 109

Kumar, D. & Budman, H. 2015. Robust nonlinear predictive control for a bioreactor based

on a dynamic metabolic flux balance model. IFAC 2015. Vancouver, Canada.

Kwakernaak, H. 1993. Robust control and hinfinity-optimization - tutorial paper.

Automatica, 29, 255-273.

Lee, J., Lee, S.Y., Park, S. & Middelberg, A.P.J. 1999. Control of fed-batch fermentations.

Biotechnology Advances, 17, 29-48.

Liu, J., De La Pena, D.M. & Christofides, P.D. 2009. Distributed model predictive control of

nonlinear process systems. AICHE Journal, 55, 1171-1184.

Logist, F., Houska, B., Diehl, M. & Van Impe, J.F. 2011. Robust multi-objective optimal

control of uncertain (bio)chemical processes. Chemical Engineering Science, 66, 4670-4682.

Lubbert, A. & Jorgensen, S.B. 2001. Bioreactor performance: A more scientific approach for

practice. Journal of Biotechnology, 85, 187-212.

Lӧfberg, J. Year. Yalmip : A toolbox for modeling and optimization in matlab. In: CACSD

Conference, 2004 Taipei, Taiwan.

Ma, D.L. & Braatz, R.D. 2001. Worst-case analysis of finite-time control policies. IEEE

Transactions on Control Systems Technology, 9, 766-774.

Ma, D.L., Chung, S.H. & Braatz, R.D. 1999. Worst-case performance analysis of optimal

batch control trajectories. AICHE Journal, 45, 1469-1476.

Maestre, J.M., De La Pena, D.M. & Camacho, E.F. 2009. A distributed mpc scheme with low

communication requirements. 2009 American Control Conference, Vols 1-9, 2797-2802.

Magni, L., Raimondo, D.M. & Scattolini, R. 2006. Regional input-to-state stability for

nonlinear model predictive control. IEEE Transactions on Automatic Control, 51, 1548-

1553.

Magni, L. & Scattolini, R. 2010. An overview of nonlinear model predictive control.

Automotive Model Predictive Control: Models, Methods and Applications, 402, 107-117.

 110

Mahadevan, R., Edwards, J.S. & Doyle, F.J. 2002. Dynamic flux balance analysis of diauxic

growth in escherichia coli. Biophysical Journal, 83, 1331-1340.

Mandur, J.S. & Budman, H.M. 2015. Simultaneous model identification and optimization in

presence of model-plant mismatch. Chemical Engineering Science, 129, 106-115.

Maner, B.R. & Doyle, F.J. 1997. Polymerization reactor control using autoregressive-plus

volterra-based mpc. AICHE Journal, 43, 1763-1784.

Mayne, D.Q., Kerrigan, E.C., Van Wyk, E.J. & Falugi, P. 2011. Tube-based robust nonlinear

model predictive control. International Journal of Robust and Nonlinear Control, 21, 1341-

1353.

Mayne, D.Q., Kerrigan, E. C., Falugi, P. Year. Robust model predictive control: Advantages

and disadvantages of tube-based methods. In: IFAC World Congress, Aug 28-Sep 2, 2011

2011 Milano (Italy). 191-196.

Mayne, D.Q., Rakovic, S.V., Findeisen, R. & Allgower, F. 2006. Robust output feedback

model predictive control of constrained linear systems. Automatica, 42, 1217-1222.

Mayne, D.Q., Seron, M.M. & Rakovic, S.V. 2005. Robust model predictive control of

constrained linear systems with bounded disturbances. Automatica, 41, 219-224.

Mcfarlane, D. & Glover, K. 1992. A loop shaping design procedure using h-infinity-

synthesis. Ieee Transactions on Automatic Control, 37, 759-769.

Michalska, H. & Mayne, D.Q. 1993. Robust receding horizon control of constrained

nonlinear-systems. IEEE Transactions on Automatic Control, 38, 1623-1633.

Nagy, Z.K. & Braatz, R.D. 2003. Robust nonlinear model predictive control of batch

processes. AICHE Journal, 49, 1776-1786.

Nagy, Z.K. & Braatz, R.D. 2004. Open-loop and closed-loop robust optimal control of batch

processes using distributional and worst-case analysis. Journal of Process Control, 14, 411-

422.

 111

Nagy, Z.K. & Braatz, R.D. 2007. Distributional uncertainty analysis using power series and

polynomial chaos expansions. Journal of Process Control, 17, 229-240.

Najm, H.N. 2009. Uncertainty quantification and polynomial chaos techniques in

computational fluid dynamics. Annual Review of Fluid Mechanics, 41, 35-52.

Norquay, S.J., Palazoglu, A. & Romagnoli, J.A. 1999. Application of wiener model

predictive control (wmpc) to a ph neutralization experiment. IEEE Transactions on Control

Systems Technology, 7, 437-445.

Nowak, R.D. & Vanveen, B.D. 1994. Random and pseudorandom inputs for volterra filter

identification. IEEE Transactions on Signal Processing, 42, 2124-2135.

Parker, R.S., Heemstra, D., Doyle, F.J., Pearson, R.K. & Ogunnaike, B.A. 2001. The

identification of nonlinear models for process control using tailored "plant-friendly" input

sequences. Journal of Process Control, 11, 237-250.

Qin, S.J. & Badgwell, T.A. 2003. A survey of industrial model predictive control technology.

Control Engineering Practice, 11, 733-764.

Rani, K.Y. & Rao, V.S.R. 1999. Control of fermenters - a review. Bioprocess Engineering,

21, 77-88.

Rawlings, J.B. & Stewart, B.T. 2008. Coordinating multiple optimization-based controllers:

New opportunities and challenges. Journal of Process Control, 18, 839-845.

Renard, F., Vande Wouwer, A., Valentinotti, S. & Dumur, D. 2006. A practical robust

control scheme for yeast fed-batch cultures - an experimental validation. Journal of Process

Control, 16, 855-864.

Scattolini, R. 2009. Architectures for distributed and hierarchical model predictive control - a

review. Journal of Process Control, 19, 723-731.

Scheu, H. & Marquardt, W. 2011. Sensitivity-based coordination in distributed model

predictive control. Journal of Process Control, 21, 715-728.

 112

Skogestad, S., Morari, M. & Doyle, J.C. 1988. Robust-control of ill-conditioned plants -

high-purity distillation. IEEE Transactions on Automatic Control, 33, 1092-1105.

Smets, I.Y., Claes, J.E., November, E.J., Bastin, G.P. & Van Impe, J.F. 2004. Optimal

adaptive control of (bio)chemical reactors: Past, present and future. Journal of Process

Control, 14, 795-805.

Smith, A.H.C., Monti, A. & Ponci, F. 2009. Uncertainty and worst-case analysis in electrical

measurements using polynomial chaos theory. IEEE Transactions on Instrumentation and

Measurement, 58, 58-67.

Srinivasan, B. & Bonvin, D. 2007. Real-time optimization of batch processes by tracking the

necessary conditions of optimality. Industrial & Engineering Chemistry Research, 46, 492-

504.

Srinivasan, B., Bonvin, D., Visser, E. & Palanki, S. 2003. Dynamic optimization of batch

processes: Ii. Role of measurements in handling uncertainty. Computers & Chemical

Engineering, 27, 27-44.

Sun, Y.L. & El-Farra, N.H. 2008. Quasi-decentralized model-based networked control of

process systems. Computers & Chemical Engineering, 32, 2016-2029.

Terwiesch, P., Ravemark, D., Schenker, B. & Rippin, D.W.T. 1998. Semi-batch process

optimization under uncertainty: Theory and experiments. Computers & Chemical

Engineering, 22, 201-213.

Trodden, P. & Richards, A. 2006. Robust distributed model predictive control using tubes.

2006 American Control Conference, Vols 1-12, 1-12, 2034-2039.

Vanantwerp, J.G. & Braatz, R.D. 2000. A tutorial on linear and bilinear matrix inequalities.

Journal of Process Control, 10, 363-385.

Varma, A. & Palsson, B.O. 1994. Metabolic flux balancing - basic concepts, scientific and

practical use. Bio-Technology, 12, 994-998.

 113

Venkat, A.N., Rawlings, J.B. & Wright, S.J. 2005. Stability and optimality of distributed

model predictive control. 2005 44th IEEE Conference on Decision and Control & European

Control Conference, Vols 1-8, 6680-6685.

Xiu, D. & Tartakovsky, D.M. 2004. Uncertainty quantification for flow in highly

heterogeneous porous media. Computational Methods in Water Resources, Vols 1 and 2, 55,

695-703.

Xiu, D.B. 2010. Generalized polynomial chaos. Numerical Methods for Stochastic

Computations: A Spectral Method Approach, 57-67.

Xiu, D.B. & Karniadakis, G.E. 2002. The wiener-askey polynomial chaos for stochastic

differential equations. SIAM Journal on Scientific Computing, 24, 619-644.

Zavala, V.M. & Biegler, L.T. 2009. The advanced-step nmpc controller: Optimality, stability

and robustness. Automatica, 45, 86-93.

Zhang, Y. & Li, S.Y. 2007. Networked model predictive control based on neighbourhood

optimization for serially connected large-scale processes. Journal of Process Control, 17, 37-

50.

 114

Appendix A
Interconnection Matrix

The robust controller presented in chapter 3 requires SSV calculation for terminal and input

constraints. The equations to be solved have to be transformed to an appropriate

interconnection matrix and uncertainty description.

A general form of the uncertain Volterra series can be represented as A. 1

𝑦� = (ℎ11 + 𝛿ℎ11)𝑢2 + (ℎ1 + 𝛿ℎ1)𝑢 + 𝑑 A. 1

Problem at hand is to formulate A. 1 into corresponding 𝑴,𝚫 so that the relationship between

𝑟, 𝐺 is shown by RHS of A. 1.

To this end following structure of 𝑴,𝚫 is proposed

𝑴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 ⋮ 𝑘𝑆𝑆𝑆
0 0 0 0 0 ⋮ 𝑘𝑆𝑆𝑆𝑢

0 0 0 0 0 ⋮ 𝑘𝑆𝑆𝑆𝑢2

0 𝑘𝑆𝑆𝑆 0 0 0 ⋮ 0

0 0 𝑘𝑆𝑆𝑆 0 0 ⋮ 0

… … … … … … …

𝑑 ℎ1 ℎ11 𝛿ℎ1 𝛿ℎ11 ⋮ 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑴 = δ1𝑰𝟐𝒙𝟐

A. 2

 115

�𝐳𝑟� = �𝑴𝟏𝟏 𝑴𝟏𝓛
𝑴𝓛𝟏 𝑴𝓛𝓛

� �𝐰𝐺 �

⎣
⎢
⎢
⎢
⎡
𝑤(1)
𝑤(2)
𝑤(3)
𝑤(4)
𝑤(5)⎦

⎥
⎥
⎥
⎤

= 𝑴

⎣
⎢
⎢
⎢
⎡
𝑧(1)
𝑧(2)
𝑧(3)
𝑧(4)
𝑧(5)⎦

⎥
⎥
⎥
⎤

= 𝛿1

⎣
⎢
⎢
⎢
⎡
𝑧(1)
𝑧(2)
𝑧(3)
𝑧(4)
𝑧(5)⎦

⎥
⎥
⎥
⎤

A. 3

Going element by element of 𝒛 vector and finally deriving the relationship between 𝑟 and 𝐺.

𝑧(1) = 𝑘𝑆𝑆𝑆𝐺

𝑧(2) = 𝑘𝑆𝑆𝑆𝑢 𝐺

𝑧(3) = 𝑘𝑆𝑆𝑆𝑢2 𝐺

𝑧(4) = 𝑘𝑆𝑆𝑆𝑤(2) = 𝑘𝑆𝑆𝑆𝛿1𝑧(2) = 𝑘𝑆𝑆𝑆2 𝛿1𝑢 𝐺

𝑧(5) = 𝑘𝑆𝑆𝑆𝑤(3) = 𝑘𝑆𝑆𝑆𝛿1𝑧(3) = 𝑘𝑆𝑆𝑆2 𝛿1𝑢2 𝐺

A. 4

Substitute for 𝒘 and 𝒛 in the equation for 𝑟

𝑟 = 𝑴𝓛𝟏𝒘 + 𝑴𝓛𝓛𝐺

𝑟 = 𝑑 𝑤(1) + ℎ1𝑤(2) + ℎ11𝑤(3) + 𝛿ℎ1𝑤(4) + 𝛿ℎ11𝑤(5)

𝑟 = 𝛿1[𝑑 𝑧(1) + ℎ1𝑧(2) + ℎ11𝑧(3) + 𝛿ℎ1𝑧(4) + 𝛿ℎ11𝑧(5)]

𝑟 = 𝑘𝑆𝑆𝑆𝛿1[𝑑 + (ℎ1 + 𝑘𝑆𝑆𝑆𝛿1𝛿ℎ1) 𝑢 + (ℎ11 + 𝑘𝑆𝑆𝑆𝛿1𝛿ℎ11)𝑢2]𝐺

A. 5

Equation A.5 represents skew-𝜇 formulation of A.1.

 116

Appendix B
Model Parameters for Reactor-Separator Case Study

Following are the parameters used to define the robust model used in Section 5.3.2 for

Reactor-Separator process.

𝐴𝑛𝑛𝑚𝑖𝑛𝑚𝑟 =

0.3932 -0.0017 -0.4626 0.0770 -0.0022 -0.0693 0.1783 -0.0107 -0.1493
0.1917 0.3963 3.1374 0.0154 0.0418 0.3775 0.0424 0.2300 1.0364
0.0038 0.0000 0.5061 0.0005 0.0000 0.1123 0.0008 0.0000 0.2819
0.3689 -0.0007 -0.4459 0.1136 -0.0011 -0.1319 0.1035 -0.0069 -0.1195
0.1879 0.4055 3.0585 0.0439 0.1025 0.8037 0.0266 0.1434 0.8219
0.0035 0.0000 0.4725 0.0009 0.0000 0.1511 0.0006 0.0000 0.1862
0.4046 0.0034 -0.2713 0.3918 0.0047 -0.1508 0.6620 0.0259 -0.0520
0.0919 0.1749 0.7593 0.0902 0.1532 0.3735 0.1660 0.5942 0.1458
0.0015 0.0000 0.2991 0.0007 0.0000 0.2282 0.0002 0.0000 0.3630

𝐴[1] =

0.1966 -0.0009 -0.2313 0.0385 -0.0011 -0.0346 0.1782 -0.0107 -0.1493
0.0958 0.1981 1.5687 0.0077 0.0209 0.1887 0.0424 0.2300 1.0363
0.0019 0.0000 0.2531 0.0002 0.0000 0.0562 0.0008 0.0000 0.2819
0.1845 -0.0003 -0.2230 0.0568 -0.0006 -0.0660 0.1035 -0.0069 -0.1195
0.0940 0.2027 1.5293 0.0220 0.0512 0.4019 0.0266 0.1434 0.8218
0.0017 0.0000 0.2362 0.0004 0.0000 0.0756 0.0006 0.0000 0.1861
0.2023 0.0017 -0.1357 0.1959 0.0023 -0.0754 0.6620 0.0259 -0.0520
0.0459 0.0874 0.3796 0.0451 0.0766 0.1868 0.1660 0.5941 0.1458
0.0007 0.0000 0.1495 0.0003 0.0000 0.1141 0.0002 0.0000 0.3629

 117

𝐴[2] =

0.1966 -0.0009 -0.2313 0.1001 -0.0028 -0.0900 0.1782 -0.0107 -0.1493
0.0958 0.1981 1.5687 0.0201 0.0543 0.4907 0.0424 0.2300 1.0363
0.0019 0.0000 0.2531 0.0006 0.0000 0.1460 0.0008 0.0000 0.2819
0.1845 -0.0003 -0.2230 0.1477 -0.0014 -0.1715 0.1035 -0.0069 -0.1195
0.0940 0.2027 1.5293 0.0571 0.1332 1.0448 0.0266 0.1434 0.8218
0.0017 0.0000 0.2362 0.0012 0.0000 0.1965 0.0006 0.0000 0.1861
0.2023 0.0017 -0.1357 0.5093 0.0061 -0.1961 0.6620 0.0259 -0.0520
0.0459 0.0874 0.3796 0.1172 0.1991 0.4856 0.1660 0.5941 0.1458
0.0007 0.0000 0.1495 0.0009 0.0000 0.2967 0.0002 0.0000 0.3629

𝐴[3] =

0.4522 -0.0020 -0.5320 0.0385 -0.0011 -0.0346 0.1782 -0.0107 -0.1493
0.2204 0.4557 3.6080 0.0077 0.0209 0.1887 0.0424 0.2300 1.0363
0.0043 0.0000 0.5820 0.0002 0.0000 0.0562 0.0008 0.0000 0.2819
0.4243 -0.0008 -0.5128 0.0568 -0.0006 -0.0660 0.1035 -0.0069 -0.1195
0.2161 0.4663 3.5173 0.0220 0.0512 0.4019 0.0266 0.1434 0.8218
0.0040 0.0000 0.5434 0.0004 0.0000 0.0756 0.0006 0.0000 0.1861
0.4653 0.0039 -0.3120 0.1959 0.0023 -0.0754 0.6620 0.0259 -0.0520
0.1057 0.2011 0.8732 0.0451 0.0766 0.1868 0.1660 0.5941 0.1458
0.0017 0.0000 0.3439 0.0003 0.0000 0.1141 0.0002 0.0000 0.3629

𝐴[4] =

0.4522 -0.0020 -0.5320 0.1001 -0.0028 -0.0900 0.1782 -0.0107 -0.1493
0.2204 0.4557 3.6080 0.0201 0.0543 0.4907 0.0424 0.2300 1.0363
0.0043 0.0000 0.5820 0.0006 0.0000 0.1460 0.0008 0.0000 0.2819
0.4243 -0.0008 -0.5128 0.1477 -0.0014 -0.1715 0.1035 -0.0069 -0.1195
0.2161 0.4663 3.5173 0.0571 0.1332 1.0448 0.0266 0.1434 0.8218
0.0040 0.0000 0.5434 0.0012 0.0000 0.1965 0.0006 0.0000 0.1861
0.4653 0.0039 -0.3120 0.5093 0.0061 -0.1961 0.6620 0.0259 -0.0520
0.1057 0.2011 0.8732 0.1172 0.1991 0.4856 0.1660 0.5941 0.1458
0.0017 0.0000 0.3439 0.0009 0.0000 0.2967 0.0002 0.0000 0.3629

 118

𝑩𝑛𝑛𝑚𝑖𝑛𝑚𝑟 = 𝑩(1) = 𝑩(2) = 𝑩(3) = 𝑩(4)

-0.0102 0.0054 -0.0017 -0.0020
0.0711 -0.0226 0.0092 0.0139
0.0236 -0.0056 0.0040 0.0061

-0.0076 0.0397 -0.0098 -0.0013
0.0523 -0.2705 0.0608 0.0088
0.0133 -0.0408 0.0290 0.0028

-0.0030 0.0279 -0.0056 -0.0004
0.0085 -0.0791 0.0139 0.0011
0.0049 -0.0214 0.0151 0.0184

 119

Appendix C
MATLAB Codes

PCE-based RNMPC for Chapter 3

%--
% Main program to implement NMPC
%--

function main_program_chapter6_case_study_3(w1, w2, disturbance, ph_sp,
ph, ...
 nit, q2, Cv, n_valve, in_co, ss_condn, filename)
% w1 % weighting factor for manipultd var, 1.
% w2 % weighting factor for manipultd var, 2.
% q2 % process parameter, q2
% Cv % process parameter, Cv
% n % process parameter, n
% in_co % initial conditions
% ss_condn % Steady State Conditions
% filename % filename for storing the results
%% Enter Disturbance and Set-point Data, change these if nit is changed
weight = [w1 w2]; % manipulated variable movement
weight
% load('chapter6_disturbance4'); % Process disturbance
% disturbance = zeros(100,1);
% load('ph_setpoint_profile_2'); % set-point changes in pH

%% SS and other information for ODE
t0 = 0; % Initial time for ODE simulation
tf = 25; % Final time for ODE simulation

%% Parameter information***
d_ss_nom = [q2 ; Cv; n_valve];

%% info for y conversions **

pr = zeros(2,1);
pr(1) = 14; % tank height
pr(2) = 07.0016; % pH

dv = zeros(2,1);
dv(1) = 5.0;
dv(2) = 3.0;

%% infor for u conversions **

prm = zeros(2,1);
prm(1) = ss_condn(1,1);
prm(2) = ss_condn(1,2);

 120

pv1mv = 0.2;
pv2mv = 0.225;

dvm = zeros(2,1);
dvm(1) = pv1mv*prm(1,1);
dvm(2) = pv2mv*prm(2,1);
load('corrida2_ny1')
load('corrida2_ny2')

[hy1,h11_ll,h11_cp,h12_ll,h12_cp] = dah(pny1);
[vhy1, vh11_ll,vh11_cp,vh12_ll,vh12_cp] = dah(vny1);

[hy2,h21_ll,h21_cp,h22_ll,h22_cp] = dah(pny2);
[vhy2,vh21_ll,vh21_cp,vh22_ll,vh22_cp] = dah(vny2);
%% Defining Uncertain parts of Volterra Parameters
hy1_phi_2 = 0;
h11_ll_phi_2 = zeros(1,3);
h21_ll_phi_2 = zeros(1,3);
h11_cp_phi_2 = zeros(3,3);
h21_cp_phi_2 = zeros(3,3);

hy2_phi_2 = 0;
h22_ll_phi_2 = zeros(1,3);
h12_ll_phi_2 = zeros(1,3);
h22_cp_phi_2 = zeros(3,3);
h12_cp_phi_2 = zeros(3,3);

hy1_phi_1 = vhy1; %1-D PCE
h11_ll_phi_1 = vh11_ll;
h21_ll_phi_1 = vh21_ll;
h11_cp_phi_1 = vh11_cp;
h21_cp_phi_1 = vh21_cp;

hy2_phi_1 = vhy2; % 1-D PCE
h22_ll_phi_1 = vh22_ll;
h12_ll_phi_1 = vh12_ll;
h22_cp_phi_1 = vh22_cp;
h12_cp_phi_1 = vh12_cp;

%% Robust Design Parameters
opmu = 'dU'; % Parameters for calling mussv
 % d = display any warnings
 % U = calculate only the upper bound
blk = [...
 -40 0 ; ...
 -01*ones(4,1) , 0*ones(4,1) ; ... % Block 1
 -01*ones(4,1) , 0*ones(4,1) ; ... % Block 2
 -01*ones(4,1) , 0*ones(4,1) ; ... % Block 3
 -01*ones(4,1) , 0*ones(4,1) ; ... % Block 4
 -01*ones(4,1) , 0*ones(4,1) ; ... % Block 5
 -01*ones(4,1) , 0*ones(4,1) ; ... % Block 6

 121

 -01*ones(4,1) , 0*ones(4,1) ; ... % Block 7
 -01*ones(4,1) , 0*ones(4,1) ; ... % Block 8
 -01*ones(4,1) , 0*ones(4,1) ; ... % Block 9
 2 2];
esi = 1E-5; % used for entering in Interconnection matrix (M22)

%% Optimisation Options

% op --- optimisation parameters for Robust Formulation
op = optimset('fminsearch');
op.Display = 'Off';
op.TolFun = 1E-4;
op.TolX = 1E-3;

% opco --- optimisation parameters for non-Robust formulation
opco = optimset('fminsearch');
opco.Display = 'Off';
opco.TolFun = 1E-4;
opco.TolX = 1E-3;
% opco.TolX = value;

%% MPC Parameters and initialisation for 1st iteration

m_ch = 2; % control horizon
ed = zeros(20,1); % disturbance vector
ic = zeros(20,1); % initial conditions vector
du1 = weight(1,1)*ones(1,2); % weight movement u1 (1x2)
% du1 = [weight(1,1) weight(1,1)/10];
u1r = Inf*ones(2,1); % restrictions u1
du2 = weight(1,2)*ones(1,2); % weight movement u2
% du2 = [weight(1,2) weight(1,2)/10];
u2r = Inf*ones(2,1); % restrictions u2
vtc = [0.02;0.02]; % terminal conditions (2x1)
e_s = 1E-6; % value of e_s for zone change

ei1 = [-0.05; 0.05] ; % value for the initial estimates, it is
related
ei2 = [-0.07; 0.07] ; % value for the initial estimates, it is
related
ei3 = [-0.08; 0.08] ; % value for the initial estimates, it is
related
ei4 = [-0.2; 0.2] ; % value for the initial estimates, it is
related
ei5 = [-0.35; 0.25] ; % value for the initial estimates, it is
related
ei6 = [-0.55; 0.45] ; % value for the initial estimates, it is
related
ei7 = [-0.8; 0.7] ; % value for the initial estimates, it is
related
 % to the value of the disturbance
% nit = 80; % number of sampling instants to consider

 122

ypast1 = [0;0]; % y(k-1) reinitialised at every time step
(2x1)
uatk_minus_1 = [0;0]; % u1(k-1)reinitialised at every time step
(2x1)
uatk_minus_2 = [0;0]; % u1(k-2)reinitialised at every time step
(2x1)
kuig = zeros(4,1); % initial estimates for manipulated
variable
 % (4x1)= [u1(2x1); u2(2x1)]
% variables to be stored at every iteration
ycd = zeros(nit,2); % y with disturbance
ycd_sp = zeros(nit,2); % y with disturbance - y_sp
mv = zeros(nit,4); % manipuated variable (2 cols for m_ch)
ymcd = zeros(nit,2); % y with matrix
d_i = zeros(nit,2); % disturbances
tcito = zeros(nit,1); % time vector
y10 = zeros(nit,2); % y at p=10
wc = zeros(nit-1,4); % condition for changing the controller
ynode = zeros(nit,2); % y from ODE
h_n = zeros(nit,1); % boolean with or without variation
determined from cal_nom
n_nit = zeros(nit,1); % stores the index for ymax in f_robust
and f_nonrobust
y_robust_state = zeros(nit,6); % stores the y returned by f_robust_state
at each iteration
y_PCE_state = zeros(20,3,nit);
cal_nom = 0; % --> caso without parameter variation
iae = zeros(1,1);
d_ss = d_ss_nom;
%---
-
%% Iterations and Clock Start

tit = clock; % start the clock
for i=1:nit

 tstart = clock;

 fprintf('\nIteration %2.0f',i)
 % Calculate Initial Conditions for the ouptput

 ic(1:10,1) = 0;
 ic(11:20,1) = 0;

 % search for good initial guess
 % search for the initial guess of manipulated variable without
 % uncertain volterra series parameters, i.e w/o SSV

 if(cal_nom==1)

 [umu, fv] = fminsearch(@(ku)f_nonrobust(ed,ku,...

 123

 h11_ll,h11_cp, h12_ll, h12_cp,...
 hy1,...
 h21_ll,h21_cp, h22_ll, h22_cp,...
 hy2,...
 ic, ...
 uatk_minus_1,uatk_minus_2,...
 ypast1, ...
 du1, du2,...
 u1r, u2r,...
 vtc,...
 m_ch),...
 kuig,opco);
 [fv, n] = f_nonrobust(ed,umu,...
 h11_ll,h11_cp, h12_ll, h12_cp,...
 hy1,...
 h21_ll,h21_cp, h22_ll, h22_cp,...
 hy2,...
 ic, ...
 uatk_minus_1, uatk_minus_2,...
 ypast1, ...
 du1, du2,...
 u1r, u2r,...
 vtc,...
 m_ch) ;
 fprintf('\nControlling factor %1.5f',n)
 elseif(cal_nom==0)

 [kuig, fv] = fminsearch(@(ku)f_initial_guess(ed,ku,...
 h11_ll,h11_cp, h12_ll, h12_cp,...
 hy1,...
 h21_ll,h21_cp, h22_ll, h22_cp,...
 hy2,...
 ic, ...
 uatk_minus_1, uatk_minus_2,...
 ypast1, ...
 du1, du2,...
 u1r, u2r,...
 vtc,...
 m_ch), kuig, ...
 optimset('Display', 'Off'));

 kuig = 0.99*kuig;

 [umu,fv] = fminsearch(@(ku)f_robust(blk,esi,ed,ku,...
 h11_ll, h11_cp, h12_ll, h12_cp,...
 hy1,...
 h21_ll,h21_cp, h22_ll, h22_cp,...
 hy2,...
 h11_ll_phi_1, h11_cp_phi_1, h12_ll_phi_1, h12_cp_phi_1,...
 hy1_phi_1,...
 h21_ll_phi_1,h21_cp_phi_1, h22_ll_phi_1, h22_cp_phi_1,...
 hy2_phi_1,...
 h11_ll_phi_2, h11_cp_phi_2, h12_ll_phi_2, h12_cp_phi_2,...

 124

 hy1_phi_2,...
 h21_ll_phi_2,h21_cp_phi_2, h22_ll_phi_2, h22_cp_phi_2,...
 hy2_phi_2,...
 vh11_ll,vh11_cp,vh12_ll, vh12_cp,...
 vh21_ll, vh21_cp, vh22_ll, vh22_cp,...
 ic, ...
 uatk_minus_1, uatk_minus_2,...
 ypast1, ...
 du1, du2,...
 vtc,...
 m_ch,...
 opmu),...
 kuig,op);

 [fv, n] = f_robust(blk,esi,ed,umu,...
 h11_ll, h11_cp, h12_ll, h12_cp,...
 hy1,...
 h21_ll,h21_cp, h22_ll, h22_cp,...
 hy2,...
 h11_ll_phi_1, h11_cp_phi_1, h12_ll_phi_1, h12_cp_phi_1,...
 hy1_phi_1,...
 h21_ll_phi_1,h21_cp_phi_1, h22_ll_phi_1, h22_cp_phi_1,...
 hy2_phi_1,...
 h11_ll_phi_2, h11_cp_phi_2, h12_ll_phi_2, h12_cp_phi_2,...
 hy1_phi_2,...
 h21_ll_phi_2,h21_cp_phi_2, h22_ll_phi_2, h22_cp_phi_2,...
 hy2_phi_2,...
 vh11_ll,vh11_cp,vh12_ll, vh12_cp,...
 vh21_ll, vh21_cp, vh22_ll, vh22_cp,...
 ic, ...
 uatk_minus_1, uatk_minus_2,...
 ypast1, ...
 du1, du2,...
 vtc,...
 m_ch,...
 opmu);
 y_robust_state(i,:) = f_robust_state(blk,esi,ed,umu,...
 h11_ll, h11_cp, h12_ll, h12_cp,...
 hy1,...
 h21_ll,h21_cp, h22_ll, h22_cp,...
 hy2,...
 h11_ll_phi_1, h11_cp_phi_1, h12_ll_phi_1, h12_cp_phi_1,...
 hy1_phi_1,...
 h21_ll_phi_1,h21_cp_phi_1, h22_ll_phi_1, h22_cp_phi_1,...
 hy2_phi_1,...
 h11_ll_phi_2, h11_cp_phi_2, h12_ll_phi_2, h12_cp_phi_2,...
 hy1_phi_2,...
 h21_ll_phi_2,h21_cp_phi_2, h22_ll_phi_2, h22_cp_phi_2,...
 hy2_phi_2,...
 vh11_ll,vh11_cp,vh12_ll, vh12_cp,...
 vh21_ll, vh21_cp, vh22_ll, vh22_cp,...
 ic, ...
 uatk_minus_1, uatk_minus_2,...

 125

 ypast1, ...
 du1, du2,...
 vtc,...
 m_ch,...
 opmu);

 fprintf('\nControlling factor %1.5f',n)
 end
 u = zeros(20,1);
 u(1:m_ch,1) = umu(1:m_ch,1);
 u(m_ch + 1:10,1) = umu(m_ch);
 u(11:10+m_ch , 1)= umu(3:2*m_ch,1);
 u(11+m_ch:20,1) = umu(2*m_ch);
 %--
 y_PCE_state(:,:,i) = PCE_parameter_Volterra_state(u, ed, ic, ...
 uatk_minus_1, uatk_minus_2,...
 ypast1, ...
 h11_ll, h11_ll_phi_1, h11_ll_phi_2, ...
 h11_cp, h11_cp_phi_1, h11_cp_phi_2, ...
 h12_ll, h12_ll_phi_1, h12_ll_phi_2, ...
 h12_cp, h12_cp_phi_1, h12_cp_phi_2, ...
 hy1, hy1_phi_1, hy1_phi_2, ...
 hy2, hy2_phi_1, hy2_phi_2, ...
 h22_ll, h22_ll_phi_1, h22_ll_phi_2, ...
 h21_ll, h21_ll_phi_1, h21_ll_phi_2, ...
 h22_cp, h22_cp_phi_1, h22_cp_phi_2, ...
 h21_cp, h21_cp_phi_1, h21_cp_phi_2);

 % Nominal part of Volterra series using the new manipulated variable.
 ypast1(1,1) = h11_ll(1,1)*u(1,1) + ...
 h11_ll(1,2)*uatk_minus_1(1,1) + ...
 h11_ll(1,3)*uatk_minus_2(1,1) + ...
 h11_cp(1,1)*u(1,1)^2 + ...
 h11_cp(1,2)*u(1,1)*uatk_minus_1(1,1) + ...
 h11_cp(1,3)*u(1,1)*uatk_minus_2(1,1) + ...
 h11_cp(2,2)*uatk_minus_1(1,1)^2 + ...
 h11_cp(2,3)*uatk_minus_1(1,1) * uatk_minus_2(1,1) + ...
 h11_cp(3,3)*uatk_minus_2(1,1)^2 + ...
 hy1*ypast1(1,1)+ ...
 h12_ll(1,1)*u(11,1) + ...
 h12_ll(1,2)*uatk_minus_1(2,1) + ...
 h12_ll(1,3)*uatk_minus_2(2,1) + ...
 h12_cp(1,1)*u(11,1)^2 + ...
 h12_cp(1,2)*u(11,1)*uatk_minus_1(2,1) + ...
 h12_cp(1,3)*u(11,1)*uatk_minus_2(2,1) + ...
 h12_cp(2,2)*uatk_minus_1(2,1)^2 + ...
 h12_cp(2,3)*uatk_minus_1(2,1) * uatk_minus_2(2,1) + ...
 h12_cp(3,3)*uatk_minus_2(2,1)^2 + ...
 ic(1,1);

 ypast1(2,1) = h21_ll(1,1)*u(1,1) + ...
 h21_ll(1,2)*uatk_minus_1(1,1) + ...
 h21_ll(1,3)*uatk_minus_2(1,1) + ...

 126

 h21_cp(1,1)*u(1,1)^2 + ...
 h21_cp(1,2)*u(1,1)*uatk_minus_1(1,1) + ...
 h21_cp(1,3)*u(1,1)*uatk_minus_2(1,1) + ...
 h21_cp(2,2)*uatk_minus_1(1,1)^2 + ...
 h21_cp(2,3)*uatk_minus_1(1,1) * uatk_minus_2(1,1) + ...
 h21_cp(3,3)*uatk_minus_2(1,1)^2 + ...
 hy2*ypast1(2,1)+ ...
 h22_ll(1,1)*u(11,1) + ...
 h22_ll(1,2)*uatk_minus_1(2,1) + ...
 h22_ll(1,3)*uatk_minus_2(2,1) + ...
 h22_cp(1,1)*u(11,1)^2 + ...
 h22_cp(1,2)*u(11,1)*uatk_minus_1(2,1) + ...
 h22_cp(1,3)*u(11,1)*uatk_minus_2(2,1) + ...
 h22_cp(2,2)*uatk_minus_1(2,1)^2 + ...
 h22_cp(2,3)*uatk_minus_1(2,1) * uatk_minus_2(2,1) + ...
 h22_cp(3,3)*uatk_minus_2(2,1)^2 + ...
 ic(11,1);
 %---
 %--ODE Calculation for yplant--------------------------------------
 uab = i_y_srev([u(01),u(11)],prm,dvm);
 [t yode] = ode45(@phneu2,[t0 tf],in_co,[],...
 uab',d_ss);
 d_ph = vcalph(yode(end,:)); % Solve for pH using ODE solution
 in_co = yode(end,:);
 yreal = n_y_srev([yode(end,1),d_ph],pr,dv);% yplant at time t = i
 %---
 % Calcualte disturbance (ed) and reinitialise other parameters
 ed = [(yreal(1) - ypast1(1,1)) * ones(10,1); ...
 (yreal(2) - ypast1(2,1) - ph_sp(i)) * ones(10,1)]; % Next
unmeasured disturbance
 uatk_minus_2 = uatk_minus_1; % next u1(k-2)
 uatk_minus_1 = [u(01); u(11)]; % next u1(k-1)

 % Next disturbance to the plant
 if (i > 1)
 d_ss(1) = d_ss_nom(1) + disturbance(i)*d_ss_nom(1);
 d_ss(2:3) = d_ss_nom(2:3);
 end
 %---
 % Saving all the data for each time step like unmeasured disturbance,
 % manipulated variable ...
 % and yplant from ODE

 ynode(i,:) = [yode(end,1) , d_ph]; % Absolute value of output
 d_i(i,:) = [ed(1,1) ed(11,1)]; % Unmeasured disturbance
 mv(i,:) = [u(01) u(02) u(11) u(12)]; % manipulated variable
 ycd(i,:) = yreal;
 ymcd(i,:) = ypast1';
 n_nit(i,:) = n;

 if(i==1)
 ycd_sp(i,:) = ycd(i,:);
 else

 127

 ycd_sp(i,:) = [ycd(i,1) ycd(i,2)-ph_sp(i-1)];
 end
 % Normalised value of output
 % from the plant
 clear tode yode
 %--
 %-----Dual Mode Decision Criterion and initialisation of kuig------
 if (i == 3)
 kuig = [ei1(1,1)*ones(m_ch,1);ei1(2,1)*ones(m_ch,1)];
 elseif(i==4)
 kuig = [ei2(1,1)*ones(m_ch,1);ei2(2,1)*ones(m_ch,1)];
 elseif(i==5)
 kuig = [ei3(1,1)*ones(m_ch,1);ei3(2,1)*ones(m_ch,1)];
 else
 kuig = 0.99*umu;
 end

 % abs(ycd(i,1)-ycd(i-1,1))<e_s && abs(ycd(i,2)-ycd(i-1,2))...
 if(i>1)
 wc(i-1,:) = [abs(ycd(i,1)-ycd(i-1,1)) ...
 abs(ycd(i,2)-ycd(i-1,2)-(ph_sp(i)-ph_sp(i-1))) ...
 abs(ycd(i,1)) abs(ycd(i,2)- ph_sp(i))];
 if(cal_nom==0)
 if (wc(i-1,1)<e_s && wc(i-1,2)<e_s && wc(i-1,3)<e_s && ...
 wc(i-1,4)<e_s)
 cal_nom = 1; % nominal case
 h_n(i,1) = 1;
% kuig = [ei(1,1)*ones(m_ch,1); ei(2,1)*ones(m_ch,1)];
 else
 h_n(i,1)= 0; %Uncertain case
 end
 end
 if(cal_nom ==1)
 if(abs(yreal(1))>e_s || abs(yreal(2))>e_s)
 cal_nom = 0; % Uncertain case
 h_n(i,1) = 0;
 else
 h_n(i,1) = 1; % Nominal Case
 end
 end
 end

 tcito(i,1) = etime(clock,tstart); %Saving the calculation time
 % needed at every time step i
 fprintf('\nabs(yreal) = %1.5f',abs(yreal))
 fprintf('\n')
 fprintf('manipultd var = %1.5f', umu)
 fprintf('\n**\n')
end
%--
%% Print the final results---
fprintf('total time = %1.5f',etime(clock,tit)) %total time
fprintf('\n')

 128

iae = sum(sum(abs(ycd_sp),1));
end
%--

PCE-based Robust Control for Chapter 4

%--
% Main function for model, control parameters and initial conditions

%--

clear all
clc
% Initial Conditions
z0_model = [0.4 0.21 .2 0.001]';
V0 = 0.3; % L, Initial Volume of the reactor, guess
Vmax = 0.4; % L, Final maximum batch volume, guess
Vmin = 0.2; % L, Final minimum batch volume, guess
Fmax = 0.1; % L/h
Zgl_feed = 5;
%% Model parameters
A = [0 9.46 9.84 19.23; 35 12.92 12.73 0; -39.43 0 1.24 12.12];
c = ones(4,1);
kla = 4.0; % hr^-1, Mahadevan paper
Km = 0.015; % mM, Mahadevan paper
GUR_max = 6.5; % mM/g-dw/hr, Mahadevan paper
OUR_max = 12.0; % mM/g-dw/hr, Mahadevan paper
Ki = 1.0;
% Uncertainty Information
GUR_sig = 0.2; % +/- 20%, guess
OUR_sig = 0.2; % +/- 20%, guess
kla_sig = 0.2;
Km_sig = 0.01;
Ki_sig = 0.2;

% # of time steps and step size
nit = 22;
tend = 11; % h, total time of cell culture growth, guess
dt = tend/nit; % h, time, guess

% frequency for disturbance
% t = [0:1:nit]'; n = 12; % frequency for disturbance
% disturbance = sin(2*pi/n*t);
% n2 = 8; % frequency for changing plant definition
load('perf_disturbance.mat');
load('perf_disturbance2.mat');
beta = 0; % cell death parameter
%% PCE parameters
n_dim = 1; % PCE dimensions (1 or 2), max is 2
n_order = 2; % order of PCE, max is 3
l = 4;

 129

n_PCE = factorial(n_dim+n_order)/factorial(n_dim)/factorial(n_order); %
total # of PCE terms
%% controller parameters
p = nit;
% u = 0.001*ones(p,1);
load('XV_reference_nit_22_tend_11.mat');
uig = u;
load('XV_reference_nit_22_tend_11_aug_2_2014.mat');
XVref_lb = XV_lb_bound;
XVref_ub = XV_ub_bound;
% uig = [0.002*ones(nit,1); 0.001*ones(nit,1)];

% load the biomass reference profile and uig
Vref = zeros(nit,1);
for i=1:nit
 Vref(i,1) = (V0 + (ones(1,i)*(uig(1:i)-uig(nit+1:nit+i)))*dt);
end

% Optimisation parameters
op = optimset('fmincon');
op.Display = 'On';
op.TolFun = 1E-6;
op.TolX = 1E-5;
op.MaxIter = 10000;
op.MaxFunEvals = 100000;
op.Algorithm = 'interior-point';

% objective function weightsw = [10 0.05 0.5]; % e_x-xref, var(x)
%% Plant parameters
alpha_p_list = [0 0; ...
 -2 0; ...
 -1 0; ...
 -0.5 0; ...
 0.5 0; ...
 0 -2; ...
 -2 -2; ...
 -1 -2; ...
 -0.5 -2; ...
 0.5 -2;...
];
w_list = [10 20; 3 30; 3 10; 20 20; 20 30;];
% GUR_plant = GUR_max;
%% the control and plant loop
% initialisation
z0_plant = [0.4 0.21 .2 0.001]';
fb_k = 0; % initialisation of fb error
alpha_p = alpha_p_list(6,:);
matlabpool(2)
parfor i = 1:2
 w = w_list(i,:);
 filename =
strcat('robust_kla_dist_econ_obj7_robust_model_bds5_nit_22_', ...

 130

 num2str(alpha_p(1)),'_', num2str(alpha_p(2)), '_',
num2str(w(1)),...
 '_', num2str(w(2)),'_P_F.mat');
 main_controller3(n_PCE, n_dim, n_order, l, nit, dt, tend, ...
 A, c, kla, kla_sig, Km, GUR_max, GUR_sig, OUR_max, Ki, Ki_sig, ...
 alpha_p, uig, Fmax, fb_k, disturbance, disturbance2, ...
 p, op, z0_model, z0_plant, V0, Vmax, Vmin, Zgl_feed, ...
 OUR_sig, beta, XVref_lb, XVref_ub,w, filename)
end
matlabpool close %
end

%---
% Main Controller

%--
function main_controller3(n_PCE, n_dim, n_order, l, nit, dt, tend, ...
 A, c, kla, kla_sig, Km, GUR_max, GUR_sig, OUR_max, Ki,
Ki_sig, ...
 alpha_p, uig, Fmax, fb_k, disturbance, disturbance2,
...
 p, op, z0_model, z0_plant, V0, Vmax, Vmin, Zgl_feed,
...
 OUR_sig, beta, XVref_lb, XVref_ub, w, filename)
% variables to store
z0_model = [z0_model; zeros(4*(n_PCE-1),1)]; % robust model predictions
at every time step for current concentrations

z_plant = zeros(nit,3);
y_plant = zeros(nit,1);
V_plant = zeros(nit,1);
u_plant = zeros(2*nit,p);
nu_plant = zeros(nit,4);
F_plant = zeros(nit,1); P_plant = zeros(nit,1);

z_model = zeros(nit,4*n_PCE); % stores model predictions
nu_model = zeros(4, n_PCE, nit);
fb_plant = zeros(nit,1); % feedback error in nominal model
prediction

time_store = zeros(nit,1);
ef_plant = zeros(nit,1);
fval_plant = zeros(nit,1);
obj_plant = zeros(nit,5);

% initialise the control inputs
uig_k = [uig(1:p,1); uig(nit+1:nit+p,1)];
u = zeros(2*p,1);
umax = Fmax*ones(2*p,1);
du_max = Fmax;
description = 'Robust controller without cell death, kla disturbance,
bounded reference trajectory';

 131

%% Plant parameters
% dist2 = [0*ones(nit/2,1);0*ones(nit/2,1)];
GUR_plant = (1 + alpha_p(1)*GUR_sig)*GUR_max*(1+0*disturbance2);
kla_plant = kla*(1+alpha_p(2)*kla_sig)*(1-disturbance);
OUR_plant = OUR_max*(1+0*OUR_sig*disturbance);
Ki_plant = Ki*(1 + 0*kla_sig)*(1-0*disturbance2);

for k = 1:nit
 % check for prediction horizon
 if(k>1)
 if(p>nit+1-k)
 % receding horizon case
 p = nit+1-k;
 uig_k = [u(2:p+1,1); u(p+3:end)];% initial guess comes from
previous computed solution
 umax = Fmax*ones(2*p,1);
 else
 uig_k = [uig(k:k+p-1,1);uig(nit+k:nit+k+p-1,1)];
% uig_k = u;
 end
 end
% Xref_k = Xref(k:k+p-1,1).*Vref(k:k+p-1,1); % Total Biomass
trajectory
% Xactual_ref = Xref(k:k+p-1,1); % Biomass
concentration trajectory
% uref_k = [uig(k:k+p-1,1); uig(nit+k:nit+k+p-1,1)];
% uref = [Fref, Pref];

 XVref_lb_k = XVref_lb(k:k+p-1,1);
 XVref_ub_k = XVref_ub(k:k+p-1,1);

 A_cons = [tril(ones(p,p)) tril(-ones(p,p)); ... % Linear Constraint:
V(k+i)<=Vmax
 -tril(ones(p,p)) tril(ones(p,p))]; % Linear Constraint:
V(k+i)>=Vmin
 b_cons = [(Vmax - V0)/dt*ones(p,1); ... % Linear Constraint:
V(k+i)<=Vmax
 (V0 - Vmin)/dt*ones(p,1)]; % Linear Constraint:
V(k+i)>=Vmin

 tstart = clock;
% if (Vmax-V0<1e-6)
% u = zeros(2*p,1);
% else
% end
 [u, fval, exitflag] = fmincon(@(ku)objfun7(ku, z0_model, V0, dt, p,
...
 A, c, kla, Km, GUR_max, OUR_max, GUR_sig, kla_sig, Ki, Ki_sig, ...
 Zgl_feed, n_dim, n_order, l, XVref_lb_k, XVref_ub_k, w, fb_k) ,
uig_k, ...
 A_cons, b_cons, [],[], zeros(2*p,1), umax,[],op);
% u = ones(2*p,1); fval = 0; exitflag = -0.02;

 132

 time_store(k,1) = etime(clock,tstart);
 % decide on the next control action
% if(k>1)
% [u, fval] = input_validation_2(u, fval, [u_plant(k-1,:)';
u_plant(nit+k-1,:)'], ...
% z0_model, V0, dt, p, A, c, kla, Km, GUR_max, OUR_max,
...
% GUR_sig, kla_sig, Ki, Ki_sig, Zgl_feed, n_dim,
n_order,...
% l, XVref_lb_k, XVref_ub_k, w, fb_k, nit);
% end
 % objective function vector
 obj_plant(k,:) = objfun7_vec(u, z0_model, V0, dt, p, ...
 A, c, kla, Km, GUR_max, OUR_max, GUR_sig, kla_sig, Ki, Ki_sig, ...
 Zgl_feed, n_dim, n_order, l, XVref_lb_k, XVref_ub_k, w, fb_k);

 % plant dynamics
 % plant parameters
 GUR_p = GUR_plant(k); kla_p = kla_plant(k);
 OUR_p = OUR_plant(k); Ki_p = Ki_plant(k);
 [y, nu] = plant_dynamics(z0_plant, V0, [u(1);u(p+1)], dt, A, c, ...
 kla_p, Km, GUR_p, OUR_p, Ki_p, Zgl_feed, 1);
% y(4) = (1-beta*disturbance(k))*y(4); % loss of cell due to
Perfusion
 % run robust model dynamics for one time step
 [z0_model, nu_m] = robust_dynamics([u(1);u(p+1)], z0_model, V0, dt, 1,
...
 A, c, kla, Km, GUR_max, OUR_max, GUR_sig, kla_sig, Ki, Ki_sig,
Zgl_feed, ...
 n_dim, n_order, l);
 % reinitialise
 z0_plant = y(1:4)';
 V0 = y(5);
 fb_k = y(4) - z0_model(4);

 % save the results
 z_plant(k,:) = y(1:3);
 u_plant(k,1:p) = u(1:p)';
 u_plant(nit+k,1:p) = u(p+1:end)';
 F_plant(k,1:p) = u(1:p)';
 P_plant(k,1:p) = u(p+1:end)';
 V_plant(k,1) = y(5);
 y_plant(k,1) = y(4);
 nu_plant(k,:) = nu;
 ef_plant(k,1) = exitflag;
 fval_plant(k,1) = fval;

 z_model(k,:) = z0_model';
 nu_model(:,:,k) = nu_m;
 fb_plant(k,:) = fb_k;

 133

 if(n_dim==1)
 if(n_order==2)
 z0_model(6)= 0 ; z0_model(10) = 0;
 else
 z0_model(6)= 0 ;
 end
 elseif(n_dim==2)
 if(n_order==1)
 z0_model(6)= 0 ; z0_model(10) = 0;
 end
 end

 save(filename);
end
%---
% Robust Dynamics

%--
function [z0_model_new, nu_m] = robust_dynamics(u, z0_model, V0, dt, p,
...
 A, c, kla, Km, GUR_max, OUR_max, Ki, GUR_sig, kla_sig, Ki_sig,
Zgl_feed, ...
 n_dim, n_order, l)
% robust model dynamics for one time step

nu_total = length(c); % no. of fluxes
n_PCE = factorial(n_order + n_dim)/factorial(n_dim)/factorial(n_order);
%% make PCE for the nu and mu at every prediction horizon

nu = zeros(p,n_PCE,nu_total);
mu = zeros(p,n_PCE);
[nu, mu] = make_PCE(n_dim, n_order, l, z0_model, V0, u, dt, A, c, kla,...
 Km, GUR_max, OUR_max, Ki, Zgl_feed, p, GUR_sig, kla_sig,
Ki_sig);
%% propagate uncertainty in metabolite concentrations
% at the end determine PCE for biomass at every time step in the horizon
tspan = [0 dt];
z0 = [z0_model(1:4); V0; z0_model(5:end)];
% start the loop for dynamics
for k =1
 F0 = u(1); P0 = u(2);
 % Determine cell growth rate, mu
 mu_k = mu(k,:);

 % ODE solver parameters
 % options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
 Anu_gl = A(1,:)*squeeze(nu(k,:,:))';
 Anu_o2 = A(2,:)*squeeze(nu(k,:,:))';
 Anu_Ac = A(3,:)*squeeze(nu(k,:,:))';

 if (n_dim == 1)
 if(n_order ==1)

 134

% cs = 1;
 [t,z] = ode45(@(t,z) model_dynamics_1(t,z, kla, ...
 Anu_gl, Anu_o2, Anu_Ac, mu_k, Zgl_feed, F0, P0), tspan,
z0);
 else
% cs = 2;
 [t,z] = ode45(@(t,z) model_dynamics_2(t,z, kla, ...
 Anu_gl, Anu_o2, Anu_Ac, mu_k, Zgl_feed, F0, P0), tspan,
z0);
 end
 elseif(n_order ==1)
% cs = 3;
 [t,z] = ode45(@(t,z) model_dynamics_3(t,z, kla, kla_sig, ...
 Anu_gl, Anu_o2, Anu_Ac, mu_k, Zgl_feed, F0, P0), tspan, z0);
 else
% cs = 4;
 [t,z] = ode45(@(t,z) model_dynamics_4(t,z, kla, ...
 Anu_gl, Anu_o2, Anu_Ac, mu_k, Zgl_feed, F0, P0), tspan, z0);
 end

% z0 = z(end,:)'; % reinitialise

 if (z(end,1) <= 1e-6) %check for O2 concentration
 z(end,1) = 1e-6;
 end
 if (z(end,2) <= 1e-6) %check for O2 concentration
 z(end,2) = 1e-6;
 end
 if (z(end,3) <= 1e-6) %check for O2 concentration
 z(end,3) = 1e-6;
 end
 % saving the results
 z0_model_new = [z(end,1:4) z(end,6:end)]';
end
nu_m = squeeze(nu(1,:,:))';
end
%--
% Model Dynamics
%--

function ydot = model_dynamics_1(t,z, kla, ...
 Anu_gl, Anu_o2, Anu_Ac, mu, Zgl_feed, F, P)

V = z(5); X0 = z(4); X1 = z(9);

ydot(1,1) = F/V*(Zgl_feed - z(1)) - Anu_gl(1)*X0 - Anu_gl(2)*X1;
ydot(6,1) = -F/V*z(6) - Anu_gl(2)*X0 - Anu_gl(1)*X1;

ydot(2,1) = kla*(0.21 - z(2)) - Anu_o2(1)*X0 - Anu_o2(2)*X1 - F/V*z(2);
ydot(7,1) = -kla*z(7) - Anu_o2(2)*X0 - Anu_o2(1)*X1 - F/V*z(7);

 135

ydot(3,1) = -F/V*z(3) + Anu_Ac(1)*X0 + Anu_Ac(2)*X1;
ydot(8,1) = -F/V*z(8) + Anu_Ac(2)*X0 + Anu_Ac(1)*X1;

ydot(4,1) = mu(1)*X0 + mu(2)*X1 - (F-P)/V*X0;
ydot(9,1) = mu(2)*X0 + mu(1)*X1 - (F-P)/V*X1;

ydot(5,1) = F-P;
end
%--
% PCE model for the ODE’s
%--

function [nu, mu] = make_PCE(n_dim, n_order, l, z0_model, V0, u, dt, A, c,
kla,...
 Km, GUR_max, OUR_max, Ki, Zgl_feed, p, GUR_sig, kla_sig,
Ki_sig)

%% Determine the Gauss Quadrature points
% l = level of accuracy
% n_dim = # of uncertainties, dimensions in PCE
% max n_dim = 2, max n_order = 2
[xi,w] = gausspoints(l, n_dim);
%% Run the plant for nit steps
num_points = length(w);
nu_total = length(c);
y_plant = zeros(p,nu_total);
nu_plant = zeros(p,nu_total,num_points);
if (n_dim<2)
 for i = 1:num_points
 GUR_p = GUR_max*(1+GUR_sig*xi(i,1));
 if(n_order == 1)
 z0(1,1) = z0_model(1) + z0_model(5)*xi(i,1);
 z0(2,1) = z0_model(2) + z0_model(6)*xi(i,1);
 z0(3,1) = z0_model(3) + z0_model(7)*xi(i,1);
 z0(4,1) = z0_model(4) + z0_model(8)*xi(i,1);
 else
 z0(1,1) = z0_model(1) + z0_model(5)*xi(i,1) + ...
 z0_model(9)*(xi(i,1)^2-1);
 z0(2,1) = z0_model(2) + z0_model(6)*xi(i,1) + ...
 z0_model(10)*(xi(i,1)^2-1);
 z0(3,1) = z0_model(3) + z0_model(7)*xi(i,1) + ...
 z0_model(11)*(xi(i,1)^2-1);
 z0(4,1) = z0_model(4) + z0_model(8)*xi(i,1) + ...
 z0_model(12)*(xi(i,1)^2-1);
 end
% kla_p = OUR_max;
 [y_plant, nu_plant(:,:,i)] = plant_dynamics(z0, V0, u, dt, A, c,
...
 kla, Km, GUR_p, OUR_max, Ki, Zgl_feed, p);
 end
else

 136

 for i = 1:num_points
 GUR_p = GUR_max*(1+GUR_sig*xi(i,1));
 kla_p = kla*(1+kla_sig*xi(i,2));
 if(n_order == 1)
 z0(1,1) = z0_model(1) + z0_model(5)*xi(i,1) +
z0_model(9)*xi(i,2);
 z0(2,1) = z0_model(2) + z0_model(6)*xi(i,1) +
z0_model(10)*xi(i,2);
 z0(3,1) = z0_model(3) + z0_model(7)*xi(i,1) +
z0_model(11)*xi(i,2);
 z0(4,1) = z0_model(4) + z0_model(8)*xi(i,1) +
z0_model(12)*xi(i,2);
 else
 z0(1,1) = z0_model(1) + z0_model(5)*xi(i,1) + ...
 z0_model(9)*(xi(i,1)^2-1);
 z0(2,1) = z0_model(2) + z0_model(6)*xi(i,1) + ...
 z0_model(10)*(xi(i,1)^2-1);
 z0(3,1) = z0_model(3) + z0_model(7)*xi(i,1) + ...
 z0_model(11)*(xi(i,1)^2-1);
 z0(4,1) = z0_model(4) + z0_model(8)*xi(i,1) + ...
 z0_model(12)*(xi(i,1)^2-1);
 % change this section when n_order=2,
 % n_dim = 2
 end
 [y_plant, nu_plant(:,:,i)] = plant_dynamics(z0, V0, u, dt, A, c,
...
 kla_p, Km, GUR_p, OUR_max, Ki, Zgl_feed, p);
 end
end
%% Determine PCE points for every nu at all the prediction horizon
n_PCE = factorial(n_order + n_dim)/factorial(n_dim)/factorial(n_order);
nu = zeros(p,n_PCE,nu_total); % structure reference
mu = zeros(p,n_PCE);
for i = 1:p
 for j = 1:nu_total
 nu(i,:,j) = a_PCE(n_order, n_dim, xi, w,
squeeze(nu_plant(i,j,:)));
 end
 mu(i,:) = c'*squeeze(nu(i,:,:))';
end

%--
PCE-based Robust Optimization for Chapter 4

%--
% Main function for model, optimization parameters

%---

clear all
clc
% Initial Conditions
z0_model = [0.4 0.21 .2 0.001]';

 137

V0 = 0.3; % L, Initial Volume of the reactor, guess
Vmax = 0.4; % L, Final maximum batch volume, guess
Vmin = 0.20; % L, Final minimum batch volume, guess
% Fig = .1; % L/h
Fmax = 0.3; % L/h
Zgl_feed = 5;

% Model parameters
A = [0 9.46 9.84 19.23; 35 12.92 12.73 0; -39.43 0 1.24 12.12];
c = ones(4,1);
kla = 4; % hr^-1, Mahadevan paper
Km = 0.015; % mM, Mahadevan paper
GUR_max = 6.5; % mM/g-dw/hr, Mahadevan paper
OUR_max = 12; % mM/g-dw/hr, Mahadevan paper
Ki = 1.0;

% Uncertainty Information
GUR_sig = 0.2; % +/- 20%, guess
OUR_sig = 0.2; % +/- 20%, guess
kla_sig = 0.2;
Km_sig = 0.2;
Ki_sig = 0.2;
% # of time steps and step size
nit = 110;
tend = 11; % h, total time of cell culture growth, guess
dt = tend/nit; % h, time, guess
number_of_inputs = tend;
% Initial guess for Feed rate
load('feed_rate_ig_nit_220_robust.mat');
uig = uig_discrete;
% uig = [(Vmax-V0)/dt/nit(1)*ones(nit(1),1); 1e-3*ones(nit,1)];
% uig = 0.02*ones(2*number_of_inputs,1);
% clear u
% umax = Fmax*ones(2*length_of_u,1);
umax = Fmax*ones(2*number_of_inputs,1);
%% PCE parameters
n_dim = 2; % PCE dimensions (1 or 2), max is 2
n_order = 3; % order of PCE, max is 3

%% Define the Gauss Quadratures parameters
% num_point, abscissae(xi), weights (w)
l = 5; % level of accuracy, related to order of PCE l>n_order

%% Optimisation Parameters
op = optimset('fmincon');
op.Display = 'On';
op.TolFun = 1E-7;
op.TolX = 1E-6;
op.MaxIter = 10000;
op.MaxFunEvals = 100000;
op.Algorithm = 'interior-point';
% op.LargeScale = 'on';
%% Linear Optimisation Constraints

 138

% A_cons = [tril(ones(nit,nit)) tril(-ones(nit,nit)); ... % Linear
Constraint: V(tend)<=Vmax
% -eye(nit,nit) eye(nit,nit)]; % P<0.5*F at all time steps
% b_cons = [(Vmax - V0)/dt*ones(nit,1); ... % Linear Constraint:
V(tend)<=Vmax
% -1e-5*ones(nit,1)]; % P<0.5*F at all
time steps
tol = 1e-5;
[A_cons, b_cons] = make_lin_cons(number_of_inputs, nit, Vmax, Vmin, V0,
dt, tol);
%% Call the optimisation
alpha_list = [0.03 0.034 .038];
u_list = zeros(2*nit,1);

matlabpool(2)

parfor i = 1:3
 alpha = alpha_list(i);
 filename = strcat('robust_zgl_5_time_11_x0_0p001_2d_HOT_alpha_',...
 num2str(alpha),'changed_Vol_constraints.mat');
 [y_plant, nu_plant] = call_robust_optmzn(z0_model, V0, dt, nit, ...
 A, c, kla, Km, GUR_max, OUR_max, Ki, GUR_sig, kla_sig,
Ki_sig, Zgl_feed, ...
 n_dim, n_order, l, alpha, uig, A_cons, b_cons,
number_of_inputs, ...
 umax, op, filename);
end
matlabpool close
end

%---

% Optimization function

%--

function [y_plant, nu_plant] = call_robust_optmzn(z0_model, V0, dt, nit,
...
 A, c, kla, Km, GUR_max, OUR_max, Ki, GUR_sig, kla_sig, Ki_sig,
Zgl_feed, ...
 n_dim, n_order, l, alpha, uig, A_cons, b_cons, number_of_inputs,
...
 umax, op, filename)

 tstart = clock;
 [u_discrete, fval, exitflag] = fmincon(@(ku) prob_cost(ku, z0_model,
V0,dt, nit, ...
 A, c, kla, Km, GUR_max, OUR_max, Ki, GUR_sig, kla_sig, Ki_sig,
Zgl_feed, ...
 n_dim, n_order, l, alpha), ...
 uig, A_cons, b_cons, [], [], zeros(2*number_of_inputs,1), ...
 umax,[], op);

 139

 time_store = etime(clock,tstart);
 u = make_input(u_discrete, nit);
 save(filename);
 % check the pce coefficients for determined Gl feeding and perfusion
 % profile
 a = make_PCE(n_dim, n_order, l, z0_model, V0, u, dt, A, c, kla, Km,
GUR_max,...
 OUR_max, Ki, Zgl_feed, nit, GUR_sig, kla_sig, Ki_sig);

 % run nominal plant dynamics
 [y_plant, nu_plant] = plant_dynamics(z0_model, V0, u, dt, A, c, kla,
Km, GUR_max,...
 OUR_max, Ki, Zgl_feed, nit);
% time_plant = linspace(dt,tend,nit)';
 description = 'Gl inhibition, robust optmzn obj is prob cost,
Perfusion can be more than feeding';
 % save the file
 save(filename);
%--
% Model Dynamics
%--

function [y_plant, nu_plant] = plant_dynamics(z0_model, V0, u, dt, A, c,
kla, Km, GUR_p,...
 OUR_p, Ki, Zgl_feed, nit)
% structure of z0_model = [zgl, zo2, zac, x]
% LP Model solution
n = length(c);
y_plant = zeros(nit,5);
nu_plant = zeros(nit,4);
for k = 1:nit
 F0 = u(k,1); P0 = u(nit+k,1);
 X_k = z0_model(4);
 if(length(kla)==nit)
 kla_p = kla(k);
 else
 kla_p = kla;
 end
 % Determine cell growth rate, mu
 % modified to reflect constrained dynamics
 Anew = [A; A(1:2,:)*X_k; -A(3,:)*X_k];
 b = [GUR_p*(z0_model(1)/(Km + z0_model(1) + (z0_model(1)^2)/Ki));...
 OUR_p; ...
 100; ...
 F0/V0*(Zgl_feed - z0_model(1)) + z0_model(1)/dt; ...
 kla_p*(0.21 - z0_model(2)) - F0/V0*z0_model(2) +
z0_model(2)/dt;...
 - F0/V0*z0_model(3) + z0_model(3)/dt;];
 [nu, mu, ef0] = linprog(-c,Anew,b,[],[],zeros(n,1),[]);

 % integrate the metabolite concentrations

 % ODE solver parameters

 140

 % options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
 if(ef0 == 1)
 Anu_gl = A(1,:)*nu; Anu_o2 = A(2,:)*nu; Anu_Ac = A(3,:)*nu;
 else
 mu = 0; Anu_gl = 0; Anu_o2 = 0; Anu_Ac = 0; nu = zeros(n,1);
 end
% Anu_gl = A(1,:)*nu; Anu_o2 = A(2,:)*nu; Anu_Ac = A(3,:)*nu;

 tspan = [0 dt];
 z0 = [z0_model; V0];

 if (z0(1)<=0 && z0(2)<=0 && z0(3)<=0)
 z = [0 0 0 z0(4) V0];
 else
 [t,z] = ode45(@(t,z) model_dynamics(t,z, kla_p, Anu_gl, Anu_o2,
Anu_Ac, ...
 -mu, Zgl_feed, F0, P0), tspan, z0);
 end
 y = z(end,:)';

 if (z(end,1) <= 1e-6) %check for O2 concentration
 y(1,1) = 1e-6;
 end
 if (z(end,2) <= 1e-6) %check for O2 concentration
 y(2,1) = 1e-6;
 end
 if (z(end,3) <= 1e-6) %check for O2 concentration
 y(3,1) = 1e-6;
 end
 % Reinitialise z0_model and V0 for next time step
 z0_model = y(1:4,1);
 V0 = y(5);

 % store the plant dynamics
 nu_plant(k,:) = nu';
 y_plant(k,:) = y';
end
%---
%----- make PCE coefficients--

%--
function a = make_PCE(n_dim, n_order, l, z0_model, V0, u, dt, A, c, kla,
Km, GUR_max,...
 OUR_max, Ki, Zgl_feed, nit, GUR_sig, kla_sig, Ki_sig)

%% Determine the Gaus Quadrature points
% l = level of accuracy
% n_dim = # of uncertainties, dimensions in PCE
[xi,w] = gausspoints(l, n_dim);
%% Run the plant for nit steps
num_points = length(w);
X = zeros(num_points,1);

 141

Ki_p = Ki;
if (n_dim<2)
 for i = 1:num_points
 GUR_p = GUR_max*(1+GUR_sig*xi(i,1));
% kla_p = OUR_max;
 X(i) = plant(z0_model, V0, u, dt, A, c, kla, Km, GUR_p,...
 OUR_max, Ki_p, Zgl_feed, nit);
 end
else
 for i = 1:num_points
 GUR_p = GUR_max*(1+GUR_sig*xi(i,1));
 kla_p = kla*(1+kla_sig*xi(i,2));
 X(i) = plant(z0_model, V0, u, dt, A, c, kla_p, Km, GUR_p,...
 OUR_max, Ki_p, Zgl_feed, nit);
 end
end
%% Determine PCE points
a = a_PCE(n_order, n_dim, xi, w, X);
end
%---
% Robust Objective Function

function objfun = prob_cost(u_discrete, z0_model, V0,dt, nit, ...

 A, c, kla, Km, GUR_max, OUR_max, Ki, GUR_sig, kla_sig, Ki_sig,
Zgl_feed, ...
 n_dim, n_order, l, alpha)
%% Explaing all the parameters
%% Develop PCE coefficients
% u = zeros(nit,1);
u = make_input(u_discrete,nit);
a = make_PCE(n_dim, n_order, l, z0_model, V0, u, dt, A, c, kla, Km,
GUR_max,...
 OUR_max, Ki, Zgl_feed, nit, GUR_sig, kla_sig, Ki_sig);
a_nom = a(1);
a_sig = a(2:end,1)'*a(2:end,1);
F = u(1:nit,1);
P = u(nit+1:end,1);
V = (sum(F-P))*dt + V0;
% V = ones(1,nit)*u*dt + V0;
% alpha = 0.3;
objfun = a_sig*V^2/(V*a_nom - alpha)^2;
end
%--
Distributed Robust MPC with communication loss for Chapter 5

%--
Main Algorithm for Robust DMPC

clc
clear all
%% Models
Ts=3; %min
[Ap, Bp, Cp, Dp] = reactor_separator(Ts);

 142

% [Ap,Bp,Cp,Dp]= ssdata(plant_p); % Nominal state-space matrices for
discrete
%% Define vertices and uncertainty
% uncertainty in 9 states, plant divided into 3 subsystem
% each subsystem has uncertainty delta

dela_max = [0.15 0.3 0]'; % uncertainty in continuous systems 9states,
4 inputs
dela_min = [-0.5 -0.5 -1e-4]';

[Ap1, Ap2 Ap3 Ap4 Ap5 Ap6 Ap7 Ap8] = model_uncertainty(Ap, dela_max, ...
 dela_min);
% Ap1 = 10*Ap; Ap2 = Ap; Ap3 = Ap; Ap4 = Ap;
% Ap5 = Ap; Ap6 = Ap; Ap7 = Ap; Ap8 = Ap;

Bp1 = Bp; Bp2 = Bp; Bp3 = Bp; Bp4 = Bp;
Bp5 = Bp; Bp6 = Bp; Bp7 = Bp; Bp8 = Bp;
% delta for the estimator
flag_robust_state = 1; % robust estimator = 1 and non-Robust estimator
= 0;
delp_list = [-0.1, -0.4, -0.1, -0.4, -0.4, -0.1, 0.3, -0.3; ...
 -0.4, -0.25, 0.25, 0.25, -0.4, -0.25, 0.3, 0.3; ...
 zeros(1,8)];
% 0.3, -0.3,-0.3, 0.3, 0.3,-0.3, -0.3, 0.3]; % choose
between delb_c_max and min

%% state weights
n_x = size(Ap,1); n_u = size(Bp,2);
Qs1 = 0.1*eye(n_x); Qs2 = eye(n_x); Qs3 = eye(n_x);
% input weights
R1=0.2; R2=0.5; R3 = 0.5;
% input constraints
% um1=1e6/12.6e5; um2=3/5.04; um3 = 1e6/13.32; um4 = 1e6/11.88;
um1 = 0.9; um2 = 0.9; um3 =0.9; um4 =0.9;
Xm1=um1^2; Xm2=diag([um2^2, um3^2]); Xm3 = um4^2;
Xm= {um1^2; diag([um2^2, um3^2]); um4^2};
%% Operating Conditions
%no. of sampling time
m=30;
%range of communication loss
l1 = 1; l2 = 5;
l3 = 7; l4 = 11;
l5 = 13; l6 = 17;
l7 = 19; l8 = 23;
l9 = 25; l10 = 29;
l11 = 31; l12 = 35;
l13 = 37; l14 = 54;
l15 = 57; l16 = 62;
l17 = 65; l18 = 514;
l19 = 561; l20 = 160;
l21 = 142; l22 = 145;
l23 = 146; l24 = 149;
l25 = 150; l26 = 153;

 143

l27 = 154; l28 = 157;
l29 = 158; l30 = 161;

J_u = zeros(length(delp_list),1);
J_y = zeros(length(delp_list),1);

% for i = 1: 3
%% Initial Conditions

%-------------Values to be stored at each iteration
% cooperative cost function
%---
%--------Solver Parameters-------------------------
ErrTol=5e-2;
MaxIteration=25;
tcito = zeros(m,1);
loss_flag = 0; % no commn loss to start with
matlabpool(3)
% dmpc_func={@mpc11_ymip; @mpc22_ymip; @mpc33_ymip};
F_cell = cell(3,1);
xs = [0.865 0.1213 380.22 0.88 0.117 376.07 0.7505 0.2437 385.55]';
xk0_actual = [0.5 0.5 450 0.5 0.5 450 0.3 0.7 460]';
xk0 = xko_normalised(xk0_actual, xs);
%---
%----Initialisation-----------------------------------
for i=2
% xk0 = [-0.01; 0.01; -0.05; 0.01; -0.01 ;-0.05; 0.01; -0.01; -0.05];
% Initial Point, starting point for set-point change.
% xk0 = -.3*ones(9,1);
 xk = xk0;
 gdata = zeros(1,m);
 tdata = zeros(1,m+1); tdata(1) = 0;
 xdata = zeros(n_x,m+1); xdata(:,1)=xk0;
 FFdata=zeros(4,n_x,m);
 udata=zeros(n_u,m);
 onclock = zeros(1,m);
 J= 0; %
 DD1=[];
 DD2=[];
 DD3=[];
 F1_old=zeros(1,n_x); F2_old=zeros(2,n_x); F3_old = zeros(1,n_x);
 F= zeros(4,9); gamma_old = zeros(3,1); gamma = zeros(3,1);
 x1k_old=xk; x2k_old=xk; x3k_old = xk; %--Both the controllers
start from same point

 x1l=x1k_old(1,1); x1h=x1k_old(1,1); % Define the bounds on both the
states
 x2l=x1k_old(2,1); x2h=x1k_old(2,1); % states are x(1,1) and x(2,1);
 x3l=x1k_old(3,1); x3h=x1k_old(3,1);
 x4l=x1k_old(4,1); x4h=x1k_old(4,1);
 x5l=x1k_old(5,1); x5h=x1k_old(5,1);
 x6l=x1k_old(6,1); x6h=x1k_old(6,1);
 x7l=x1k_old(7,1); x7h=x1k_old(7,1);

 144

 x8l=x1k_old(8,1); x8h=x1k_old(8,1);
 x9l=x1k_old(9,1); x9h=x1k_old(9,1);

 xbd=[x1h;x1l;x2h;x2l;x3h;x3l;x4h;x4l;x5h;x5l;x6h;x6l;x7h;x7l;...
 x8h;x8l;x9h;x9l]; % robust estimator
 xk_n = xk; % nominal estimator
 %--
 D=[1;0;0;0]; % Step Input to the controller for x(1,1) state
 dt=5;
 FF=[];
 % Plant Definition
 delp = delp_list(:,i) ;
 Apd = Ap*(eye(n_x,n_x) + blkdiag(delp(1)*eye(3,3), ...
 delp(2)*eye(3,3), delp(3)*eye(3,3))) ;
 Bpd = Bp;
 for k=1:1:m
 k
 tstart = clock;
 % Bpd = Bn*[1+delp(1,k) 0; 0 1+delp(2,k)];
 % xbd
 if (((k>l1) && (k<l2)) || ((k>l3) && (k<l4)) || ((k>l5) &&
(k<l6))...
 || ((k>l7) && (k<l8)) || ((k>l9) && (k<l10)) ...
 || ((k>l11) && (k<l12)) || ((k>l13) && (k<l14)) ...
 || ((k>l15) && (k<l16)) || ((k>l17) && (k<l18)) ...
 || ((k>l19) && (k<l20)) || ((k>l21) && (k<l22)) ...
 || ((k>l23) && (k<l24)) || ((k>l25) && (k<l26)) ...
 || ((k>l27) && (k<l28)) || ((k>l29) && (k<l30)))
 loss_flag =1;
 % xbdrhs=[xbd(1);-xbd(2);xbd(3);-xbd(4)];
 if (flag_robust_state ==1)
 xbd=bdmpc3(Ap, Bp, dela_max, dela_min, xbd, F);
% xbd = [0.5; 0.1;0.5;0.1;0.5; 0.1;0.5;0.1;0.5;0.11;...
% 0.5;0.12;0.51;0.09; 0.48;0.13; 0.52;.08];
 else
 xk_n = Ap*xk_n + Bp*u;
 xbd = [xk_n(1,1) xk_n(1,1) xk_n(2,1) xk_n(2,1) ...
 xk_n(3,1) xk_n(3,1) xk_n(4,1) xk_n(4,1) ...
 xk_n(5,1) xk_n(5,1) xk_n(6,1) xk_n(6,1) ...
 xk_n(7,1) xk_n(7,1) xk_n(8,1) xk_n(8,1) ...
 xk_n(9,1) xk_n(9,1)]';
 end
 else
 xbd=[xk(1,1) xk(1,1) xk(2,1) xk(2,1) xk(3,1) xk(3,1) xk(4,1)
xk(4,1) ...
 xk(5,1) xk(5,1) xk(6,1) xk(6,1) xk(7,1) xk(7,1) xk(8,1)
xk(8,1) ...
 xk(9,1) xk(9,1)]';
 xk_n = xk;
 loss_flag = 0;
 end
 xbd;
 for iterations=1:MaxIteration

 145

 iterations
 gamma = zeros(3,1);
 parfor n_sub = 1:3
% dmpc = dmpc_func(n_sub);
% Xm_temp = getfield(Xm, dmpc_list(n_sub));
% Xm_temp = cell2mat(Xm(n_sub));
 [F_temp, g_temp, QQ, YY]=dmpc(Ap1,Ap2, Ap3, Ap4, Ap5, Ap6,
Ap7, Ap8, ...

Bp,R1,Qs1,x1k_old,F1_old,F2_old,F3_old,Xm,xbd,loss_flag, n_sub);
% [F2,g2,QQ2,YY2]=mpc22_ymip(Ap1,Ap2, Ap3, Ap4, Ap5, Ap6,
Ap7, Ap8, ...
%
Bp,R1,Qs1,x2k_old,F1_old,F2_old,F3_old,Xm2,xbd,loss_flag);
% [F3,g3,QQ4,YY3]=mpc33_ymip(Ap1,Ap2, Ap3, Ap4, Ap5, Ap6,
Ap7, Ap8, ...
%
Bp,R1,Qs1,x3k_old,F1_old,F2_old,F3_old,Xm3,xbd,loss_flag);
 F_cell(n_sub,1) = {F_temp};
 gamma(n_sub,1) = g_temp;
 end
 F1 = cell2mat(F_cell(1));
 F2 = cell2mat(F_cell(2));
 F3 = cell2mat(F_cell(3));
% abs(norm([F1;F2;F3])-norm([F1_old;F2_old;F3_old]))
 abs(norm(gamma) - norm(gamma_old))
 if abs(norm(gamma) - norm(gamma_old))<= ErrTol
 % [F1;F2];
 % k;iterations; value=norm([F1;F2]-[F1_old;F2_old]);
 break;
 end
 F1_old = F1;
 F2_old = F2;
 F3_old = F3;
 gamma_old = gamma;
 F = [F1; F2; F3];
 DD1=[DD1 gamma(1)];
 DD2=[DD2 gamma(2)];
 DD3 = [DD3 gamma(3)];
 end
 %g1, g2
 %QQ1,QQ2
 % iterations

 %if iterations == MaxIteration
 % break;
 %end
% F1_old = 0*F1;
% F2_old = 0*F2;
% F3_old = 0*F3;
% F=[F1;F2;F3];
 FFdata(:,:,k)=F;

 146

 if (((k>l1) && (k<l2)) || ((k>l3) && (k<l4)) || ((k>l5) &&
(k<l6))...
 || ((k>l7) && (k<l8)) || ((k>l9) && (k<l10)) ...
 || ((k>l11) && (k<l12)) || ((k>l13) && (k<l14)) ...
 || ((k>l15) && (k<l16)) || ((k>l17) && (k<l18)) ...
 || ((k>l19) && (k<l20)) || ((k>l21) && (k<l22)) ...
 || ((k>l23) && (k<l24)) || ((k>l25) && (k<l26)) ...
 || ((k>l27) && (k<l28)) || ((k>l29) && (k<l30)))
 % xbdrhs=[xbd(1);-xbd(2);xbd(3);-xbd(4)];
 % xbd=bdmpc(An, Bn, delb, xbd, F);
 % xbd(3)-xbd(4);
 % xbd(1)-xbd(2);
 u1=F(1,1:3)*xk(1:3,1) + ...
 F(1,4)*mean([xbd(7) xbd(8)]) + F(1,5)*mean([xbd(9)
xbd(10)])+ ...
 F(1,6)*mean([xbd(11) xbd(12)]) + F(1,7)*mean([xbd(13)
xbd(14)])+ ...
 F(1,8)*mean([xbd(15) xbd(16)]) + F(1,9)*mean([xbd(17)
xbd(18)]);

 u2=F(2,4:6)*xk(4:6,1) + ...
 F(2,1)*mean([xbd(1) xbd(2)]) + F(2,2)*mean([xbd(3)
xbd(4)])+ ...
 F(2,3)*mean([xbd(5) xbd(6)]) + F(2,7)*mean([xbd(13)
xbd(14)])+ ...
 F(2,8)*mean([xbd(15) xbd(16)]) + F(2,9)*mean([xbd(17)
xbd(18)]);
 u3=F(3,4:6)*xk(4:6,1) + ...
 F(3,1)*mean([xbd(1) xbd(2)]) + F(3,2)*mean([xbd(3)
xbd(4)])+ ...
 F(3,3)*mean([xbd(5) xbd(6)]) + F(3,7)*mean([xbd(13)
xbd(14)])+ ...
 F(3,8)*mean([xbd(15) xbd(16)]) + F(3,9)*mean([xbd(17)
xbd(18)]);
 u4=F(4,7:9)*xk(7:9,1) + ...
 F(4,1)*mean([xbd(1) xbd(2)]) + F(4,2)*mean([xbd(3)
xbd(4)])+ ...
 F(4,3)*mean([xbd(5) xbd(6)]) + F(4,4)*mean([xbd(7)
xbd(8)])+ ...
 F(4,5)*mean([xbd(9) xbd(10)]) + F(4,6)*mean([xbd(11)
xbd(12)]);
 else
 % xbd=[xk(1,1) xk(1,1) xk(2,1) xk(2,1)]';
 u1=F(1,:)*xk;
 u2=F(2,:)*xk;
 u3=F(3,:)*xk;
 u4=F(4,:)*xk;
 end
 %u=F*xk;
 u=[u1;u2;u3;u4]
 udata(1:4,k)=u;
 if(k ==15)

 147

 xk = xk0;
 else
 xk = Apd*xk+Bpd*u;
 end
 xdata(:,k+1)=xk;
 x1k_old=xk; x2k_old=xk ; x3k_old = xk; % reset the initial
condition of both controller

 %we must define xbdrhs for the purpose of defining lower bds for
%fmincon
 %in bdmpc

 J=J + xk'*Qs1*xk + u'*diag(R1*ones(4,1))*u;
 tdata(k+1)=k;
 tcito(k,1) = etime(clock,tstart);
 filename = strcat('w1_',num2str(Qs1(1,1)),'_w2_',num2str(R1),...
 '_robust_estimator_plant_new_', num2str(i),'_lp_3.mat');
 save (filename);
 end
 J_y(i) = sum(diag(diag(diag(xdata*xdata'))*Qs1));
 J_u(i) = J - J_y(i);
 save(filename);
end

matlabpool close
end
%---
% Nominal Process Model for Reactor-Separator

%--

function [An,Bn,Cp,Dp] = reactor_separator(Ts)

% Two series reactors and separator
% process is linearised to determine State space model
%% Operating conditions
% States
xa1 = 0.865;
xb1 = 0.1213;
T1 = 380.22; %K
xa2 = 0.88;
xb2 = 0.117;
T2 = 376.07; %K
xa3 = 0.7505;
xb3 = 0.2437;
T3 = 385.55; %K

% xa1 = y(1); xb1 = y(2); T1 = y(3);
% xa2 = y(4); xb2 = y(5); T2 = y(6);
% xa3 = y(7); xb3 = y(8); T3 = y(9);

% Inputs
Q1 = 10.8e5/3600; %KJ/s

 148

F20 = 5.04/3600 ; %m3/s
Q2 = 11.4e5/3600; %KJ/s
Q3 = 10.0e5/3600; %KJ/s
%% Process parameters
F10 = 5.04/3600; %m3/s
Fr = 15.04/3600; %m3/s
F1 = Fr+F10; %m3/s
k1 = 2.77e3; % s^-1
E1 = 5e4; %KJ/kmol
T10 = 300; % K
F2 = F20+F1; % m3/s
k2 = 2.5e3; %s^-1
E2 = 6e4; %KJ/kmol
T20 = 300; % K
Fp = 5.04/3600; %m3/s
V1 = 1.0; %m3
V2 = 0.5;
V3 = 1.0;
rho = 1000; %kg/m3
Cp = 4.2; %KJ/kg/K
dH1 = 6e4; %KJ/kmol
dH2 = 7e4; %KJ/kmol
Mw = 250;
R = 8.314; %KJ/kmol/K
xa20 = 1;
xb20 = 0;
alpha_a = 3.5;
alpha_b = 1.0;
alpha_c = 0.5;
%% A nominal
% 9 states
% xa1, xb1, T1, xa2, xb2, T2, xa3, xb3, T3
% concentration of a, b & Temperature in each process unit
A = zeros(9,9);
alpha_D = (alpha_c + (alpha_a-alpha_c)*xa3 + (alpha_b - alpha_c)*xb3)^2;

%% Subsystem 1

A(1,1) = -F10/V1 - Fr/V1 - k1*exp(-E1/R/T1);
A(1,3) = -k1*E1/R/(T1^2)*xa1*exp(-E1/R/T1)*(T1/xa1);
A(1,7) = Fr/V1*alpha_a*(alpha_c + (alpha_b -
alpha_c*xb3))/alpha_D*(xa3/xa1);
A(1,8) = -Fr/V1*alpha_a*xa3*(alpha_b - alpha_c)/alpha_D*(xb3/xa1);

A(2,1) = k1*exp(-E1/R/T1)*(xa1/xb1);
A(2,2) = -F10/V1 - Fr/V1 - k2*exp(-E2/R/T1);
A(2,3) = (k1*xa1*E1/R/(T1^2)*exp(-E1/R/T1) - k2*xb1*E2/R/(T1^2)*exp(-
E2/R/T1))*(T1/xb1);
A(2,7) = -Fr/V1 * alpha_b*xb3*(alpha_c)/alpha_D*(xa3/xb1);
A(2,8) = Fr/V1*alpha_b*(alpha_c + (alpha_a -
alpha_c)*xa3)/alpha_D*(xb3/xb1);

A(3,1) = dH1/(Mw*Cp)*k1*exp(-E1/R/T1)*(xa1/T1);

 149

A(3,2) = dH2/(Mw*Cp)*k2*exp(-E2/R/T1)*(xb1/T1);
A(3,3) = -F10/V1 - Fr/V1 + dH1*k1*xa1*E1/(Mw*Cp)/R/(T1^2)*exp(-E1/R/T1) +
...
 dH2*k2*xb1*E2/(Mw*Cp)/R/(T1^2)*exp(-E2/R/T1);
A(3,9) = Fr/V1*(T3/T1);
%--
%% Subsystem 2
A(4,1) = F1/V2*(xa1/xa2);
A(4,4) = -F1/V2 -F20/V2-k1*exp(-E1/R/T2);
A(4,6) = -k1*xa2*E2/R/(T2^2)*exp(-E1/R/T2)*(T2/xa2);

A(5,2) = F1/V2*(xb1/xb2);
A(5,4) = k1*exp(-E1/R/T2)*(xa2/xb2);
A(5,5) = -F1/V2 - F20/V2 - k2*exp(-E2/R/T2);
A(5,6) = (k1*xa2*E1/R/(T2^2)*exp(-E1/R/T2) - k2*xb2*E2/R/(T2^2)*exp(-
E2/R/T2))*(T2/xb2);

A(6,3) = F1/V2*(T1/T2);
A(6,4) = dH1/(Mw*Cp)*k1*exp(-E1/R/T2)*(xa2/T2);
A(6,6) = -F1/V2 -F20/V2 + dH1/(Mw*Cp)*k1*xa2*E1/R/(T2^2)*exp(-E1/R/T2) +
...
 dH2/(Mw*Cp)*k2*xb2*E2/R/(T2^2)*exp(-E2/R/T2);
%---
%% Subsystem 3
A(7,4) = F2/V3*(xa2/xa3);
A(7,7) = -F2/V3 + (Fr + Fp)/V3 - (Fr + Fp)/V3*alpha_a*(alpha_c + (alpha_b
- alpha_c)*xb3)/alpha_D;
A(7,8) = (Fr + Fp)/V3*alpha_a*xa3*(alpha_b - alpha_c)/alpha_D*(xb3/xa3);

A(8,5) = F2/V3*(xb2/xb3);
A(8,7) = (Fr + Fp)/V3*alpha_b*xb3*(alpha_a - alpha_c)/alpha_D*(xa3/xb3);
A(8,8) = -F2/V3 + (Fr+Fp)/V3 -(Fr + Fp)/V3*alpha_b*...
 (alpha_c + (alpha_a - alpha_c)*xa3)/alpha_D;

A(9,6) = F2/V3*(T2/T3);
A(9,9) = -F2/V3;
%---
%% B matrix
B = zeros(9,4);
B(3,1) = 1/rho/Cp/V1*(Q1/T1);
B(4,2) = (xa20 - xa2)/V2*(F20/xa2);
B(5,2) = (xb20 - xb2)/V2*(F20/xb2);
B(6,2) = (T20 - T2)/V2*(F20/T2);
B(6,3) = 1/rho/Cp/V2*(Q2/T2);
B(9,4) = 1/rho/Cp/V3*(Q3/T3);
%---
Acn = 60*A; Bcn = 60*B; C = eye(9,9); D = zeros(9,4);
%% Continuous to discrete
% plant_c = ss(Acn, Bcn, C,D);
plant_d = c2d(ss(Acn,Bcn,C,D),Ts);
[An,Bn,Cp,Dp]= ssdata(plant_d);
end

 150

%--
% Algorithm for Robust Observer
function [bd] = bdmpc3(An, Bn, dela_max, dela_min, xx, F)

%UNTITLED6 Summary of this function goes here
% xx : includes bounds on states x at previous time instant.
% An, Bn : Nominal model
% dela_max, dela_min are upper and lower limit on uncertainty in An
% Optimisation problem solved is as follows:
% {An*[I+del] + Bn*F}* [x(1); x(2); ... ; x(9)]
% x = x(1); x(2); ... x(9);
% st, x(1)l< x(1) < x(1)u
% st, x(2)l< x(2) < x(2)u

%% Formulate the problem as bilinear problem
% Minimise Bilinear problem: a'x + y'Qx + b'y
% s.t. Ax =< c
% s.t. By =< d
% x represents state bounds, y represents B matrix uncertainties
del_l =
diag([dela_min(1)*ones(3,1);dela_min(2)*ones(3,1);dela_min(3)*ones(3,1)]);
% Lower bounds on dela for matrix An
% del_u = diag(delb_max); % Upper bounds on delb for matrix B
x_l = [xx(2) xx(4) xx(6) xx(8) xx(10) xx(12) xx(14) xx(16) xx(18)]'; %
lower bound vector for states
x_u = [xx(1) xx(3) xx(5) xx(7) xx(9) xx(11) xx(13) xx(15) xx(17)]'; %
upper bound vector for states
%% define the new constraints
A = [eye(9,9); -eye(9,9)];
del_u_new = dela_max - dela_min;
if(norm(x_u - x_l)>1e-6)
 xu_new = x_u - x_l;
else
 xu_new = 1e-6*ones(9,1);
end
c = [xu_new; zeros(9,1)];
B = [eye(3,3); -eye(3,3)];
d = [del_u_new; zeros(3,1)];
%% Objective function parameters
constant = An*del_l*x_l + Bn*F*x_l;
a_temp = An + Bn*F + An*del_l;
% b = zeros(3,1);
bd = zeros(18,1);
for i = 1:9
 a = a_temp(i,:)';
 b = [An(i,1:3)*x_l(1:3,1); ...
 An(i,4:6)*x_l(4:6,1); ...
 An(i,7:9)*x_l(7:9,1)];
 Q = zeros(9,3);
 Q(1:3,1) = An(i,1:3)'; Q(4:6,2) = An(i,4:6)'; Q(7:9,3) = An(i,7:9)';

 [x_temp, del_temp, xl_temp] = bilinear_yalmip(a, Q, b, A, B, c,d);

 151

 delta_p = diag([del_temp(1)*ones(3,1); del_temp(2)*ones(3,1);
del_temp(3)*ones(3,1);]);
 xl_temp = (An*(eye(9,9) + del_l + delta_p)+Bn*F)*(x_temp + x_l);

 [x_temp, del_temp, xh_temp] = bilinear_yalmip(-a, -Q, -b, A, B, c, d);
 delta_p = diag([del_temp(1)*ones(3,1); del_temp(2)*ones(3,1);
del_temp(3)*ones(3,1);]);
 xh_temp = (An*(eye(9,9) + del_l + delta_p)+Bn*F)*(x_temp + x_l);
% xh = -xh_temp - constant(i); xl = xl_temp + constant(i);
 bd(2*i-1:2*i,1) = [xh_temp(i); xl_temp(i)];
end
%--

% Bilinear Solver
function [x, y, z] = bilinear_yalmip(a, Q, b, A, B, c, d)
% Solves Bilinear problem of the form(min: a'*x + x'*Q*y + b'*y)
% s.t. Ax<= c, By<=d
% using Yalmip bmibnb solver
%% Yalmip variables
x = sdpvar(length(a),1);
y = sdpvar(length(b),1);

ineq = [A*x - c<=0, B*y - d <= 0];
obj = a'*x + x'*Q*y + b'*y;
options = sdpsettings('verbose',0,'solver','bmibnb');
solvesdp(ineq,obj,options);
x = double(x); y = double(y); z = double(obj);
end
%--
% Distributed Controller with LMI’s
%--

function [F_temp, g_temp, QQ, YY]=dmpc(Ap1,Ap2, Ap3, Ap4, Ap5, Ap6, Ap7,
Ap8, ...

Bp,R1,Qs1,x1k_old,F1_old,F2_old,F3_old,Xm,xbd,loss_flag, n_sub)

switch n_sub
 case 1
 Xm_temp = cell2mat(Xm(1));
 [F_temp, g_temp, QQ, YY] = mpc11_ymip(Ap1,Ap2, Ap3, Ap4, Ap5, Ap6,
Ap7, Ap8, ...

Bp,R1,Qs1,x1k_old,F1_old,F2_old,F3_old,Xm_temp,xbd,loss_flag);
 case 2
 Xm_temp = cell2mat(Xm(2));
 [F_temp, g_temp, QQ, YY] = mpc22_ymip(Ap1,Ap2, Ap3, Ap4, Ap5, Ap6,
Ap7, Ap8, ...

Bp,R1,Qs1,x1k_old,F1_old,F2_old,F3_old,Xm_temp,xbd,loss_flag);

 152

 case 3
 Xm_temp = cell2mat(Xm(3));
 [F_temp, g_temp, QQ, YY] = mpc33_ymip(Ap1,Ap2, Ap3, Ap4, Ap5, Ap6,
Ap7, Ap8, ...

Bp,R1,Qs1,x1k_old,F1_old,F2_old,F3_old,Xm_temp,xbd,loss_flag);
end
%--
% DMPC for sub-system 1
function [F1,g1,QQ,YY]=mpc11_ymip(Am1, Am2, Am3, Am4, Am5, Am6, Am7,
Am8,...
 Bm1,R,Q1,xk,F1_old,F2,F3,Xm,xbd, loss_flag)
A1 = Am1+Bm1(:,2:3)*F2+Bm1(:,4)*F3;
A2 = Am2+Bm1(:,2:3)*F2+Bm1(:,4)*F3;
A3 = Am3+Bm1(:,2:3)*F2+Bm1(:,4)*F3;
A4 = Am4+Bm1(:,2:3)*F2+Bm1(:,4)*F3;
A5 = Am5+Bm1(:,2:3)*F2+Bm1(:,4)*F3;
A6 = Am6+Bm1(:,2:3)*F2+Bm1(:,4)*F3;
A7 = Am7+Bm1(:,2:3)*F2+Bm1(:,4)*F3;
A8 = Am8+Bm1(:,2:3)*F2+Bm1(:,4)*F3;

B1=Bm1(:,1); B2=Bm1(:,1); B3=Bm1(:,1); B4=Bm1(:,1);
B5=Bm1(:,1); B6=Bm1(:,1); B7=Bm1(:,1); B8=Bm1(:,1);

Q1=Q1+F2'*R*F2 + F3'*R*F3;

%Define LMIs
 gamma=sdpvar(1,1);
 Q = sdpvar(9,9);
 Y=sdpvar(1,9,'full');
% ineq = [[1 xk'; xk Q] >= 0];
 ineq = [];
 ff = fullfact([2,2,2,2,2,2,2,2,2]);
 if(loss_flag == 1)
 for i = 1:512
 xk_temp = [xbd(ff(i,1));xbd(2+ff(i,2)); xbd(4+ff(i,2)); ...
 xbd(6+ff(i,3)); xbd(8+ff(i,4)); xbd(10+ff(i,2)); ...
 xbd(12+ff(i,3)); xbd(14+ff(i,4)); xbd(16+ff(i,2))];
 ineq = [ineq, [1 xk_temp'; xk_temp Q]>=0];
 end
 else
 for i = 1
 xk_temp = [xbd(ff(i,1));xbd(2+ff(i,2)); xbd(4+ff(i,2)); ...
 xbd(6+ff(i,3)); xbd(8+ff(i,4));
xbd(10+ff(i,2)); ...
 xbd(12+ff(i,3)); xbd(14+ff(i,4));
xbd(16+ff(i,2))];
 ineq = [ineq, [1 xk_temp'; xk_temp Q]>=0];
 end
 end
 ineq = [ineq, [Q Q*A1'+Y'*B1' Q*Q1^0.5 Y'*R^0.5; ...
 A1*Q'+B1*Y Q zeros(9,9) zeros(9,1);...
 (Q*Q1^0.5)' zeros(9,9) gamma*eye(9,9) zeros(9,1); ...

 153

 (Y'*R^0.5)' zeros(1,9) zeros(1,9) gamma] >=0, ...
 [Q Q*A3'+Y'*B3' Q*Q1^0.5 Y'*R^0.5; ...
 A3*Q'+B3*Y Q zeros(9,9) zeros(9,1);...
 (Q*Q1^0.5)' zeros(9,9) gamma*eye(9,9) zeros(9,1); ...
 (Y'*R^0.5)' zeros(1,9) zeros(1,9) gamma] >=0, ...
 [Q Q*A5'+Y'*B5' Q*Q1^0.5 Y'*R^0.5; ...
 A5*Q'+B5*Y Q zeros(9,9) zeros(9,1);...
 (Q*Q1^0.5)' zeros(9,9) gamma*eye(9,9) zeros(9,1); ...
 (Y'*R^0.5)' zeros(1,9) zeros(1,9) gamma] >=0, ...
 [Q Q*A6'+Y'*B6' Q*Q1^0.5 Y'*R^0.5; ...
 A6*Q'+B6*Y Q zeros(9,9) zeros(9,1);...
 (Q*Q1^0.5)' zeros(9,9) gamma*eye(9,9) zeros(9,1); ...
 (Y'*R^0.5)' zeros(1,9) zeros(1,9) gamma] >=0, ...
 [Xm -Y; -Y' Q]>=0];
 obj = gamma;
 ops = sdpsettings('solver','sedumi','sedumi.eps',1e-5,'verbose',0);
 solvesdp(ineq, obj, ops);
 g1 = double(gamma); YY = double(Y); QQ = double(Q);
 F1=YY*QQ^(-1);
end

%---

% DMPC for sub-system 2

%--
function [F2,g2,QQ,YY]=mpc22_ymip(Am1, Am2, Am3, Am4, Am5, Am6, Am7,
Am8,...
 Bm1,R,Q1,xk,F1,F2_old,F3,Xm,xbd,loss_flag)

A1 = Am1+Bm1(:,1)*F1+Bm1(:,4)*F3;
A2 = Am2+Bm1(:,1)*F1+Bm1(:,4)*F3;
A3 = Am3+Bm1(:,1)*F1+Bm1(:,4)*F3;
A4 = Am4+Bm1(:,1)*F1+Bm1(:,4)*F3;
A5 = Am5+Bm1(:,1)*F1+Bm1(:,4)*F3;
A6 = Am6+Bm1(:,1)*F1+Bm1(:,4)*F3;
A7 = Am7+Bm1(:,1)*F1+Bm1(:,4)*F3;
A8 = Am8+Bm1(:,1)*F1+Bm1(:,4)*F3;

B1=Bm1(:,2:3); B2=Bm1(:,2:3); B3 = Bm1(:,2:3); B4=Bm1(:,2:3);
B5 = Bm1(:,2:3); B6 = Bm1(:,2:3); B7 = Bm1(:,2:3); B8 = Bm1(:,2:3);

Q1=Q1+F1'*R*F1+F3'*R*F3;
%Define LMIs
 gamma=sdpvar(1,1);
 Q = sdpvar(9,9);
 Y=sdpvar(2,9,'full');
% ineq = [[1 xk'; xk Q] >= 0];
 ineq = [];
 ff = fullfact([2,2,2,2,2,2,2,2,2]);
 if(loss_flag == 1)
 for i = 1:512

 154

 xk_temp = [xbd(ff(i,1));xbd(2+ff(i,2)); xbd(4+ff(i,2)); ...
 xbd(6+ff(i,3)); xbd(8+ff(i,4)); xbd(10+ff(i,2)); ...
 xbd(12+ff(i,3)); xbd(14+ff(i,4)); xbd(16+ff(i,2))];
 ineq = [ineq, [1 xk_temp'; xk_temp Q]>=0];
 end
 else
 for i = 1
 xk_temp = [xbd(ff(i,1));xbd(2+ff(i,2)); xbd(4+ff(i,2)); ...
 xbd(6+ff(i,3)); xbd(8+ff(i,4));
xbd(10+ff(i,2)); ...
 xbd(12+ff(i,3)); xbd(14+ff(i,4));
xbd(16+ff(i,2))];
 ineq = [ineq, [1 xk_temp'; xk_temp Q]>=0];
 end
 end
 ineq = [ineq, [Q Q*A1'+Y'*B1' Q*Q1^0.5 Y'*R^0.5; ...
 A1*Q'+B1*Y Q zeros(9,9) zeros(9,2);...
 (Q*Q1^0.5)' zeros(9,9) gamma*eye(9,9) zeros(9,2); ...
 (Y'*R^0.5)' zeros(2,9) zeros(2,9) gamma*eye(2,2)] >=0,
...
 [Q Q*A3'+Y'*B3' Q*Q1^0.5 Y'*R^0.5; ...
 A3*Q'+B3*Y Q zeros(9,9) zeros(9,2);...
 (Q*Q1^0.5)' zeros(9,9) gamma*eye(9,9) zeros(9,2); ...
 (Y'*R^0.5)' zeros(2,9) zeros(2,9) gamma*eye(2,2)] >=0,
...
 [Q Q*A5'+Y'*B5' Q*Q1^0.5 Y'*R^0.5; ...
 A5*Q'+B5*Y Q zeros(9,9) zeros(9,2);...
 (Q*Q1^0.5)' zeros(9,9) gamma*eye(9,9) zeros(9,2); ...
 (Y'*R^0.5)' zeros(2,9) zeros(2,9) gamma*eye(2,2)] >=0,
...
 [Q Q*A6'+Y'*B6' Q*Q1^0.5 Y'*R^0.5; ...
 A6*Q'+B6*Y Q zeros(9,9) zeros(9,2);...
 (Q*Q1^0.5)' zeros(9,9) gamma*eye(9,9) zeros(9,2); ...
 (Y'*R^0.5)' zeros(2,9) zeros(2,9) gamma*eye(2,2)] >=0,
...
 [Xm -Y; -Y' Q]>=0];

 obj = gamma;
 ops = sdpsettings('solver','sedumi','sedumi.eps',1e-5,'verbose',0);
 solvesdp(ineq, obj, ops);
 g2 = double(gamma); YY = double(Y); QQ = double(Q);
 F2=YY*QQ^(-1);
end
%---

	Chapter 1 Introduction
	Chapter 2 Background and Literature Review
	2.1 Model Predictive Control
	2.2 Robust Nonlinear Model Predictive Control (MPC)
	2.2.1 LMI’s for Robust Control
	2.2.2 SSV for Robust Control
	2.2.3 Literature Review on Robust NMPC

	2.3 Polynomial Chaos Expansion
	2.4 Bioreactor control and optimization
	2.5 Metabolic Flux Model
	2.6 Robust Distributed MPC with loss of communication

	Chapter 3 Robust Nonlinear MPC based on Volterra series and Polynomial Chaos Expansions0F
	3.1 Introduction
	3.2 Definitions and Methodology
	3.2.1 Closed-loop Prediction Model using Volterra series
	3.2.2 Prediction of ,𝓛-𝟐.-norm in presence of model uncertainty using PCE

	3.3 Robust controller formulation and cost function
	3.4 Case Study
	3.5 Conclusion

	Chapter 4 Applications of Polynomial Chaos Expansions in optimization and control of bioreactors based on Dynamic Metabolic Flux Balance models1F
	4.1 Introduction
	4.2 Mathematical Background
	4.2.1 Dynamic Flux Balance Model
	4.2.2 Polynomial Chaos Expansion

	4.3 Robust Control
	4.3.1 Modeling with uncertainty
	4.3.1.1 Propagation of uncertainty onto fluxes (non-intrusive PCE approach) using LP in (4.7)
	4.3.1.2 Propagation of uncertainty in fluxes into the predictions of 𝒛 and 𝑋
	4.3.1.3 Prediction with uncertainty until the end of the batch by combining step 1 and step 2 above

	4.3.2 Nominal Control Formulation
	4.3.3 Robust Control Formulation

	4.4 Case Study on Robust Control
	4.5 Robust Optimization
	4.5.1 Modeling with uncertainty
	4.5.2 Nominal Optimization Formulation
	4.5.3 Robust Optimization Formulation

	4.6 Case Study on Robust Optimization
	4.7 Conclusions
	4.8

	Chapter 5 Robust Distributed MPC using robust observer during communication loss2F
	5.1 Introduction
	5.2 Definitions and Methodology
	5.2.1 Robust DMPC Algorithm (Al-Gherwi et al., 2011)
	5.2.2 Loss of Communication
	5.2.3 Summary of the Robust DMPC Algorithm with loss of communication
	5.2.4 Convergence and Robust Stability Analysis of Robust-DMPC Algorthm with loss of communication

	5.3 Case Studies
	5.3.1 Case Study 1
	5.3.2 Case Study 2

	5.4 Conclusions

	Chapter 6 Conclusions and Future Work
	6.1 PCE-based Robust NMPC
	6.2 PCE Applications in Robust Control and Optimization of batch bioreactor
	6.3 Robust Observer for Distributed MPC
	6.4 Future Work

