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Abstract

This research work proposes two robust empirical model-based predictive control al-

gorithms for nonlinear processes. Chemical process are generally highly nonlinear thus

predictive control algorithms that explicitly account for the nonlinearity of the process

are expected to provide better closed-loop performance as compared to algorithms based

on linear models. Two types of models can be considered for control: first-principles and

empirical. Empirical models were chosen for the proposed algorithms for the following

reasons: (i) they are less complex for on-line optimization, (ii) they are easy to identify

from input-output data and (iii) their structure is suitable for the formulation of robustness

tests.

One of the key problems of every model that is used for prediction within a control

strategy is that some model parameters cannot be known accurately due to measurement

noise and/or error in the structure of the assumed model. In the robust control approach

it is assumed that processes can be represented by models with parameters’ values that are

assumed to lie between a lower and upper bound or equivalently, that these parameters

can be represented by a nominal value plus uncertainty. When this uncertainty in control

parameters is not considered by the controller the control actions might be insufficient

to effectively control the process and in some extreme cases the closed-loop may become

unstable. Accordingly, the two robust control algorithms proposed in the current work

explicitly account for the effect of uncertainty on stability and closed-loop performance.

The first proposed controller is a robust gain-scheduling model predictive controller

(MPC). In this case the process is represented within each operating region by a state-

affine model obtained from input-output data. The state-affine model matrices are used to

obtain a state-space based MPC for every operating region. By combining the state-affine,

disturbance and controller equations a closed-loop representation was obtained. Then,

the resulting mathematical representation was tested for robustness with linear matrix

inequalities (LMI’s) based on a test where the vertices of the parameter box were obtained

by an iterative procedure. The result of the LMI’s test gives a measure of performance

referred to as γ that relates the effect of the disturbances on the process outputs. Finally, for
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the gain-scheduling part of the algorithm a set of rules was proposed to switch between the

available controllers according to the current process conditions. Since every combination of

the controller tuning parameters results in a different value of γ, an optimization problem

was proposed to minimize γ with respect to the tuning parameters. Accordingly, for

the proposed controller it was ensured that the effect of the disturbances on the output

variables was kept to its minimum. A bioreactor case study was presented to show the

benefits of the proposed algorithm. For comparison purposes a non-robust linear MPC

was also designed. The results show that the proposed algorithm has a clear advantage in

terms of performance as compared to non-robust linear MPC techniques.

The second controller proposed in this work is a robust nonlinear model predictive

controller (NMPC) based on an empirical Volterra series model. The benefit of using a

Volterra series model for this case is that its structure can be split in two sections that

account for the nominal and uncertain parameter values. Similar to the previously pro-

posed gain-scheduled controller the model parameters were obtained from input-output

data. After identifying the Volterra model, an interconnection matrix and its correspond-

ing uncertainty description were found. The interconnection matrix relates the process

inputs and outputs and is built according to the type of cost function that the controller

uses. Based on the interconnection representing the system a robustness test was proposed

based on a structured singular value norm calculation (SSV). The test is based on a min-

max formulation where the worst possible closed-loop error is minimized with respect to

the manipulated variables. Additional factors that were considered in the cost function

were: manipulated variables weighting, manipulated variables restrictions and a terminal

condition. To show the benefits of this controller two case studies were considered, a single-

input-single-output (SISO) and a multiple-input-multiple-output (MIMO) process. Both

case studies show that the proposed controller is able to control the process. The results

showed that the controller could efficiently track set-points in the presence of disturbances

while complying with the saturation limits imposed on the manipulated variables. This

controller was also compared against a non-robust linear MPC, non-robust NMPC and

non-robust first-principles NMPC. These comparisons were performed for different levels

of uncertainty and for different values of the suppression or control actions weights. It
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was shown through these comparisons that a tradeoff exists between nominal performance

and robustness to model error. Thus, for larger weights the controller is less aggressive

resulting in more sluggish performance but less sensitivity to model error thus resulting in

smaller differences between the robust and non-robust schemes. On the other hand when

these weights are smaller the controller is more aggressive resulting in better performance

at the nominal operating conditions but also leading to larger sensitivity to model error

when the system is operated away from nominal conditions. In this case, as a result of

this increased sensitivity to model error, the robust controller is found to be significantly

better than the non-robust one.
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Chapter 1

Introduction

Chemical process plants are designed to satisfy a set of operational, economic and envi-

ronmental objectives. In order to achieve them a control strategy must be implemented to

operate the plant and make the necessary corrections to achieve the plant goals. Effective

control strategies are based on plant models that describe the interrelationship between

different plant variables and how they affect the plant operation and objectives. Thus, it

is important to have an accurate plant model to achieve good closed-loop performance.

There are two types of models that can be used for control purposes: first-principles and

empirical. First-principles models are based on the mass, energy and momentum balances

of the system. These models are difficult to obtain since they typically involve a large set

of thermo-physical parameters that must be accurately identified and quantified. In some

cases the value of the model parameters cannot be obtained because the instrumentation

required is expensive or is not accurate enough. In addition, first-principles models have

generally a complex structure because they attempt to represent the real process behavior

by high-order ordinary and partial differential equations. These complex model structures

are generally unsuitable for model-based control.

On the other hand, empirical models are obtained from input-output data that can

be regressed to obtain a specific structure to describe the process behavior. The accuracy

of these models depends on the quality of data used for calibration. Empirical models

are generally easier to obtain than first-principles models because of their generally lower

dimensionality but they often provide less accurate predictions for operating conditions

that are outside the range used for model calibration.

Currently one of the most popular model-based control strategies is model predictive

control (MPC) referred also to as receding horizon control. Model predictive control cal-
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culates a set of future plant corrections or manipulated variables moves, based on an

optimization that minimizes at each sampling instant a cost function that penalizes the

difference between the future process outputs, calculated from a plant model, and the

prescribed set-points. After the calculated control actions are implemented in the plant

a new set of plant measurements is taken and the optimization is solved again using the

new information. The MPC formulation can be improved by considering additional terms

in the cost function to account for: process constraints, manipulated variables movement

weighting and terminal conditions. Because almost every chemical process exhibits nonlin-

ear behavior it is generally advantageous to use a control strategy that explicitly considers

the nonlinearity of the process. Accordingly, nonlinear model predictive control (NMPC)

uses a nonlinear model to calculate the predicted outputs value.

The NMPC control strategy is expected to provide performance improvements only if

the model represents to a great extent the real behavior of the process. However, there will

always be a mismatch between the model, being first-principles or empirical and the real

process that results from inaccurate knowledge of the model parameters or from inaccuracy

in the identified process dynamics. If the control strategy does not consider the model

uncertainty, the process goals might not be attained and in extreme cases the closed-loop

may become unstable.

Robust control considers that the model parameters are not exactly known. Instead

it considers that the parameters can be assumed to be bounded between lower and upper

bounds. These bounds are referred heretofore as model uncertainty. Robust control tools

allow to assess whether the process will remain stable (robust stability) and if it will

satisfy the required specifications (robust performance) in the presence of uncertainty.

Thus, they serve as an effective tool to analyze and synthesize control strategies in the

presence of model uncertainty. The effect that this model uncertainty has on the MPC

control strategy can be assessed from robust control tests that can be formulated through

linear matrix inequalities (LMI) or structured singular value calculations (SSV).

Several methods for designing and analyzing robust MPC controllers based on linear

models have been presented in the literature. However, the number of methods available
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to design a robust NMPC controller is limited. The two possible approaches for design-

ing robust NMPC controllers are: simulation based or analytical testing. The simulation

based approach is based on a min-max formulation where the objective function of the

worst plant is minimized for all possible combinations between the parameters and its un-

certainty description. The main disadvantage of this approach is that it is computationally

demanding. In the analytical testing approach robust control tests are used that ensure

that the system has robust stability and robust performance. The analytical testing ap-

proach requires that the uncertainty can be mathematically factorized from the nominal

process model. This is generally not possible in first-principles models since the physi-

cal parameters are present in the model in nonlinear functions that are not suitable for

effective factorization of the parameters’ uncertainty from their nominal values, e.g., the

activation energy in Arrhenius exponential expressions. On the other hand it is shown in

this thesis that certain types of nonlinear empirical models such as nonlinear state-affine

and Volterra series models can be used for the formulation of robust stability and robust

performance tests. Then, a robust NMPC controller can be obtained as long as the plant

can be represented by these empirical models.

The lack of a design methodology for obtaining a robust NMPC controller based on an

empirical model is the motivation of this work. Therefore, the main objective and novelty

of this thesis consists in proposing a methodology to design a robust NMPC controller

based on an empirical model of the process. For this purpose two different methods are

proposed:

1. A state-affine model-based gain-scheduled robust NMPC that uses the LMI based

test.

2. A Volterra series model based robust NMPC that uses the SSV concept.

This thesis is organized as follows: chapter 2 contains a literature review of the relevant

aspects for this thesis involving empirical models, model predictive control and robust

control methods. Chapter 3 contains the methodology to obtain a state-affine model-

based gain-scheduled robust NMPC. In chapter 4 the methodology presented in chapter

3



3 is modified to consider the effect of the manipulated variables in the cost function.

Chapter 5 presents the methodology for designing a Volterra series model based robust

NMPC. Chapter 6 compares the performance of the controller presented in chapter 5

against a non-robust first-principles NMPC. Finally chapter 6 presents the conclusions of

this work. Chapters 3, 5 and 6 were written in journal format, each one with its own

abstract, introduction, methodology, results and conclusions.
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Chapter 2

Literature review

Effective control strategies are based on representative models of the process to be con-

trolled. There are basically two types of models that can be used, first-principles models

and empirical models. The MPC strategy requires a model for calculating the optimal

control actions based on the prediction of the output. Therefore, the accuracy of these

models in representing the actual process behavior will be of key importance to provide

good closed-loop performance.

The parameters of the model will never be accurate due to: nonlinearity, numerical

errors and incorrect model identification. Thus, effective control strategies must consider

parameter variation within their formulation. Robust control considers that there is a

degree of uncertainty in the parameters. Robust control methods allow quantifying how

much uncertainty can the system tolerate before it can no longer achieve its specifications

thus resulting in useful controller designs.

Since MPC uses a model of the process, the controller needs to consider a certain degree

of parameter error. On that ground, it is logical to apply robust control tools for analyzing

and designing MPC algorithms.

This chapter is divided as follows: section 2.1 reviews process models and introduces

two empirical models that will be considered in this thesis: state-affine models and Volterra

series models. Section 2.2 introduces MPC. Section 2.3 provides an introduction to robust

control and explains the robust control tools and methodologies that are used in this thesis.

Finally, section 2.4 contains a review of robust control studies related to MPC.

5



2.1 Empirical models

Chemical processes generally exhibit significant nonlinear behavior (Bequette, 2003). Thus

it is generally difficult to obtain very accurate first-principles models due to insufficient

amount of information or because the process is too complex for accurate modeling. Also,

first-principles models are less amenable for robust control design since the uncertainty in

parameters cannot be mathematically factorized from the nominal values of these param-

eters which is a requirement for formulating robustness tests. For these reasons empirical

models can be used instead. Empirical models are obtained from input-output data that

must be analyzed and processed to obtain a model, they can be divided in parametric

and non-parametric models. However, one of the major drawbacks of empirical models

is that they only provide a good representation of the process in the region of operating

conditions where these models were identified but they may be inaccurate for predicting

behavior outside of these regions.

There are two main types of empirical models: linear models and nonlinear models.

Linear models provide an appropriate representation of the process in a small neighborhood

of an operating point. However, when the process is operated outside this constrained

region, the model predictions will not be accurate. On the other hand, nonlinear models

tend to capture more accurately the process behavior, making them adequate for controlling

a real process in a wide region of operation. Some examples of nonlinear models that were

used to represent and control chemical processes are: Hammerstein (Fruzzetti et al., 1997),

polynomial autoregressive moving average (ARMA) (Hérnandez and Arkun, 1993), state-

affine (Gao, 2004), Volterra series (Doyle III et al., 1995), (Maner et al., 1996) and (Maner

and Doyle III, 1997), Volterra-Laguerre (Parker and Doyle III, 2001) and Wiener (Norquay

et al., 1999), (Gerks̆ic̆ et al., 2000) and (Jeong et al., 2001). In this thesis two types of

models will be considered: state-affine and Volterra series. Brief descriptions of these

empirical models are reviewed in the following subsections.
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2.1.1 State-Affine

State-Affine models have been proposed to represent the behavior of nonlinear processes.

The concept of state-affine models involves the construction of response maps which map

the input sequence to an output sequence (Sontag, 1979). The general form of a state-affine

model is as follows:

x (k + 1) =A (u (k))x (k) + B (u (k))

y (k) =C (u (k))x (k)
(2.1)

where A and C are represented by matrices (Leontaritis and Billings, 1985a,b). Further-

more, every element of A and C is a polynomial in u (k), i.e.,

A (u (k)) = A0 + A1u (k) + A2u (k)2 + . . .

C (u (k)) = C0 + C1u (k) + C2u (k)2 + . . .
(2.2)

A method to identify the model coefficients, i.e., A, B, C and D by means of a behavior

matrix was proposed by (Sontag, 1979). The methodology requires knowing the Volterra

kernels values. A different method was proposed by (Diaz and Desrochers, 1988) that

calculates the coefficients from a difference equation approximation to the response map.

Contrary to the method of (Sontag, 1979), the method of (Diaz and Desrochers, 1988)

provides as a by-product of the identification process the Volterra kernels values.

A more detailed review of the use of state-affine models for control applications will be

given in chapter 3.

2.1.2 Volterra series

A Volterra series model relates the output of a process to its previous inputs. For a single-

input-single-output (SISO) process the relationship between the output and input can be

written as follows:

y (t) = y1 (t) + y2 (t) + . . . (2.3)
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where yi (t) is defined as

yi (t) =

∫ ∞
0

. . .

∫ ∞
0

hi (σ1, . . . , σi)u (t− σ1) , . . . , u (t− σi) dσ1, . . . , dσi (2.4)

The h′is are the coefficients of the Volterra series model. These h′is are also known

as the Volterra kernels. The Volterra series can be viewed as an extension of the Taylor

series expansion used for linear systems (Boyd and Chua, 1985). For practical purposes the

series is truncated to include a finite number of terms resulting in the following equation

in discrete time:

y (k) = h0 +
N∑
v=1

M−1∑
i1=0

. . .
M−1∑
iv=0

hv (i1, . . . , iv)u (k − i1) , . . . , u (k − iv) (2.5)

where M is referred to as the memory of the system. A linear convolution model is a

particular case of the Volterra series where it is assumed that h0 = 0 and M = 1

y (k) =
M∑
i=1

hiu (k − i) (2.6)

Generally, for control applications researchers have considered up to N = 2 (Parker

and Doyle III, 2001) and the corresponding structure of the series is the following:

ŷ (k) =
M−1∑
n=0

hnu (k − n) +
M−1∑
i=0

M−1∑
j=1

hi,ju (k − i)u (k − j) (2.7)

The hn, n = 0, . . . , (M − 1) are the values of the linear Volterra series coefficients also

known as first-order Volterra kernels, the hi,j, i = 1, . . . , (M − 1) , j = i, . . . , (M − 1) are

the values of the quadratic terms of the Volterra series coefficients, also known as second-

oder Volterra kernels. One of the main advantages of these models is that they provide

a good approximation for a wide range of qualitative phenomena, but they cannot be

formulated to exhibit output multiplicities or chaotic dynamics (Parker et al., 2001).

Additional details regarding the use of Volterra series models for control applications

will be given in chapter 5.
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2.2 Model predictive control

Model Predictive Control or Receding Horizon Control is a strategy that minimizes a

cost function that considers the future errors with respect to the manipulated variables.

Only the first manipulated variable move of the optimized profile is implemented. After

the implementation, the optimization problem is solved again at the next time interval

but taken in consideration the new conditions of the system. An overview of the earlier

development and applications of MPC can be found at (Qin and Badgwell, 2003).

The objective function of a MPC controller is based on a norm that penalizes the

deviation of the predicted controlled variables from its pre-specified set-points. The two

norms that are commonly used on MPC applications are the two norm ||·||2 and the infinity

norm ||·||∞. For example, in continuous time the two norm objective function for a SISO

system has the following form:

J = min
∆u(t)

∫ ∞
t0

(ysp (t)− ŷ (t))2 dt (2.8)

where ysp (t) is the desired set-point, ŷ (t) is the predicted output calculated from either a

first-principles model or from an empirical model and ∆u (t) is the manipulated variable

movement change.

In some cases instead of optimizing with respect to the manipulated variable change

∆u (t) the optimization is with respect to the manipulated variable value u (t)

J = min
u(t)

∫ ∞
t0

(ysp (t)− ŷ (t))2 dt (2.9)

Often the algorithm is applied in discrete time. In this case the objective function in

terms of the manipulated variable movement change ∆u (k) can be rewritten as

J = min
∆u(k)

∞∑
k=k0

(ysp (k)− ŷ (k))2 (2.10)
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or if the optimization is done with respect to the manipulated variable u (k)

J = min
u(k)

∞∑
k=k0

(ysp (k)− ŷ (k))2 (2.11)

As can be seen in equations (2.8) to (2.11), the integration or summation limits go from

an initial time t0 or initial time interval k0 for the continuous and discrete case, respectively,

to infinity. However, in practice the upper limit is selected to be finite and the prediction

is done up to a prediction horizon with a length of p time intervals. Also, the optimization

problem is formulated to calculate a specific number of control moves m in the future.

The number of control moves is referred to as the control horizon m. For intervals after

the m−th time interval it is assumed that the value of the manipulated variable is kept

constant and is equal to u (m) Following these definitions equation (2.10) is rewritten in

the following way:

J = min
∆u(k),∆u(k+1),...,∆u(k+m)

k0+p∑
k=k0

(ysp (k)− ŷ (k))2

subject to :

p ≥ m

∆u (k +m+ 1) = . . . = ∆u (k +m+ p) = 0

(2.12)

or if the optimization is with respect to u (k)

J = min
u(k),u(k+1),...,u(k+m)

k0+p∑
k=k0

(ysp (k)− ŷ (k))2

subject to :

p ≥ m

u (k +m) = u (k +m+ 1) = . . . = u (k +m+ p)

(2.13)

The MPC formulation presents two clear advantages when compared to other control

strategies:
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1. Because the optimization considers the behavior of the system up to the prediction

horizon p, it allows the controller to take an appropriate corrective action in response

to a future predicted error (Eaton and Rawlings, 1992).

2. Input and output constraints can be explicitly considered within the optimization

problem (Henson, 1998).

Constraints on the manipulated variables arise due to actuator and rate of change

limits. Constraints on the output variables are due to equipment specifications, safety, en-

vironmental and economic considerations. After considering the optimization constraints,

equation (2.10) can be reformulated as follows

J = min
∆u(k),∆u(k+1),...,∆u(k+m)

k0+p∑
k=k0

(ysp (k)− ŷ (k))2

subject to :



p ≥ m

∆u (k +m+ 1) = . . . = ∆u (k +m+ p) = 0

umin ≤ u (i) ≤ umax, i = 1, . . . , (k +m)

(∆u)min ≤ ∆u (i) ≤ (∆u)max , i = 1, . . . , (k +m)

ymin ≤ y (j) ≤ ymax, j = 1, . . . , (k + p)

(2.14)

The problem in equation (2.10) can be easily generalized to multiple-input-multiple-

output (MIMO) systems using the following representation:

J = min
∆u(k),∆u(k+1),...,∆u(k+m)

[
yTQy

]
(2.15)

or it the optimization is with respect to u (k)

J = min
u(k),u(k+1),...,u(k+m)

[
yTQy

]
(2.16)
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where Q is a positive definite weighting matrix, y is equal to

y =



ysp
1 (k0)− ŷ1 (k0)

ysp
1 (k0 + 1)− ŷ1 (k0 + 1)

...

ysp
1 (k0 + p)− ŷ1 (k0 + p)

ysp
2 (k0)− ŷ2 (k0)

ysp
2 (k0 + 1)− ŷ2 (k0 + 1)

...

ysp
2 (k0 + p)− ŷ2 (k0 + p)

...

ysp
ny (k0 + p)− ŷny (k0 + p)



(2.17)

where ny is the number of outputs, u is equal to

u =



u1 (k0)

u1 (k0 + 1)
...

u1 (k0 +m)

u2 (k0)
...

u2 (k0 +m)
...

unu (k0 +m)



(2.18)
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where nu is the number of inputs, and ∆u is equal to

∆u =



∆u1 (k0)

∆u1 (k0 + 1)
...

∆u1 (k0 +m)

∆u2 (k0)
...

∆u2 (k0 +m)
...

∆unu (k0 +m)



(2.19)

To prevent excessive wear of the actuators or robustness issues related to aggressive

control actions, a term that penalizes the control actions is added to the objective function

as follows:

J = min
∆u(k),∆u(k+1),...,∆u(k+m)

[
yTQy + ∆uTR∆u

]
(2.20)

or if the optimization is with respect to u

J = min
u(k),u(k+1),...,u(k+m)

[
yTQy + uTRu

]
(2.21)

where R is a positive definite weighting matrix.

In MPC the prediction horizon p, control horizon m and weight matrices Q and R

are tuning parameters. If these parameters are not tuned correctly the system might be

closed-loop unstable (Chen and Allgöwer, 1998b). Instability is generally related to model

error or the presence of right hand plane (RHP) zeros. Also (Muske and Rawlings, 1993b,a)

have proven the theoretical nominal stability of MPC controllers with an infinite horizon.

However, in practice infinite horizon based controllers are generally conservative. This

fact is one of the main reasons that motivated the search for algorithms with guaranteed

stability for finite prediction and control horizons (Findeisen and Allgöwer, 2002). In

general proposed algorithms with guaranteed stability use a series of extra terms and
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restrictions within the objective function. One of the simplest algorithms consists in solving

the following optimization problem

J = min
u(k),u(k+1),...,u(k+m)

[
yTQy + uTRu

]
subject to : yfinal = 0

(2.22)

where

yfinal =


ysp

1 (k0 + p)− ŷ1 (k0 + p)

ysp
2 (k0 + p)− ŷ2 (k0 + p)

...

ysp
ny (k0 + p)− ŷny (k0 + p)

 (2.23)

In the previous formulation the optimization forces the system to return to the origin

at the end of the prediction horizon due to the constraint given in equation (2.22).This

type of constraint is usually referred to as a terminal condition. The disadvantage of this

approach is that in some cases the control actions can be too aggressive resulting in time

consuming calculations and possible infeasibility. Another formulation that can be used is

the following:

J = min
u(k),u(k+1),...,u(k+m)

[[
yTQy + uTRu

]
+ yT

finalPyfinal

]
subject to : yfinal ∈ Ω

(2.24)

In this case instead of requiring that at the end of the prediction horizon yfinal = 0, it is

required that yfinal is within some neighborhood of the origin. Also the matrix P is selected

as the covariance matrix of a Lyapunov candidate function. The extra term in the objective

function forces the system to reach a neighborhood Ω near the origin. If the region Ω is

properly selected then the system will follow a trajectory that converges to the origin (Chen

and Allgöwer, 1998a,b), (Mayne and Michalska, 1990) and (Findeisen and Allgöwer, 2002)

resulting in asymptotic stability. It must be noted that the MPC methods with terminal

condition also assume an exact knowledge of the system parameters. However, if the system

parameters are not exactly known, the imposition of terminal conditions is not sufficient
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to ensure closed-loop stability. In a recent comprehensive review of nonlinear predictive

control, (Findeisen and Allgöwer, 2002) identified the issue of robustness to uncertainty as

one of the key challenges that remain for effective implementation of NMPC in industry.

Robustness of NMPC is one of the key subjects of the current thesis.

2.2.1 Linear MPC

When the process is operated in a close neighborhood of a particular set of operating condi-

tions, a linear model may be suitable to describe its behavior. Two types of linear models

have been considered for predicting the value of ŷ within linear model-based predictive

control strategies: step-response or state-space model. Based on those models two main

linear MPC (LMPC) algorithms may be derived. The LMPC with step-response model

has been used by (Cutler and Ramaker, 1980) whereas LMPC based on state-space model

have been presented in (Maciejowski, 2002).

The main disadvantage of the step-response in linear model-based MPC is that the

dimensions of the matrices required for obtaining the MPC controller are a function of p,

m, ny and nu thus limiting its application to low dimension problems. For example, (Gao,

2004) have previously presented a gain-scheduled MPC strategy that is based on a set of

linear MPC controllers where each of these was designed based on a linear step-response

model. The use of step-response models was shown to seriously limit the capability of

the controller since the memory and computational requirements were fairly high even for

moderate prediction horizons of the order of 10. On the other hand, state-space models

do not suffer from that disadvantage and therefore they were used in this thesis for the

design of gain-scheduled controllers. The details of the construction of the state-space

based LMPC are given in section 3.2. It will be shown that the state-space formulation

has explicitly removed the limitations of prediction horizons previously encountered by

(Gao, 2004). Since most chemical processes are inherently nonlinear the linear model-based

formulations will not result in optimal performance thus motivating the use of nonlinear

models for controller design as described in the following section.
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2.2.2 Nonlinear MPC

When the process model is nonlinear the equations to predict the output take the form:

ẋ =f (x,u)

ŷ =g (x,u)
(2.25)

where f and g are nonlinear vector fields that can be obtained from a first-principles or

from a nonlinear empirical model of the process. In these cases equations (2.20) or (2.21)

give origin to a nonlinear optimization problem.

One possibility to handle nonlinear systems consists in obtaining a linear model around

a given operating point. Using that linear model an MPC controller can be designed.

Local linearization is the basis for constructing a gain-scheduling MPC (GSMPC), as will

be explained in the next chapter.

As opposed to the standard LMPC case, different NMPC controller formulations have

been proposed in the literature. However, there are some common elements shared by

these procedures as follows:

1. Obtain either a first-principles or an empirical model of the process studied.

2. Select a set of values for p, m, Q and R.

3. Solve the nonlinear optimization problem of equations (2.20) or (2.21). Use the model

obtained in step 1 to calculate the output predictions of equation (2.25).

4. Implement on the system the first value of the manipulated variable profile obtained

in 3.

5. Obtain the new measurements of the system.

6. Go back to 3 and repeat the cycle.

Nonlinear MPC has been applied successfully to a number of processes described by

either a first-principles or an empirical model. The key difficulty with first-principles models

is that generally they are difficult to obtain for several reasons as follows:
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• Unknown parameters due to biological, chemical or physical constants which are

difficult to measure.

• Unknown microscopic interactions.

• Unknown interactions between several systems.

• Unknown representative model structure.

On the other hand, if a first-principles model is available, it may contain complex high-

order ordinary and/or partial differential equations that are very time consuming to solve

if used for on-line optimization within the MPC framework. Also, these models are, as

explained above, not suitable for the formulation of analytical robustness tests. These

are the main motivations for employing an empirical model within the MPC formulation.

Accordingly, the next section presents a list of chronologically ordered studies where NMPC

have been applied using empirical models.

(Hérnandez and Arkun, 1993) used a polynomial ARMA model of an open-loop unstable

continuous stirred tank reactor (CSTR). The NMPC was used for set-point tracking and

disturbance rejection; in both cases it showed good performance. To compensate for model

mismatch when the system was operated outside the calibration region an estimator was

used similar to the one proposed by (Sistu and Bequette, 1991). The ARMA coefficients

were obtained from input-output data. No formal analysis of robustness was attempted in

this work and the design of the controller was solely based on extensive simulations.

(Doyle III et al., 1995) used a second order Volterra series model of a CSTR. The

work compared the performance of a NMPC and a LMPC for set-point tracking. The

results showed that NMPC surpasses the performance of LMPC. The effect of parameter

uncertainty was studied through extensive simulations; in this case the NMPC performance

also surpassed that of LMPC. The Volterra series model coefficients were obtained by

Carlemann linearization.

(Maner et al., 1996) used a second order Volterra series model of a CSTR in a MIMO

configuration. The NMPC was compared to a LMPC for set-point tracking. It was shown
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that the NMPC performance was superior to that of LMPC. The Volterra series model

coefficients were also obtained by Carlemann linearization.

(Fruzzetti et al., 1997) used Hammerstein models for representing a pH neutralization

and a binary distillation process. The work compared the performance of a NMPC with

a LMPC. In both cases the NMPC improvement was clearly superior to the LMPC. The

NMPC showed no oscillations, less settling time and less overshoots and undershoots. The

Hammerstein model coefficients were obtained from input-output data. Robustness issues

were not considered and tuning was based on simulations.

(Norquay et al., 1999) used a Wiener model of a pH neutralization process. The work

compared the performance of NMPC, LMPC and a proportional-integer (PI) controller

for set-point tracking and disturbance rejection. It was shown by simulations that the

performance achieved using the NMPC controller surpassed the performance obtained by

using a LMPC or a PI controller.

(Gerks̆ic̆ et al., 2000) used a Wiener model of a pH neutralization process. The work

showed that the performance achieved using a NMPC was superior compared to a LMPC.

It was shown that if there is a mismatch between the model and the process, a NMPC

without state estimation can still be used to obtain acceptable performance.

(Jeong et al., 2001) used a Wiener model of a continuous polymerization reactor. The

work compared the performance of a NMPC with a LMPC. In the region where the process

had a linear behavior there were no differences between the performances achieved using

a NMPC or a LMPC. However, when the process was operated in zones where the sys-

tem exhibited nonlinear behavior the NMPC showed a clear improvement over a LMPC.

Additionally the NMPC showed no oscillations and no steady-state bias.

2.3 Robust control

Whether a first-principles model or an empirical model is used, there will always be some

degree of inaccuracy in the model. Effective control strategies need to consider this model

variation to provide a controller that will not be affected by the model inaccuracy. If the
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control strategy does not consider this inaccuracy, the controller based on the model may

result in poor closed-loop performance when it is applied to the real process. In extreme

cases, the closed-loop may become unstable.

In robust control it is assumed that there is some degree of inaccuracy between the

process model and the real plant. Therefore, a control strategy designed based on robust

control methods is expected to achieve better results when compared with controllers that

do not consider model error.

Model uncertainty is generally categorized into two types, unstructured and structured.

For unstructured uncertainty:

• Several sources of uncertainty are lumped together.

• Generally results in conservative controllers.

For structured uncertainty:

• The individual sources of uncertainty are identified and represented directly.

• Results in less conservative controllers, as compared to those obtained when the

uncertainty is considered to be unstructured.

The uncertainty can also be real valued to represent variations in the model parameters

or complex, to represent uncertain dynamic behavior in the frequency domain.

After a model is obtained robust control methods can be used to analyze it. The first

step consists in identifying the sources of model uncertainty. The second step consists in

using a test to check if the system has the following properties: nominal stability, robust

stability, nominal performance and robust performance.

Nominal stability and performance tests refer to the stability and performance of the

nominal model whereas robust stability and performance tests refer to the stability and

performance of the family of models defined by the nominal model with their associated

model uncertainty.
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The robust control tools considered in this thesis to perform the stability and perfor-

mance tests are based on LMI’s or on the SSV. These methods are reviewed in the following

subsections.

2.3.1 Linear matrix inequalities based test

The stability and performance problems can be formulated as a solution to a set of linear

matrix inequalities. LMI’s can also be used to account for input and output constraints

(Kothare et al., 1996).

The LMI framework considers matrix inequalities of the following form:

F (x) = F0 +
m∑
i=1

xiFi > 0 (2.26)

where Fj, j = 0, . . . ,m are symmetric real matrices defined by the problem statement,

x ∈ <m is a vector of variables and F > 0 is positive definite.

When the problem involves several LMI’s the structure of the problem can be equiva-

lently transformed to a single higher dimensional LMI. For example, if the system of LMI’s

has the following structure

F(1) (x) > 0

...

F(p) (x) > 0

(2.27)

the LMI system can be expressed as:

diag
(
F(1) (x) , . . . ,F(p) (x)

)
> 0 (2.28)

The generic LMI problem used in the current thesis is the feasibility problem. An LMI

feasibility problem seeks a feasible solution, i.e., x = (x1, . . . , xm) such that equation (2.27)

is true.
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Section 2.4.1 will present the application of LMI’s to the model predictive control

formulation. This leads to the design of a robust gain-scheduled MPC controller based on

a LMI formulation.

2.3.2 Structured singular value

The structured singular value analysis referred also as to µ analysis considers a plant model

that is subject to unstructured or structured uncertainty. It also considers that there is an

interconnection between the model structure represented by M and its uncertainties repre-

sented by ∆ through a linear fractional transformation or LFT. Details of the construction

of M and ∆ for control applications are given in section 5.3.

The analysis is based on the calculation of the structured singular value according to

the uncertainty description ∆. The SSV is used to test the robust stability and robust

performance properties of the system.

The definition of the SSV of a matrix M ∈ Cn×n with respect to an uncertainty

structure ∆ is as follows:

µ∆ (M) =
1

min∆∈∆ [σ (∆) | det (I−M∆) = 0]
(2.29)

unless there is no ∆ ∈ ∆ which makes I − M∆ singular, in which case µ∆ (M) = 0,

(Packard and Doyle, 1993). The SSV is a measure of the size of the uncertainty that is

required in order to destabilize the closed-loop system represented by M. Consequently

for each problem it is necessary to obtain the appropriate M and ∆ matrices to perform

the analysis.

Because the calculation of the SSV makes explicit use of the structure of ∆, less conser-

vative controllers result (Bates and Postlethwaite, 2002). Since the uncertainty matrix ∆

may be composed of both unstructured and structured uncertainty elements it is described

by the following general form:
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∆ = [diag [δ1Ir1, . . . , δSIrS,∆S+1, . . . ,∆s+F ] :

δi ∈ C,∆S+j ∈ Cmj×mj , 1 ≤ i ≤ S, 1 ≤ j ≤ F
] (2.30)

where S and F are the number of repeated scalar blocks and the number of full block

respectively.

2.4 Robust model predictive control

Robust model predictive control designs depend on a nominal model with its uncertainty

description. The combination of the nominal model and an uncertainty description is used,

for analysis purposes, to generate a family of models. Then, the main problem in robust

MPC consists in analyzing each model within this family to test whether the system has

nominal stability, robust stability, nominal performance and robust performance properties

(Campo and Morari, 1987). Robust MPC designs are generally based on the worst model

in the set. If the worst model has the four properties, then it can be inferred that any

other model within the uncertainty set will also have these properties. The next subsections

contain a review of robust LMPC and robust NMPC methods.

2.4.1 Robust LMPC

Based on the mathematical background that was developed for linear systems, the follow-

ing research works used the available theories and tools to propose several robust LMPC

formulations.

(Campo and Morari, 1987) proposed a min-max formulation that minimizes the MPC

objective function for the worst plant. The model uncertainty is associated with the finite

impulse response coefficients (FIR). The robustness tests consider the error infinity norm of

the worst plant to check if it stays within specific bounds. The closed-loop system satisfies

robust stability and robust performance if the error infinity norm is within pre-specified

bounds. Because the FIR model is linear, the optimization problem can be formulated as

a linear programming (LP) problem simplifying its solution.
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(Zafiriou, 1990) proposed a robust MPC method based on the contraction principle.

The method considers that the uncertainty is associated with the FIR coefficients used to

model the process. The system requires obtaining an operator F that maps the system state

at sampling instant k to the system state at sampling instant k + 1. Asymptotic stability

for all the sets of FIR values considered is tested by checking whether the infinity norm of

F is always decreasing. Due to the use of the contraction mapping concept (Zanovello and

Budman, 1999) found this formulation to be very conservative.

(Kothare et al., 1996) developed a robustness test based on LMI’s. The method requires

a process model and its uncertainty description which can be represented by the following

two models: polytopic or multi-model and structured feedback. The objective function

solves a min-max problem where the cost function is maximized with respect to the worst

plant and minimized with respect to the manipulated variables. Because the proposed

formulation considers that p =∞ it has guaranteed nominal stability (Muske and Rawlings,

1993a) and (Rawlings and Muske, 1993) provided the process is open-loop stable.

(Badgwell, 1997) used a linearized model of the plant and proposed a method that

accounts for constraints. The constraints are formulated as terminal conditions that force

each plant in the set to end up at steady-state within a certain region about the origin and

by doing this robust stability of the closed-loop system was ensured.

(van den Boom, 1997) applied the LMI formulation of (Kothare et al., 1996) to nonlinear

systems by using a feedback linearization. Then the resulting system of LMI’s was solved

for robust stability and robust performance to obtain the feedback law. This algorithm

was found to be efficient in the vicinity of the operating point used for the linearization.

The key disadvantage of this approach is that it requires a nonlinear transformation to

obtain a linear model from the original nonlinear model which is not always available.

(Wan and Kothare, 2002) developed a procedure that adds a group of LMI’s to the

original formulation of (Kothare et al., 1996) when an observer is required to estimate the

states.

(Wang and Rawlings, 2004a,b) modified the LMI problem formulation of (Kothare

et al., 1996) to work with systems represented by a linear ARMAX model. This algorithm
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works by considering a finite number of models in a branching type algorithm. Therefore,

as the number of branches and the settling time of the process increases, the complexity

of the problem also increases.

The main disadvantage of all the previous methods is that the models used for output

prediction are linear. The best approach so far to the problem of finding a robust MPC with

nonlinear prediction model consists in linearizing the model and use one of the methods

reviewed above.

2.4.2 Robust NMPC

Robustness tests often require that the model uncertainty can be mathematically factorized

from the nominal model. This requirement rules out the possibility to formally address ro-

bustness of predictive controllers based on first-principles models since in these models the

parameters often appear in expressions that are not amenable to the required factorization.

For example, activation energy within an exponential Arrhenius term cannot be effectively

separated into a nominal and uncertain part for the purpose of robustness analysis. This

explains why there are a limited number of robust NMPC algorithms and the approach

that is generally used to design them consists in solving a min-max problem. However,

the main problem of the algorithms is that the min-max formulation is based on solving

extensive simulations that are computationally intensive and time consuming.

The studies that have proposed a robust NMPC algorithm can be classified in two main

groups: algorithms that are based on simulations and algorithms that propose a formal

analytical test. Some examples of algorithms that consider both approaches are:

(Kawohl et al., 2007) proposed a methodology based on calculating the first and second

statistical moments that describe the variation of the objective function. To calculate the

moments the algorithm uses a Monte Carlo simulation approach. The NMPC controller

is based on a first-principles model of the system, additionally it is considered that the

controller is employed on a batch process.
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(Magni and Scattolini, 2007) presented a review of methods that require calculating

a Lyapunov candidate function for uncertain systems. Only the theoretical bases were

presented but not specific examples were given. The use of Lyapunov functions generally

leads to conservative designs.

(Diehl et al., 2008) proposed an algorithm that requires computing the derivatives of

the objective function, constraints and uncertainty set. The algorithm assumes that the

worst value of the objective function is achieved at the bounds of the uncertainty set. The

methodology was tested on a batch process and it was assumed that the first-principles

model of the process was available.

(Zavala and Biegler, 2009) proposed an algorithm that considers uncertainty in the

evaluation of the cost function using nonlinear programming (NLP) sensitivity concepts.

The methodology was applied to a CSTR and it was assumed that a first-principles model

of the process was available.

The only analytical based approach to the problem proposed by (Ma and Braatz, 2001)

and (Nagy and Braatz, 2003) uses an analytical algorithm based on the SSV to calculate

the worst cost function at the end of a time horizon. The objective of this study was

not control per se but rather optimization of the end point of a batch process. The cost

function was based on first and second orders Taylor expansions of the nonlinear equations

governing the process. The analytical test proposed by (Nagy and Braatz, 2003) was used

in the current thesis to formulate a predictive controller for continuous processes.

The absence of a systematic approach for designing robust nonlinear predictive con-

trollers based on first-principles models has motivated the use in this thesis of particular

nonlinear empirical models that can be used to formulate analytical robustness tests.
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Chapter 3

Robust state-affine model-based

gain-scheduling MPC ∗

Overview

A methodology is proposed to design a robust gain-scheduled model predictive control

(MPC) strategy and to quantify the relative advantages of this controller versus a linear

MPC strategy. For the purpose of analysis and controller design the process is represented

by a nonlinear state-affine model identified from input-output data. This model can be

split in linear and nonlinear terms where the linear part is used for controller design and

the nonlinear part is accounted for as model uncertainty. Then, robust stability and

robust performance tests are formulated based on linear matrix inequalities where the

manipulated variables weight of the controllers is tuned to maximize performance. The

uncertainty bounds used for the robustness tests are obtained in an iterative fashion by

using the frequency response of the manipulated variable with respect to the feedback error.

The control strategy performance is quantified by the ratio between the error norm and

the disturbance norm. Finally, a case study involving a multiple-input-multiple-output

bioreactor is presented. The study is able to predict for which range of operation the

gain-scheduling MPC surpasses the performance of the linear MPC.

∗Adapted from Dı́az-Mendoza, R., Gao, J. and Budman, H. Methodology for designing and comparing
linear versus gain-scheduled model predictive controllers, Industrial & Engineering Chemistry Research,
2009, 48, 22, 9985–9998.
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3.1 Introduction

Model predictive control (MPC) is a widely used control algorithm in the chemical industry.

In most current industrial applications, linear MPC controllers are used that are based

on a single linear model of the process. However, control systems that provide optimal

performance for a particular linear model may perform poorly when implemented on a

nonlinear system (Zheng and Morari, 1993). Due to the process nonlinearity, a system

behaves differently when operated at different operating conditions. Therefore, controllers

that are based on one single linear model have to be detuned to achieve robustness to

model error that arises from the differences between the linear model used for controller

design and the actual nonlinear process behavior.

The basic philosophy in the literature for optimizing the performance of MPC algo-

rithms in the presence of plant-model mismatch is to modify the online minimization

problem to a min-max problem, where the worst case value of the objective function is

minimized over the set of plants that account for the nominal model and uncertainty

(Campo and Morari, 1987) and (Zheng and Morari, 1993). Clearly, this approach is com-

putationally more demanding than solving the optimization problem for a single nominal

model, and also the resulting controllers tend to be conservative. Nonlinear model predic-

tive control (NMPC) algorithms have been proposed to explicitly address the nonlinearity

of the process and to improve the closed-loop performance (Findeisen et al., 2003). How-

ever, it is more difficult to guarantee robust stability and robust performance for these

controllers as compared to linear MPC controllers, and a nonlinear mechanistic model of

the process is required that is often difficult to obtain.

To avoid the conservatism of robust linear controllers or the added complexity of a

nonlinear controller algorithm, a widely accepted approach in the chemical industry has

been the use of gain-scheduled controllers. These controllers are typically designed on the

basis of a set of linear models that result in a corresponding set of linear controllers for any

particular process. At each interval of time, one of these linear controllers is activated based

on the value that the scheduling variables achieve during closed-loop operation. Different
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criteria are used for selecting the scheduling variable; e.g., this variable should change

significantly with changes in operating conditions and should efficiently capture the system

nonlinear behavior (Bequette, 2003), (Rugh and Shamma, 2000) and (Shamma and Athans,

1990). In this work, the manipulated variable has been selected as the scheduling variable

since the nonlinear terms of the nonlinear model used to represent the system are powers of

the manipulated variable values. Although gain-scheduled controllers compensate better

for the system’s nonlinearity than linear controllers, it will be shown in this work that they

must be tuned for robustness to model error. The case study included in this chapter will

illustrate that the lack of robustness of the local controllers that form the gain-scheduling

strategy may lead to bad performance or even instability. In particular (Rugh and Shamma,

2000) pointed out that the design of robust gain-scheduling controllers can be approached

by using linear parameter varying (LPV) models, and the analysis can be conducted using

linear matrix inequalities (LMI’s). However, the specific problem of designing robust gain-

scheduled MPC algorithms has not been studied in a systematic fashion. In particular,

previous research has not provided computationally efficient tools to predict whether a

gain-scheduled MPC controller will perform better that one single linear MPC controller

for a wide range of operating conditions and external disturbances. The ability to quantify

the performance of a linear MPC controller versus a gain-scheduled MPC controller could

allow the practitioner to make an informed decision regarding the need for a gain-scheduled

MPC strategy.

This chapter discusses a systematic approach for the design of a robust gain-scheduled

MPC based on the quantification of the closed-loop performance in the presence of model

error due to nonlinearity and model structure errors. The relationship between the root

mean square (RMS) of the deviation of the controlled variables from the set-point by

the RMS of the inputs affecting the process is used in this work for quantification and

optimization of the closed-loop performance, and it is also used as a basis for comparison

of the gain-scheduled MPC controllers with linear MPC controllers. For this work the

RMS was calculated as:

srms =

√
s (1) + s (2) + . . .+ s (n)

n
(3.1)
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where s is a signal. Since a main source of model error between the linear models used

for control and the actual system is due to nonlinearity, the RMS index used in this work

reflects the impact of the nonlinearity on the closed-loop operation. The quantification of

nonlinearity and its impact on control have been studied by different researchers (Niko-

laou and Misra, 2003) and (Sheweickhardt and Allgöwer, 2007). One way to quantify

the effect of nonlinearity on the closed-loop performance is by a brute force nonlinear

simulation-based search of the worst case scenario among the infinite possible combina-

tions of disturbances and controller tuning parameters. However, this is computationally

prohibitive. Instead, this work discusses a systematic approach to quantify the effect of

closed-loop nonlinearity, and although it is limited, as shown later, to a particular type of

empirical models, it provides a useful and easy to compute bound for comparison between

linear and gain-scheduled MPC controllers.

The models used for designing robust MPC controllers can be based on first-principles

equations, or they can be empirical. Although first-principles models provide a better

representation of the process behavior, it is often difficult to obtain them, and they are

generally too complex for the purpose of robustness analysis. Therefore, it is assumed in

this work that a mechanistic model of the process to be controlled is not available to the

designer, and therefore an empirical model has to be used instead which could be directly

identified from experimental data. Nonlinear state-affine models have been proposed in

the past as a general model structure for the representation of nonlinear systems, and they

have been used for the study of observability and controllability of nonlinear processes

(Sontag, 1979). These models are given by the following equations

x (k + 1) =

[
F0 +

nF−1∑
i=1

nu∑
j=1

Fi,j (uj (k))i
]

x (k) +

[
G1 +

nG−1∑
i=1

nu∑
j=1

Gi+1,j (uj (k))i
]

u (k)

(3.2)

y (k) = Cunx (k) + WFd (k) (3.3)

where u (k) is the current manipulated variable vector; y (k) is the current controlled

variable vector; d (k) is a normalized unmeasured disturbance; WF is the magnitude of the

normalized disturbance; and nF and nG are the number of F and G matrices, respectively,
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that are required to model the process. It has been shown that these models can be easily

obtained from input-output process data (Sontag, 1979), in this work the parameters of the

state-affine model were obtained from a straightforward least-squares calculation. Using

this fact (Gao and Budman, 2004) proposed the use of these types of models for the purpose

of design and robustness analysis of gain-scheduled proportional-integral-derivative (PID)

controllers. They showed that a key advantage in using these models is that they permit

a straightforward representation of the nonlinearity as model error terms that can be later

used for robust control design. However, key limitations of the previous work (Gao and

Budman, 2004) were: (i) the controller was limited to a simple PID and (ii) the bounds

on the manipulated variables u (k) were assumed a priori based on input saturation limits,

and this assumption resulted in conservative controllers. (Gao, 2004) also used the state-

affine model to design and analyze a robust gain-scheduled step-response based MPC.

However, the key limitations were: (i) the bounds on the manipulated variables u (k) were

also assumed a priori and (ii) by using the step-response model to calculate the MPC the

system dimensions are a function the prediction horizon p, number of inputs nu, number

of outputs ny and nF , nG. In this work, a robust control design procedure will be given

whereby the bounds of the manipulated variables during closed-loop operation with gain-

scheduled MPC (GSMPC) controllers can be calculated from an iterative procedure based

on the magnitude of the disturbances, additionally to decrease the system dimensions the

procedure will be based in a state-space MPC. Table 3.1 shows the main differences between

(Gao, 2004) and the current work.

This chapter is organized as follows: section 3.2.1 develops the closed-loop state-space

formulation of the system that is obtained from the combination of the nominal linear

model plus uncertainty and the MPC controller. Thus, the closed-loop equations are for-

mulated as an affine parameter-dependent system. Section 3.3 provides LMI formulations

of robust stability and robust performance tests for the closed-loop model obtained in

section 3.2.3. Section 3.4 describes the main contributions of the work including the proce-

dure to quantify the uncertainty bounds and the method for designing an optimal robust

gain-scheduled MPC. In section 3.5 the proposed approach is applied to a multiple-input-

multiple-output (MIMO) bioreactor process, and an extensive comparison of a linear MPC
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Table 3.1: List of differences between (Gao, 2004) and the current work

(Gao, 2004) Current work

Model
MPC controller

step-response state-space

System dimension’s
increase with p

(memory limitations)
independent of p

Uncertainty bounds
prespecified

(conservative)
obtained iteratively
(less conservative)

controller versus a gain-scheduled MPC algorithm is conducted for this problem. Finally,

results and conclusions are presented in section 3.6.

3.2 State-Space formulation of the closed-loop system

3.2.1 Model uncertainty and disturbances

When the process represented by equations (3.2) and (3.3) is operated within a small

neighborhood of the origin, i.e., u (k) is very small, the process can be described by the

linear part of the model as follows

xL (k + 1) = F0x
L (k) + G1u (k) (3.4)

yL (k) = CxL (k) (3.5)

where the subscript L denotes linear. Then, for the purpose of robust control analysis, the

nonlinear terms consisting of the second and higher-order powers of u (k) in equation (3.2)

can be accounted for as model errors or uncertainties between a nominal linear model,

defined by the matrices F0 and G1, with respect to the full nonlinear model of the system
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given by equations (3.2) and (3.3). Accordingly a model uncertainty perturbation δi,j,k is

defined as follows

δi,j,k = (uj (k))i , i = 1, . . . ,max (nF , nG), j = 1, . . . , nu (3.6)

In general, it is not trivial to quantify the uncertainty from mechanistic first-principles

models, and often the solution of complex optimization problems is required to identify this

uncertainty (Doyle III et al., 1989). Thus, a key advantage in considering the uncertainty

terms to be equal to the powers of the manipulated variable values according to equation

(3.6) is that from this description, the uncertainty can be easily accounted for. Lower and

upper limits on the manipulated variables are either related to saturation limits, or may

be obtained from analytical bounds as it will be shown in a later section in this chapter.

These bounds are represented as follows

uj (k) ∈
[
ulb
j , u

ub
j

]
, j = 1, . . . , nu (3.7)

Since the nonlinear state-affine model given by equations (3.2) and (3.3) is only an

empirical approximation of the actual process, model error is also expected between the

nonlinear state-affine model and the actual process. To account for this modeling error an

output uncertainty δout is added to the process output equation as follows:

Cun = C + δoutI (3.8)

where δout is real and contained between a lower value δout−lb and an upper value δout−ub

δout = diag
[
δout

1 , . . . , δout
ny

]
(3.9)

where δout is obtained from open-loop comparisons of the nonlinear state-affine model

given by equations (3.2) and (3.3) and the actual nonlinear process as per the following

maximization problem

δout = max
[∣∣yprocess − ymodel

∣∣] (3.10)
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In practice, if equations (3.2) and (3.3) are identified to accurately describe the actual

nonlinear process, the resulting δout is expected to be very small. It is also assumed

that external disturbances are affecting the process output. To limit the bandwidth of

the disturbances entering the system, a first order representation of the disturbance was

assumed as follows

d (k + 1) = BWd (k) + (1− BW) ν (k) (3.11)

where BW is the filter parameter. This filtering is essential because it is impossible to

satisfy robustness with respect to model uncertainty for a disturbance of infinite bandwidth.

For example, if nu = 2 and the model consider up to the square powers of u and in the

presence of truncation error and disturbances, equations (3.2) and (3.3) can be written as

follows

x (k + 1) = [F0 + F1,1δ1,1,k + F1,2δ1,2,k] x (k) + [G1 + G2,1δ1,1,k + G2,2δ1,2,k] u (k) (3.12)

y (k) =
[
C + δoutI

]
x (k) + WFd (k) (3.13)

3.2.2 State-Space formulation of the MPC controller

Since the gain-scheduled MPC strategy is composed of a family of linear MPC controllers,

the equations for a state-space version of a linear unconstrained MPC controller are sum-

marized in this section. Consider a MIMO system with nx states, nu inputs, and ny outputs

that will be controlled by a MPC controller, with prediction horizon p and control horizon

m. The model-based prediction equation can be written as follows (Maciejowski, 2002)


ŷ (k + 1|k)

ŷ (k + 2|k)
...

ŷ (k + p|k)

 = ΨxL (k) + Γu (k − 1) + Θ


∆u (k)

...

∆u (k +m− 1)

 (3.14)
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where the vector ∆u and the matrices Ψ, Γ and Θ are defined as follows

[∆u (k)]nu×1 = u (k)− u (k − 1) (3.15)

Ψ =


CF0

CF2
0

...

CFp
0


(p×ny)×nx

(3.16)

Γ =


CG1

CF0G1 + CG1

...∑p−1
i=0 CFi

0G1


(p×ny)×nu

(3.17)

Θ =



CG1 . . . 0

CF0G1 + CG1 . . . 0
...

. . .
...∑m−1

i=0 CFi
0G1 . . . CG1∑m

i=0 CFi
0G1 . . . CF0G1 + CG1

...
...

...∑p−1
i=0 CFi

0G1 . . .
∑p−m

i=0 CFi
0G1


(p×ny)×(m×nu)

(3.18)

Equation (3.14) related to the prediction can be corrected by adding a feedback term

that considers the difference between the process output and the predicted output at

sampling instant k as follows
ŷ (k + 1|k)

ŷ (k + 2|k)
...

ŷ (k + p|k)

 = ΨxL (k)+Γu (k − 1)+Θ


∆u (k)

...

∆u (k +m− 1)

+N2 [yprocess (k)− ŷ (k)]

(3.19)
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where ŷ (k) is calculated from equation (3.5) and N2 is defined as

N2 =


Iny
...

Iny


(p×ny)×ny

(3.20)

The standard MPC algorithm cost function is used as follows

J = min
∆U

(
[Y −Ysp]T Q [Y −Ysp] + ∆UTR∆U

)
(3.21)

The term ∆UTR∆U is introduced in the formula to prevent an excessive movement

of the manipulated variables. Q and R are positive-definite weighting matrices for the

manipulated and controlled variables, respectively, and Ŷ, Ysp and ∆U are defined as

Ŷ = [ŷ (k + 1) , . . . , ŷ (k + p)]T (3.22)

Ysp = [ysp (k + 1) , . . . ,ysp (k + p)]T (3.23)

∆U = [∆u (k) , . . . ,∆u (k +m− 1)]T (3.24)

The least-squares solution of the minimization problem is given by (Maciejowski, 2002)

∆u (k) = KMPC

[
Ysp −ΨxL (k)− Γu (k − 1) + N2 [−yprocess (k) + ŷ (k)]

]
(3.25)

where KMPC is calculated as follows

KMPC = N1

[ [
ΘTQΘ + R

]−1
ΘTQ

]
(3.26)

and N1 is defined as

N1 =
[
Inu ,0nu×((m−1)×nu)

]
nu×(m×nu)

(3.27)

Then, the value of the manipulated variable at sampling instant k can be obtained from

equation (3.25)
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u (k) = u (k − 1) + KMPC

[
Ysp −ΨxL (k)− Γu (k − 1) + N2 [−yprocess (k) + ŷ (k)]

]
(3.28)

The robust control stability and performance tests require a closed-loop formulation of

the system. This formulation is obtained by combining the process equations given by the

uncertain state-affine model and the controller equations as shown in the following section.

3.2.3 Closed-Loop state-space model for robustness analysis

The closed-loop formulation is obtained by combining the equations corresponding to the

state-affine model equation (3.2), process output equation (3.3), state-space model equa-

tion (3.4), controlled variable equation (3.28), and disturbance equation (3.11). For the

purpose of robust analysis, the actual feedback term in equation (3.28) is substituted by the

difference between the model output from the nonlinear state-affine model obtained from

equation (3.13) and the linear predicted output obtained from equation (3.5) as follows

yprocess (k)− ŷ (k) = Cunx (k) + WFd (k)−CxL (k) (3.29)

After substituting the value of u (k) from equation (3.28) in equations (3.2) and (3.4),

the following equations are obtained

xL (k + 1) = [G1KMPC] ysp + [F0 + G1KMPC (−Ψ + N2C)] xL (k) +

[G1KMPC (−N2C
un)] x (k) + [G1 (Inu −KMPCΓ)] u (k − 1) +

[G1KMPC (−N2WF )] d (k)

(3.30)
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x (k + 1) =

[(
G1 +

nG−1∑
i=1

nu∑
j=1

δi,j,kGi+1,j

)
KMPC

]
ysp+[(

G1 +

nG−1∑
i=1

nu∑
j=1

δi,j,kGi+1,j

)
KMPC (−Ψ + N2C)

]
xL+[(

F0 +

nF−1∑
i=1

nu∑
j=1

δi,j,kFi,j

)]
x (k) +[(

G1 +

nG−1∑
i=1

nu∑
j=1

δi,j,kGi+1,j

)
KMPC (−N2C

un)

]
x (k) +[(

G1 +

nG−1∑
i=1

nu∑
j−1

δi,j,kGi+1,j

)
(Inu −KMPCΓ)

]
u (k − 1) +[(

G1 +

nG−1∑
i=1

nu∑
j=1

δi,j,kGi+1,j

)
KMPC (−N2WF )

]
d (k)

(3.31)

Considering the disturbance rejection problem, i.e., Ysp = 0(ny×p)×1 equations (3.3),

(3.11), (3.28), (3.30) and (3.31) can be written in matrix form as



xL (k + 1)

x (k + 1)

u (k)

d (k + 1)

y (k)


=



A11 A12 A13 A14 B11

A21 A22 A23 A24 B21

A31 A32 A33 A34 B31

A41 A42 A43 A44 B41

C11 C12 C13 C14 D11





xL (k)

x (k)

u (k − 1)

d (k)

ν (k)


(3.32)

where

[A11]nx×nx = F0 + G1KMPC (−Ψ + N2C) (3.33a)

[A12]nx×nx = −G1KMPCN2C
un (3.33b)

[A13]nx×nu = G1 (Inu −KMPCΓ) (3.33c)

[A14]nx×nd = −G1KMPCN2WF (3.33d)

[A21]nx×nx =

(
G1 +

nG−1∑
i=1

nu∑
j=1

δi,j,kGi+1,j

)
KMPC (−Ψ + N2C) (3.34a)
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[A22]nx×nx =

(
F0 +

nF−1∑
i=1

nu∑
j=1

δi,j,kFi,j

)
+

(
G1 +

nG−1∑
i=1

nu∑
j=1

δi,j,kGi+1,j

)
KMPC (−N2C

un)

(3.34b)

[A23]nx×nu =

(
G1 +

nG−1∑
i=1

nu∑
j=1

δi,j,kGi+1,j

)
(Inu −KMPCΓ) (3.34c)

[A24]nx×nu = −

(
G1 +

nG−1∑
i=1

nu∑
j=1

δi,j,kGi+1,j

)
KMPCN2WF (3.34d)

[A31]nu×nx = KMPC (−Ψ + N2C) (3.35a)

[A32]nu×nx = −KMPCN2C
un (3.35b)

[A33]nu×nu = Inu −KMPCΓ (3.35c)

[A33]nu×nd = −KMPCN2WF (3.35d)

[A41]nd×nx = 0nd×nx (3.36a)

[A42]nd×nx = 0nd×nx (3.36b)

[A43]nd×nu = 0nd×nu (3.36c)

[A44]nd×nd = BW (3.36d)

[B11]nx×nd = 0nx×nd (3.37a)

[B21]nx×nd = 0nx×nd (3.37b)

[B31]nu×nd = 0nu×nd (3.37c)

[B41]nd×nd = (1− BW) (3.37d)

[C11]ny×nx = 0ny×nx (3.38a)

[C12]ny×nx = Cun (3.38b)

38



[C13]ny×nu = 0ny×nu (3.38c)

[C14]ny×nd = WF (3.38d)

[D11]ny×nd = 0ny×nd (3.39)

The state-space representation of equation (3.32) can be written in compact form as:

 η (k + 1)

e (k)

 =

 A (δk) B

C D

  η (k)

ν (k)


η (0) =η0

(3.40)

where

η (k + 1) =
[
xL (k + 1) ,x (k + 1) ,u (k) ,d (k + 1)

]T
(3.41)

η (k) =
[
xL (k) ,x (k) ,u (k − 1) ,d (k)

]T
(3.42)

The term δk is a vector of uncertain and time-varying real parameters that has the

following elements

δk = [δ1,1,k, . . . , δ1,nu,k, δ2,1,k, . . . , δ2,nu,k, . . . ,

δmax (nF ,nG),1,k, . . . , δmax (nF ,nG),nu,k, δ
out
1 , . . . , δout

ny

] (3.43)

with the following assumptions:

1. Each element of δk is real and is know to be between a lower limit and an upper

limit.

2. In the formulation of equation (3.40) the state matrix A (δk) depends affinely on the

parameters as follows:

A (δk) =A0 + A1,1δ1,1,k + . . .+ Amax (nF ,nG),nuδmax (nF ,nG),nu,k + ...

Aout
1 δout

1 + . . .+ Aout
ny δ

out
ny

(3.44)

where A0,A1,1 . . . ,Amax (nF ,nG),nu ,A
out
1 , . . . ,Aout

ny are known fixed matrices.
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The first assumption means that the parameter vector δk is valued in a hyper-rectangle

reffered to as the parameter box. In the sequel, ξ denoted the vertices or corners of this

parameter box that is defined as follows:

ξ =
(
δ1,1,k, . . . , δmax (nF ,nG),nu,k, δ

out
1 , . . . , δout

ny

)
δi,j,k ∈

[
δlb
i,j,k, δ

ub
i,j,k

]
, i = 1, . . . ,max (nF , nG), j = 1, . . . , nu

δout
j ∈

[
δout−lb
j , δout−ub

j

]
, j = 1, . . . , ny

(3.45)

This closed-loop state-space representation is used to test robust stability and robust

performance by using the tests described in the next section.

3.3 Robust stability and robust performance tests

This section presents the basic definitions and theorems that are required for the LMI

based tests. The proofs for the robust stability and robust performance test summarized

in this section can be found in (Gao and Budman, 2004) for discrete systems.

Definition 1 Quadratic Lyapunov Stability (QLS). For systems defined by

η (k + 1) =A (δk) η (k)

η (0) =η0

(3.46)

a sufficient condition for asymptotic stability is the existence of a positive-definite quadratic

Lyapunov function V (k) = η (k)T Pη, V (k) > 0 with P > 0, P = PT, such that

V (k + 1)− V (k) < 0 (3.47)

for all admissible uncertainties δkand for all initial conditions η0.

Theorem 1 Let δk as defined in equation (3.43) and δk ∈ <max (nF ,nG)+nu+ny be a vector of

time-varying uncertain real parameters varying in the hyper-rectangle, and let ξ denote the
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set of vertices of this hyper-rectangle. Consider the time varying system in equation (3.32)

where A (δk) depends affinely on δk. The system in equation (3.32) satisfies Quadratic

Lyapunov Stability (QLS) (Gao and Budman, 2004) if there exists P > 0, P = PT such

that

A (ξ) PA (ξ)−P < 0, ∀ξ (3.48)

In other words, it suffices that P be positive-definite and satisfy the resulting LMIs at

each corner, ξ, of the parameter box.

Definition 2 Quadratic Lyapunov Performance (QLP). The system in equation (3.40)

with zero initial state satisfies QLS and

||e||L2 < γ ||ν||L2 (3.49)

for all L2-bounded input ν if there exists a positive-definite quadratic Lyapunov function

V (k) = η (k)T Pη (k), V (k) > 0 with P > 0 and P = PT such that

V (k + 1)− V (k) + [e (k)]T e (k)− γ2 [ν (k)]T ν (k) < 0 (3.50)

for all admissible uncertainties δk and for zero initial conditions η0.

Theorem 2 Let δk as defined in equation (3.43) and δk ∈ <max (nF ,nG)+nu+ny be a vector

of time-varying uncertain real parameters varying in the hyper-rectangle, and let ξ denote

the set of vertices of this hyper-rectangle. Consider the time varying system in equation

(3.32) where A (δk) depends affinely on δk. The time-varying system in equation (3.32)

satisfies quadratic Lyapunov performance (QLP) (Gao and Budman, 2004) if there exists

P > 0, P = PT such that


[A (ξ)]T PA (ξ)−P [A (ξ)]T PB CT

BTPA (ξ) BTPB− γ2I DT

C D −I

 < 0, ∀ξ (3.51)
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The inequality in equation (3.51) can be solved to minimize the performance index γ for

all possible models contained in ξ and for all disturbances that have a specific magnitude,

e.g., |ν| < 1.

γP =



min γ

wrt P

st



P > 0, P = PT
[A (ξ)]T PA (ξ)−P [A (ξ)]T PB CT

BTPA (ξ) BTPB− γ2I DT

C D −I

 < 0, ∀ξ

(3.52)

The minimization problem in equation (3.52) can be solved with the interface YALMIP

(Löfberg, 2004) and a semi definite programming (SDP) solver such as SDPT3 (Toh et al.,

1999).

3.4 Robust gain-scheduled MPC design

For open-loop stable plants, the closed-loop system performance and the uncertainty

bounds calculation depend on the MPC design parameters, p, m, Q and R. In princi-

ple all the design parameters, i.e., p, m, Q and R could be changed to achieve optimality.

However, the effect of p and m will require the solution of a computationally demand-

ing mixed integer nonlinear programming optimization. For simplicity, in this work the

manipulated variables weight matrix R is the only parameter that is changed to achieve

optimality, whereas the other parameters are assumed constant. In this work the choice

of p and m was done according to practical guidelines reported in the literature (Agachi

et al., 2007), i.e., m between 1 to 4 and p equal to approximately 3 times the dominant

time constant of the input-output responses. Also, for each input variable R is maintained

constant along the control horizon m, for a multiple input case R is as follows:

R = diag [R1, . . . ,Rm] (3.53)
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where

Ri = diag [r1, . . . , rnu ] , i = 1, . . . ,m (3.54)

After the MPC design parameters have been specified, the first step in the design of

the robust controller is to obtain the uncertainty bounds, i.e., it is necessary to know

the values of δk. The evaluation of δout was discussed in the previous section. With

respect to the evaluation of δ1,1,k, . . . , δmax (nF ,nG),nu,k, a simple option is to assume that

these bounds correspond to the saturation limits of the manipulated variables. It has

been shown previously (Gao and Budman, 2004) that this assumption results in highly

conservative controllers since it requires considering unnecessarily large changes in the

manipulated variables. Provided that the control loops are properly designed, the system

will operate for the majority of the time away from the saturation limits. Another option

is to calculate the saturation limits from simulations for particular disturbances and a

specific set of tuning parameters. However, this strategy is very time consuming especially

since the simulations have to be conducted for each set of tuning parameters assumed

during the optimization of the controller. A much better option is to calculate the bounds

analytically based on the uncertain model proposed in section 3.2.1. The key idea is based

on the recognition, from equation (3.28), that the control action is equal to the product

of the controller gain multiplied by a feedback correction term that is composed of the

disturbances entering the system plus the model error occurring between the output of the

linear model used for MPC control and the output from the nonlinear process.

According to equation (3.28) and assuming for the disturbance rejection problem that

the set point Ysp = 0, the effect of the feedback on the manipulated variables is as follows

Wfeedback = KMPCN2

[
−Cunx (k)−WFd (k) + CxL (k)

]
(3.55)

The key idea is to find a bound for this term by using the same RMS calculation

proposed in section 3.3 for calculating the worst output error. The only difference with

respect to the calculation in section 3.3 is that the output obtained from equation (3.32)
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used for calculating the RMS of the output is substituted by an output equation that is

equal to the effect of the feedback on the manipulated variable 5

yn (k) = Wworst
feedback (3.56)

The effect of the feedback on the manipulated variable can be written as a vector where

each element is the feedback effect associated with the i input as follows

Wfeedback =
[
Wwa

1 , . . . ,Wwa
nu

]T
(3.57)

each element Wwa
i , i = 1, . . . , nu is defined as

Wwa
i = αiKMPCN2

[
−Cunx (k)−WFd (k) + CxL (x)

]
(3.58)

the vector αi with dimensions 1× nu is defined as

αi = [α1,1, . . . , α1,nu ]

with

α1,j = 0, j 6= i

α1,j = 1, j = i

(3.59)

Considering that Ysp = 0(ny×p)×1, equations (3.11), (3.28), (3.30), (3.31) and (3.58)

can be formulated as follows

xL (k + 1)

x (k + 1)

u (k)

d (k + 1)

Wwa
j (k)


=



A11 A12 A13 A14 B11

A21 A22 A23 A24 B21

A31 A32 A33 A34 B31

A41 A42 A43 A44 B41

C11 C12 C13 C14 D11





xL (k)

x (k)

u (k − 1)

d (k)

ν (k)


(3.60)

where the matrices A, B and D have a structure similar to equations (3.33) to (3.36),

(3.37) and (3.39), respectively. The C matrix has a structure that is defined as
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[C11]1×ny = αiKMPCN2C (3.61a)

[C12]1×ny = −αiKMPCN2C
un (3.61b)

[C13]1×nu = 01×nu (3.61c)

[C14]1×nd = −αiKMPCN2WF (3.61d)

For every element of the vector Wfeedback, there will be a closed-loop system represen-

tation where the only elements that change are the terms C11, C12 and C14 of equation

(3.61).

The minimization problem of equation (3.52) applied to the closed-loop system of equa-

tion (3.60) provides a bound over the standard deviation of Wworst
feedback (Ricardez et al., 2008).

This bound can be used to calculate the worst ∆u (k) and consequently the worst u (k)

which are calculated according to the following formulas based on equations (3.25) and

(3.28).

∆uworst (k) = KMPC

[
−ΨxL (k)− Γuworst (k − 1)

]
+ Wworst

feedback (3.62)

uworst (k) = −KMPCΨxL (k) + [Inu −KMPCΓ] uworst (k − 1) + Wworst
feedback (3.63)

The value of uworst (k) from equation (3.63) can be substituted in equation (3.4) to

obtain

xL (k) = [F0 −G1KMPCΨ] xL (k) + G1 [Inu −KMPCΓ] uworst (k − 1) + G1W
worst
feedback (3.64)

Then, equations (3.63) and (3.64) can be put into state-space form, where the state-

update equation is as follows

 xL (k + 1)

uworst (k)

 =

 Awa
11 Awa

12

Awa
21 Awa

22

  xL (k)

uworst (k − 1)

+

 Bwa
11

Bwa
21

 (3.65)
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Since it is desired to calculate a bound for each element of the uworst (k) vector, i.e., the

value of uworst
i (k) , i = 1, . . . , nu, the corresponding state-space output equations is used

as follows

uworst
i =

[
Cwa

11 Cwa
12

]  xL (k)

uworst (k − 1)

+ Dwa
11 (3.66)

where the matrices Awa, Bwa, Cwa and Dwa of equations (3.65) and (3.66) are defined as

Awa
11 = F0 −G1KMPCΨ (3.67a)

Awa
12 = G1 [Inu −KMPCΓ] (3.67b)

Awa
21 = −KMPCΨ (3.67c)

Awa
22 = Inu −KMPCΓ (3.67d)

Bwa
11 = G1W

worst
feedback (3.68a)

Bwa
21 = Wworst

feedback (3.68b)

Cwa
11 = αi [−KMPCΨ] (3.69a)

Cwa
12 = αi [Inu −KMPCΓ] (3.69b)

Dwa
11 = αiW

worst
feedback (3.70)

Since the closed-loop system given by equation (3.65) is linear, the calculation of the

bound on the manipulated variable can be done either in the time domain or in the fre-

quency domain. It was decided to perform the calculation in the frequency domain to

reduce conservatism by allowing for the possibility of limiting the analysis to a finite fre-

quency bandwidth corresponding to the bandwidth of the disturbances entering the system;

i.e., it is considered that dlb < d < dub. Thus, the bound of uworst can be obtained from

(Morari and Zafiriou, 1989)

ui max = sup
ωlb<ω<ωub

|Hi (ω)| , i = 1, . . . , nu (3.71)
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where Hi is the transfer function for the state-space system defined by equations (3.65)

and (3.66), whereas ωlb and ωub are the lower and upper frequencies, respectively, of the

disturbance d that enters the system. Since uworst was calculated based on the bound over

Wworst
feedback that corresponds to a RMS bound, uworst represents a bound over the standard

deviation of the vector uworst. Therefore, if one assumes that the disturbances are normally

distributed, it can be expected that uncertainty bounds corresponding to all possible dis-

turbances entering the system can be calculated with a 93% confidence level by considering

2uworst.

The procedure to calculate the uncertainty bounds can be summarized as per Procedure

1.

Procedure 1: Calculation of the uncertainty bound δ1,j,k, j = 1, . . . , nu

1. Obtain the state-affine matrices F and G, normalized disturbance magnitude WF ,

output uncertainty δout, and disturbance frequency limits ωlb and ωub.

2. For a specific set of values of prediction horizon p, control horizon m and controlled

variables weight matrix Q:

2.1. For the current value of the weight matrix R:

2.1.1. Calculate the controller KMPC according to equation (3.26).

2.2. Provide an initial estimate for every δ1,j,k, j = 1, . . . , nu

2.3. Obtain the matrices specified in equations (3.33) to (3.37), (3.39) and (3.61).

2.3.1. Build the closed-loop system given by equation (3.60)

2.4. Calculate γP according to the minimization problem of equation (3.52).

2.4.1. Update the value of Wworst
feedback according to the following relationship

Wworst
feedback = γP.

2.5. For every δ1,j,k, j = 1, . . . , nu:

2.5.1. Obtain αj according to equation (3.59).

2.5.2. Obtain the matrices specified in equations (3.67) to (3.70).
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2.5.3. Build the closed-loop system given by equations (3.65) and (3.66) and

obtain its transfer matrix Hj.

2.5.4. Obtain uj max from equation (3.71).

2.5.5. If ∃ δ1,j,k, : |δ1,j,k − 2uj max| > ε, j = 1, . . . , nu.

2.5.5.1. Calculate a new estimate for the uncertainty bound as δ1,j,k =

2uj max.

2.5.5.2. Go to step 2.3 and repeat the process.

2.5.6. If |δ1,j,k − 2ujmax| ≤ ε, j = 1, . . . , nu

2.5.6.1. Accept the uncertainty bound vector δk.

After the uncertainty bounds have been obtained according to Procedure 1, the value

of the output variability γ for the closed-loop system of equation (3.32) can be calculated.

This value is a measure of the effect of the disturbance on the output RMS of the system,

i.e., the effect that the disturbance ν (k) has over y (k), i.e.,

γ =
||e||2
||ν||2

=
||y||2
||ν||2

(3.72)

Thus, a small value of γ indicates that y (k) is barely affected by ν (k), whereas a

larger value of γ indicates that y (k) is greatly affected by ν (k). Since the purpose of the

controller is to keep the effect of ν (k) over y (k) to a minimum, then the controller must

be tuned by varying the weight matrix R so that γ is reduced to its minimum.

Accordingly, a procedure is proposed to design a robust MPC controller as per Proce-

dure 2.

Procedure 2: Calculation of a robust MPC for minimization of the output RMS.

1. Obtain the state-affine matrices F and G, normalized disturbance magnitude WF ,

output uncertainty δout, and disturbance frequency limits ωlb and ωub.

2. For a specific set of values of prediction horizon p, control horizon m and controlled

variables weight matrix Q:
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3. Perform a grid search to provide an initial estimate for the minimization of the output

RMS according to the following steps:

3.1. Select a lower and upper bound for the manipulated variables weight matrix,

i.e., R ∈
[
Rlb,Rub

]
where Rlb = diag

[
Rlb

1 , . . . ,R
lb
m

]
, Rlb

j = diag
[
rlb

1 , . . . , r
lb
nu

]
,

i = 1, . . . ,m and Rub = diag
[
Rub

1 , . . . ,R
ub
m

]
, Rub

j = diag
[
rub

1 , . . . , rub
nu

]
, i =

1, . . . ,m.

3.2. Subdivide the interval
[
Rlb,Rub

]
in qi subintervals.

3.3. For every qi subinterval create a weight matrix Rqi where Rqi = diag [ R1,qi ,

. . . , Rm,qi ] and Rj,qi = diag [r1,qi , . . . , rnu,qi ] , j = 1, . . . ,m.

3.4. For every Ri, i = 1, . . . , qi:

3.4.1. Calculate the controller KMPC according to equation (3.26).

3.4.2. Obtain the uncertainty bounds vector δk as per Procedure 1.

3.4.3. Obtain the matrices specified in equations (3.33) to (3.39).

3.4.3.1. Build the closed-loop system given by equation (3.32).

3.4.4. Calculate γP according to the minimization problem of equation (3.52).

3.4.5. If a feasible solution exists for the minimization problem of equation

(3.52), accept the optimized performance index γP.

4. The weight matrix Ri that achieved the minimum γP is used as an initial estimate

for the following minimization problem
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γoptimal =

min γP

wrt R

where

γP =



min γ

wrt P

st



P > 0, P = PT
[A (ξ)]T PA (ξ)−P [A (ξ)]T PB CT

BTPA (ξ) BTPB− γ2I DT

C D −I

 < 0, ∀ξ

(3.73)

5. Solve the optimization problem of equation (3.73). To calculate γP, follow steps 3.4.1

to 3.4.5.

6. The minimal analytical γ will be referred heretofore as γoptimal, and its corresponding

R matrix as Roptimal.

Although the inner optimization in equation (3.73) is convex, i.e., the function γP is

convex with respect to P, the outer optimization problem that searches for the optimal

performance index, γoptimal, is non-convex with respect to the controller weight matrix

R. Thus, the optimization procedure outlined above may find a local optimum instead

of a global optimum. To address this problem, the outer optimization was conducted for

a large set of initial values. The procedure for the design of a robust MPC controller

discussed above can be used to design a gain-scheduled MPC strategy that is made of a

family of linear MPC controllers. To design such strategy the designer must select a priori

nR operating regions around which the system is expected to operate for long periods of

time. Typically, each operating condition may be defined based on the average value of

a disturbance entering the process, e.g., a production rate or a feed concentration value.

Then, a nonlinear state-affine model of the type given by equations (3.2) and (3.3) can

be identified around each of the nR selected operating conditions. Finally, the procedure

discussed above is used to design nR MPC controllers for each of the predefined nR regions

where each controller is activated in their corresponding region. Since the disturbances
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that were used to determine the operating regions may not be measurable online, the

scheduling of the controller can be done based on the manipulated variables u calculated

by the controller in response to the disturbances entering the process.

3.5 Case study results

To illustrate the design technique a two-input-two-output bioreactor example was taken

from the literature (Hoo and Kantor, 1986). This example has been used before as a

benchmark problem for testing different nonlinear strategies (Imsland et al., 2003). The

mechanistic model is described by the following set of equations

dc1

dt
=

[
µ1S

K + S
−D

]
c1 (3.74)

dc2

dt
=

[
µ2S

K + S

KI

KI + c3

−D
]
c2 (3.75)

dc3

dt
= Prc1c3 +D (c3,f − c3) (3.76)

S = Sin −
c1

Yc,1
− c2

Yc,2
(3.77)

The value of the parameters can be found in Table 3.2. The model describes the

dynamics of two cell strains that differ in their sensitivity to an external growth inhibiting

agent, where c1 [g/L] is the concentration of the inhibitor resistant cells; c2 [g/L] is the

concentration of the inhibitor sensitive cells; c3 [g/L] is the concentration of the inhibitor

in the medium; and S [g/L] is the concentration of the rate-limiting substrate.

From input-output information, collected from simulations of the mechanistic model

given above, a state-affine model representation as given by equations (3.2) and (3.3) with

sampling time of 5 h was obtained to apply the proposed methodology. Since the time

constant of this process was found to be of the order of 1000 h or larger, a sampling time of

5 h was considered to be suitable as the sampling interval to be used for control. The model

was identified using a least-squares regression where the system was excited by a multilevel

pseudorandom binary sequence (PRBS) that is commonly used as an excitation signal for
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Table 3.2: List of parameter values

Parameter Definition Value

µ1 Maximum specific growth rate of species 1 0.4 hr−1

µ2 Maximum specific growth rate of species 2 0.5 hr−1

K Substrate saturation constant 0.05 (g/L)

KI Inhibitor saturation constant 0.02 (g/L)

Yc,1 Yield coefficient for species 1 0.2

Yc2 Yield coefficient for species 2 0.15

Pr
Rate constant for the deactivation

of the inhibitor
0.5 (g/L h)

the identification of nonlinear models (Nowak and Van Veen, 1994). The concentrations

c1 and c2 were selected as controlled variables, whereas the dilution rate D and feed rate

Dc3f were selected as manipulated variables. The controlled and manipulated variables

were normalized according to the following formulas

x1 =
(c1 − 0.16)

0.05
(3.78)

x2 =
(c2 − 0.06)

0.05
(3.79)

u1 =
D −Dss

8.2559× 10−3
(3.80)

u2 =
Dc3f − (Dc3f )

ss

4.1279× 10−5
(3.81)

where Dss and (Dc3f )
ss are the steady-state values corresponding to the operating condi-

tion around which a linear model is identified for the purpose of designing a local MPC

controller.

In the simulation studies, a gain-scheduled MPC is compared to a linear MPC (LMPC).

The value of the substrate’s feed concentration Sin will be considered as the main distur-

bance affecting the process. Therefore, the objective of both control strategies consists in

rejecting the disturbance and keeping the control variables within their predefined set-point

(csp
1 = 0.16 g/L and csp

2 = 0.06 g/L).
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A scenario where GSMPC is expected to perform better than LMPC is when the process

is operated for long periods of time around operating conditions corresponding to different

steady-state values of the feed concentration Sin. This is based on the assumption that the

disturbances in Sin consist of high frequency oscillations superimposed on very infrequent

changes of the average value of this variable. Gain-Scheduled algorithms are especially

suited for these situations since the controller is designed based on a set of “local” models

identified for each one of these regions. This also corresponds to the typical mode of

operation of gain-scheduled control in the chemical industry where processes are typically

operated around different specific steady-states for long periods of time. These steady-

states may correspond to different product grades, types of feed, production rates etc.

Then, a model is identified around each steady-state and a corresponding MPC controller

is designed based on that model.

To test the performance of both controllers, two different case studies were considered.

Case study A considers that the system is operated around three steady-state values Sss
in =

2.0 g/L, Sss
in = 2.5 g/L and Sss

in = 3.0 g/L, where as case study B considers a larger windows

of operation that include steady-states corresponding to Sss
in = 2.0 g/L Sss

in = 3.0 g/L and

Sss
in = 4.0 g/L. It should be noticed that the feed concentration is not measured, and the

manipulated variables are the only ones used for scheduling. For every steady-state value,

a state-affine model with the following structure was identified x1 (k + 1)

x2 (k + 1)

 = [F0 + F1,1δ1,1,k + F1,2δ1,2,k]

 x1 (k)

x2 (k)

+

[G1 + G2,1δ1,1,k + G2,2δ1,2,k]

 u1 (k)

u2 (k)

 (3.82)

 y1 (k)

y2 (k)

 =

 1 0

0 1

+

 δout
1 0

0 δout
2

  x1 (k)

x2 (k)

+ WFd (k) (3.83)

where δout
1 ∈ [−0.1, 0.1] and δout

2 ∈ [−0.1, 0.1].

The matrices of the models identified for the different operating conditions specified

above can be found in Appendix A. The designed GSMPC is composed of three MPC
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controllers, each designed for a model identified around a particular value of Sss
in following

procedures 1 and 2 outlined in the previous section. The LMPC to be compared with the

GSMPC, is designed based on the minimization of the following average:

γoptimal
LMPC =

∑nR
i=1 γ

Region i
LMPC

nR
(3.84)

where each γRegion i
LMPC is calculated according to the procedure described in the previous

section by using, to represent the process, the state-affine model and uncertainty bounds

identified for the j region. The LMPC controller, used to minimize the objective function in

equation (3.84), uses as internal model the state-space model corresponding to the middle

value of the inlet concentration, i.e., the model identified for region two, and it uses the

same input weight matrix for the three regions. This corresponds to the standard approach

for implementation of linear MPC controllers where the controller is designed based on a

model identified around nominal operating conditions, and then it is tuned for robustness

to account for situations where the system is operated away from these nominal conditions.

The parameters of the GSMPC and LMPC controllers used in all the case studies are

p = 100, m = 4. Since the output variables are assigned equal importance Q was selected

as the identity, i.e.,

Q = diag [Q1, . . . ,Qp] (3.85)

Qi = diag [1, 1] , i = 1, . . . , p (3.86)

A preliminary test conducted to assess whether using a GSMPC can improve the per-

formance compared to a LMPC consists of comparing the GSMPC and LMPC designed

based on the nominal models, i.e., when the uncertainty is zero

ξ =
(
δ1,1,k, . . . , δmax (nF ,nG),nu,k, δ

out
1 , . . . , δout

ny

)
δi,j,k = 0, i = 1, . . . ,max (nF , nG), j = 1, . . . , nu

δout
j = 0, j = 1, . . . , ny

(3.87)
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Since the main source of the uncertainty are related to the deviations in the manipulated

variables u, and since these deviations are linearly related to Wworst
feedback, the nominal case

corresponds to a situation were Wworst
feedback = 0 or equivalently, to the hypothetical case with

disturbances of zero magnitude. Thus, when the disturbances are zero, the uncertainty

bounds associated to the manipulated variables are correspondingly equal to zero. In

addition, for the nominal case, the model error referred to as δout is also assumed to be

zero. The optimal values of γ calculated following the procedure outlined in the previous

section are shown in Table 3.3 and Table 3.4 for case studies A and B, respectively. It is

clear from these tables that GSMPC is superior to LMPC as indicated by the smaller γ

values obtained with GSMPC. It is also clear that the most significant differences between

the two controllers occur around the lower value of inlet concentration, Sss
in = 2.0 g/L,

and the difference around this value is, as expected, significantly larger for case study B

than for case study A since for case study B a larger range of inlet concentration values

is considered for control design requiring further detuning of the LMPC controller for

case study B to achieve robustness. On the bases of the calculated rations of γ between

the two controllers, the improvement in performance to be achieved with the GSMPC

controller around Sss
in = 2.0 g/L is 25% for case study A and up to 132% for case study B.

However, these improvements are only theoretical since they correspond to zero magnitude

disturbances.

Table 3.3: Optimal nominal GSMPC and LMPC γ values for case study A

Sin

g/L

GSMPC

γop−nom

GSMPC

Rop−nom
i

LMPC

γop−nom

LMPC

Rop−nom
i

ratio of

γop−nom

2.0 0.5328 diag [1E− 4, 1E− 8] 0.7065 diag [1E− 8, 1E− 6] 1.33

2.5 0.5206 diag [1E− 8, 1E− 8] 0.5206 diag [1E− 8, 1E− 6] 1.00

3.0 0.3799 diag [1, 1E− 8] 0.3822 diag [1E− 8, 1E− 6] 1.01

When the uncertainty is considered, i.e., the disturbance magnitude is not zero, the op-

timal GSMPC γ value referred to as γop and corresponding GSMPC manipulated variables

weight matrix Rop were calculated according to the procedures outlined in section 3.4. The

results are shown in Table 3.5 and Table 3.6 for case studies A and B respectively. The
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Table 3.4: Optimal nominal GSMPC and LMPC γ values for case study B

Sin

g/L

GSMPC

γop−nom

GSMPC

Rop−nom
i

LMPC

γop−nom

LMPC

Rop−nom
i

ratio of

γop−nom

2.0 0.5328 diag [1E− 4, 1E− 8] 1.2366 diag [1E− 8, 1.6E− 5] 2.32

3.0 0.3799 diag [1, 1E− 8] 0.3799 diag [1E− 8, 1.6E− 5] 1.00

4.0 0.1792 diag [5, 1E− 8] 0.1880 diag [1E− 8, 1.6E− 5] 1.05

calculations for the LMPC controllers designed with uncertainty are summarized in Ta-

ble 3.7 and Table 3.8. For comparison purposes, the optimal manipulated variable weights

Rop obtained through the optimization procedure given in section 3.5 and the manipulated

variable bounds obtained iteratively according to the procedure outlined in that section

are also listed in Table 3.5 to Table 3.8. It is clear from the comparison of Table 3.3

and Table 3.4 with the values in the first columns of Table 3.5 to Table 3.8 that there is

a consistent deterioration in performance for the cases with uncertainty as compared to

their counterparts without uncertainty. This is indicated by a consistent increase of the γ

values calculated with uncertainty and without uncertainty that result from detuning the

controllers for robustness with respect to this model uncertainty.

Table 3.5: Optimal GSMPC γ and R values for case study A

Sin γop Rop
i u1 bound u2 bound

2.0 [g/L] 1.6171 diag [900, 32644] ±1.01 ±0.15

2.5 [g/L] 1.1802 diag [1110, 326] ±0.91 ±0.64

3.0 [g/L] 0.9474 diag [8944, 512] ±0.15 ±0.31

Table 3.6: Optimal GSMPC γ and R values for case study B

Sin γop Rop
i u1 bound u2 bound

2.0 [g/L] 1.6171 diag [900, 32644] ±1.01 ±0.15

3.0 [g/L] 0.9474 diag [8944, 512] ±0.15 ±0.31

4.0 [g/L] 0.2674 diag [528, 517904] ±0.05 ±0.07

56



Table 3.7: Optimal LMPC γ and R values for case study A

Sin γop Rop
i u1 bound u2 bound

2.0 [g/L] 2.0108 diag [7560, 1064] ±0.72 ±0.56

2.5 [g/L] 1.3863 diag [7560, 1064] ±0.23 ±0.20

3.0 [g/L] 1.0853 diag [7560, 1064] ±0.12 ±0.21

Table 3.8: Optimal LMPC γ and R values for case study B

Sin γop Rop
i u1 bound u2 bound

2.0 [g/L] 1.9701 diag [2868048, 17232] ±0.30 ±0.32

3.0 [g/L] 0.9786 diag [2868048, 17232] ±0.09 ±0.09

4.0 [g/L] 0.2763 diag [2868048, 17232] ±0.07 ±0.07

For the purpose of comparing the overall performance of both controllers, an average

performance index was also calculated for the GSMPC by averaging the three γop values

shown in Table 3.5 and Table 3.6 as done for the LMPC as per equation (3.84). Using

this definition, the resulting values obtained with the GSMPC were γop−av
GSMPC = 1.2482 for

case study A and γop−av
GSMPC = 0.9440 for case study B. For the LMPC the resulting γop

and Rop
i for every region are shown in Table 3.7 and Table 3.8 for case studies A and

B, respectively. The average performance indexes, calculated from equation (3.84) were

γop−av
LMPC = 1.4941 for case study A and γop−av

LMPC = 1.0705 for case study B. On the basis of these

averages, it is clear that the GSMPC outperforms the LMPC controllers for both scenarios

resulting in an improvement of 19% for case study A and 13% for case study B. Although

these averaged percentages of improvement achieved by the GSMPC are moderate, the

improvements achieved for particular regions of operation are significant. For instance, it

is evident from comparison of the first columns of Table 3.5 and Table 3.7 for case study

A and Table 3.6 and Table 3.8 for case study B that the largest differences between the

performances of the two controllers are still obtained around an inlet concentration of

Sss
in = 2.0 g/L as for the nominal case. The improvement of GSMPC over LMPC around

this concentration is approximately 25% for case study A and 22% for case study B. It is

also clear that the differences between the two controllers are smaller for the cases with
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uncertainty than for the nominal cases due to the detuning of the controllers required for

achieving robustness to model uncertainty. Thus, the differences in performance between

the two controllers are expected to increase as the magnitude of the disturbance becomes

smaller. For smaller magnitudes of disturbance, the uncertainty bounds corresponding to

the expected maximal deviations in manipulated variables are also expected to become

smaller with the result that the index γop will approach the nominal values given in Tables

3.3 and 3.4. To verify this point, γop was calculated around an inlet concentration of

Sss
in = 2.0 g/L for a disturbance that is 10 times smaller than the disturbance magnitude

used for the calculations shown in Tables 3.5 and 3.6. The resulting γop was 0.6948 that is

considerable smaller than the value of 1.6171 in Table 3.5 and much closer, as expected, to

the nominal value 0.5328 shown in Table 3.3. Thus the values listed in Table 3.3 and Table

3.4 represent the largest differences that can be obtained between the two controllers since

for these tables uncertainties are not accounted for in the controllers’ design.

Another important observation for Table 3.6 is that the input weights required by the

GSMPC, when operating around an inlet concentration of Sss
in = 4.0 g/L, are significantly

larger than the weights calculated for other operating conditions. This has also the conse-

quence that the LMPC controller designed for case study B, that includes the operating

point corresponding to Sss
in = 4.0 g/L and that it has to provide control for the whole

region based on one single model, requires very large input weights for control as shown

in Table 3.8. The use of large input weights results in highly detuned controllers that

are expected to provide, as shown later in this section, sluggish closed-loop responses. A

careful examination of the closed-loop system given by equation (3.32) reveals that the

matrix A for Sss
in = 4.0 g/L for both controllers has an eigenvalue that is very close to

1, and consequently, the closed-loop system is very close to its stability limit. Then, the

optimization described in section 3.4, that requires compliance with robust stability, forces

the input weights to be very large to achieve stability.

To corroborate the results of the analysis presented above, an extensive simulation

study was conducted that consisted of simulating the controllers calculated in Table 3.5 to

Table 3.8 for a large number of disturbances. Since the γ values calculated in the tables
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correspond to worst case scenarios, disturbances that lead to the worst simulated γ values

were sought. Obviously, there is no systematic way to find the exact worst disturbance

other than to do a brute force search of all possible disturbances and to compare the

resulting values of γ. The simulations consisted in perturbing the value of the disturbance

d (k) around the different Sin values corresponding to the three different regions defined

in case studies A and B respectively. The code used to generate the disturbance can be

found in Appendix I. Figure 3.1 shows a particular disturbance that was found to result

in a large value of γ and that was consequently used for the simulation studies.

Figure 3.1: Disturbance used for case studies A and B
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As mentioned in section 3.1, in existent gain-scheduled industrial applications, each one

of the linear controllers that compose the gain-scheduling strategy is generally designed

based on a local step-response identification of the process (Bequette, 2003). In that

case, the local controller is not formally tuned for robustness with respect to nonlinear

effects with the expectation that the scheduling would take care of the nonlinear behavior

of the process. To assess the importance of the robust tuning proposed in this work a

series of additional optimizations and simulations were conducted as follows: (i) the input

weight of the gain-scheduled MPC strategy were optimized around each operating condition
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used for scheduling for the case where uncertainty, due to high-order nonlinear terms, is

ignored, (ii) the weights obtained from the optimization above were used to simulate the

closed-loop system around the different operating conditions. The weights obtained from

these optimizations and the theoretical γ values, shown in Table 3.3 and Table 3.4, are

as expected very small since uncertainty has been ignored. The simulated performance

using these weights, shown in Figure 3.2 and Figure 3.3 for the controlled and manipulated

variables when the system is operated around an inlet concentration of Sss
in = 2.0 g/L and

the same disturbances as in case studies A and B, is unacceptable since the bioreactor was

driven to biomass washout. This same behavior was observed around all three operating

conditions. Thus, the consideration of nonlinear effects in the tuning of the controllers is

essential for acceptable operation of the bioreactor.

Figure 3.4 to Figure 3.7 show the two controlled variables and the two manipulated

variables as a function of time for case study A when the system is operated around

steady-states corresponding to the two extreme inlet concentration values, i.e., Sss
in = 2.0

g/L and Sss
in = 3.0 g/L. It is evident from Figure 3.4 and Figure 3.5 that the GSMPC

reduces significantly the output variability as compared to the LMPC. The differences are

especially significant for output y2 around Sss
in = 2.0 g/L as predicted by the analysis. Figure

3.8 to Figure 3.11 show the two controlled variables and the two manipulated variables as

a function of time for case study B for the two extreme inlet concentration values used for

that case study, i.e., Sss
in = 2.0 g/L and Sss

in = 4.0 g/L. The simulations clearly corroborate

that the GSMPC provides significantly better performance than the LMPC for case study

B.
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Figure 3.2: Controlled variables, nominal LMPC versus GSMPC for case study A when
the process is operating around Sin = 2.0 g/L, (blue=GSMPC), (red=LMPC)
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Figure 3.3: Manipulated variables, nominal LMPC versus GSMPC for case study B when
the process is operating around Sin = 2.0 g/L, (blue=GSMPC), (red=LMPC)
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Figure 3.4: Controlled variables results for case study A when the process is operating
around Sin = 2.0 g/L, (blue=GSMPC), (red=LMPC)
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Figure 3.5: Manipulated variables results for case study A when the process is operating
around Sin = 2.0 g/L, (blue=GSMPC), (red=LMPC)

0 500 1000 1500 2000 2500
−0.2

−0.1

0

0.1

0.2

0.3

u 1

Time (hr)

0 500 1000 1500 2000 2500
−0.1

−0.05

0

0.05

0.1

u 2

Time (hr)

62



Figure 3.6: Controlled variables results for case study A when the process is operating
around Sin = 3.0 g/L, (blue=GSMPC), (red=LMPC)
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Figure 3.7: Manipulated variables results for case study A when the process is operating
around Sin = 3.0 g/L, (blue=GSMPC), (red=LMPC)
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Figure 3.8: Controlled variables results for case study B when the process is operating
around Sin = 2.0 g/L, (blue=GSMPC), (red=LMPC)
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Figure 3.9: Manipulated variables results for case study B when the process is operating
around Sin = 2.0 g/L, (blue=GSMPC), (red=LMPC)
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Figure 3.10: Controlled variables results for case study B when the process is operating
around Sin = 4.0 g/L, (blue=GSMPC), (red=LMPC)
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Figure 3.11: Manipulated variables results for case study B when the process is operating
around Sin = 4.0 g/L, (blue=GSMPC), (red=LMPC)
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To better quantify the differences in variability obtained in the simulations for the two

controllers and for both case studies, γ values were calculated based on simulation results

according to the following equation:

γsim =

∣∣∣∣yreal process
∣∣∣∣

2

||ν||2
(3.88)

The calculated values of γsim are presented in Table 3.9 and Table 3.10 for case studies A

and B respectively. The calculations were done for the extreme values of inlet concentration

considered in each one of the two case studies. The γsim results in Table 3.9 and Table 3.10

show that in all cases the GSMPC controller performance surpasses that of the linear MPC

as predicted by the analysis. It is also clear from comparisons of the γsim values in Table

3.9 and Table 3.10 to the γop in Table 3.5 to Table 3.8 that the analysis is conservative

since the simulated values γsim are lower than the analytical values γop. It should be

remembered that the simulated values were obtained for a particular disturbance that was

found, by trial and error, to result in a large γsim but a different disturbance may give

a larger value of γsim closer to the analytical bound. However, despite the fact that the

analysis is conservative as compared to the simulations, the analysis has correctly and

consistently predicted that the GSMPC controller performs better than the LMPC. The

improvements achieved with the GSMPC controller over the LMPC, based on the γsim

results presented in Table 3.9 and Table 3.10, range from 23% to 73% as shown in these

tables. It is clear from Table 3.10 that the performance improvement achieved with the

GSMPC versus the LMPC is very significant, 73%, when the system is operated around

the steady-state corresponding to Sin = 4.0 g/L. The key difference between the two

controllers around this inlet concentration is that, as mentioned earlier in this section, the

optimization resulted in very large input weights for the LMPC that were needed to satisfy

the robust stability condition. These large input weights caused the LMPC controller to

be very sluggish resulting in a very large variability as compared to GSMPC.

An additional reason for conducting the simulation study was to test whether the

manipulated variables bounds, used as uncertainty in the analysis and calculated by the

iterative procedure in section 3.4, were not violated in simulations. All the simulations
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Table 3.9: Simulation results for case study A

Sin γsim
GSMPC γop

GSMPC γsim
LMPC γop

LMPC
γsim
LMPC

γsim
GSMPC

2.0 [g/L] 0.2316 1.6171 0.2856 2.0108 1.23

3.0 [g/L] 0.2203 0.9474 0.2741 1.0853 1.24

Table 3.10: Simulation results for case study B

Sin γsim
GSMPC γop

GSMPC γsim
LMPC γop

LMPC
γsim
LMPC

γsim
GSMPC

2.0 [g/L] 0.2316 1.6171 0.2856 1.9701 1.23

4.0 [g/L] 0.1385 0.2674 0.2403 0.2763 1.73

including the ones shown in Figure 3.5, Figure 3.7, Figure 3.9 and Figure 3.11 verified the

bounds calculated by the procedure described in section 3.4.

Finally, the gain-scheduled controllers presented above, were designed for operation

around specific operating points as defined by the inlet concentration average values. How-

ever, to complete the control strategy, it is also desirable to control the system during

transitions between different average inlet concentration values. Such situation will arise

when large changes occur in the average inlet concentration as shown in Figure 3.12. For

such large shifts in inlet concentration it was found that the corresponding manipulated

variable moves were large and therefore the uncertainty bounds are very large. For such

large uncertainty it was found that the performances of the linear and gain-scheduled con-

trollers were very similar. Therefore, a simple LMPC was used to control the system during

the large transitions between different operating conditions. This LMPC was based on the

model corresponding to the inlet concentration Sss
in = 2.5 g/L and it was designed to satisfy

two conditions: (i) robust stability for all the vertices considered in the LMI formulation

and (ii) manipulated variable constraints given by |u| ≤ 1 in deviation variables. The

resulting controller that satisfies both these conditions is given by an input weight of Ri =

diag [480, 258]. The response of the system during the transition defined by the change in

inlet concentration is shown in Figure 3.13. From this figure it is clear that the closed-loop
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Figure 3.12: Disturbance used for transition between Sin studies
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Figure 3.13: Controlled variables for transition between Sin studies
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performance during the shift between two different average values of inlet concentration

is acceptable. The simulation study during the transition was performed by using first

the controller corresponding to inlet concentration Sin = 2.0 g/L followed by the LMPC

during the transition and using finally the controller corresponding to inlet concentration

of Sin = 3.0 g/L.

3.6 Conclusions

This chapter proposed a methodology for the design and testing of gain-scheduled model

predictive controllers. A key idea of the work is to model the process by an empirical

nonlinear state-affine model that can be identified from input-output data. This facilitates

the practical application of the method since it does not require the use of a detailed

mechanistic model of the process for control analysis and design. The nonlinear state-

affine model can be split into a nominal model that considers just the linear terms and

an uncertainty model that accounts for the nonlinear terms of the state-affine model. The

linear part of this model is used for the design of an MPC controller.

After the model has been obtained robust stability and robust performance tests can be

formulated as a finite number of linear matrix inequalities. Since it is required for the tests

to know the limits of the uncertainty that the model can tolerate, an analytical iterative

strategy was developed to obtain the value of these uncertainty bounds.

The proposed GSMPC is composed of a set of MPC controllers where each becomes

active in different regions of the manipulated variable space. The input weight matrix of

each MPC is calculated to minimize a norm of the feedback error normalized by the norm

of the disturbances. For the two scenarios tested, the analytical results show that the per-

formance of the GSMPC is consistently superior to the performance of a LMPC. However,

the analysis also predicts that the closed-loop performance of both the GSMPC and LMPC

will become increasingly similar as the magnitude of the disturbance is increased. Such

magnitude increase was shown to result in an increase in manipulated variable action with

a resulting increase of nonlinear effects according to the structure of the state-affine model
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used in the work. Then, when the LMPC and GSMPC controllers are detuned to achieve

robustness with respect to the uncertainty related to the system nonlinearity, their closed

performance becomes increasingly similar. The simulation results confirm the analytical

results indicating that for the process studied a GSMPC controller performs significantly

better than a LMPC.

Finally, the method proposed in this chapter can be effectively used by the practitioner

to decide whether a gain-scheduled strategy is needed to improve closed-loop performance.

The decision, as shown by the case studies, depends both on the range of operating condi-

tions considered for operation and the magnitude of the disturbances entering the process

since this magnitude is related, through the control actions, to the nonlinearity around a

given operating point.

Although the procedures presented in this chapter require a significant computational

effort, they are a viable alternative to a brute force simulation-based search of a worst case

scenario among the infinite possible combinations of disturbances and input weights.
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Chapter 4

Additional work for the gain-scheduling

MPC

As mentioned in section 2.2 the objective function of a MPC algorithm is comprised of

two terms: one term that penalizes the deviations of the controlled variables form its

predefined set-point and another term that penalizes the movement of the manipulated

variables. The MPC controller described in equation (3.26) considers both terms. For

simplicity, the methodology to design a robust gain-scheduled controller presented in the

previous chapter was initially designed to minimize a performance index γ that has the

following structure

γ =
||e||2
||ν||2

(4.1)

The methodology can be further improved by adding in the calculation of the perfor-

mance index γ the effect of the manipulated variables. In that way it will be possible

to assess whether the controller leads to less output variability but not at the cost of an

exaggerated increase in control action. Accordingly, the new index γ can be represented

by the following equation

γ =
||e||2 + ce ||u||2

||ν||2
(4.2)

where the term ce can be viewed as a weighting term that accounts for the contribution of

u on γ. The idea behind this addition is to avoid excessive movements of the manipulated

variables that may result in hardware wear and/or failure.

The first step to design a robust gain-scheduled controller based on the minimiza-

tion of the γ index defined in equation (4.2) consists in modifying the closed-loop system
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representation given by equation (3.32) to include the effect of the controlled and manip-

ulated variables as per the following equation:



xL (k + 1)

x (k + 1)

u (k)

d (k + 1)

y (k)

u (k)


=



A11 A12 A13 A14 B11

A21 A22 A23 A24 B21

A31 A32 A33 A34 B31

A41 A42 A43 A44 B41

C11 C12 C13 C14 D11

C21 C22 C23 C24 D21





xL (k)

x (k)

u (k − 1)

d (k)

ν (k)


(4.3)

A1j, j = 1, . . . , 4 is calculated as in equation (3.33), A2j, j = 1, . . . , 4 is calculated as in

equation (3.34), A3j, j = 1, . . . , 4 is calculated as in equation (3.35), A4j, j = 1, . . . , 4 is

calculated as in equation (3.36), Bj1, j = 1, . . . , 4 is calculated as in equation (3.37), C1j,

j = 1, . . . , 4 is calculated as in equation (3.38) and D11 is calculated as in equation (3.39).

C2j, j = 1, . . . , 4 is calculated as follows:

[C21]nu×nx = ceKMPC (−Ψ + N2C) (4.4a)

[C22]nu×nx = −ceKMPCN2C
un (4.4b)

[C23]nu×nu = ceInu −KMPCΓ (4.4c)

[C24]nu×nd = −ceKMPCN2WF (4.4d)

and D21 is calculated as

[D21]nu×nd = 0nu×nd (4.5)

The design of a robust state-affine based gain-scheduled MPC controller consists of two

steps. The first step calculates the uncertainty bounds according to procedure 1 presented

in section 3.4. The second step optimizes the manipulated variables weight matrix R

according to procedure 2 presented in section 3.4. In order to account for the effect of both

the controlled and manipulated variables the following changes to the procedure presented

in the previous chapter are made:

72



1. Step 2 of procedures 1 and 2 should include as a design parameter the value of ce.

2. In step 3.4.3 of procedure 2 the matrices that must be calculated are those of equa-

tions (3.33) to (3.39) and (4.4) to (4.5).

3. Step 3.4.3.1 of procedure 2 uses the closed-loop model given by equation (4.3).

To show the effect that the term ce has on the design and performance the next section

presents a case study where the performance index γ used to design the robust controller

considers both the contributions of the controlled and the manipulated variables.

4.1 Case study

The case study is the bioreactor that was previously used in section 3.5, the only significant

modification is that a new input sequence was used for identification purposes. One of the

consequences of using a new input sequence was that the error between the actual and

predicted values of the controlled variables decreases compared to the values obtained for

the identification of the previous chapter. Accordingly, because of the new input sequences

the normalization formulas were changed to:

xi =
ci − csp

i

cdv
i

, i = 1, 2 (4.6)

u1 =
D −Dss

Ddv
(4.7)

u2 =
Dc3f − (Dc3f )

ss

(Dc3f )
dv

(4.8)

where Dss and (Dc3f )
ss are the steady-state values corresponding to the operating condi-

tion around which a linear model is identified for the purpose of designing a local MPC

controller. Similar to the previous case study the value of the substrate’s feed concentra-

tion Sin will be considered as the main disturbance affecting the process. Therefore, the

objective of both control strategies consists in rejecting the disturbance and keeping the

controlled variables within their predefined set-point (csp
1 = 0.16 g/L and csp

2 = 0.06 g/L).

73



The selected operating regions for the controller are as before Sin = 2.0 g/L, Sin = 2.5 g/L

and Sin = 3.0 g/L.

In order to keep the value of the controlled and manipulated variables for the three

regions between −1 and +1, the values of cdv
i in equation (4.6) were selected as cdv

1 = 0.075

and cdv
2 = 0.0375, the value of Ddv in equation (4.7) was selected as 2.4440 × 10−3, the

value of (Dc3f )
dv in equation (4.8) was selected as 1.1220 × 10−5, the values of Ddv and(

Dcss
3f

)
required by equations (4.7) and (4.8) can be found in Table 4.1.

Table 4.1: Values for normalization

Dss (Dc3f )
ss

operating condition

around Sin = 2.0 g/L
0.3764 2.2823×10−3

operating condition

around Sin = 2.5 g/L
0.3851 2.3259×10−3

operating condition

around Sin = 3.0 g/L
0.3891 2.3459×10−3

The parameters of the GSMPC and LMPC controllers used for this case study are

p = 200 and all the other parameters are the same as in the previous chapter.

Similar to the approach followed in the previous chapter, a preliminary study was

conducted to assess whether using a GSMPC can provide better performance as compared

to an LMPC. This was done by comparing the γ values for the GSMPC and LMPC designed

based on the nominal models, i.e., when the uncertainty is zero. For comparison purposes

all the initial simulations were done with ce = 0, i.e., no penalty of the manipulated

variables. The optimal values of γ calculated following the procedure outlined in the

previous section are shown in Table 4.2 and Table 4.3.

The results in these tables clearly indicate that GSMPC is superior to LMPC as indi-

cated by the smaller γ values obtained with the GSMPC. On the basis of the calculated

ratios of γ between the two controllers, the improvement in performance to be achieved

with the GSMPC controller around Sin = 2.0 g/L is 15% and around Sin = 3.0 g/L is

18%. A similar result, i.e., smaller γ for the GSMPC controller was also found for the case
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Table 4.2: Optimal nominal GSMPC γ and manipulated variables weight matrix for ce = 0

Sin [g/L] GSMPC γop−nom Rop−nom
i

2.0 0.0864 diag [1.18E− 1, 1.41E− 8]

2.5 0.0857 diag [2.11E2, 9.06E− 9]

3.0 0.0881 diag [1.89E3, 2.62E− 8]

Table 4.3: Optimal nominal LMPC γ and manipulated variables weight matrix for ce = 0

Sin [g/L] GSMPC γop−nom Rop−nom
i

2.0 0.0997 diag [1.48E− 4, 6.21E− 7]

2.5 0.0978 diag [1.48E− 4, 6.21E− 7]

3.0 0.1047 diag [1.48E− 4, 6.21E− 7]

study of the previous chapter. However, the relative improvements of the GSMPC with

respect to the LMPC were distributed differently as a function of the inlet concentration

Sin. More specifically, the new input sequence and normalization had the following effects:

(i) the value of γop−nom decreased, (ii) the percentage improvement for the operating zone

Sin = 2.0 g/L decreased from 33% to 15%, (iii) the percentage improvement for the op-

erating zone Sin = 2.5 g/L decreased to 14% and (iii) the percentage improvement for

the operating zone Sin = 3.0 g/L increased from 1% to 18%. If one sums up the error

percentages the differences are similar than in the case study presented in chapter 3, i.e.,

approximately 10% - 15% at each operating condition making a total of 40% when the

errors are added. These effects can be explained by the fact that for the newly identified

models the errors are distributed more uniformly between the three operating regions.

When uncertainty is considered, the optimal GSMPC γ value and corresponding ma-

nipulated variable weight matrix were calculated according to the procedure presented

in section 3.4 with the proper modifications described in this chapter. The results are

shown in Table 4.4. The calculation for the LMPC controller designed with uncertainty is

presented in Table 4.5.

For comparison purposes, the optimal manipulated variable weight matrix R and the

manipulated variables bounds are also listed in Table 4.4 and Table 4.5. It is clear from
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Table 4.4: Optimal GSMPC γ and manipulated variables weight matrix for ce = 0

Sin [g/L] γop Rop
i u1 bound u2 bound

2.0 0.4099 diag [74576, 37648] ±0.2179 ±0.1542

2.5 0.4303 diag [74768, 45840] ±0.5861 ±0.1397

3.0 0.4700 diag [74576, 71504] ±0.6432 ±0.0672

Table 4.5: Optimal LMPC γ and manipulated variables weight matrix for ce = 0

Sin [g/L] γop Rop
i u1 bound u2 bound

2.0 0.4270 diag [62288, 11144] ±1.7176 ±1.2804

2.5 0.4350 diag [62288, 11144] ±0.6735 ±0.4981

3.0 0.4885 diag [62288, 11144] ±0.6058 ±0.4542

the comparison of Table 4.2 and Table 4.3 against Table 4.4 and Table 4.5 that there is

a consistent deterioration in performance for the cases with uncertainty as compared with

the cases without uncertainty. This is indicated by the increase of the γ values obtained

when uncertainty is considered.

As stated above, the effect of the manipulated variables have not been included in the

objective function of the controllers obtained in Table 4.2 to Table 4.5, i.e., ce = 0. The

effect that the manipulated variables movements have on γ can be accounted for with the

term ce. When this weight is different than zero, the new γ value is obtained from:

||y1 + y2 + ce (u1u2)||2
||ν||2

= γ (4.9)

For comparison purposes both a GSMPC and a LMPC controller were designed with

ce > 0. For two different values of ce, the corresponding γ and manipulated variables

weight matrix R for the GSMPC controller are presented in Table 4.6 and Table 4.7 and

for the LMPC controller are presented in Table 4.8 and Table 4.9.

For the purpose of comparing the overall performance of both controllers, an average

performance index was also calculated for the GSMPC and LMPC by averaging the three

γ values shown in Table 4.4 to Table 4.9. The average γ values are shown in Table 4.10.
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Table 4.6: Optimal GSMPC γ and manipulated variables weight matrix for ce = 0.1

Sin [g/L] γop Rop
i u1 bound u2 bound

2.0 0.4102 diag [74576, 50704] ±0.2179 ±0.1195

2.5 0.4314 diag [72528, 16328] ±0.5941 ±0.3480

3.0 0.4740 diag [72528, 29200] ±0.6420 ±0.1563

Table 4.7: Optimal GSMPC γ and manipulated variables weight matrix for ce = 0.25

Sin [g/L] γop Rop
i u1 bound u2 bound

2.0 0.4615 diag [50960, 42768] ±0.3075 ±0.1377

2.5 0.4340 diag [66320, 59152] ±0.6508 ±0.1058

3.0 0.4757 diag [52048, 10000] ±0.6693 ±0.3432

Table 4.8: Optimal LMPC γ and manipulated variables weight matrix for ce = 0.1

Sin [g/L] γop Rop
i u1 bound u2 bound

2.0 0.4295 diag [64336, 6664] ±1.6308 ±2.0820
2.5 0.4364 diag [64336, 6664] ±0.6537 ±0.8322
3.0 0.4911 diag [64336, 6664] ±0.5905 ±0.7586

Table 4.9: Optimal LMPC γ and manipulated variables weight matrix for ce = 0.25

Sin [g/L] γop Rop
i u1 bound u2 bound

2.0 0.5697 diag [67408, 6024] ±1.5580 ±2.3032
2.5 0.4393 diag [67408, 6024] ±0.6287 ±0.9306
3.0 0.5187 diag [67408, 6024] ±0.5678 ±0.8462

Table 4.10: Comparison of γ optimal average for several values of ce

ce GSMPC γop−av LMPC γop−av

0 0.4367 0.4502
0.1 0.4385 0.4523
0.25 0.4571 0.5090
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On the basis of these averages, it is clear that the GSMPC outperforms the LMPC

controllers for all the values of ce tested. This means that even when the controllers are

compared on a basis of a combination of output error and control effort the GSMPC is

superior to the LMPC controller. To corroborate the results of the analysis presented above,

an extensive simulation study was conducted that consisted of simulating the controllers

calculated in Table 4.4 to Table 4.9 for a large number of disturbances. The simulations

consisted in perturbing the value of the disturbance d (k) around the different Sin values

corresponding to the three different operating regions. The code used to generate the

disturbance can be found in Appendix I. Figure 4.1 shows a particular disturbance that

was found to result in a large value of γ and that was consequently used for the simulation

studies.

To better quantify the differences in variability obtained in the simulations for the two

controllers and for those cases when ce = 0, ce = 0.1 and ce = 0.25, γ values were calculated

based on simulation results according to equation (4.2) and are referred heretofore as γsim.

The calculated values of γsim are presented in Table 4.11 to Table 4.13.

Figure 4.1: Disturbance used for simulation studies, (a) System operating around Sin = 2.0
g/L, (b) System operating around Sin = 3.0 g/L
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Table 4.11: Simulation results for ce = 0

Sin [g/L] GSMPC γsim LMPC γsim LMPC γsim / GSMPC γsim

2.0 0.2071 0.2078 1.00

3.0 0.1701 0.1889 1.11

Table 4.12: Simulation results for ce = 0.1

Sin [g/L] GSMPC γsim LMPC γsim LMPC γsim / GSMPC γsim

2.0 0.2073 0.2116 1.02

3.0 0.1709 0.1920 1.12

Table 4.13: Simulation results for ce = 0.25

Sin [g/L] GSMPC γsim LMPC γsim LMPC γsim / GSMPC γsim

2.0 0.2082 0.2179 1.04

3.0 0.1586 0.1989 1.25

The calculations were done for the extreme values of inlet concentration considered in

each one of the two case studies. The γsim results in Table 4.11 to Table 4.13 show that in

all cases the GSMPC controller performance surpasses that of the LMPC as predicted by

the analysis. It is also clear from comparisons of the γsim values of Table 4.11 to Table 4.13

to the γop of Table 4.4 to Table 4.9 that the analysis is conservative since the simulated

values γsim are lower than the analytical values γop. However, it was found that the new

models together with the new normalizations used in this chapter, i.e., equation (4.6) to

equation (4.8) led to less conservative results to those obtained in the previous chapter. It

should be remembered that the simulated values were obtained for a particular disturbance

that was found, by trial and error, to result in a large γsim but a different disturbance may

give a larger value of γsim closer to the analytical bound. However, despite the fact that

the analysis is conservative as compared to the simulations, the analysis has correctly and

consistently predicted that the GSMPC outperforms the LMPC.
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An additional reason for conducting the simulation study was to test whether the

manipulated variable bounds, used as uncertainty in the analysis and calculated by the it-

erative procedure in section 3.4, were not violated in simulations. For comparison purposes

the maximum absolute value of the manipulated variables are presented in Table 4.14 and

Table 4.15 for the GSMPC and LMPC, respectively. The simulations also corroborated

that the analytical bounds on manipulated variables were not violated.

Table 4.14: Maximum absolute value of the manipulated variables achieved during simu-
lation for GSMPC

Sin [g/L] ce max(abs(u1)) u1 bound max(abs(u2)) u2bound

2.0 0 0.14 ±0.21 0.10 ± 0.15

3.0 0 0.44 ±0.64 0.04 ± 0.07

2.0 0.1 0.15 ±0.22 0.08 ±0.12

3.0 0.1 0.45 ±0.64 0.10 ±0.16

2.0 0.25 0.21 ±0.31 0.09 ±0.14

3.0 0.25 0.52 ±0.67 0.23 ±0.34

Table 4.15: Maximum absolute value of the manipulated variables achieved during simu-
lation for LMPC

Sin [g/L] ce max(abs(u1)) u1 bound max(abs(u2)) u2bound

2.0 0 0.45 ±1.72 0.33 ± 1.28

3.0 0 0.32 ±0.61 0.23 ± 0.45

2.0 0.1 0.43 ±1.63 0.53 ±2.08

3.0 0.1 0.31 ±0.59 0.39 ±0.76

2.0 0.25 0.41 ±1.56 0.59 ±2.30

3.0 0.25 0.30 ±0.57 0.44 ±0.85

4.2 Conclusions

This chapter presented a specific modification to the methodology presented in chapter

3 that involves the penalization of the manipulated variables in the performance index
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used for optimization. The main conclusion is that even on the basis of this new index

that includes a penalty on control action, GSMPC still outperforms the LMPC algorithm

indicating that GSMPC achieves a better overall performance both in terms of error min-

imization and control effort.
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Chapter 5

Structured singular valued based robust

nonlinear model predictive controller using

Volterra series models∗

Overview

A methodology is proposed for designing a robust non-linear model predictive controller

based on a Volterra series model with uncertain coefficients. A key benefit of using the

Volterra series model is that it can be split into a nominal and an uncertainty model thus

permitting the application of robust analysis tools. The controller is based on the on-line

solution of a robust performance test based on a structured singular value calculation.

The cost function of the controller can be formulated to account for manipulated variable

movement weighting, manipulated variable constraints and a terminal condition. Finally,

the proposed methodology is applied to a single-input-single-output continuous stirred tank

reactor problem and to a multiple-input-multiple-output pH neutralization process.

∗Adapted from Dı́az-Mendoza, R. and Budman, H. Structured Singular Valued based robust nonlinear
model predictive controller using Volterra series models, Journal of Process Control, 2010, 20, 5, 653–663.
See Appendix C for further information
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5.1 Introduction

Model predictive control (MPC) is currently one of the most used control strategies in

the process industry. The MPC algorithm minimizes at each sampling instant a cost

function with respect to the manipulated variables. The most common type of predictive

controller applied in industry is based on linear models. On the other hand, current

research is concentrating on nonlinear predictive control due to the reported advantages

when controlling nonlinear processes (Findeisen and Allgöwer, 2002). Accordingly, the

current chapter focuses on nonlinear model based predictive control.

Since the main objective of a predictive control strategy is to keep the value of the

controlled variables close to its set-points, the cost function is generally based on a norm

that penalizes the deviation of the predicted outputs from its predefined set-points. There

are two types of models that can be used for output prediction: first-principles and em-

pirical. First-principles models are based on the mass, energy and momentum balances of

the process. Generally they are difficult to obtain and are complex for control analysis and

design because they consist of high order nonlinear differential equations. On the other

hand empirical models can be easily obtained from input-output data and, as shown in this

chapter, they are often advantageous for control analysis and design. Both types of mod-

els have been used in previous nonlinear model predictive control (NMPC) algorithms.

First-principles model based NMPC has been addressed by (Wright and Edgar, 1994),

(Santos et al., 2001) and (Nygaard and Nævdal, 2006). There are many empirical models

that have been used for designing a NMPC controller such as: polynomial autoregressive

moving average models (Hérnandez and Arkun, 1993), Hammerstein models (Fruzzetti

et al., 1997), Volterra models (Doyle III et al., 1995), (Maner et al., 1996) and (Maner

and Doyle III, 1997), Volterra-Laguerre models (Parker and Doyle III, 2001) and Wiener

models (Norquay et al., 1999), (Gerks̆ic̆ et al., 2000) and (Jeong et al., 2001) to name a

few. Since the accuracy of these predictions will affect the performance it is important to

use a model that accurately describes the process behavior.
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Considering that ŷ is the predicted output and ysp is the set-point, a vector accounting

for the deviations of ŷ from ysp can be written as follows:

Y =



ysp
1 (k)− ŷ1 (k)

...

ysp
1 (k + p)− ŷ1 (k + p)

...

ysp
ny (k)− ŷny (k)

...

ysp
ny (k + p)− ŷny (k + p)


(5.1)

where p is the prediction horizon and ny is the number of outputs. Without loss of gener-

ality, the objective function of the controller proposed in the current work minimizes the

maximum absolute value of the elements of the Y vector with respect to the manipulated

variables vector U according to the following formula

J = min
wrt U
‖Y‖∞ (5.2)

where the manipulated variables vector U is defined as

U = [u1 (k) , . . . , u1 (k +m) , . . . , unu (k) , . . . , unu (k +m)]T (5.3)

m is the control horizon and nu is the number of inputs. In principle, the methodology

to be presented in this chapter can also be applied when a 2-norm is considered for the

optimization problem in equation (5.2). However, the use of the 2-norm will lead to an

increase of the dimensions of the algebraic formulation resulting in a corresponding increase

in the computational effort. Therefore, for simplicity, a 2-norm has not been used in the

current study.

The value of ŷ is obtained from a model of the process. For any mathematical model

there will always exist a discrepancy between the process output and the model output.

If this discrepancy is ignored the resulting closed-loop performance may be poor and in
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extreme cases closed-loop instability may occur. Thus, it is imperative to consider the

effect of mismatch between the model and the process by designing a controller that will

be robust with respect to this mismatch. Although a significant amount of research has

been conducted on robustness for MPC controllers that are based on linear models, the ro-

bustness of nonlinear model predictive controllers has been identified as an area of research

that needs further investigation (Findeisen and Allgöwer, 2002). Some researchers have ad-

dressed the impact of model error on NMPC performance through simulation studies (Nagy

and Braatz, 2003), (Kawohl et al., 2007), (Magni and Scattolini, 2007), (Diehl et al., 2008)

and (Zavala and Biegler, 2009). Linear matrix inequality (LMI) based robustness tests

have been developed for nonlinear systems that can be represented by specific empirical

models (Peng et al., 2007). Thus, the key contribution of this chapter is the formulation of

a nonlinear predictive control methodology based on empirical Volterra series model where

robustness to model errors is addressed with a systematic theoretical approach.

The current chapter investigates the design of a robust NMPC based on an empirical

Volterra series model. It is shown that the structure of the Volterra series model permits the

formulation of the robust NMPC problem as a µ-structured singular value (SSV) test that

can be used to calculate on-line the optimal control actions, i.e., the manipulated variables’

vector U. The µ-SSV (Doyle, 1982) based test is obtained, at each sampling instant,

to bound the worst case predictions or constraint violations along predefined prediction

and control horizons in the presence of disturbances and uncertainty in the parameters

of the Volterra series model. To assess the merits of the proposed algorithm, two case

studies involving a single-input-single-output (SISO) and multiple-input-multiple-output

(MIMO) chemical processes were considered. In these case studies the proposed controller

was compared with a non-robust linear MPC and with a non-robust NMPC that did not

consider model error. This last comparison was conducted to demonstrate the need for

considering model error within the controller design.

This chapter is organized as follows. In section 5.2 Volterra series models are reviewed.

The SSV-based robustness test is presented in section 5.3. Section 5.3 also shows how to

include, within the formulation, manipulated variable movement weighting, manipulated
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variables constraints and a terminal condition. Section 5.4 presents two case studies and

conclusions are presented in section 5.5.

5.2 Volterra series models

Volterra series models have been shown to effectively capture nonlinear behavior (Schetzen,

1980) and (Parker et al., 2001). A specific advantage in the use of this type of model for

this work is that it has a structure that can be readily split into a nominal part and another

part that accounts for the uncertainty in the model parameters and accordingly, it can be

used to formulate a mathematical robust performance test.

A Volterra series model relates the output of a process to its previous inputs. For a

SISO process the relationship between the output and input can be written as follows:

ŷ (k) = ŷ1 (k) + ŷ2 (k) + . . . (5.4)

where

ŷi (k) =
∞∑

σ1=1

. . .
∞∑
σi=1

hi (σ1, . . . , σi)u (k − σ1) , . . . , u (k − σi) (5.5)

In equation (5.5) the hi
′s are the coefficients of the Volterra kernels. For practical

purposes the series is truncated to include a finite number of terms resulting in the following

equation:

ŷ (k) = h0 +
N∑
ν=1

M−1∑
i1=0

. . .

M−1∑
iν=0

hν (i1, . . . , iν)u (k − i1) . . . u (k − iν) (5.6)

For example if h0 = 0 and N = 2 it follows from equation (5.6):

ŷ (k) =
M−1∑
n=0

hnu (k − n) +
M−1∑
i=0

M−1∑
j=i

hi,ju (k − i)u (k − j) (5.7)
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where M is referred to as the memory of the system and it is generally chosen to correspond

to the settling time of the process being modeled. The model can be generalized for a

MIMO case as follows (Schetzen, 1980) and (Boyd and Chua, 1985):

ŷχ (k) =

(
M−1∑
n=0

hn(χ,1)u1 (k − n) +
M−1∑
i=0

M−1∑
j=i

hi,j(χ,1)u1 (k − i)u1 (k − j)

)
+ . . .+(

M−1∑
n=0

hn(χ,nu)u1 (k − n) +
M−1∑
i=0

M−1∑
j=i

hi,j(χ,nu)unu (k − i)unu (k − j)

) (5.8)

where χ = 1, . . . , ny. The Volterra series coefficients can be obtained by least square

regression or nonlinear optimization using process input-output data by imposing an ap-

propriate input sequence. It has been shown (Nowak and Van Veen, 1994) that to identify

the coefficients for a system with polynomial degree N , it is necessary to use a N + 1 level

pseudorandom multilevel sequence (PRMS). The coefficients can also be obtained by de-

composing the model structure into a linear, diagonal and off-diagonal part (Parker et al.,

2001) and (Soni and Parker, 2007). This decomposition allows imposing a plant friendly

sequence that excites selected parts of the model simplifying the identification process. In

this work the approach proposed in (Nowak and Van Veen, 1994) was used to identify the

parameters.

In some cases a more compact Volterra model can be used by including autoregressive

terms as per the following structure (Schetzen, 1980) and (Boyd and Chua, 1985):

ŷχ (k) =

nARX∑
q=1

hqχ ŷχ (k − q)+(
M−1∑
n=0

hn(χ,1)u1 (k − n) +
M−1∑
i=0

M−1∑
j=i

hi,j(χ,1)u1 (k − i)u1 (k − j)

)
+ . . .+(

M−1∑
n=0

hn(χ,nu)unu (k − n) +
M−1∑
i=0

M−1∑
j=i

hi,j(χ,nu)unu (k − i)unu (k − j)

) (5.9)

where nARX is the number of autoregressive terms. Because the number of coefficients that

must be identified is significantly lower compared to its non autoregressive counterpart,

autoregressive Volterra series models are simpler to use and have smaller sensitivity to
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noise in the data used for identification. Some early examples of NMPC with Volterra

series models can be found in (Doyle III et al., 1995), (Maner et al., 1996) and (Maner

and Doyle III, 1997). The formulation proposed in this work considers an autoregressive

Volterra series model since it requires less parameters to identify and it results in an

algebraic formulation of lower dimensions.

Regardless of the number of terms included in the model, the output of a Volterra series

model will always be different from the actual process output. This difference is expected

to occur due to model truncation errors and round-off errors. Thus, when using a Volterra

series model for model-based control it is expected that performance will deteriorate due

to the presence of this model error. The current chapter presents a method for assessing

the effect of model error on closed-loop performance and for designing a controller that is

robust with respect to this error.

5.3 Calculation of the worst case in the presence of

model error

To account for the effect of modeling error, a model that is composed of a nominal part and

an uncertainty description is used for model-based controller design. The combination of

the model and its accompanying uncertainty description represents a large family of models

that is used to represent the actual system to be controlled. A robust NMPC algorithm

can then be designed based on the model that results in the worst closed-loop performance

on the assumption that if the worst model in the set satisfies a specific performance index

then all of the other models, within the family of models considered for robust design, will

also satisfy that index. The analysis of the worst model that is directly associated with

the worst value of the elements of the Y vector for the controller in equation (5.2) can

be formulated in terms of a SSV norm (Braatz et al., 1994), (Ma and Braatz, 2001) and

(Nagy and Braatz, 2003). Following the above, the first step for designing a robust NMPC

consists in modifying equation (5.9) to include coefficient uncertainty as follows:
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ŷχ (k) =

nARX∑
q=1

hqχ ŷχ (k − q)+(
M−1∑
n=0

(
hn(χ,1) ± δhn(χ,1)

)
u1 (k − n)+

M−1∑
i=0

M−1∑
j=i

(
hi,j(χ,1) ± δhi,j(χ,1)

)
u1 (k − i)u1 (k − j)

)
+ . . .+(

M−1∑
n=0

(
hn(χ,nu) ± δhn(χ,nu)

)
unu (k − n)+

M−1∑
i=0

M−1∑
j=i

(
hi,j(χ,nu) ± δhi,j(χ,nu)

)
unu (k − i)unu (k − j)

)
+

icχ (k) + wχ (k) + dχ (k)

(5.10)

where δhn, n = 0, . . . , (M − 1) and δhi,j, i = 0, . . . , (M − 1) , j = i, . . . , (M − 1) are the

uncertainties in the coefficients of the linear and nonlinear Volterra series terms, respec-

tively, icχ (k) , χ = 1, . . . , ny is the effect of the initial conditions, wχ, χ = 1, . . . , ny is

a feedback term that considers the effect of unmeasured disturbances and dχ (k) , χ =

1, . . . , ny is the effect of measured disturbances. The feedback term wχ (k) is calculated

according to the following equation

wχ (k) = yreal
χ (k − 1)− ŷχ (k − 1) (5.11)

For the purpose of prediction, the feedback term in equation (5.11) is assumed to

be equal for all time intervals along the prediction horizon as is done on other MPC

formulations (Cutler, 1983).

The formulation of a SSV-based robustness test requires two elements: (i) an appro-

priate interconnection matrix M that relates the nominal model with its uncertainty de-

scription and (ii) an uncertainty block structure ∆ accounting for the uncertainty in the

model parameters. Appendix D provides details on how the prediction vector, comprised

of elements calculated according to (5.10), can be represented by a corresponding M − ∆

interconnection matrix. The interconnection is schematically shown in Figure 5.1. As

shown in this figure, the inputs to M are is1 and is2 and the outputs are os1 and os2. If

89



M is partitioned into a structure that is compatible with the structure of the uncertainty

matrix ∆, the equations describing the system of Figure 5.1 are:

Figure 5.1: Uncertainty description for an upper LFT

∆

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

MM
MM

M

os1

os2is2

is1

 os1

os2

 =

 M11 M12

M21 M22

  is1

is2

 (5.12)

is1 = ∆os1 (5.13)

The relationship between the exogenous signals os2 and is2 is given by

os2 =
[
M21∆ [I−M11∆]−1 M12 + M22

]
is2 (5.14)

where os2 is related to Y and is2 is related to wχ (k) and dχ (k). Details on the construction

of this interconnection are given in Appendix D. Based on these interconnected matrices,

the worst value of the elements of the Y vector, i.e., the worst ||Y||∞, can be calculated

by the following SSV test (Braatz et al., 1994):

max
wrt HL,HNL

‖Y‖∞ ≥ kssv ⇔ µ∆ (M) ≥ kssv (5.15)

where the maximization is carried out with respect to the uncertainty in the Volterra series

coefficients defined by the following vectors:

HL =
[
HL

1 ,H
L
2 , . . . ,H

L
ny

]
HNL =

[
HNL

1 ,HNL
2 , . . . ,HNL

ny

] (5.16)

90



with

HL
i =

[
δh0 (i,1), . . . , δh0 (i,nu), . . . , δhM−1 (i,1), . . . , hM−1 (i,nu)

]
HNL
i =

[
δh0,0 (i,1), . . . , δh0,0 (i,nu), . . . , δhM−1,M−1 (i,1), . . . , hM−1,M−1 (i,nu)

] (5.17)

The robustness test proposed in equation (5.15) is used to obtain a bound on the worst

deviation of ‖Y‖∞ for the family of models defined by equations (5.10) and (5.16). The test

in equation (5.15) can be reformulated by the following constrained optimization problem

(Braatz et al., 1994):

max
wrt HL,HNL

‖Y‖∞ = max
wrt kssv

stµ∆(M)≥kssv

(kssv) (5.18)

The constrained optimization in equation (5.18), referred in the literature as a skew

µ problem, has been shown to be convex (Braatz et al., 1994). It was mentioned in

section 5.1 that the infinity norm was used instead of the 2-norm because the resulting

dimensions of the interconnection matrix M are smaller. Since the calculation of the

SSV is a non-polynomial hard problem the time required to solve equation (5.18) grows

significantly with the dimensions of the interconnection matrix M and also, in extreme

cases, memory limitations were encountered within the Matlab solving environment. These

factors motivated the selection of the infinity norm for the present work.

As shown in Appendix D, M11 and M22 are zero matrices, M12 is a function of the

scalar kssv and the elements of the U vector, i.e., M12 = (kssv,U) and M21 is a function

of kssv and the elements of the Y vector, i.e., M21 = (kssv,Y).

The methodology used for finding a bound for the worst output along the prediction

horizon by means of a skew µ problem can be extended to account for input and output

constraints as follows. The key idea for the inclusion of constraints within the formulation

is to append the values that should be kept within bounds to the prediction vector given

by equation (5.1). Following this rationale it is possible to include: (i) constraints on

manipulated variable changes ∆U to prevent an excessive movement of the manipulated

variables; (ii) constraints on the values of the manipulated variables ulimits to account for

actuator limits and (iii) a terminal value condition tc to ensure convergence at steady-state.
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This last constraint commonly referred to in the literature as a terminal condition (Chen

and Allgöwer, 1998b), has been often used in previous NMPC algorithms for ensuring

steady-state convergence to a neighborhood of the origin. The resulting vector with the

appended variables related to manipulated variable changes’ values, manipulated variables

value constraints and to the steady-state output prediction can then be used within the

following optimization problem:

max
wrt HL,HNL

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

Y

∆U

ulimits

tc

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
∞

≥ kssv ⇔ µ∆ (M) ≥ kssv (5.19)

Then, a skew µ problem is solved where a bound for the augmented vector of variables

is solved as follows:

max
wrt HL,HNL

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

Y

∆U

ulimits

tc

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
∞

= max
wrt kssv

stµ∆(M)≥kssv

(kssv) (5.20)

where the interconnection matrix M has a structure similar to equation (5.12), but with the

difference that M21 is a function of kssv and the elements of the vectors Y, ∆U, ulimits and

tc i.e., M21 = (kssv,Y,∆U, ulimits, tc). The following subsections provide further details on

how to formulate the: ∆U, ulimits and tc terms appearing in equation (5.20).

5.3.1 Manipulated variables movement penalization

This term is usually added to tune the speed of the closed-loop response and to prevent

excessive wear of the actuators. To include the penalization of manipulated variable moves

a vector referred to as ∆U is defined as follows:
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∆U =



W∆u1
1 [u1 (k)− u1 (k − 1)]

...

W∆u1
m [u1 (k +m)− u1 (k +m− 1)]

...

W
∆unu
1 [unu (k)− unu (k − 1)]

...

W
∆unu
m [unu (k +m)− unu (k +m− 1)]


(5.21)

where W j
i , i = 1, . . . ,m, j = ∆u1, . . . ,∆unu is the weight associated to the movement of

the j input from sampling time (k + i− 1) to (k + i). Since this vector is bounded as per

the problem in equation (5.20) then it follows that for all time intervals along the control

horizon the manipulated variable moves are bounded as follows:

max
∣∣W∆u1

1 [u1 (k)− u1 (k − 1)]
∣∣ ≤ kssv

...

max
∣∣W∆u1

m [u1 (k +m)− u1 (k +m− 1)]
∣∣ ≤ kssv

...

max
∣∣∣W∆unu

1 [unu (k)− unu (k − 1)]
∣∣∣ ≤ kssv

...

max
∣∣∣W∆unu

m [unu (k +m)− unu (k +m− 1)]
∣∣∣ ≤ kssv

(5.22)

The weight values assigned to each manipulated variable move can be chosen to penalize

the moves to different degrees in a similar fashion as the suppression factor, commonly used

in conventional MPC control.

5.3.2 Manipulated variables constraints

Constraints in the manipulated variables arise due to actuator limits. To account for these

limits a vector ulimits is defined as follows:
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ulimits =



kssv
u1(k)

ubound
1 (k)
...

kssv
u1(k+m)

ubound
1 (k+m)

...

kssv
unu (k)
ubound
nu

(k)

...

kssv
unu (k+m)
ubound
nu

(k+m)


(5.23)

The problem in equation (5.20) ensures that all of the elements of the vector in equation

(5.23) are bounded as follows:

max
∣∣∣kssv u1(k)

ubound
1 (k)

∣∣∣ ≤ kssv
...

max
∣∣∣kssv u1(k+m)

ubound
1 (k+m)

∣∣∣ ≤ kssv
...

max
∣∣∣kssv unu (k)

ubound
nu

(k)

∣∣∣ ≤ kssv
...

max
∣∣∣kssv unu (k+m)

ubound
nu (k+m)

∣∣∣ ≤ kssv

(5.24)

Then, after cancellation of kssv from both sides of the inequalities it trivially follows

from equation (5.24):

max |u1 (k)| ≤ ubound
1 (k)

...

max |u1 (k +m)| ≤ ubound
1 (k +m)

...

max |unu (k)| ≤ ubound
nu (k)

...

max |unu (k +m)| ≤ ubound
nu (k +m)

(5.25)

Thus, the manipulated variables are bounded at each sampling instant by ubound
i (j),

i = 1, . . . , nu, j = k, . . . , (k +m).

94



5.3.3 Terminal condition

A terminal condition is used to ensure that the difference between the set-point and the

predicted steady-state output value corresponding to the last calculated manipulated vari-

able move in the control horizon stays within a neighbourhood ε near the origin (Chen and

Allgöwer, 1998b). Infeasibilities may arise when output constraints have to be satisfied in

the presence of input constraints. In the current study, output constraints are only imposed

at steady state through the terminal condition. Thus, the value of ε is pre-specified by the

user with the only requirement that the region defined by ε can be reached at steady state

considering the imposed limits on the manipulated variables. To enforce this condition

within the maximization problem defined by equation (5.20) it is necessary to define a

vector tc as follows:

tc =


tc1

...

tcχ

 (5.26)

tcχ =
kssv
ε

(
ysp
χ (k + p)− ŷχ (k + p)

)
(5.27)

where ŷχ (k + p) is calculated from equation (5.10). If the cost function considers the vector

tc within the cost function given in the left hand side of equation (5.20) the bound to be

found by the solution of the corresponding skew µ problem will trivially ensure:

max |tc1| ≤ kssv
...

max
∣∣tcnχ∣∣ ≤ kssv

(5.28)

which after canceling out kssv from both sides of equation (5.28) can be simplified following

equation (5.27) to the following inequalities:

max |ysp
1 (k + p)− ŷ1 (k + p)| ≤ ε

...

max
∣∣ysp
χ (k + p)− ŷχ (k + p)

∣∣ ≤ ε

(5.29)
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Thus the difference between the set-point and the predicted output at the end of the

prediction horizon is bounded by ε.

The procedure to obtain the interconnection matrix M corresponding to the problem

defined by equation (5.20) and the associated uncertainty block structure ∆ is detailed in

Appendix D.

5.3.4 Robust NMPC control law

The robust NMPC control law is based on the evaluation of the cost function for the worst

case that results when uncertainty is considered in the Volterra series coefficients. This can

be obtained by solving the SSV-based robustness test proposed in equation (5.20). Then,

the objective of the proposed controller is to minimize this worst-case cost function value

with respect to the manipulated variables vector U at each time interval. Accordingly,

the control calculation at each sampling instant consists of the solution of the following

problem:

min
wrt U

 max
wrt HLHNL

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

Y

∆U

ulimits

tc

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
∞

 = min
wrt U

 max
wrt kssv

stµ∆(M)≥kssv

(kssv)

 (5.30)

where, as per the previous subsections, the resulting controller has the following proper-

ties: (i) it considers uncertainty in the Volterra series coefficients through the vector Y;

(ii) it considers manipulated variable movement weighting through the term ∆U; (iii) it

considers manipulated variables constraints through ulimits and (iv) it considers the effect

of a terminal condition through tc. The inner maximization in equation (5.30) accounts for

all the constraints, i.e., manipulated variable, terminal condition and µ inequality. This

inner maximization is solved by proposing increasing values of the bound kssv until the

equality µ = kssv is satisfied. The outer minimization is not subject to constraints and

therefore, is solved with an unconstrained algorithm based on the Simplex method. When
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the inner maximization is unfeasible the outer minimization is restarted with a new set of

initial guesses.

One disadvantage of the controller formulation given by equation (5.30) is that it does

not have integral action in the presence of model error. The reason for the lack of integral

action is as follows. Defining ŷ∆ as the worst predicted output obtained from a series of

models the elements of the feedback vector E are:

E =



ysp
1 (k)− ŷ∆1 (k)

...

ysp
1 (k + p)− ŷ∆1 (k + p)

...

ysp
ny (k)− ŷ∆ny (k)

...

ysp
ny (k + p)− ŷ∆ny (k + p)


(5.31)

That after correction with the feedback term in equation (5.11) results in the following

prediction vector:

E′ =



ysp
1 (k)− ŷ∆1 (k)− yreal

1 (k − 1) + ŷ1 (k − 1)
...

ysp
1 (k + p)− ŷ∆1 (k + p)− yreal

1 (k − 1) + ŷ1 (k − 1)
...

ysp
ny (k)− ŷ∆ny (k)− yreal

ny (k − 1) + ŷny (k − 1)
...

ysp
nχ (k + p)− ŷ∆nχ (k + p)− yreal

ny (k − 1) + ŷny (k − 1)


(5.32)

The best case that can be obtained from the minimization in equation (5.30) and in

the absence of constraints is that each one of the elements in E′ will be zero. In that case,

since generally ŷ∆i 6= ŷi according to equation (5.32), yreal
i 6= ysp

i thus resulting in offset.

To correct for this situation a correction to the controller is proposed whereby when

||E′||∞ < ε′ then the prediction for the calculation of the worst case is done without
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considering the uncertainty. In that case ŷ∆i = ŷi and consequently yreal
i = ysp

i resulting in

zero offset. This proposed correction results in a two-mode controller where, for ||E′||∞ ≥

ε′ the Volterra model with uncertainty is used to calculate the worst case whereas for

||E′||∞ < ε′ the Volterra model without uncertainty is used for that calculation.

5.4 Case studies

Two case studies are presented to illustrate the properties of the proposed algorithm. The

first case study is a SISO exothermic reactor and the second is a MIMO pH neutraliza-

tion process. For both case studies comparisons are made between the proposed robust

nonlinear controller with a non-robust linear model based MPC (LMPC).

5.4.1 SISO system

A first order, exothermic, irreversible reaction A → B is taking place in a continuously

stirred tank reactor (CSTR). Assuming perfect mixing the dimensionless material and

energy balances are as follows (Uppal et al., 1974) and (Doyle III et al., 1989):

dx1

dt
= x1 +Da (1− x1) exp

x2

1 + x2/γ
(5.33)

dx2

dt
= −x2 +BDa (1− x1) exp

(
x2

1 + x2/γ

)
− β (x2 − x2c) (5.34)

where B is the dimensionless heat of reaction, Da Damökhler number, x1 dimensionless

reactant concentration, x2 dimensionless temperature, x2c dimensionless coolant temper-

ature, β dimensionless cooling rate and γ dimensionless activation energy. The control

problem consists in maintaining x1 at its predefined set-point by manipulating the value

of x2c, in the presence of perturbations in the value of β. A change in the value of β may

be related to changes in temperature or flow rate. The following parameters are chosen

B = 1.0, Da = 0.072, β = 0.3, γ = 20.0 and x2c = 14. For these values one single

steady-state is obtained at xss
1 = 0.622 and xss

2 = 3.7092.
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An autoregressive Volterra model was identified for prediction within the NMPC strat-

egy. It was found by trial and error that a choice of M = 3 and nARX = 1 ensures that

the autoregressive Volterra series model gives a reasonable fitting with a maximal error of

10% while at the same time keeping the interconnection matrix small. Selecting M > 3

and nARX > 1 resulted in slightly better fitting but also led to increases in the dimensions

of the M matrix and a corresponding increase in the on-line calculations of the SSV norm.

To obtain the nominal and uncertain value of the auto-regressive Volterra series coefficients

10 different PRMS were applied to the system. The sampling time for identification and

simulation purposes was 0.75 time units. For each PRMS a set of Volterra series coeffi-

cients were obtained by nonlinear optimization. The set of coefficients was divided into two

subsets corresponding to the coefficients of the linear and nonlinear terms. Accordingly,

VC defines the set of Volterra series kernels as follows:

VC =
[
VCL

1 , . . . ,VCL
ny ,VCNL

1 , . . . ,VCNL
ny

]
(5.35)

VCL
i =

[
h0 (i,1), . . . , h0 (i,nu), . . . , hM−1 (i,1), . . . , hM−1 (i,nu)

]
VCNL

i =
[
h0,0 (i,1), . . . , h0,0 (i,nu), . . . , hM−1,M−1 (i,1), . . . , hM−1,M−1 (i,nu)

] (5.36)

for the j-th PRMS the identified Volterra series coefficients are:

VCidL =
[
VCidL

1 , . . . ,VCidL
nseq

]
VCidNL =

[
VCidNL

1 , . . . ,VCidNL
nseq

] (5.37)

VCidL
j =

[
VCidL

j,1, . . . ,VCidL
j,ny

]
VCidNL

j =
[
VCidNL

j,1 , . . . ,VCidNL
j,ny

] (5.38)

VCidL
j,i =

[
h0 (i,1),j, . . . , h0 (i,nu),j, . . . , hM−1 (i,1),j, . . . , hM−1 (i,nu),j

]
VCidNL

j,i =
[
h0,0 (i,1),j, . . . , h0,0 (i,nu),j, . . . , hM−1,M−1 (i,1),j, . . . , hM−1,M−1 (i,nu),j

] (5.39)

The nominal value of the coefficients that were used for the construction of the inter-

connection matrix M were calculated as follows:
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VCL =

nseq∑
j=1

VCidL
j

nseq

VCNL =

nseq∑
j=1

VCidNL
j

nseq

(5.40)

where nseq is the number of PRMS sequences used. The elements of the vectors VCL and

VCNL are equal to the means of [VCidL
1 , . . ., VCidL

nseq ] and [VCidNL
1 , . . ., VCidNL

nseq ] ,

respectively.

Following the central limit theorem a 95% probability that the real value of the Volterra

series coefficients is contained within two standard deviation of the mean was assumed.

Therefore, the associated uncertainty matrix used for the construction of the interconnec-

tion matrix M is calculated as:

HL =2

√√√√ 1

nseq

nseq∑
j=1

(
VCidL

j −VCL
)2

HNL =2

√√√√ 1

nseq

nseq∑
j=1

(
VCidNL

j −VCNL
)2

(5.41)

SISO case study A

Figure 5.2 shows different closed-loop controlled and manipulated variables profiles to a

step like disturbance that consisted of a change in the value of β from β = 0.3 to β = 0.21

at time k = 2. For these simulations the set-point is equal to zero, p = 10 and m = 2.

To illustrate the effect of the weight W∆u
i , i = 1, . . . ,m, as defined in equation (5.21) i.e.,

the weight that penalizes the manipulated variable changes, closed-loop simulations were

conducted with the proposed controller for different values of this weight. It can be seen

from Figure 5.2 that the weight imposed on the manipulated variable movements can be

effectively used to tune the speed of the closed-loop response. Also, the simulations show

that the controlled variable always converges to the set-point thus illustrating the presence

of integral action achieved by the two mode control strategy proposed at the end of section
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5.3, i.e., the model without the uncertainty is used for prediction of the worst deviation as

soon as the error is smaller than ε’.

Figure 5.2: Controlled and manipulated variables for SISO case study A, (black W∆u
i =

2.5), (blue W∆u
i = 2.0), (red W∆u

i = 1.5), (magenta W∆u
i = 1.0)
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SISO case study B

To test the ability of the algorithm to accommodate constraints a step-like disturbance in

β consisting of a change from β = 0.3 to β = 0.525 at time k = 2 was simulated with

the proposed controller. Figure 5.3 shows the responses of the controlled and manipulated

variable when u (k) is restricted to be between |u (k)| ≤ 0.425 for 0 < k < 15. It can be seen

that the proposed NMPC algorithm is able to keep the value of the manipulated variable

between the allowed limits. Figure 5.3 also shows that after removing the constraint at

time interval 15 the proposed algorithm calculates the manipulated variable value that

forces the controlled variable to the set-point.
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Figure 5.3: Controlled and manipulated variables for SISO case study B, W∆u
i = 1.5
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SISO case study C

In order to assess the efficiency of the proposed controller its average performance was

quantified for a set of different disturbances. A disturbance profile consisting of the su-

perposition of random changes and step changes shown in Figure 5.4 was used. The

characteristics of the disturbance can be found in Appendix E. The rationale for choosing

this type of disturbance profile was to test the closed-loop performance around different

operating conditions so as to emphasize the effects of nonlinearity. For this disturbance

the proposed robust NMPC was compared to a non-robust NMPC for which HL = 0 and

HNL = 0 and to a non-robust linear MPC for which HL = 0, HNL = 0 and all nonlinear

terms in equation (5.9) are equal to zero. The comparison of the controllers was performed

for two different values of manipulated variables moves weight W∆u
i . The integral of the

absolute error (IAE) values obtained from these simulations are presented in Table 5.1.

Figure 5.5 shows the controlled and manipulated variable profiles, respectively. These

results clearly corroborate that the nonlinear controllers perform better than the linear
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controller and more importantly, they indicate that the robust NMPC performs better

than the non-robust NMPC.

Figure 5.4: Disturbance for SISO case study C
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Table 5.1: IAE comparisons between robust NMPC, non-robust NMPC and non-robust
LMPC for SISO case study C

W∆u
i IAErobust NMPC IAEnon−robust NMPC IAEnon−robust LMPC

0.50 2.6249 2.9165 3.0104

0.75 3.0444 3.4696 3.5435

SISO case study D

To further illustrate the effect of accounting for robustness on the control performance

the proposed robust NMPC was compared to its non-robust NMPC counterpart (HL = 0

and HNL = 0) for different possible disturbances and for different values of the controller

weight W∆u
i , 24 different step-like disturbances were used to simulate the system with both

controllers. The characteristics of the disturbance can be found in Appendix E. For each

one of these disturbances the IAE was calculated for the robust and non-robust NMPC
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Figure 5.5: Controlled and manipulated variables for SISO case study C, p = 10, m = 2,
W∆u
i = 0.75
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controllers. Table 5.2 shows the percentage of cases were the robust NMPC controller

IAE was smaller than that of the non-robust NMPC for different values of W∆u
i . The

interpretation of this result is that as the controller weight is smaller the controller is

more aggressive causing the closed-loop to be more sensitive to model error. Thus, for

smaller weights the results showed as expected that the robust controller, that takes into

account the model error, performs overall better than the non-robust controller. Thus,

although robust controllers tend to be conservative, they perform better than the non-

robust controller when the controller is tuned aggressively, i.e., with small manipulated

variables’ weights.
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Table 5.2: IAE comparisons between robust NMPC, non-robust NMPC and non-robust
LMPC for SISO case study D

W∆u
i

% of cases with

IAErobust NMPC < IAEnon−robust NMPC

0.25 66.66%

0.50 66.66%

0.75 50.00%

1.00 45.83%

1.50 41.66%

2.00 25.00%

2.50 20.83%

5.4.2 MIMO system

This case study involves the pH neutralization system (Nahas et al., 1992) schematically

shown in Figure 5.6 where an acid (q1), a base (q3) and a buffer (q2) are mixed in a tank.

Assuming perfect mixing, constant density and completely solubility of the ions in-

volved, the chemical equilibrium can be modeled according to the following two reaction

invariants for each stream i = 1, . . . , 4:

Wai =
[
H+
]
i
−
[
OH−

]
i
−
[
HCO−3

]
i
− 2

[
CO2−

3

]
i

(5.42)

Wbi = [H2CO3]i +
[
HCO−3

]
i
+
[
CO2−

3

]
i

(5.43)

The overall mass balance on the tank yields:

A
dh

dt
= q1 + q2 + q3 − q4 (5.44)

where q4 is calculated as:

q4 = Cv (h)n (5.45)
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Figure 5.6: pH neutralization system

q1 Wa1 Wb1
Acid stream

q2 Wa2 Wb2
Buffer stream

q3 Wa3 Wb3
Base stream

q4 Wa4 Wb4

The equations that describe the dynamics of the effluent reaction invariants (Wa4,Wb4)

can be obtained from a mass balance on each of the ionic species as follows:

Ah
dWa4

dt
= q1 (Wa1 −Wa4) + q2 (Wa2 −Wa4) + q3 (Wa3 −Wa4) (5.46)

Ah
dWb4

dt
= q1 (Wb1 −Wb4) + q2 (Wb2 −Wb4) + q3 (Wb3 −Wb4) (5.47)

Finally, the pH can be obtained from Wa and Wb by using the following nonlinear

relationship:

Wa + 10pH−14 +Wb
1 + 2× 10pH−pK2

1 + 10pK1−pH + 10pH−pK2
− 10−pH = 0 (5.48)

The control problem consists in maintaining the tank height h and the outlet stream

pH at its predefined set-point by manipulating the flows of the acid q1 and base q3 streams,

in the presence of perturbations in the flow of the buffer stream q2. The value of the

set-points and the operating conditions for the process are shown on Table 5.3.
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Table 5.3: Process set-points and operating conditions for MIMO case study

hsp = 14cm q1 = 3× 10−3M HNO3

pHsp = 7 q2 = 3× 10−2M NaHCO3

A = 207 cm2 q3 =
3× 10−3M NaOH +

5× 10−5M NaHCO3

Cv = 8.75 ml / cm s Wa1 = 3× 10−3

n = 0.607 Wa2 = −3× 10−2

pK1 = 6.35 Wa3 = −3.05× 10−2

pK2 = 10.25 Wv1 = 0

q1 = 16.6 ml/s Wb2 = 3× 10−2

q2 = 0.55 ml/s Wb3 = 5× 10−5

q3 = 15.6 ml/s

Similar to the SISO case study it was found by trial and error that the choices of

M = 3 and nARX = 1 for the Volterra model resulted in a reasonable fitting between

the process and the model. The sampling time used for identification and simulation

purposes was 25s. To prevent numerical difficulties during the identification process the

manipulated and control variables were normalized. The procedure to obtain the Volterra

series coefficients was the same one used for the SISO case study. The main difference with

respect to the first case study is that in these case two Volterra series models are required:

one for the level given by h = f (q1, q3) and one for the pH given by pH = f (q1, q3).

Figure 5.7 shows the closed-loop controlled variables’ responses to a step like distur-

bance that consisted in a change in the value of q2 from q2 = 0.3 ml/s to q2 = 0.525 ml/s

at time k = 2 with the proposed robust NMPC algorithm. For these simulations the set-

points are equal to hsp = 14 cm and pHsp = 7 or ysp
1 = 0 and ysp

2 = 0 in deviation variables

with respect to the initial steady-state. The manipulated variables movement penalization

terms are equal to W∆u1
i = 0.75, and W∆u2

i = 1.5, i = 1, . . . ,m. Figure 5.8 shows the

responses of u1 and u2, respectively. It can be seen that the controller is able to reject the

disturbance in the process converging to the set-points at steady-state.

As done for the SISO system example, simulations were conducted to show under which

circumstances the robust NMPC can surpass the performance of the non-robust NMPC
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Figure 5.7: Controlled variables profiles for MIMO case study, p = 10, m = 2, W∆u1
i =

0.75, W∆u2
i = 1.5, (black = robust NMPC), (blue = non-robust NMPC), (red

= non-robust LMPC) (The information is in deviation variables)
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Figure 5.8: Manipulated variables profiles for MIMO case study, p = 10, m = 2, W∆u1
i =

0.75, W∆u2
i = 1.5 (The information is in deviation variables)
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and the non-robust linear MPC. Eight different step-like disturbances were used to obtain

the manipulated and controlled variables profiles. The characteristics of the disturbance

can be found in Appendix E. The comparison of the three controllers was conducted for

two different sets of values of the manipulated variables movement penalization terms, i.e.,

W∆u1
i , and W∆u2

i , i = 1, . . . ,m and the IAE was used as an index to assess the closed-loop

performance.

Table 5.4 shows the percentage of cases where the robust NMPC controller IAE was

smaller than that of the non-robust NMPC and non-robust LMPC controllers for different

values of W∆u1
i , and W∆u2

i , i = 1, . . . ,m. The trends of results are consistent with those

obtained for the SISO system. Thus, when the manipulated variables’ weights are small

the controller is more aggressive and the closed-loop is more sensitive to model error. Thus

for small weights the robust controller is better whereas for large weights the non-robust

controller is superior.

Table 5.4: Comparison between robust NMPC, non-robust NMPC and linear MPC con-
trollers for MIMO case study

W∆u1
i W∆u2

i

% of cases with

IAErobust NMPC < IAEnon−robust NMPC

and IAErobust NMPC < IAEnon−robust LMPC

0.1875 0.3750 66.66%

0.75 1.5 33.33%

5.5 Conclusions

A robust NMPC controller based on a Volterra series model was presented. The robust-

ness tests are solved based on a structured singular value calculation of a predefined cost

function. The Volterra series model is convenient for robust analysis and design because its

structure can be easily split into a nominal and an uncertain part. Correspondingly, an in-

terconnection matrix required for the robustness tests can be built. The algorithm solves an
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on-line min-max problem where the worst prediction obtained from a set of Volterra models

describing the process is used to calculate the manipulated variables profile.

The algorithm includes enforcement of constraints in manipulated variables, penaliza-

tion of manipulated variables moves and enforcement of a terminal condition that ensures

convergence to a neighborhood of the set-point. To achieve cancellation of steady-state

offset, a two mode control operation is used whereby the nonlinear model without uncer-

tainty is used for prediction as soon as the output converges to a predefined neighborhood

of the set-point defined by the terminal condition.

To test the proposed methodology two case studies were studied. It was found that

the nonlinear controllers perform consistently better than a linear MPC controller for

which predictions are done with the linear part of the Volterra model. The robust NMPC

controller performs increasingly better than the non-robust NMPC counterpart as the

penalization weight for manipulated variable moves decreases.
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Chapter 6

Comparison between a robust nonlinear

empirical model-based predictive controller

and a first-principles nonlinear model-based

predictive controller ∗

Overview

A robust nonlinear empirical model-based predictive controller is compared against a non-

robust nonlinear first-principles model-based predictive controller. The robust controller

uses a Volterra series representation of the system studied. Since the structure of the

Volterra series can be decomposed into a nominal and an uncertain part a robustness test

based on the structured singular value concept can be proposed. If the parameters of the

first-principles model coincide with the operating parameters the performance of the first-

principles controller will surpass that of the robust controller. However, if the parameters

are different the performance of the first-principles controller starts deteriorating. Because

the formulation of the robust controller explicitly considers that there will be a discrepancy

between the process and the model, it is shown that in some case its performance can be

superior to that of the first-principles controller. The study also shows a similar behavior

when manipulated variables constraints are included in the formulation.

∗The contents of this chapter were submitted to Industrial & Engineering Chemistry Research
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6.1 Introduction

One of the most widely used control strategies in the process industry is model predictive

control (MPC). An MPC controller minimizes at each sampling instant a cost function

comprised of the sum of a term that penalizes the deviations of the predicted outputs from

its predefined set-points plus a term that penalizes the manipulated variables movements.

At the end of every sampling instant a new set of plant measurements is obtained and the

optimization is re-done considering the new information. In order to calculate the values

of the predicted outputs that will be used in the objective function of the controller, it

is required to use a model that describes the interrelationship between the controlled and

manipulated variables. The original MPC work and most current industrial implementa-

tions use linear models for prediction. However, the current research in MPC has mainly

focused on the use of nonlinear models following the recognition that most processes are

nonlinear thus the use of nonlinear models results in significantly improved closed-loop

performance (Findeisen and Allgöwer, 2002). MPC algorithms that use nonlinear models

to calculate the output predictions are referred to as nonlinear model predictive control

(NMPC) algorithms. There are two types of models that have been used for calculat-

ing the predicted outputs in NMPC implementations: first-principles based and empirical

models. First-principles models are based on the mass, energy and momentum balances

of the process whereas empirical models are directly calibrated from input-output data.

Empirical models are easier to obtain than first-principles models since they are based

on straightforward regression of input-output data. On the other hand first-principles

models have better extrapolation accuracy than empirical models implying that they are

generally superior for predicting the process behavior at conditions that are different than

the ones used for model calibration. Both types of models have been used in previous

NMPC algorithms. First-principles model based NMPC has been addressed by (Wright

and Edgar, 1994), (Santos et al., 2001) and (Nygaard and Nævdal, 2006). Some empirical

models that have been considered for NMPC design are: polynomial autoregressive mov-

ing average models (Hérnandez and Arkun, 1993), Hammerstein models (Fruzzetti et al.,

1997), Volterra series models (Doyle III et al., 1995), (Maner et al., 1996) and (Maner

112



and Doyle III, 1997), Volterra-Laguerre models (Parker and Doyle III, 2001) and Wiener

models (Norquay et al., 1999), (Gerks̆ic̆ et al., 2000) and (Jeong et al., 2001).

Although several studies have been conducted on stability and on the use of different

types of models for predictions, the robustness of these algorithms to model error has been

identified as one of the key issues to be addressed for successful implementation (Findeisen

and Allgöwer, 2002). For any mathematical model a discrepancy between the process

output and the model output will always exists. Ignoring this discrepancy could result

in poor closed-loop performance and in extreme cases closed-loop instability may occur.

Thus, it is imperative to consider the effect of mismatch between the model and the process

by designing a controller that will be robust with respect to this mismatch. The robustness

of NMPC algorithms based on first-principles models have been only addressed through

simulation studies (Nagy and Braatz, 2003), (Kawohl et al., 2007), (Magni and Scattolini,

2007), (Diehl et al., 2008) and (Zavala and Biegler, 2009) since analytical conditions for

robustness are not possible with these models or have yet to be developed.

On the other hand it has been shown in (Dı́az-Mendoza and Budman, 2010) that

certain nonlinear empirical models can be used to formulate a novel NMPC algorithm

that can be systematically tuned for robustness with respect to model error. The robust

controller proposed in (Dı́az-Mendoza and Budman, 2010) uses the structure of the Volterra

series model to formulate a robust NMPC problem as a µ-structured singular value (SSV)

(Doyle, 1982) test that can be used to calculate on-line the optimal control actions. At

each sampling instant the µ-SSV based test is calculated and used for bounding the worst

case predictions and constraint violations along predefined prediction and control horizons

in the presence of disturbances, set-point changes and uncertainty in the parameters of

the Volterra series model. This newly proposed Volterra based algorithm exhibited good

robustness properties when operated around a fixed operating condition. However, the

performance of this algorithm has not been investigated when the system is operated

around a range of operating conditions due to changes in process parameters. In this case

the uncertainty has to be formulated so as to capture the effect of these process parameters’

variations. Also, the empirical model based algorithm proposed in (Dı́az-Mendoza and

113



Budman, 2010) has not been compared before to NMPC algorithms that are based on a

first-principles model where the latter has been generally the model of choice in most of

the recent research in NMPC.

The objective of the current work is to compare the algorithm proposed in (Dı́az-

Mendoza and Budman, 2010) with a first-principles model based NMPC in the presence

of disturbances and process parameter uncertainty. For this purpose a NMPC algorithm

based on a first-principles model used in combination with an observer previously proposed

by (Henson and Seborg, 1994) is formulated. This comparison is intended to address

the relative performance tradeoffs between the expected superior extrapolating accuracy

of first-principles model based NMPC versus the robustness properties of the empirical

model based NMPC. It will be shown that for certain levels of model errors and in the

presence of disturbances it is essential to consider robustness to improve the performance

of the controller. Then, since first-principles models cannot be systematically designed

for robustness, empirical model based NMPC will be shown to be an attractive option

for NMPC implementation. To assess the relative merits of the controllers, a case study

involving a multiple-input-multiple-output (MIMO) chemical process was considered.

This chapter is organized as follows. In section 6.2 the Volterra series model based

robust NMPC controller is reviewed. Section 6.3 briefly explains the NMPC based on

the nonlinear first-principles ordinary differential equations of the system that is used for

comparison with the Volterra series model based controller. Section 6.4 presents the case

study and conclusions are presented in section 6.5.

6.2 Robust nonlinear model predictive control based

on Volterra series models

This section briefly describes the robust nonlinear model predictive control (RNMPC)

algorithm recently proposed in (Dı́az-Mendoza and Budman, 2010). The algorithm is based

on Volterra series models that have been shown to effectively capture nonlinear behavior

(Parker et al., 2001). The specific motivation to use this type of model for designing the
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robust NMPC is that it has a structure that can be split in two parts where the first

part contains the nominal values of the Volterra series coefficients whereas the second part

contains the values of the uncertainty associated to each parameter. This feature is used

to formulate an on-line mathematical robust performance test.

To obtain a more compact representation of the model the RNMPC uses an autoregres-

sive Volterra series model for which the relationship between the outputs and the inputs

for a MIMO process is as follows:

ŷχ (k) =

nARX∑
q=1

hqχ ŷχ (k − q)+(
M−1∑
n=0

hn(χ,1)u1 (k − n) +
M−1∑
i=0

M−1∑
j=i

hi,j(χ,1)u1 (k − i)u1 (k − j)

)
+ . . .+(

M−1∑
n=0

hn(χ,nu)unu (k − n) +
M−1∑
i=0

M−1∑
j=i

hi,j(χ,nu)unu (k − i)unu (k − j)

) (6.1)

where nARX is the number of autoregressive terms, M is referred to as the memory of the

system and it is generally chosen to correspond to the settling time of the process being

modeled and χ = 1, . . . , ny. The model parameters, i.e., the h′is, are obtained by least

square regression or nonlinear optimization using process input-output data by imposing

an appropriate input sequence. In (Nowak and Van Veen, 1994) it was shown that to

identify the coefficients for a system with polynomial degree N , it is necessary to use a

N + 1 level pseudorandom multilevel sequence (PRMS). Since the number of coefficients

that must be identified significantly decreases with respect to the non-autoregressive case,

autoregressive Volterra series models are simpler to use and have smaller sensitivity to

noisy data. To provide for robustness when the process is expected to work around several

operating regions the process identification procedure must be conducted around these dif-

ferent operating regions. This can be accomplished by using several PRMS around different

operating regions and identifying the Volterra series coefficients from all the collected data.

Regardless of the number of terms included in the model and the use of data collected at

different operating conditions, the output of a Volterra series model will always be different

from the actual process output due to model truncation and round-off errors. Thus, when
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using a Volterra series model for model based control it is expected that performance will

deteriorate due to the presence of this model error.

The effect that the mismatch has on the controller’s performance can be considered by

combining the nominal and uncertain parts of the model resulting in a family of models

that represents the system to be controlled. The family of models is analyzed by the robust

NMPC algorithm to obtain the model that results in the worst closed-loop performance.

The basic premise used for designing the controller is that if the worst model in the set

satisfies a specific performance index then it can be assumed that all of the other models,

within the family of models considered for robust design, will also satisfy that performance

level. The analysis of the worst model that is associated with the worst value of the

elements of the Y vector for the robust NMPC controller can be formulated in terms of

a SSV norm (Braatz et al., 1994), (Ma and Braatz, 2001) and (Nagy and Braatz, 2003).

Following the above, the first step for designing a robust NMPC consists in modifying

equation (6.1) to include coefficient uncertainty as follows:

ŷχ (k) =

nARX∑
q=1

hqχ ŷχ (k − q)+(
M−1∑
n=0

(
hn(χ,1) ± δhn(χ,1)

)
u1 (k − n) +

M−1∑
i=0

M−1∑
j=i

(
hi,j(χ,1) ± δhi,j(χ,1)

)
u1 (k − i)u1 (k − j)

)
+ . . .+(

M−1∑
n=0

(
hn(χ,nu) ± δhn(χ,nu)

)
unu (k − n) +

M−1∑
i=0

M−1∑
j=i

(
hi,j(χ,nu) ± δhi,j(χ,nu)

)
unu (k − i)unu (k − j)

)
+

icχ (k) + wχ (k) + dχ (k)

(6.2)

where δhn, n = 0, . . . , (M − 1) and δhi,j, i = 0, . . . , (M − 1) , j = i, . . . , (M − 1) are the

uncertainties in the coefficients of the linear and nonlinear Volterra series terms, respec-

tively, icχ (k) , χ = 1, . . . , ny is the effect of the initial conditions, wχ (k) , χ = 1, . . . , ny

is a feedback term that considers the effect of unmeasured disturbances and dχ (k) , χ =
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1, . . . , ny is the effect of measured disturbances. The feedback term wχ (k) is calculated

according to the following equation

wχ (k) = yreal
χ (k − 1)− ŷχ (k − 1) (6.3)

For the purpose of prediction, the feedback term in equation (6.3) is assumed to be

equal for all time intervals along the prediction horizon.

To formulate a robustness test based on a structured singular value calculation an

appropriate interconnection matrix M and accompanying uncertainty description ∆ are

needed. The interconnection between M and ∆ is shown schematically in Figure 6.1, the

inputs to M are is1 and is2 and the outputs are os1 and os2. If M is partitioned into a

structure that is compatible with the structure of the uncertainty matrix ∆, the equations

that describe the system of Figure 6.1 are:

Figure 6.1: Uncertainty description for an upper LFT

∆

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

MM
MM

M

os1

os2is2

is1

 os1

os2

 =

 M11 M12

M21 M22

  is1

is2

 (6.4)

is1 = ∆os1 (6.5)

The relationship between the exogenous signals os2 and is2 is given by

os2 =
[
M21∆ [I−M11∆]−1 M12 + M22

]
is2 (6.6)

117



where os2 is related to Y and is2 is related to wχ (k) and dχ (k). Details on the construction

of this interconnection are given in (Dı́az-Mendoza and Budman, 2010). Based on these

interconnected matrices, the worst value of the elements of the Y vector, i.e., the worst

||Y||∞, can be calculated by the following SSV test (Braatz et al., 1994):

max
wrt HL,HNL

‖Y‖∞ ≥ kssv ⇔ µ∆ (M) ≥ kssv (6.7)

where the maximization is carried out with respect to the uncertainty in the Volterra series

coefficients defined by the following vectors:

HL =
[
HL

1 ,H
L
2 , . . . ,H

L
ny

]
HNL =

[
HNL

1 ,HNL
2 , . . . ,HNL

ny

] (6.8)

with

HL
i =

[
δh0 (i,1), . . . , δh0 (i,nu), . . . , δhM−1 (i,1), . . . , hM−1 (i,nu)

]
HNL
i =

[
δh0,0 (i,1), . . . , δh0,0 (i,nu), . . . , δhM−1,M−1 (i,1), . . . , hM−1,M−1 (i,nu)

] (6.9)

The robustness test proposed in equation (6.7) is used to obtain a bound on the worst

deviation of ||Y||∞ for the family of models defined by combining equation (6.2) and (6.8)

in the presence of external disturbances. The test in equation (6.7) can be reformulated

by the following constrained optimization problem (Braatz et al., 1994):

max
wrt HL,HNL

‖Y‖∞ = max
wrt kssv

stµ∆(M)≥kssv

(kssv) (6.10)

The skew µ problem can be extended to account for input and output constraints

by appending the values that should be kept within bounds to the prediction vector Y.

Following this rationale it is possible to include: (i) constraints on manipulated variable

changes ∆U to prevent an excessive movement of the manipulated variables; (ii) constraints

on the values of the manipulated variables ulimits to account for actuator limits and (iii)

a terminal value condition tc to ensure convergence at steady state. The vector with the
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appended variables related to manipulated variable changes’ values, manipulated variables

value constraints and to the steady state output prediction can then be used within the

following optimization problem:

max
wrt HL,HNL

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

Y

∆U

ulimits

tc

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
∞

≥ kssv ⇔ µ∆ (M) ≥ kssv (6.11)

Then, a skew µ problem is solved where a bound for the augmented vector of variables

is solved as follows:

max
wrt HL,HNL

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

Y

∆U

ulimits

tc

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
∞

= max
wrt kssv

stµ∆(M)≥kssv

(kssv) (6.12)

where the interconnection matrix M has a structure similar to equation (6.4), M11 and

M22 are zero matrices, M12 is a function of the scalar kssv and the elements of the U vector,

i.e., M12 = f (kssv,U) and M21 is a function of kssv and the elements of the vectors Y, ∆U,

ulimits and tc i.e., M21 = (kssv,Y,∆U,ulimits, tc). Complete details on how to formulate

the interconnection matrix M, the prediction vector Y and the vectors quantifying ∆U,

ulimits and tc to be used in equation (6.12) are provided in Appendix D.

The robust NMPC control law is based on the evaluation of the worst cost function

when uncertainty is considered in the Volterra series coefficients by means of the SSV based

test proposed in equation (6.12). The objective of the proposed controller is to minimize

the value of the worst-case cost function with respect to the manipulated variables vector

U at each sampling instant. Accordingly, the control calculation at each sampling instant

consists of the solution of the following problem:
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J = min
wrt U

 max
wrt HLHNL

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

Y

∆U

ulimits

tc

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
∞

 = min
wrt U

 max
wrt kssv

stµ∆(M)≥kssv

(kssv)

 (6.13)

The controller formulation given by equation (6.13) has a disadvantage; it does not have

integral action in the presence of model error as shown in (Dı́az-Mendoza and Budman,

2010). To correct for this situation when the error is within a region specified by ε′,

i.e., when ||E′||∞ < ε′, then the prediction for the calculation of the worst case is done

without considering the uncertainty resulting in zero offset (Dı́az-Mendoza and Budman,

2010). This proposed correction results in a two-mode controller where, for ||E′||∞ ≥ ε′ the

Volterra model with uncertainty is used to calculate the worst case whereas for ||E′||∞ < ε′

the Volterra model without uncertainty is used for that calculation.

6.3 Nonlinear model predictive control based on first-

principles model

This section describes the first-principles model based NMPC algorithm used for compari-

son with the robust controller presented in the previous section. In this case the equations

that describe the interrelationship between the inputs, outputs and states can be written

in discrete form as follows:

x (k + 1) =f (x (k) ,u (k))

y (k) =g (x (k) ,u (k))
(6.14)

where f and g are nonlinear vector fields obtained from the first-principles model, x are

the system states, u are the system inputs and y are the system outputs. If some or all

system states are not measured an observer or a predictor can be used to estimate their

values. The corresponding predictor equations are as follows:
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x̂ (k + 1) =f (x̂ (k) ,u (k))

y (k) =g (x̂ (k) ,u (k))
(6.15)

where x̂ denotes a predicted state. To ensure a fair comparison between the empirical

based and first principle based NMPC’s the cost functions of both algorithms were similar.

Accordingly, the cost function can be written as

J = min
wrt U

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

Y

∆U

ulimits

tc

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
∞

(6.16)

where ∆U accounts for manipulated variables weighting, ulimits accounts for manipulated

variables constraints and tc accounts for terminal condition constraints. The vector Ŷ that

considers the deviation of the predicted controlled variables from its predefined set-points

can be written as

Ŷ =


ysp − ŷ (k)

...

ysp − ŷ (k + p− 1)

 =


ysp − (g (x̂ (k) ,u (k)) + fb (k))

...

ysp − (g (x̂ (k + p− 1) ,u (k +m− 1)) + fb (k))


(6.17)

where fb is a feedback term that is calculated as follows:

fb (k) = yprocess (k − 1)− y (k − 1) (6.18)

The equation used to calculate the system states have the following form:

X̂ =


x̂ (k + 1)

...

x̂ (k + p− 1)

 =


f (x̂ (k) ,u (k))

...

f (x̂ (k + p− 2) ,u (k +m− 1))

 (6.19)
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In this work, in order to isolate the effect of the controller from the impact of the

observer the initial conditions of the estimated states were assumed to be equal to the

actual states. The µ-based NMPC algorithm considers the constraints, i.e., ulimits and

tc, using the concept of a barrier function. Accordingly, the vectors ulimits and tc are

formulated in the following way:

ulimits =



fbarrier (u1bound) log
(

1−
∣∣∣ u1(k)
u1bound

∣∣∣)
...

fbarrier (u1bound) log
(

1−
∣∣∣u1(k+m)
u1bound

∣∣∣)
...

fbarrier (unubound) log
(

1−
∣∣∣ unu (k)
unubound

∣∣∣)
...

fbarrier (unubound) log
(

1−
∣∣∣unu (k+m)
unubound

∣∣∣)


(6.20)

tc =


fbarrier (tc1) log

(
1−

∣∣∣ysp1 −ŷ1(k+p)

tc1

∣∣∣)
...

fbarrier

(
tcny

)
log
(

1−
∣∣∣yspny−ŷny (k+p)

tcny

∣∣∣)
 (6.21)

The structure of the vector ∆U that accounts for manipulated variables weighting is

the same for the RNMPC described in the previous section and the first-principles based

NMPC shown in this section.

6.4 Case study

The system studied involves the pH neutralization process (Nahas et al., 1992) schemat-

ically shown in Figure 6.2 where an acid (q1), a base (q3) and a buffer (q2) are mixed in

a tank. Assuming perfect mixing, constant density and completely solubility of the ions

involved, the chemical equilibrium can be modeled according to the following two reaction

invariants for each stream i = 1, . . . , 4:
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Figure 6.2: pH neutralization system

q1 Wa1 Wb1
Acid stream

q2 Wa2 Wb2
Buffer stream

q3 Wa3 Wb3
Base stream

q4 Wa4 Wb4

Wai =
[
H+
]
i
−
[
OH−

]
i
−
[
HCO−3

]
i
− 2

[
CO2−

3

]
i

(6.22)

Wbi = [H2CO3]i +
[
HCO−3

]
i
+
[
CO2−

3

]
i

(6.23)

The overall mass balance on the tank yields:

A
dh

dt
= q1 + q2 + q3 − q4 (6.24)

where q4 is calculated as:

q4 = Cv (h)n (6.25)

The equations that describe the dynamics of the effluent reaction invariants (Wa4,Wb4)

can be obtained from a mass balance on each of the ionic species as follows:

Ah
dWa4

dt
= q1 (Wa1 −Wa4) + q2 (Wa2 −Wa4) + q3 (Wa3 −Wa4) (6.26)
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Ah
dWb4

dt
= q1 (Wb1 −Wb4) + q2 (Wb2 −Wb4) + q3 (Wb3 −Wb4) (6.27)

Finally, the pH can be obtained from Wa and Wb by using the following nonlinear

relationship:

Wa + 10pH−14 +Wb
1 + 2× 10pH−pK2

1 + 10pK1−pH + 10pH−pK2
− 10−pH = 0 (6.28)

The control problem consists in maintaining the tank height h and the outlet stream pH

at its predefined set-points by manipulating the flows of the acid q1 and base q3 streams,

in the presence of perturbations in the flow of the buffer stream q2. The values of the

operating conditions for the process are shown on Table 6.1 .

Table 6.1: Process operating conditions

A = 207 cm2 Wa1 = 3× 10−3

pK1 = 6.35 Wa2 = −3× 10−2

pK2 = 10.25 Wa3 = −3.05× 10−2

q1 = 3× 10−3M HNO3 Wb1 = 0

q2 = 3× 10−2M NaHCO3 Wb2 = 3× 10−2

q3 =
3× 10−3M NaOH +

5× 10−5M NaHCO3

Wb3 = 5× 10−5

The RNMPC controller requires a Volterra series model that describes the interrela-

tionship between the manipulated variables (q1 and q3) and the controlled variables (h and

pH). An autoregressive Volterra series model with M = 2 and nARX = 1 was used for the

RNMPC. These values were found by trial and error to result in a reasonable fitting be-

tween the process and the model. The sampling time used for identification and simulation

purposes was 25s. To prevent numerical difficulties during the identification process the

manipulated and controlled variables were normalized as follows:

vn =
v − vp
vd

(6.29)
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where vn is the normalized value of the variable v, the values of vp and vd can be found in

Table 6.2

Table 6.2: Values for normalization

variable vp vd

y1 (height) 14 5

y2 (pH) 7 3

q1 (acid flow) qss
1 0.2qss

1

q3 (base flow) qss
3 0.225qss

3

In order to obtain the nominal and uncertain value of the autoregressive Volterra series

coefficients rseq different PRMS sequences were applied to the system at different operating

conditions and a set of Volterra series coefficients were obtained by regression. These set

of coefficients was divided into two subsets corresponding to the coefficients of the linear

and nonlinear terms. Correspondingly, VC defines the set of Volterra series coefficients as

follows:

VC =
[
VCL

1 , . . . ,VCL
ny ,VCNL

1 , . . . ,VCNL
ny

]
(6.30)

VCL
i =

[
h0(i,1), . . . , h0(i,nu), . . . , hM−1(i,1), . . . , hM−1(i,nu)

]
VCNL

i =
[
h0,0(i,1), . . . , h0,0(i,nu), . . . , hM−1,M−1(i,1), . . . , hM−1,M−1(i,nu)

] (6.31)

for the j-th PRMS sequence the identified Volterra series coefficients are:

VCidL =
[
VCidL

1 , . . . ,VCidL
nseq

]
VCidNL =

[
VCidNL

1 , . . . ,VCidNL
nseq

] (6.32)

where the elements in equation (6.32) are also vectors defined as follows

VCidL
j =

[
VCidL

j,1, . . . ,VCidL
j,ny

]
VCidNL

j =
[
VCidNL

j,1 , . . . ,VCidNL
j,ny

] (6.33)

VCidL
j,i =

[
h0(i,1),j, . . . , h0(i,nu),j, . . . , hM−1(i,1),j, . . . , hM−1(i,nu),j

]
VCidNL

j,i =
[
h0,0(i,1),j, . . . , h0,0(i,nu),j, . . . , hM−1,M−1(i,1),j, . . . , hM−1,M−1(i,nu),j

] (6.34)
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The nominal value of the coefficients that define the nominal model and that were used

for the construction of the interconnection matrix M was calculated as follows:

VCL =

nseq∑
j=1

VCidL
j

nseq

VCNL =

nseq∑
j=1

VCidNL
j

nseq

(6.35)

where nseq is the number of PRMS sequences used (nseq = rseq×number of operating

regions). The elements of the vectors VCL and VCNL are equal to the means of [VCidL
1 ,

. . ., VCidL
nseq ] and [VCidNL

1 , . . ., VCidNL
nseq ] , respectively.

The associated uncertainty matrix used for the construction of the interconnection

matrix M was calculated based on 2 standard deviations as follows:

HL =2

√√√√ 1

nseq

nseq∑
j=1

(
VCidL

j −VCL
)2

HNL =2

√√√√ 1

nseq

nseq∑
j=1

(
VCidNL

j −VCNL
)2

(6.36)

Two Volterra series models were proposed. The first describes the relationship between

the tank height and q1 and q3, i.e., h = h (q1, q3), the second set describes the relationship

between the pH and q1 and q3, i.e., pH = pH (q1, q3).

The FP-NMPC controller uses the ODE’s and algebraic equations that describe the

behavior of the process i.e., equations (6.24) to (6.28). Because some of the states were

assumed to be not measurable an observer (Henson and Seborg, 1994) was used to estimate

Wa and Wb.

Simulations were conducted to test the controllers’ abilities to reject disturbances as well

as to track set-point changes. A disturbance profile consisting of a superposition of random

changes in q2 shown schematically in Figure 6.3 was used for comparing the controllers

whereas the sequence of set-point changes used for the comparisons is shown schematically

in Figure 6.4. The characteristics of the disturbance can be found in Appendix F.
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Figure 6.3: Disturbance profile
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Figure 6.4: Set-point changes profile
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In the absence of model errors, the FP-NMPC is obviously expected to provide better

performance than the robust controller based on the empirical model because the predic-

tion based on the first-principle model will be more accurate. Thus, the real test between

the FP-NMPC and the RNMPC consists in assessing which of the two controllers is supe-

rior when model errors are present. The current comparison study considers uncertainty

in two key valve parameters: Cv and n. For the purpose of discussion, the values of these

parameters that are assumed as the correct ones by the first-principles model will be re-

ferred heretofore as Cvmodel and nmodel whereas the actual values occurring in the process

will be referred to as Cvprocess and nprocess. Although the empirical Volterra series model

does not explicitly use the values of these parameters within the algorithm, the nominal

coefficient values of this model together with the uncertainties associated to these coeffi-

cients are identified from input-output data collected from experiments performed around

different combinations of the values of Cv and n. Thus the family of models described

by the Volterra series model with uncertainty is expected to capture the behavior of the

process in the presence of changes in the values of Cv and n. A key challenge for con-

ducting a fair comparison between the controllers is that the robust controller is designed

for a worst case scenario whereas the system is not necessarily operated always at worst

case conditions. Therefore, the approach adopted for conducting the comparative study

is to test the closed-loop operation at different combinations of Cv and n and then assess

the performance on an average basis for all these combinations. In that way an average

performance for different realizations of the uncertain process parameters can be quanti-

fied. The main difference is that while the FP-NMPC used the same values of Cvmodel and

nmodel for all the combinations of Cvprocess and nprocess tested, the robust controller used

a model which was identified based on data obtained around the different combinations.

Thus, the objective is to test whether the possibility of variations in Cv and n justify the

use of a robust controller as compared to a first-principles controller that does not take

into account these variations but on the other hand is expected to have better prediction

accuracy in the absence of these variations.

Since the objective function of both controllers is based on an infinity norm, the integral

of the absolute error (IAE) was selected as the measurement of the controller’s performance.
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Since a tradeoff is always expected between performance and sensitivity to model error,

the comparisons were conducted for different values of the manipulated variables weights

which determine the speed of the closed loop response. Six different combinations of

weights
[
W∆u1
i ,W∆u2

i

]
, ∀i ∈ [1,m] were used as follows: case 1 [0.15, 0.1], case 2 [0.25, 0.1],

case 3 [0.3, 0.1], case 4 [0.1, 0.15], case 5 [0.1, 0.25] and case 6 [0.1, 0.3]. For all the cases the

prediction horizon p was set to 10 and the control horizon m was set to 2. The FP-NMPC

was simulated with the following values: Cvmodel = 8.75 and nmodel = 0.5. For each case

study 9 different combinations of Cvprocess and nprocess were simulated. Table 6.3 to Table

6.8 show the values of the IAE for all the 9 combinations for both controllers. Table 6.9

shows the average IAE for both controllers.

Table 6.3: IAE results for case 1 [IAEFP−NMPC, IAERNMPC]

[0.15, 0.10] n = 0.45 n = 0.50 n = 0.55

Cv = 9.25 [5.36, 4.90] [4.20, 4.05] [3.54, 5.57]

Cv = 8.75 [9.64, 5.02] [3.78, 4.40] [4.50, 3.68]

Cv = 8.25 [4.23, 5.48] [10.06, 4.41] [3.46, 4.26]

Table 6.4: IAE results for case 2 [IAEFP−NMPC, IAERNMPC]

[0.25, 0.10] n = 0.45 n = 0.50 n = 0.55

Cv = 9.25 [3.95, 5.50] [3.14, 4.62] [5.41, 4.62]

Cv = 8.75 [3.76, 6.01] [4.80, 4.97] [3.61, 4.45]

Cv = 8.25 [3.23, 6.47] [4.23, 5.35] [3.41, 4.67]

Table 6.5: IAE results for case 3 [IAEFP−NMPC, IAERNMPC]

[0.30, 0.10] n = 0.45 n = 0.50 n = 0.55

Cv = 9.25 [4.41, 5.75] [7.81, 5.12] [3.28, 5.14]

Cv = 8.75 [3.60, 5.86] [3.26, 6.10] [3.38, 4.49]

Cv = 8.25 [3.80, 6.96] [3.23, 6.16] [5.57, 5.28]
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Table 6.6: IAE results for case 4 [IAEFP−NMPC, IAERNMPC]

[0.10, 0.15] n = 0.45 n = 0.50 n = 0.55

Cv = 9.25 [5.39, 5.07] [4.90, 4.18] [3.63, 4.29]

Cv = 8.75 [2.82, 5.18] [2.74, 4.56] [5.09, 3.61]

Cv = 8.25 [10.25, 6.10] [3.49, 5.01] [2.63, 4.32]

Table 6.7: IAE results for case 5 [IAEFP−NMPC, IAERNMPC]

[0.10, 0.25] n = 0.45 n = 0.50 n = 0.55

Cv = 9.25 [7.35, 5.60] [7.69, 5.13] [4.06, 4.75]

Cv = 8.75 [3.52, 6.28] [3.00, 5.64] [2.62, 4.30]

Cv = 8.25 [4.02, 7.00] [4.27, 5.57] [3.25, 5.13]

Table 6.8: IAE results for case 6 [IAEFP−NMPC, IAERNMPC]

[0.10, 0.30] n = 0.45 n = 0.50 n = 0.55

Cv = 9.25 [5.13, 5.96] [3.35, 5.76] [9.65, 4.22]

Cv = 8.75 [4.01, 6.67] [3.37, 5.92] [6.42, 5.16]

Cv = 8.25 [5.83, 7.29] [6.12, 5.71] [8.47, 5.39]

Table 6.9: Average IAE for case studies 1 to 6

IAEFP−NMPC IAERNMPC

Case 1 5.42 4.64

Case 2 3.95 5.18

Case 3 4.26 5.65

Case 4 4.54 4.70

Case 5 4.42 5.49

Case 6 5.82 5.79
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The first observation that can be made from Table 6.3 to Table 6.8 is that for all com-

binations of weights, whenever the simulations are conducted without model error (center

value in each table) the FP-NMPC outperforms RNMPC in terms of IAE. As mentioned

above this result is expected since in the absence of model error, the predictions used in the

FP-NMPC are perfect. For these cases the improvements in IAE for the FP-NMPC over

the RNMPC range from 1% for case study 2, (IAEFP−NMPC=4.8 versus IAERNMPC=4.97

in Table 6.4), to 53% for case study 3, (IAEFP−NMPC=3.26 versus IAERNMPC=6.1 in Table

6.5). The evolution of the controlled variables with respect to time for these two cases is

shown in Figure 6.5 and Figure 6.6, respectively.

Figure 6.5: Controlled variables profiles, W∆u1
i = 0.25, W∆u2

i = 0.10, Cv = 8.75, n = 0.5,
(blue=FP-NMPC), (red=RNMPC)
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Figure 6.6: Controlled variables profiles, W∆u1
i = 0.30, W∆u2

i = 0.10, Cv = 8.75, n = 0.5,
(blue=FP-NMPC), (red=RNMPC)
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When model error is present, the IAE results show that the performance depends on

the particular combination of weights and parameter uncertainty considered. In some cases

the FP-NMPC outperforms the RNMPC by as much as 64% corresponding to a case in

Table 6.7 (Cv = 8.75 and n = 0.55) whereas in another cases the RNMPC is better by as

much as 57% corresponding to a case in Table 6.8 (Cv = 8.25 and n = 0.55). In view of

this variability in performance of the two controllers, an average IAE for each case study

was calculated to enable a more systematic comparison between the two controllers. These

calculated average values are presented in Table 6.9. The results from Table 6.9 indicate

that for two out of the six cases that were considered (case studies 1 and 6) the IAE

values of the RNMPC are lower than the FP-NMPC. If the average IAE is considered the

biggest improvement is of 16% corresponding to case study 1. The improvement obtained

for case study 1 can be explained by the fact that the manipulated variable weights W∆u1
i

and W∆u2
i used for this case were both very small verifying the fact that more aggressive

control results in higher sensitivity to model error. For both cases that correspond to a

combination of small manipulated variables’ weights it was found that there is a relatively

high number of Cv and n combinations for which the RNMPC outperforms the FP-NMPC,
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e.g., 5 cases out of 9 in Table 6.3 (W∆u1
i = 0.15 and W∆u2

i = 0.1) and 4 cases out of 9

in Table 6.6 (W∆u1
i = 0.1 and W∆u2

i = 0.15). Thus, the robust controller can be a better

alternative than the non-robust controller especially in those cases when the controller

weights are small. Table 6.9 also indicates that when the controller weights increase the

performance of the RNMPC starts degrading and as a consequence the performance of

the FP-NMPC becomes superior. For example as W∆u1
i increases from 0.1 to 0.3 the IAE

consistently increases for the RNMPC from 4.64 to 5.65 (Table 6.9). A similar trend is

observed when W∆u2
i increases resulting in a corresponding increase of the IAE for RNMPC

from 4.70 to 5.79 (Table 6.9).

In general using the average in Table 6.9 one could argue that based on all the simulation

studies, the preferable controller is the FP-NMPC with W∆u1
i = 0.25 and W∆u2

i = 0.1 (case

study 2) since it results in the lowest average IAE. However, this will be only true if all

the combinations of parameter changes have equal probability which is not necessarily

true. For instance, if the case of Cv = 9.25 and n = 0.55 would have a higher occurrence

probability than the other cases the RNMPC will be the controller of choice.

In order to assess the performance of both controllers when manipulated variables

constraints are enforced a new set of simulations were carried out for those conditions in

which the difference between the RNMPC and FP-NMPC was higher as follows: (i) case

study 7 considered a manipulated variable weighting matrix of [0.15, 0.1], Cvprocess = 8.25

and nprocess = 0.5, (ii) case study 8 considered a manipulated variable weighting matrix of

[0.1, 0.15], Cvprocess = 8.25 and nprocess = 0.45. To assess the degradation in performance

four different values of the manipulated variables limits were tested.

Table 6.10 and Table 6.11 show the results for case studies 7 and 8, respectively. The

results generally indicate as expected that when constraints are considered the performance

deteriorates for both controllers since the potential for manipulation overall decreases.

However, it is also observed from Table 6.10 and Table 6.11 that for case studies 7 and

8, for which the RNMPC is better than the FP-NMPC in the absence of constraints

(|u| < ∞), the difference in IAEs between the two controllers become smaller. This

behavior is explained by the fact that in the presence of constraints the controllers are
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less aggressive resulting in less sensitivity of the FP-NMPC controller to model error as

compared to the unconstrained case. Despite this fact, the performance of the RNMPC in

the presence of constraints for case studies 7 and 8 remains better than the FP-NMPC.

Table 6.10: IAE for case study 7

IAEFP−NMPC IAERNMPC

|u| ≤ 0.40 9.54 7.67

|u| ≤ 0.45 8.22 7.16

|u| ≤ 0.50 7.54 6.66

|u| ≤ 0.95 5.17 4.72

|u| ≤ ∞ 10.06 4.41

Table 6.11: IAE for case study 8

IAEFP−NMPC IAERNMPC

|u| ≤ 0.40 10.36 9.07

|u| ≤ 0.45 8.97 8.56

|u| ≤ 0.50 9.04 7.93

|u| ≤ 0.95 5.56 5.57

|u| ≤ ∞ 10.25 6.10

6.5 Conclusions

A comparison between a non-robust NMPC based on a first-principles model and a robust

NMPC controller based on a Volterra series model was presented. The first-principles

controller was designed based on the set of nonlinear ODE’s that represent the process and

an observer to account for the unmeasured states. The robust NMPC controller exploited

the structure of the Volterra series model to formulate a robustness test based on the

structured singular value norm (µ). A key practical advantage of the Volterra series model

based controller is that it can be obtained directly from input-output data and it does not

require a first-principles model that is often difficult to obtain.

134



Since it was considered that both controllers must work for a whole range of oper-

ating conditions the identification of the parameters of the Volterra series was based on

input-output data collected around different operating regions. To account for model pa-

rameter changes the RNMPC considered that the parameters of the Volterra series model

are bounded between upper and lower values. This variation was mathematically repre-

sented as a nominal value with an uncertainty description which was used to formulate

the robustness test. On the other hand, unless a difficult adaptation scheme is used,

the first-principles nonlinear model is generally used with fixed values of physical model

parameters.

The objective function of both controllers penalizes the infinity norm of a vector that is

formed by combining four terms: (i) the deviation from the set-point of the future predic-

tions, (ii) the penalization of the manipulated variables movement, (iii) the manipulated

variables constraints and (iv) the terminal conditions. Because the objective function was

based on an infinity norm the performance of both controllers were assessed based on their

IAE.

The comparative study showed that in the presence of model parameters’ errors there

are many scenarios where the RNMPC controller performance can surpass the performance

of a first-principles controller. In general for aggressive controllers obtained by using small

manipulated variable weights, the RNMPC is better since it results in less sensitivity to

model error. When manipulated variables constraints were imposed on the process, it was

observed that the IAE of the RNMPC increased and the IAE of the FP-NMPC decreased.

However, the RNMPC still outperformed the FP-NMPC as indicated by lower IAE values.
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Chapter 7

Conclusions

This thesis presented two methodologies to design robust nonlinear MPC controllers for

processes that can be represented by empirical models. Since most chemical processes

are nonlinear it is important that the model used by the control strategy for prediction

accounts for the nonlinearity of the process. For model prediction two models were used:

a family of linear models for gain-scheduled predictive control and a Volterra series model

for robust NMPC. For the purpose of analysis of robustness a state-affine nonlinear model

was used for designing a robust gain-scheduled controller. The key advantage in using this

model for analysis is that the uncertainty description can be easily separated from the

nominal part of the model and this uncertainty description is directly related to the ma-

nipulated variables. In the case of the Volterra series model the uncertainty was associated

to the model coefficients and since the model is linear with respect to these coefficients the

separation between the uncertainty and the nominal model values was also feasible. By

using empirical models the proposed methodologies have a wide range of application, since

they can be used to control any process that can be represented either by a state-affine or

by Volterra series models. These models can be easily identified from input-output data

collected from the actual process.

7.1 Robust gain-scheduling NMPC

The first proposed methodology is a gain-scheduling robust predictive controller. The

controller works by obtaining local state-affine models around different operating regions.

Every model is represented by a combination of linear and nonlinear terms that were

obtained from a least-squares calculation using input-output data. The linear terms of
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the model are arranged to obtain a state-space representation that is used for output

prediction within a MPC controller for each operating region, whereas the nonlinear terms

can be viewed as the uncertainty associated to this model and is accounted for through a

robust design. The use of a state-space model for designing the individual controllers is

a significant improvement over a previous step-response model-based algorithm proposed

by (Gao, 2004). In that work, due to the use of the step-response model for prediction,

the dimensions of the closed-loop matrix representation grew directly as a function of the

prediction horizon resulting in a rapid increase in memory and computational demand.

This imposed a limitation with respect to the choice of the prediction horizon. Through

the use of a state-space representation that limitation has been completely removed in the

current study. Also, the current work provides a more consistent design since the output

prediction is based on the linear part of the nonlinear state-affine model used for robust

analysis, whereas in the previous work (Gao, 2004) the model used for prediction was

an impulse-response approximation of the linear part of the nonlinear state-affine model,

whereas the model used for design was of state-affine type. Based on the family of linear

models used for output prediction and based on the uncertainty description obtained from

the nonlinear state-affine model a robust control test was formulated in terms of a finite

set of LMI’s.

The system of LMI’s was solved in Matlab using two different toolboxes: YALMIP

(Löfberg, 2004) and SDPT3 (Toh et al., 1999). The YALMIP toolbox works as an interface

between Matlab and an external SDP solver, since the LMI system was solved in a 64 bit

computer the SDP selected was SDPT3. The external toolboxes solve the system of LMI’s

faster and are numerically efficient, i.e., the amount of points where the solver cannot find

a solution decreases compared with Matlab.

The gain-scheduling part of the control strategy works by switching between the differ-

ent controllers available according to a pre-specified set of rules. For the case study pre-

sented the manipulated variable was chosen as the scheduling variable because, according

to the state-affine model structure, it was highly representative of the process nonlinearity.

However, a different type of process might have different scheduling variables.
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A key aspect of the algorithm is that the manipulated variables values are considered

as model uncertainty. Thus, it is necessary to provide a bound over the value that the

manipulated variables acquire through the process. In the previous study of (Gao and

Budman, 2004) and (Gao, 2004) these bounds were assumed to be large values resulting

in very conservative designs. The algorithm proposed calculated the bounds iteratively

resulting in much tighter bounds and consequently, in less conservative controllers.

To assess the benefits of the methodology the robust gain-scheduling MPC controller

was compared against a robust linear MPC controller, i.e., an MPC controller based on

one single linear model. Two case studies were proposed and each one considered three

operating regions, in each region a GSMPC controller was obtained. A first step was

carried out to check whether the implementation of a GSMPC is worthwhile by testing the

performance improvement with respect to the linear MPC in the absence of uncertainty.

The results for the case study indicated that the improvement of the GSMPC was of at least

12% and as high as 33%. However, this is a theoretical limit since it corresponds to the case

when uncertainties are ignored. When uncertainties were considered the improvement of

the GSMPC over the LMPC was of at least 13%. If only a particular region of operation was

considered it was found that the biggest improvement could be achieved around Sin = 2.0

g/L.

To test the optimization results a series of simulations were carried out to check the

controllers’ ability to reject disturbances. Several disturbances were simulated and in all

cases it was confirmed that the controllers were able to effectively reject their effect by

returning the controlled variables to their set-point. The simulations also show that the

manipulated variables did not violate the calculated uncertainty bounds used to design

the controller. Finally, the γsim results confirmed the theoretical results, i.e., that the

performance of the GSMPC is superior to the LMPC.

The γ index proposed in chapter 3 only considered the effect of the controlled variables.

In order to assess the effect that the manipulated variables might have in the controller’s

performance a new controller was designed in chapter 4. The main difference is that the γ
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index of the new controller considered the effect of both the controlled and the manipulated

variables within the objective function used for optimization of the tuning parameters.

Similar to chapter 3, the first step taking to assess if it is worthwhile to design a

robust GSMPC consists in comparing the γop−nom values between the GSMPC and LMPC.

Because the γop−nom of the GSMPC was less than the γop−nom of the LMPC a robust

GSMPC controller was designed when uncertainty is considered.

An important thing to mention is that in chapter 4 better models and different cor-

responding normalizations were used. With these new models the average theoretical

improvement of the GSMPC controller over the LMPC was of 16% with the biggest im-

provement occurring in the zone around an inlet substrate concentration of Sin = 3.0 g/L.

The manipulated variables effect was quantified through the term ce, if ce = 0 it means

that the effect of the manipulated variables is not being considered in γ. When the value of

ce increased it was observed that γ also grew and the differences between the analytical γ’s

for the gain-scheduling and linear controllers decreased. This can be explained by the fact

that when ce is larger the movement of the manipulated variables is restricted resulting

in more conservative controllers. This will lead to less sensitivity to model error related

to the system nonlinearity and thus less opportunity for improvements by the GSMPC as

compared to the LMPC.

The algorithm presented can be used as an alternative for designing an adaptation

algorithm in which the controller parameters are changed on-line according to the process

behavior. One of the disadvantages of the adaptation algorithm is that it is difficult to

address its robustness properties. Since the proposed gain-scheduled MPC does consider

uncertainty it represents a much better alternative.

7.2 Volterra series based robust NMPC

The second methodology proposed in this thesis is a nonlinear model predictive control

strategy based on a Volterra series model. This model was chosen because it has a structure

that can be easily separated into two parts. The first part contains the nominal value of
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the parameters and the second part contains the uncertainty associated to each parameter.

The key advantage obtained by splitting the structure is that a robust test can be proposed

based on the SSV also referred to as µ-test.

The basic objective function of the controller minimizes the infinity norm of the differ-

ence between the set-points and the predicted outputs. Furthermore, the objective function

was augmented to include manipulated variables movements weighting, manipulated vari-

ables constraints and terminal conditions.

The predictions were based on an autoregressive Volterra series model for three main

reasons: (i) they have less noise sensitivity; (ii) they are easier to identify and (iii) they

require less parameters. However, the methodology proposed can also be used with non-

autoregressive Volterra series models by setting hqχ = 0, q = 1, . . . , nARX, χ = 1, . . . , ny in

the interconnection matrix M.

The robustness test proposed is a min-max formulation, where the worst value of the

objective function is minimized with respect to the manipulated variables. To test the

effectiveness of the controller two case studies were proposed a SISO CSTR and a MIMO

pH neutralization process.

7.2.1 SISO case study

The SISO case study was used for several purposes; the first purpose was to check whether

the controller can be tuned by using the term W∆u
i that accounts for manipulated variable

movement penalization. It was observed that as W∆u
i grows the controller is slower and if

W∆u
i decreases the control actions are faster and as a consequence the control inputs reach

its set-point faster. Thus, W∆u
i can be effectively used to tune the controller speed.

The second case study was considered to test the ability of the algorithm to accommo-

date manipulated variables constraints. The case study results showed that the proposed

algorithm methodology is able to keep the value of the manipulated variables within the

allowed bounds.
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The third case study was designed to compare the performance of three controllers: a

linear MPC, a non-robust NMPC and the proposed robust NMPC. The IAE was used to

compare the performance of the different controllers. The results showed that the robust

NMPC had the lowest IAE which means that it is a better controller than the other

two. This case also showed that when the process nonlinearity is important a linear MPC

controller can give a poor performance as compared to a NMPC controller.

A SISO case study was also used to compare the performance of two controllers, a

non-robust NMPC and the proposed robust NMPC, for several values of W∆u
i . The results

showed that as W∆u
i grows the robust controller performance starts degrading and as a

consequence the performance of the non-robust controller becomes superior. This relative

performance degradation can be explained by the fact that for large manipulated variables

weights the controllers are highly detuned resulting in worst closed-loop performance and

less sensitivity to model error. In this case the non-robust controller may perform better

than the robust one.

7.2.2 MIMO case study

Based on the information obtained from the SISO case studies the first MIMO case study

was designed to compare the performance between a non-robust and the robust NMPC

controllers. The case study was designed to study the effect of the manipulated variables

weighting terms The results showed a trend similar to the SISO case, i.e., as the weighting

decreases the robust controller is less sensitive to model error and its performance is better

than the non-robust controller.

The second MIMO case study compared the performance of the proposed RNMPC

and a first-principles model based NMPC. The FP-NMPC controller was designed on the

basis of a simple nonlinear predictor. Under nominal conditions, i.e., the parameters of the

first-principles model match the process parameters; the FP-NMPC was always superior

to the RNMPC. However, when there is a mismatch between the first-principles model

parameters and the process parameters, the IAE of the FP-NMPC starts degrading. Since

the parameters of the RNMPC were identified around several operating regions the Volterra
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series model is able to capture the process behavior in each region. Thus, there were regions

of operations in which the IAE of the RNMPC was lower than the FP-NMPC.

The RNMPC and FP-NMPC were also compared when manipulated variables con-

straints were considered in the formulation. A barrier function was used in the FP-NMPC

to satisfy input constraints. The RNMPC was shown to provide better average perfor-

mance than the FP-NMPC for small values of the control action weights. Once again,

the robust controller was shown to be superior to the non-robust FP-NMPC when the

controller is aggressive thus resulting in higher sensitivity to model error.

7.3 Directions for future research

Based on the work developed in this thesis some directions for future research are:

1. The calculation of γ in chapters 3 and 4 requires the value of u which is calculated

iteratively. This step can be simplified by combining the gain-scheduled controller

and the switching rules. In this way the u values will be given directly from the

switching rule. With the previous modification the time required to calculate Q

will decrease. This decrease in computational time could be used to extend the

methodology to include a mixed integer nonlinear optimization where p, m, Q and

R are all optimized together to decrease γ.

2. The RNMPC algorithm proposed in chapter 5 is based on a SSV calculation that

requires a considerable amount of time in Matlab. Although the SSV is a non-

polynomial hard problem it will be highly recommendable for the purpose of real

time implementation to develop a program in C or Fortran to decrease the compu-

tational time. An additional possibility is to construct a look-up table with different

SSV values for different combinations of feedback errors, initial conditions and past

manipulated variable moves. In that case the SSV values could be obtained from

interpolation using the values in the look-up table.
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3. The three main benefits that could be achieved with the development of the C-SSV

or Fortran-SSV are:

(a) The interconnection matrix M could be modified to consider instead of the ||·||∞
a ||·||2.

(b) p could be increased.

(c) MIMO systems other than 2× 2 could be considered.

4. A potential application of the RNMPC algorithm proposed in this thesis is for phar-

maceutical manufacturing processes. These types of processes are generally repre-

sented by models which parameters are highly uncertain due to the inherent variabil-

ity present in cell culture based processes. The pharmaceutical industry is currently

interested in assessing the effect of model uncertainty on process control and opti-

mization of cell culture based manufacturing processes. This interest is driven by a

number of factors such as assessing the final expected variability in productivity and

quality and/or assessing whether it is worthwhile to continue or terminate a lengthy

manufacturing process before the normal termination time. It is believed that the

algorithms presented in this thesis can be effectively used to accomplish these tasks.

5. The RNMPC controller proposed in this work used Volterra series models for predic-

tions. In principle this methodology could be easily extended to any type of empirical

models that is linear with respect to the model coefficients. Thus, nonlinear basis

functions different than Volterra series forms such as radial basis functions or others

could be also used within the formulation. This could significantly extend the type

of nonlinearities that can be represented by the model and could accordingly lead to

more compact model representations and less computational demand.
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Appendix A

State-Affine model parameters for chapter 3

Table A.1: Value of the matrices F0, F1 and F2

Sin F0 F1 F2

2.0
[

+0.8663 −0.1439
−0.0256 +0.9420

] [
+0.0503 0
+0.0189 0

] [
0 +0.0099
0 −0.0011

]

2.5
[

+0.9471 −0.0578
+0.0052 +0.9773

] [
+0.0085 0
+0.0015 0

] [
0 +0.0010
0 −0.0050

]

3.0
[

+0.9727 −0.0312
+0.0150 +0.9879

] [
−0.0113 0
−0.0069 0

] [
0 −0.0006
0 −0.0058

]

4.0
[

+0.9879 −0.0132
+0.0208 +0.9949

] [
−0.0222 0
−0.0137 0

] [
0 −0.0009
0 −0.0059

]

Table A.2: Value of the matrices G1, G2 and G3

Sin G1 G2 G3

2.0
[
−0.1061 −0.0008
−0.0336 −0.0073

] [
+0.0085 0
+0.0034 0

] [
0 −0.0020
0 −0.0007

]

2.5
[
−0.1074 −0.0005
−0.0341 −0.0073

] [
+0.0048 0
+0.0017 0

] [
0 −0.0038
0 −0.0018

]

3.0
[
−0.1074 −0.0004
−0.0340 −0.0072

] [
+0.0016 0
−0.0006 0

] [
0 −0.0033
0 −0.0018

]

4.0
[
−0.1078 −0.0002
−0.0340 −0.0072

] [
+0.0017 0
+0.0014 0

] [
0 +0.0013
0 −0.0038

]
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Table A.3: Value of the matrix WF

Sin = 2.0 Sin = 2.5 Sin = 3.0 Sin = 4.0

WF

[
+1.7693
+0.8209

] [
+1.5069
+0.4546

] [
+0.9700
−0.0191

] [
+0.2242
−0.1508

]
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Appendix B

State-Affine model parameters for chapter 4

Table B.1: Value of the matrices F0, F1 and F2

Sin F0 F1 F2

2.0
[

+0.8697 −0.0698
−0.0262 +0.9538

] [
+0.0020 0
+0.0002 0

] [
0 +0.0007
0 −0.0002

]

2.5
[

+0.9575 −0.0285
+0.0170 +0.9789

] [
+0.0018 0
−0.0043 0

] [
0 +0.0006
0 −0.0009

]

3.0
[

+0.9755 −0.0166
+0.0327 +0.9867

] [
+0.0010 0
−0.0080 0

] [
0 +0.0001
0 −0.0010

]

Table B.2: Value of the matrices G1, G2 and G3

Sin G1 G2 G3

2.0
[
−0.0235 −0.0000
−0.0130 −0.0027

] [
−0.0018 0
−0.0013 0

] [
0 +0.0000
0 −0.0001

]

2.5
[
−0.0231 0.0000
−0.0142 −0.0030

] [
−0.0032 0
−0.0026 0

] [
0 −0.0001
0 −0.0009

]

3.0
[
−0.0252 −0.0001
−0.0163 −0.0041

] [
−0.0049 0
−0.0034 0

] [
0 −0.0003
0 −0.0030

]
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Table B.3: Value of the matrix WF

Sin = 2.0 Sin = 2.5 Sin = 3.0

WF

[
0.0100
0.4044

] [
0.0104
0.4082

] [
0.0109
0.4137

]
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Appendix C

Additional information for the

interconnection matrix

The robust controller presented in chapters 5 and 6 requires an appropriate interconnection

matrix and uncertainty description. There are two possible options to build M, in order

to show the two options and its benefits and disadvantages a simple example is presented

for a system represented by the following equation:

ŷ = hNL
11 u

2 + hL
1u+ d (C.1)

The first option was used in chapters 5 and 6 and it explicitly puts the square power

of u in the structure of M, i.e.,

M =


0 0 0 kssv

0 0 0 kssvu

0 0 0 kssvu
2

d hL
1 hNL

11 0

 (C.2)

the interrelationship between the inputs and outputs can be represented by the following

equations: 
a (1)

a (2)

a (3)

a (4)

 = M


b (1)

b (2)

b (3)

b (4)

 (C.3)
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
b (1)

b (2)

b (3)

 =


δ1 0 0

0 δ2 0

0 0 δ3



a (1)

a (2)

a (3)

 (C.4)

After performing the operations indicated the following result is obtained:

a (4)

b (4)
= kssvδ1

(
hNL

11 u
2 + hL

1u+ d
)

(C.5)

The second options distributes the square powers of u in the matrix M, i.e.,

M =



0 0 0 0 kssv

0 0 0 0 kssv

0 0 0 0 kssvu

0 0 kssvu 0 0

d hL
1 0 hL

11 0


(C.6)

the interrelationship between the inputs and outputs can be represented by the following

equations: 

a (1)

a (2)

a (3)

a (4)

a (5)


= M



b (1)

b (2)

b (3)

b (4)

b (5)


(C.7)


b (1)

b (2)

b (3)

b (4)

 =


δ1 0 0 0

0 δ1 0 0

0 0 δ1 0

0 0 0 δ1




a (1)

a (2)

a (3)

a (4)

 (C.8)

and after performing the operations indicated the following result is obtained:

a (5)

b (5)
= kssvδ1

(
kssvδ1h

NL
11 u

2 + hL
1u+ d

)
(C.9)
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The disadvantages of option two are the following:

1. The dimensions of M increase in comparison with the first option. This represents

a major computational problem since the time required to calculate µ increase with

the dimensions of M.

2. The product kssvδ1 can be equal to +1 or −1. It can be seen form equation (C.9)

that if kssvδ1 = −1 the algorithm is finding the worst case for a different system,

i.e., the algorithm instead of finding the worst case for the system represented by

equation (C.1) is finding the worst case the following system:

ŷ = hNL
11 u

2 − hL
1u− d (C.10)

The interconnection matrix constructed according to the rules of option 1 does not

suffer from the previous disadvantages.
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Appendix D

Interconnection matrix construction

The interconnection matrix M is as follows:

M =

 M11 M12

M21 M22

 =

 MA MB

MC MD

 (D.1)

the matrices MA and MD are matrices of appropriate dimensions with all elements equal

to zero. The notation 0(i×j) refers heretofore to a matrix of i rows and j columns that have

all of its elements equal to zero. If i and j are not specified then 0 refers to a matrix of

appropriate dimensions that have all of its elements equal to zero. MB is constructed as

follows:

MB = [MB1,MB2]T (D.2)

MB1 = diag [MB1A,MB1B] (D.3)

MB1A = kssvdiag
[
(Ip)1 , . . . , (Ip)ny

]
(D.4)

MB1B = kssvdiag [MB1BA,MB1BB] (D.5)

MB1BA = [MB1BA,1, . . . ,MB1BA,nu ] (D.6)
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MB1BA,q = diag

 uq (k − 1)

uq (k)

 , . . . ,
 uq (k +m− 1)

uq (k +m)


q=1,...,nu

(D.7)

BB1BB = [diag [u1 (k) , . . . , u1 (k +m)] , . . . , diag [unu (k) , . . . , unu (k +m)] ] (D.8)

MB2 = kssv

 UL

UNL

 ,0
 (D.9)

UL =



 UL1
1

UL2
1


... UL1
p

UL2
p




(D.10)

UL1
i =diag

[ [
0((p+1−i)×(i−1)), u1 (i) Ip+1−i

]
, . . . ,[

0((p+1−i)×((p×(nu−1))+(i−1))), unu (i) Ip+1−i
] ]

i=1,...,p

(D.11)

UL2
i =diag

[ [
0((p+1−i)×(i−1)), (u1 (i))2 Ip+1−i

]
, . . . ,[

0((p+1−i)×((p×(nu−1))+(i−1))), (unu (i))2 Ip+1−i
] ]

i=1,...,p

(D.12)

UNL =
[
UNL

1,1 ,U
NL
1,2 , . . . ,U

NL
ii,jj−1,U

NL
ii,jj

]
ii=1,...,p−1; jj=1,...,p−ii (D.13)

UNL
ii,jj = diag

[
UNL
ii,jj,1, . . . ,U

NL
ii,jj,nu

]
ii=1,...,p; jj=1,...,p−ii (D.14)
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UNL
ii,jj,q =

[
0((p+1−ii−jj)×(p×(nu−1)+(ii+jj−1))),

uq (ii+ jj)uq (jj) Ip+1−ii−jj]ii=1,...,p; jj=1,...,p; q=1,...,nu

(D.15)

MC is constructed according to the following equations:

MC =

 MC1

MC2

 (D.16)

 MC1

MC2

 =

 MC1A,MC1B,MC1C,MC1D,MC1E

MC2A,MC2B,MC2C,MC2D,MC2E

 (D.17)

MC2A =

 [MC2AA1,MC2AA2] 0

0 MC2AB

 (D.18)

MC2AA1 = diag
[
d1Ip, . . . , dnyIp

]
(D.19)

MC2AA2 = diag
[
ic1Ip, . . . , icnyIp

]
(D.20)

MC2AB = diag [MC2AB1,MC2AB2] (D.21)

MC2AB1 = diag [MC2AB1,1, . . . ,MC2AB1,nu ] (D.22)

MC2AB1,q = diag
[ [
W∆u,q

1 ,−W∆u,q
1

]
, . . . ,

[
W∆u,q
m ,−W∆u,q

m

] ]
q=1,...,nu

(D.23)

MC2AB2 = diag [MC2AB2,1, . . . ,MC2AB2,nu ] (D.24)
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MC2AB2,q = Im

(
kssv
ubound
q

)
q=1,...,nu

(D.25)

MC2B =

 [MC2B,1, . . . ,MC2B,nu ]

0

 (D.26)

MC2B,q =


diag

[
MC2BL,1,1,q, . . . ,MC2BL,1,ny,q

]
,diag

[
MC2BNL,1,1,q, . . . ,MC2BNL,1,ny,q

]
...

diag
[
MC2BL,p,1,q, . . . ,MC2BL,p,ny,q

]
,diag

[
MC2BNL,p,1,q, . . . ,MC2BNL,p,ny,q

]


T

q=1,...,nu

(D.27)

if (p− 1) ≥M , then MC2BL, MC2BNL, HL1 and HL2 are calculated as follows:

MC2BL,i,j,q =


0((i−1)×M) 0((i−1)×1)

HL1,i,j,q 0(M×1)

0((M−(i−1))×M) 0((M−(i−1))×1)


j=1,...,ny ; q=1,...,nu

(D.28)

MC2BNL,i,j,q =


0((i−1)×M) 0((i−1)×1)

HL2,i,j,q 0(M×1)

0((M−(i−1))×M) 0((M−(i−1))×1)


j=1,...,ny ; q=1,...,nu

(D.29)

HL1,i,j,q is calculated as follows, if i < M

HL1,1,j,q = diag



[
hNL

(1,M) (j,q)uq (−M + 2) , . . . , hNL
(1,2) (j,q)uq (0) , hL

(1) (j,q)

]
...[

hNL
(M−1,M) (j,q)uq (0) , hL

(M−1) (j,q)

]
hL

(M) (j,q)


j=1,...,ny ; q=1,...,nu

(D.30)
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HL1,2,j,q = diag



[
hNL

(1,M) (j,q)uq (−M + 3) , . . . , hNL
(1,3) (j,q)uq (0) , hL

(1) (j,q)

]
...[

hNL
(M−2,M) (j,q)uq (0) , hL

(M−2) (j,q)

]
hL

(M−1) (j,q)

hL
(M) (j,q)


j=1,...,ny ; q=1,...,nu

(D.31)

HL1,M−1,j,q = diag
[ [
hNL

(1,M) (j,q)uq (0) , hL
(1) (j,q)

]
, hL

(2) (j,q), . . . , h
L
(M) (j,q)

]
j=1,...,ny ; q=1,...,nu

(D.32)

if i ≥M

HL1,i,j,q = diag
[
hL

(1) (j,q), . . . , h
L
(M) (j,q)

]
j=1,...,ny ; q=1,...,nu

(D.33)

HL2,i,j,q = diag
[
hNL

(1,1) (j,q), h
NL
(2,2) (j,q), . . . , h

NL
(M−1,M−1) (j,q), h

NL
(M,M) (j,q)

]
j=1,...,ny ; q=1,...,nu

(D.34)

If (p− 1) < M , then MC2BL, MC2BNL, HL1 and HL2 are calculated as follows:

MC2BL,i,j,q =

 0(i−1)×(p+1−i) 0((ii−1)×1)

HL1,i,j,q 0((p+1−i)×1)


j=1,...,ny ; q=1,...,nu

(D.35)

MC2BNL,i,j,q =

 0(i−1)×(p+1−i) 0((ii−1)×1)

HL2,i,j,q 0((p+1−i)×1)


j=1,...,ny ; q=1,...,nu

(D.36)

HL1,i,j,q = diag
[
hL

(1) (j,q), . . . , h
L
(p+1−i) (j,q)

]
j=1,...,ny ; q=1,...,nu

(D.37)
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HL2,i,j,q = diag
[
hNL

(1,1) (j,q), h
NL
(2,2) (j,q), . . . , h

NL
(p−i,p−i) (j,q), h

NL
(p+1−i,p+1−i) (j,q)

]
j=1,...,ny ; q=1,...,nu

(D.38)

MC2C =

 [MC2CA,1, . . . ,MC2CA,nu ]

0

 (D.39)

MC2CA,q =



diag
[
HNL

(1,1) (1,q), . . . ,H
NL
(1,1) (ny ,q)

]
diag

[
HNL

(1,2) (1,q), . . . ,H
NL
(1,2) (ny ,q)

]
...

diag
[
HNL

(1,p−1) (1,q), . . . ,H
NL
(1,p−1) (ny ,q)

]
...

diag
[
HNL

(M−1,1) (1,q), . . . ,H
NL
(M−1,1) (ny ,q)

]
diag

[
HNL

(M−1,2) (1,q), . . . ,H
NL
(M−1,2) (ny ,q)

]
...

diag
[
HNL

(M−1,p−(M−1)) (1,q), . . . ,H
NL
(M−1,p−(M−1)) (1,q)

]



T

(D.40)

if jj < (M − 1), then HNL is calculated as:

HNL
(ii,jj) (j,q) =


0((ii+jj−1)×(M−ii)) 0((ii+jj−1)×1)

diag
[
hNL

(1,1+ii) (j,q), . . . , h
NL
(M−ii,M) (j,q)

]
0((M−ii)×1)

0((p+1−M−jj)×(M−ii)) 0((p+1−M−jj)×1)

 (D.41)

else if jj ≥ (M − 1), then HNL is calculated as:

HNL
(ii,jj) (j,q) =

 0((ii+jj−1)×(M−ii)) 0((ii+jj−1)×1)

diag
[
hNL

(1,1+ii) (j,q), . . . , h
NL
(2M−jj−1−ii,2M−jj−1) (j,q)

]
0((2M−jj−1−ii)×1)


(D.42)
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MC2D =

 [[MC2D,1,1, . . . ,MC2D,M,1] , . . . , [MC2D,1,nu , . . . ,MC2D,M,nu ]]

0

 (D.43)

MC2D,ii,q =

 diag
[
MC2DVL,ii,1,q, . . . ,MC2DVL,ii,ny ,q

]
diag

[
MC2DVNL,ii,1,q, . . . ,MC2DVNL,ii,ny ,q

]
T

ii=1,...,M ; q=1,...,nu

(D.44)

MC2DVL,ii,j,q =

 0((ii−1)×(p+1−ii)) 0(ii×(p−ii))

δhL
(ii,ii) (j,q)Ip+1−ii hARX(j)δh

L
(ii,ii) (j,q)Ip−ii


ii=1,...,M ; j=1,...,ny ;q=1,...,nu

(D.45)

MC2DVNL,ii,j,q =

 0((ii−1)×(p+1−ii)) 0(ii×(p−ii))

δhNL
(ii) (j,q)Ip+1−ii hARX(j)δh

NL
(ii) (j,q)Ip−ii


ii=1,...,M ; j=1,...,ny ;q=1,...,nu

(D.46)

MC2E =

 diag
[
MC2E,1,1, . . . ,MC2E,ny ,1

]
, . . . , diag

[
MC2E,1,nu , . . . ,MC2E,ny ,nu

]
0

 (D.47)

MC2E,j,q =



HVNL
(1,2) (j,q)

HVNL
(2,3) (j,q)

...

HVNL
(M−1,M) (j,q)

HVNL
(1,3) (j,q)

HVNL
(2,4) (j,q)

...

HVNL
(M−2,M) (j,q)

...

HVNL
(1,M) (j,q)



T

j=1,...,ny ; q=1,...,nu

(D.48)
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HVNL
(ii,jj) (j,q) =

 0((jj−1)×(p+1−jj)) 0(jj×(p−jj))

δhNL
(ii,jj) (j,q)Ip+1−jj hARX(j)δh

NL
(ii,jj) (j,q)Ip−jj


j=1,...,ny ;q=1,...,nu

(D.49)

The structure of MC1 is as follows

MC1 = [MC1A,MC1B,MC1C,MC1D,MC1E] (D.50)

MC1A ,MC1D and MC1E are matrices of zeros of appropriate dimensions

MC1CCD = [MC1C,MC1D] (D.51)

In order to obtain the matrix MC1CCD a column vector is constructed that contains the

Volterra series coefficients according to the following structure:

VE =


VEA1

VEA2

VEA3

 (D.52)

VEA1 =



[
hL

(1) (1,1), . . . , h
L
(M) (1,1)

]T

...[
hL

(1) (ny ,1), . . . , h
L
(M) (ny ,1)

]T

[
hL

(1) (1,2), . . . , h
L
(M) (1,2)

]T

...[
hL

(1) (ny ,nu), . . . , h
L
(M) (ny ,nu)

]T


(D.53)
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VEA2 =



[
hNL

(1,1) (1,1), h
NL
(2,2) (1,1), . . . , h

NL
(M−1,M−1) (1,1), h

NL
(M,M) (1,1)

]T

...[
hNL

(1,1) (ny ,1), h
NL
(2,2) (ny ,1), . . . , h

NL
(M−1,M−1) (ny ,1), h

NL
(M,M) (ny ,1)

]T

[
hNL

(1,1) (1,2), h
NL
(2,2) (1,2), . . . , h

NL
(M−1,M−1) (1,2), h

NL
(M,M) (1,2)

]T

...[
hNL

(1,1) (ny ,nu), h
NL
(2,2) (ny ,nu), . . . , h

NL
(M−1,M−1) (ny ,nu), h

NL
(M,M) (ny ,nu)

]T


(D.54)

VEA3 =



VEA31,(1,2)

VEA31,(2,3)

...

VEA31,(M−1,M)

VEA31,(1,3)

VEA31,(2,4)

...

VEA31,(M−2,M)

VEA31,(1,4)

VEA31,(2,5)

...

VEA31,(M−3,M)

...

VEA31,(1,M)



(D.55)
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VEA31,(ii,jj) =



hNL
(ii,jj) (1,1)

...

hNL
(ii,jj) (ny ,1)

hNL
(ii,jj) (1,2)

...

hNL
(ii,jj) (ny ,2)

...

hNL
(ii,jj) (1,nu)

...

hNL
(ii,jj) (ny ,nu)



(D.56)

After VE has been constructed the following code can be used to assign the corre-

sponding values to the vector matrix index:

Algorithm 1:

kc = 01

for ii = 1 to number of rows of [VE] do2

for ir = 1 to ny × p do3

for ic = 1 to number of columns [MC2B,MC2C] do4

kc = kc+ 15

if [MC2B,MC2C]ir,ic = VEii,1 then6

indexkc,1 = ic7

endif8

endfor9

endfor10

endfor11

The elements of the matrix MC1CCD are zero except for the following terms:
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Algorithm 2:

for ir = 1 to kc do1

MC1CCD(ir,index(kc,1)) = kssv2

endfor3

The effect of the autoregressive terms is included in the interconnection matrix by

multiplying the elements in the main diagonal of MC2AA2 by:

Algorithm 3:

for i = 1 to ny do1

for ii = ((i− 1)× p) + 2 to (i× p) do2

ir = (nrMA× (ii− 1))× ((p× ny) + 1 : ncM)3

ir = ((p× ny) + 1 : ncM)× (nrMA× (ii− 1))4

MC2AAC2(ii,ii) =
(

1
kssv

)
hARX(i)MirMic5

endfor6

endfor7

where nrMA is equal to the number of rows of the MA matrix and ncM is equal to the

number of columns of the M matrix.

After the interconnection matrix has been constructed the terminal condition is ac-

counted for by multiplying all the columns of the p × i, ∀i ∈ [1, ny] row of MC2 by

(kssv/εi) , ∀i ∈ [1, ny].

MC2((p×i), :) =
kssv
εi

MC2((p×i), :) for i = 1, . . . , ny (D.57)

The uncertainty block ∆ is composed of nb∆ different ∆ sub-blocks where

nb∆ = 2 + 2Mnynu + nynu

(
M−1∑
j=1

M−j∑
i=1

(i)

)
(D.58)

the ∆ sub-blocks are arranged according to the following structure ∆ = diag (∆1 , . . .,

∆nb∆) where the first nb∆ − 1 blocks are real scalar square matrices related to the un-

certainty of the Volterra series coefficients. The dimensions of ∆1 are calculated from the
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following expression:

∆1 = (number of columns [MC2C])× (number of columns [MC2C]) (D.59)

The dimensions of the blocks ∆j, j ∈ [2, (Mnynu + 1)] are calculated with the following

code where ncMC2DVL,ii,j,q is the number of columns of the matrix block MC2DVL,ii,j,q

Algorithm 4:

du = 11

for j = 1 to ny do2

for q = 1 to nu do3

for ii = 1 to M do4

du = du+ 15

∆du = ncMC2DVL,ii,j,q × ncMC2DVL,ii,j,q6

endfor7

endfor8

endfor9

The dimensions of the blocks ∆j, j ∈ [(Mnynu + 2) , (2Mnynu + 1)] are calculated with

the following code where ncMC2DVNL,ii,j,q is the number of columns of the matrix block

MC2DVNL,ii,j,q
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Algorithm 5:

du = Mnynu + 11

for j = 1 to ny do2

for q = 1 to nu do3

for ii = 1 to M do4

du = du+ 15

∆du = ncMC2DVNL,ii,j,q × ncMC2DVNL,ii,j,q6

endfor7

endfor8

endfor9

The dimensions of the blocks ∆j, j ∈ [(2Mnynu + 2) , (nb∆ − 1)] are calculated with

the following code where ncHVNL
(a,b) (j,q) is the number of columns of the matrix block HVNL

(a,b) (j,q)

Algorithm 6:

du = 2Mnynu + 21

for j = 1 to ny do2

for q = 1 to nu do3

for a = 1 to (M − 1) do4

for b = 1 to (M − a) do5

du = du+ 16

∆du =
(
ncHVNL

(a,b) (j,q)

)
×
(
ncHVNL

(a,b) (j,q)

)
7

endfor8

endfor9

endfor10

endfor11

The block ∆j, j = nb∆ is a complex scalar square matrix related to performance of

dimensions (pny + 2num)× (pny + 2num).
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Appendix E

Disturbance characteristics for chapter 5

Table E.1: Disturbance characteristics for SISO case study C (k = sampling instant)

k β k β k β k β

1 0.3000 21 0.3592 41 0.4146 61 0.1656
2 0.3565 22 0.3598 42 0.4195 62 0.2424
3 0.3518 23 0.4195 43 0.4208 63 0.2417
4 0.3678 24 0.4176 44 0.4150 64 0.2349
5 0.3813 25 0.4252 45 0.3007 65 0.2419
6 0.3525 26 0.4195 46 0.2994 66 0.2443
7 0.3594 27 0.4215 47 0.3033 67 0.2423
8 0.3740 28 0.4222 48 0.2999 68 0.2395
9 0.3646 29 0.4264 49 0.3000 69 0.2389
10 0.3512 30 0.4254 50 0.2983 70 0.2395
11 0.3643 31 0.4202 51 0.3007 71 0.2418
12 0.3620 32 0.4203 52 0.3002 72 0.2430
13 0.3600 33 0.4236 53 0.1702 73 0.2364
14 0.3603 34 0.4223 54 0.1836 74 0.2328
15 0.3638 35 0.4172 55 0.1931 75 0.2332
16 0.3687 36 0.4205 56 0.1869 76 0.2331
17 0.3547 37 0.4202 57 0.1731 77 0.2408
18 0.3545 38 0.4173 58 0.1797 78 0.2385
19 0.3535 39 0.4156 59 0.1769 79 0.2404
20 0.3418 40 0.4234 60 0.1755 80 0.2400
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Table E.2: Disturbance characteristics for SISO case study D, β (k = 1) = 0.3

Case study β (k) , k = 2, . . . , 80 Case study β (k) , k = 2, . . . , 80

1 0.4125 13 0.2700
2 0.4050 14 0.2625
3 0.3975 15 0.2550
4 0.3900 16 0.2475
5 0.3825 17 0.2400
6 0.3750 18 0.2325
7 0.3675 19 0.2250
8 0.3600 20 0.2175
9 0.3525 21 0.2100
10 0.3450 22 0.2025
11 0.3375 23 0.1950
12 0.3300 24 0.1875

Table E.3: Disturbance characteristics for MIMO case study, q2 (k = 1) = 0.5500

Case study q2 (k) , k = 2, . . . , 40 Case study q2 (k) , k = 2, . . . , 40

1 0.6600 5 0.5225
2 0.6325 6 0.4950
3 0.6050 7 0.4675
4 0.5775 8 0.4400
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Appendix F

Disturbance characteristics for chapter 6

Table F.1: Disturbance characteristics for MIMO case study (k = sampling instant)

k q2 k q2 k q2 k q2 k q2

1 0.5500 21 0.4473 41 0.6906 61 0.4709 81 0.5095
2 0.5500 22 0.4266 42 0.6764 62 0.4996 82 0.4861
3 0.6073 23 0.4126 43 0.6655 63 0.5285 83 0.4649
4 0.6269 24 0.4106 44 0.6580 64 0.5600 84 0.4439
5 0.6481 25 0.4157 45 0.6304 65 0.5844 85 0.4309
6 0.6682 26 0.4119 46 0.6070 66 0.6128 86 0.4208
7 0.6739 27 0.4256 47 0.5797 67 0.6351 87 0.4118
8 0.6896 28 0.4455 48 0.5564 68 0.6513 88 0.4168
9 0.6853 29 0.4614 49 0.5227 69 0.6727 89 0.4125
10 0.6847 30 0.4917 50 0.5071 70 0.6788 90 0.4288
11 0.6773 31 0.5118 51 0.4809 71 0.6901 91 0.4425
12 0.6608 32 0.5330 52 0.4542 72 0.6896 92 0.4620
13 0.6528 33 0.5717 53 0.4410 73 0.6871 93 0.4940
14 0.6225 34 0.5916 54 0.4270 74 0.6745 94 0.5121
15 0.5960 35 0.6212 55 0.4203 75 0.6627 95 0.5435
16 0.5744 36 0.6376 56 0.4113 76 0.6398 96 0.5772
17 0.5377 37 0.6576 57 0.4204 77 0.6215 97 0.5960
18 0.5251 38 0.6772 58 0.4284 78 0.5883 98 0.6240
19 0.4914 39 0.6800 59 0.4354 79 0.5632 98 0.6466
20 0.4677 40 0.6845 60 0.4570 80 0.5387 99 0.6634
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Appendix G

Volterra series model parameters for chapter

5

SISO case studies

hARX = 0.4671

Table G.1: Volterra series model parameters and uncertainty for SISO case study

(i, j) = (1, 1) (i, j) = (1, 1)

h0 (i,j) 0.2846 δh0 (i,j) 0.0368

h1 (i,j) 0.1471 δh1 (i,j) 0.0145

h2 (i,j) -0.0266 δh2 (i,j) 0.0053

h0,0 (i,j) 0.0310 δh0,0 (i,j) 0.0018

h1,1 (i,j) -0.4277 δh1,1 (i,j) 0.00117

h2,2 (i,j) 0.0280 δh2,2 (i,j) 0.0025

h0,1 (i,j) 0.3591 δh0,1 (i,j) 0.0075

h0,2 (i,j) -0.4160 δh0,2 (i,j) 0.0073

h1,2 (i,j) 0.3262 δh1,2 (i,j) 0.0195
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MIMO case study

hARX1 = 0.7697, hARX = 0.7092

Table G.2: Nominal Volterra series model parameters for MIMO case study

(i, j) = (1, 1) (i, j) = (1, 2) (i, j) = (2, 1) (i, j) = (2, 2)

h0 (i,j) 0.0972 0.0959 -0.0930 0.0905

h1 (i,j) 0.0035 -0.0036 0.0134 -0.0131

h2 (i,j) -0.0019 0.0019 -0.0027 0.0014

h0,0 (i,j) -0.0024 -0.0030 0.0081 0.0021

h1,1 (i,j) 0.0450 -0.0923 -0.0096 0.0006

h2,2 (i,j) -0.0024 -0.0036 -0.0110 -0.0159

h0,1 (i,j) -0.0404 0.0986 0.0112 0.0116

h0,2 (i,j) 0.0403 -0.0988 0.0247 0.0198

h1,2 (i,j) -0.0398 0.0994 -0.0026 0.0009

Table G.3: Uncertainty associated to the Volterra series model parameters for MIMO case
study

(i, j) = (1, 1) (i, j) = (1, 2) (i, j) = (2, 1) (i, j) = (2, 2)

δh0 (i,j) 0.0010 0.0011 0.0043 0.0038

δh1 (i,j) 0.0019 0.0021 0.0049 0.0041

δh2 (i,j) 0.0010 0.0011 0.0028 0.0024

δh0,0 (i,j) 0.0012 0.0020 0.0035 0.0025

δh1,1 (i,j) 0.0032 0.0042 0.0045 0.0005

δh2,2 (i,j) 0.0016 0.0016 0.0044 0.0045

δh0,1 (i,j) 0.0025 0.0032 0.0042 0.0054

δh0,2 (i,j) 0.0022 0.0031 0.0035 0.0064

δh1,2 (i,j) 0.0021 0.0032 0.0023 0.0052
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Appendix H

Volterra series model parameters for chapter

6

hARX1 = 0.8744, hARX2 = 0.7511

Table H.1: Nominal Volterra series model parameters for MIMO case study

(i, j) = (1, 1) (i, j) = (1, 2) (i, j) = (2, 1) (i, j) = (2, 2)

h0 (i,j) 0.0727 0.0778 -0.1630 0.1690

h1 (i,j) -0.0016 -0.0025 0.0023 -0.0002

h0,0 (i,j) -0.0052 -0.0165 0.0271 0.0239

h1,1 (i,j) 0.0085 0.0127 0.0146 0.0746

h0,1 (i,j) -0.0009 0.0068 -0.0141 -0.0715

Table H.2: Uncertainty associanted to the Volterra series model parameters for MIMO case
study

(i, j) = (1, 1) (i, j) = (1, 2) (i, j) = (2, 1) (i, j) = (2, 2)

δh0 (i,j) 0.0078 0.0081 0.0119 0.0130

δh1 (i,j) 0.0004 0.0006 0.0030 0.0047

δh0,0 (i,j) 0.0008 0.0035 0.0096 0.0064

δh1,1 (i,j) 0.0008 0.0036 0.0075 0.0101

δh0,1 (i,j) 0.0002 0.0011 0.0073 0.0123
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Appendix I

Matlab codes

This Appendix shows the code of the main programs used in this thesis.

Table I.1 shows the programs that were used to calculate the disturbances used in

chapters 3 and 4.

Table I.1: List of programs to calculate d

Program Name Description

generate d.m Disturbance generator for Chapter 3
generate d2.m Disturbance generator for Chapter 4

function d = generate_d(S_in ,nit ,sig_ma)

% generate_d : disturbance generator for chapter 3

% S_in --> value of S_{in}

% nit --> number of smapling intervals

% sig_ma --> desired value for the standard deviation of d

a = round(randn(nit ,1));

d = S_in + sig_ma*randn(nit ,1).*( -1).^a;

function d = generate_d2(S_in ,nit ,pr_fc ,an_fr ,ph_as)

% generate_d : disturbance generator for chapter 3

% S_in --> value of S_{in}

% nit --> number of smapling intervals

% pr_fc --> perturbation factor for the sinusoidal wave

% an_fr --> desired angular frecuency

% ph_as --> desired phase angle

a = [1: nit]’;

d = S_in + sin(an_fr.*a+ph_as) + ...

pr_fc*randn(nit ,1).* -1.^ round(randn(nit ,1));
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Table I.2 shows the programs that were used to calculate the values of γ.

Table I.2: List of programs to calculate γ

Program Name Description

pesou.m Internal Program
pesoy.m Internal Program

mgamota.m Calculate Γ matrix
mpsiota.m Calculate Ψ matrix
mtetota.m Calculate Θ matrix
kmpcss.m Calculate KMPC matrix

calculategamma.m Generic program to calculate γ
calgama.m Internal Program

mat mimomodel.m Internal Program
biswi dcp.m Internal Program

crealmiwi dcp.m Solve LMI feasibility problem (u bounds)
incer c bode.m Internal Program
jalalmi dcp.m LMI structure

pbodei.m Internal Program
crealmi dcp esta.m Solve LMI feasibility problem (stability)

jalalmi dcp esta LMI structure (stability problem)
bis grande dcp.m Internal Program

crealmi dcp.m Solve LMI feasibility problem (γ)
incer c gen3.m Internal Problem

function pes_u = pesou(m,n_u ,weiu)

pes_u = zeros(length(m*n_u),length(m*n_u));

for j=1:n_u

for i=j:n_u:(n_u*m)-(n_u -j)

pes_u(i,i) = weiu(1,j);

end

end

function pes_y = pesoy(p,n_y ,weiy)

pes_y = zeros(length(p*n_y),length(p*n_y));

for j=1:n_y

for i=j:n_y:(n_y*p)-(n_y -j)

pes_y(i,i) = weiy(1,j);

end

end

function sc2 = mgamota(A,B,C,p,m)

if m>p, error(’Incorrect control horizon ’), end

[ro ,co] = size(B); n_u = co; [ro ,co] = size(C); n_y = ro;

sc2 = zeros(p*n_y ,n_u);

for i=0:p-1

aux = (i*n_y +1):(i+1)* n_y; au2 = zeros(n_y ,n_u);

for j=0:i

au2 = au2 + C*A^j*B;

end

sc2(aux(1,1): aux(1,length(aux)),1:n_u) = au2;

end
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function sc2 = mpsiota(A,C,p,m)

if m>p, error(’Incorrect control horizon ’), end

[ro ,co] = size(A); n_x = co; [ro ,co] = size(C); n_y = ro;

sc2 = zeros(p*n_y ,n_x);

for i=1:p

i1 = ((i-1)* n_y) + 1; i2 = i*n_y; sc2(i1:i2 ,:) = C*A^i;

end

function sc2 = mtetota(A,B,C,p,m)

if m>p, error(’Incorrect control horizon ’), end

[ro ,co] = size(B); n_u = co; [ro ,co] = size(C); n_y = ro;

sc2 = zeros(p*n_y ,m*n_u);

for i=0:p-1

aux = (i*n_y +1):(i+1)* n_y; au2 = zeros(n_y ,n_u);

for j=0:i

au2 = au2 + C*A^j*B;

end

sc2(aux(1,1): aux(1,length(aux)),1:n_u) = au2;

end

for col=1:m-1

aux1 = (col*n_u +1):( col +1)* n_u; aux1a = ((col -1)* n_u +1): col*n_u;

for i=0:p-2

ii = i+1;

auxa = (i*n_y+1) : (i+1)* n_y;

auxf = ((i+1)* n_y+1) : ((i+1)+1)* n_y;

ro = auxf (1,1): auxf(1,length(auxf ));

co = aux1 (1,1): aux1(1,length(aux1 ));

roa = auxa (1 ,1): auxa(1,length(auxa ));

coa = aux1a (1,1): aux1a(1,length(aux1a ));

sc2(ro ,co) = sc2(roa ,coa);

end

end

function [mmpc ,mmpc2] = kmpcss(B,C,p,m,weiy ,weiu ,mt)

[ro ,co] = size(B); n_u = co; [ro ,co] = size(C); n_y = ro;

Q = pesoy(p,n_y ,weiy); R = pesou(m,n_u ,weiu); mI = zeros(n_u ,m*n_u);

mI(1:n_u ,1:n_u) = eye(n_u); mmpc = mI*( ( (mt ’*Q*mt) + R ) \ (mt ’*Q) );

mmpc2 = ( ( (mt ’*Q*mt) + R ) \ (mt ’*Q) );

% Generic program to calculate gamma Generic program to calculate gamma

d_pro = % filename with state -affine matrices of the process

d_mod = % filename with state -affine matrices of the model

load (%filename with WF information ’ ,...

’WF’,’BW’,’an_fr’)

igs.weiy = ones (1,2);

igs.BW = BW;

igs.p = 200; % prediction horizon

igs.m = 4; % control horizon

igs.WF = WF;

igs.tbode = 5; % discretization time

igs.prnt = 0; igs.tuwi = 10; igs.tmwi = -0.2; igs.tugr = 10;

igs.tmgr = -0.2; igs.pau = 0; %value of cu

%% LMI solver options

op.solver = ’sdpt3 ’; op.verb = 0; op.warn = 0;

fac.a = 1; fac.b = 1; fac.c = 1;

%% Uncertainty information

lc1 = 0.10; % if nominal case is analyzed lc1 = 0;

lc2 = 0.10; % if nominal case is analyzed lc2 = 0;

qcu(1,1) = uint8 (1); % if nominal case is analyzed qcu (1 ,1) = uint8 (0)

qcu(2,1) = uint8 (1); % if nominal case is analyzed qcu (2 ,1) = uint8 (0)
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%% calculations performed in parralell

v_fr_an = 10* an_fr; igs.libode = 0.01* v_fr_an; igs.lsbode = v_fr_an;

weiu = %value of the weight matrix R

[ga_ma ,u1,u2] = cal_gama(d_mod ,d_pro ,weiu ,lc1 ,lc2 ,qcu ,v_fr_an ,igs ,op,fac);

function [re_g ,iu1g ,iu2g] = cal_gama(d_mod ,d_pro ,numeritos ,...

lc1 ,lc2 ,qcu ,v_fr_an ,igs ,op,fac)

pmod = load(d_mod ,’p1’); ppro = load(d_pro ,’p1’);

[F0_mod F1_mod F2_mod G1_mod] = mat_mimomodel(pmod.p1);

[F0_pro F1_pro F2_pro G1_pro G2_pro G3_pro] = mat_mimomodel(ppro.p1);

clear F1_mod F2_mod

C = eye (2); igs.n_x = size(F0_mod ,1); igs.n_u = size(G1_mod ,1);

igs.n_y = size(C,1); mpsi = mpsiota(F0_mod ,C,igs.p,igs.m);

mgama = mgamota(F0_mod ,G1_mod ,C,igs.p,igs.m);

mteta = mtetota(F0_mod ,G1_mod ,C,igs.p,igs.m);

N2 = pcn2(C,igs.p);

%% Parte de las LMI ’s

ro_number = size(numeritos ); re_g = zeros(ro_number (1 ,1) ,10); tol = 1E-2;

ctdr = 0; ce = 0;

for i=1: ro_number (1,1)

ctdr = ctdr + 1; weiu = numeritos(i,:);

mpct = kmpcss(G1_mod ,C,igs.p,igs.m,igs.weiy ,weiu ,mteta);

kc = 0; iu1g = 1E-5; iu2g = 1E-5; salidaciclo = 0;

pter = zeros (10 ,2);

while salidaciclo == ((tol <=cv1 (1 ,1)) & (tol <=cv2 (1 ,1)))

if igs.prnt == 1

fprintf(’weiu (1) = %1.2f , weiu (2) = %1.2f’,weiu (1) ,...

weiu (2)) , fprintf(’\n’)

end

kc = kc + 1;

if qcu(1,1) == 1

[gw1 ,ex1 ,kc1] = biswi_dcp(igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,...

mgama ,mpsi ,mpct ,N2,op ,fac ,iu1g ,iu2g ,1,lc1 ,lc2);

else

gw1 = 0; ex1 = 0; kc1 = 0; e1 = 0;

end

if qcu(2,1) == 1

[gw2 ,ex2 ,kc2] = biswi_dcp(igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,...

mgama ,mpsi ,mpct ,N2,op ,fac ,iu1g ,iu2g ,2,lc1 ,lc2);

else

gw2 = 0; ex2 = 0; kc2 = 0; e2 = 0;

end

Wgama = [gw1(1,1); gw2 (1 ,1)];

if ( (ex1 == 0 ) && (ex2 == 0))

if qcu(1,1) == 1

u1_bode = pbodei(F0_mod ,G1_mod ,mpsi ,mgama ,mpct ,igs ,Wgama ,...

N2 ,1,v_fr_an );

cv1 (1 ,1)= abs((iu1g - 2* u1_bode (1 ,1))/ iu1g);

else

u1_bode = 0; cv1 (1 ,1)= 0;

end

if qcu(2,1) == 1

u2_bode = pbodei(F0_mod ,G1_mod ,mpsi ,mgama ,mpct ,igs ,Wgama ,...

N2 ,2,v_fr_an );

cv2 (1 ,1)= abs((iu2g - 2* u2_bode (1 ,1))/ iu2g);

else

u2_bode = 0; cv2 (1 ,1)= 0;

end

if igs.prnt == 1

fprintf(’weiu (1) = %1.2f , weiu (2) = %1.2f’,weiu (1) ,...
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weiu (2)) , fprintf(’\n’)

fprintf(’cv1 = %1.2e , cv2 = %1.2e’,cv1 ,cv2)

fprintf(’ Wgama1 = %1.4e , Wgama2 = %1.4e’ ,...

Wgama(1,1),Wgama (2 ,1))

fprintf(’\n’)

fprintf(’u1b = %1.3f , u2b = %1.3f ’,u1_bode ,u2_bode)

fprintf(’u1g = %1.3f , u2g = %1.3f’ ,2*u1_bode ,2* u2_bode ’)

fprintf(’\n’) , fprintf(’\n’)

end

if kc > 15

cv1 = 0; cv2 = 0; ce = 1;

fprintf(’Increase iterations number \n’)

end

pter(kc ,1) = cv1 (1 ,1); pter(kc ,2) = cv2(1,1);

if kc >=3

if (( abs(pter(kc ,1)-pter(kc -2,1)) <= 1E-5) && ...

abs(pter(kc ,2)-pter(kc -2 ,2)) <= 1E-5 )

fprintf(’Convergence problems \n’)

fprintf(’Peso %1.9f %1.9f \n’,weiu(1),weiu (2))

cv1 = 0; cv2 = 0; ce = 2;

end

end

iu1g = 2* u1_bode (1 ,1); iu2g = 2* u2_bode (1,1);

a1 = tol <=cv1(1,1); a2 = tol <=cv2(1,1);

if (a1+a2) ~= 0

salidaciclo = 0;

else

salidaciclo = 1;

end

else

ce = -9;

salidaciclo = 1;

end

end

c_esta =0;

if ce == 0

c_esta = crealmi_dcp_esta(igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,...

mgama ,mpsi ,mpct ,N2,op ,fac ,...

2* u1_bode (1,1),2* u2_bode (1,1) ,...

lc1 ,lc2);

if c_esta ~=0

fprintf(’Unstable at \n %1.9f %1.9f’,weiu(1),weiu (2))

gy = 5.99; ex3 = -2.5; kc3 = -5.5;

else

[gy ,ex3 ,kc3] = bis_grande_dcp(igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,...

mgama ,mpsi ,mpct ,N2,op ,fac ,...

2* u1_bode (1,1),2* u2_bode (1,1) ,...

lc1 ,lc2);

end

else

gy = 5.99; ex3 = -ce; kc3 = -5;

end

re_g(ctdr ,:) = [weiu , gy , ex1 , kc1 , ex2 , kc2 , ex3 , kc3 , kc];

end

function [F0 F1 F2 G1 G2 G3 H0] = mat_mimomodel(param1)

par1 = param1;

F0 = [par1 (1,1) par1 (2,1) ; par1 (3,1) par1 (4,1) ]; e = eig(F0);%

if norm(e(1,1))>=1

error(’Eigenvalues outside the unit circle ’)
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end

if norm(e(2,1))>=1

error(’Eigenvalues outside the unit circle ’)

end

F1 = [par1 (5,1) 0 ; par1 (7,1) 0];

F2 = [0 par1 (6,1) ; 0 par1 (8,1) ];

G1 = [par1 (9,1) par1 (10 ,1) ; par1 (11,1) par1 (12 ,1) ];

G2 = [par1 (13,1) 0 ; par1 (15,1) 0];

G3 = [0 par1 (14,1) ; 0 par1 (16 ,1)];

H0 = [1 0 ; 0 1];

function [gamita ,ex,kc] = biswi_dcp(igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,...

mgama ,mpsi ,mpct ,N2,op ,fac ,iu1 ,iu2 ,cual ,ic1 ,ic2)

t_upper = igs.tuwi; t_lower = 0; t_med = igs.tmwi;

si_z = t_upper:t_med:t_lower; con = ones(length(si_z ),2);

sol = crealmiwi_dcp(t_lower ,igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,mgama ,mpsi ,...

mpct ,N2 ,op,fac ,iu1 ,iu2 ,cual ,ic1 ,ic2);

ro = 1; con(ro ,:) = [t_lower sol];

for i=t_lower+abs(t_med):abs(t_med ): t_upper

ro = ro + 1;

sol = crealmiwi_dcp(i,igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,mgama ,mpsi ,...

mpct ,N2 ,op,fac ,iu1 ,iu2 ,cual ,ic1 ,ic2);

con(ro ,:) = [i sol];

if con(ro ,2) * con(ro -1,2) == 0

break

end

end

if igs.prnt == 1

for i=1:ro

fprintf(’%1.1f , %1.0f \n’,con(i,1),con(i,2))

end

fprintf(’\n’)

end

in = find((con(:,2) == 0)); tol = 1E-8; kc = 0; salida = 1;

%% Iterations

if isempty(in) == 1

gamita = 1.9; kc = -2; ex = -9;

else

t_upper = con(in(length(in),1),1);

t_lower = t_upper+t_med; t_works = t_upper;

while abs(( t_upper - t_lower))>tol

kc = kc + 1; t_test = (t_upper+t_lower )/2;

sol = crealmiwi_dcp(t_test ,igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,mgama ,mpsi ,...

mpct ,N2 ,op,fac ,iu1 ,iu2 ,cual ,ic1 ,ic2);

con(ro ,:) = [i sol];

if sol ~= 0

t_lower = t_test;

else

t_upper = t_test; t_works = t_test;

end

if kc > 50

t_upper = t_lower; salida = 0;

fprintf(’Iterations reached at wi \n’)

end

end

if salida == 0 gamita = 1.8; ex = -8;

else

if t_works >= 0

184



gamita = sqrt(t_works );

ex = crealmiwi_dcp(t_works ,igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,mgama ,mpsi ,...

mpct ,N2 ,op,fac ,iu1 ,iu2 ,cual ,ic1 ,ic2);

else

gamita = 1.7; ex = -7;

end

end

end

function respuesta = crealmiwi_dcp(gmt ,igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,...

mgama ,mpsi ,mpct ,N2,op ,fac ,iu1 ,iu2 ,cual ,ic1 ,ic2)

B11 = zeros(igs.n_x ,1); B21 = zeros(igs.n_x ,1); B31 = zeros(igs.n_u ,1);

B41 = (1-igs.BW); B_m = [B11 ; B21 ; B31 ; B41];

D11= zeros (1,1);

P = sdpvar(7,7,’symmetric ’);

ll_a = @jalalmi_dcp(gmt ,P,du_1 ,du_2 ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C_in ,...

mpct ,mpsi ,mgama ,...

igs ,N2 ,B_m ,C_m ,D11 ,fac);

du_1 = 0; du_2 = 0; dc_1 = 0; dc_2 = 0;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L1 = ll_a; clear C_m

du_1 = -iu1; du_2 = -iu2; dc_1 = -ic1; dc_2 = -ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L2 = ll_a; clear C_m

du_1 = -iu1; du_2 = -iu2; dc_1 = -ic1; dc_2 = +ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L3 = ll_a; clear C_m

du_1 = -iu1; du_2 = -iu2; dc_1 = +ic1; dc_2 = -ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L4 = ll_a; clear C_m

du_1 = -iu1; du_2 = -iu2; dc_1 = +ic1; dc_2 = +ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L5 = ll_a; clear C_m

du_1 = -iu1; du_2 = +iu2; dc_1 = -ic1; dc_2 = -ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L6 = ll_a; clear C_m

du_1 = -iu1; du_2 = +iu2; dc_1 = -ic1; dc_2 = +ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L7 = ll_a; clear C_m

du_1 = -iu1; du_2 = +iu2; dc_1 = +ic1; dc_2 = -ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L8 = ll_a; clear C_m

du_1 = -iu1; du_2 = +iu2; dc_1 = +ic1; dc_2 = +ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L9 = ll_a; clear C_m

du_1 = +iu1; du_2 = -iu2; dc_1 = -ic1; dc_2 = -ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L10 = ll_a; clear C_m

du_1 = +iu1; du_2 = -iu2; dc_1 = -ic1; dc_2 = +ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L11 = ll_a; clear C_m

du_1 = +iu1; du_2 = -iu2; dc_1 = +ic1; dc_2 = -ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L12 = ll_a; clear C_m

du_1 = +iu1; du_2 = -iu2; dc_1 = +ic1; dc_2 = +ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L13 = ll_a; clear C_m

du_1 = +iu1; du_2 = +iu2; dc_1 = -ic1; dc_2 = -ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L14 = ll_a; clear C_m

du_1 = +iu1; du_2 = +iu2; dc_1 = -ic1; dc_2 = +ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L15 = ll_a; clear C_m

du_1 = +iu1; du_2 = +iu2; dc_1 = +ic1; dc_2 = -ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L16 = ll_a; clear C_m

du_1 = +iu1; du_2 = +iu2; dc_1 = +ic1; dc_2 = +ic2;

C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2); C_in = C + C*[dc_1 0 ; 0 dc_2]; L17 = ll_a; clear C_m

F = set(P>0) + set(L1 <0) + set(L2 <0) + set(L3 <0) + set(L4 <0) + ...

set(L5 <0) + set(L6 <0) + set(L7 <0) + set(L8 <0) + set(L9 <0) + ...

set(L10 <0) + set(L11 <0) + set(L12 <0) + set(L13 <0) + set(L14 <0) + ...

set(L15 <0) + set(L16 <0) + set(L17 <0);

options = sdpsettings(’solver ’,op.solver ,...

’verbose ’,op.verb ,’warning ’,op.warn ,...

’cachesolvers ’ ,1);
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F_sol = solvesdp(F,[], options );

respuesta = F_sol.problem;

function C_m = incer_c_bode(C,igs ,mpct ,N2,cual ,dc_1 ,dc_2)

C_in = C + C*[dc_1 0 ; 0 dc_2];

if cual == 1

cu = [1 0];

elseif cual == 2

cu = [0 1];

end

C11 = cu*mpct*N2*C; C12 = -cu*mpct*N2*C_in; C13 = cu*zeros(igs.n_y ,igs.n_u); C14 = -cu*mpct*N2*igs.WF;

C_m = [C11 , C12 , C13 , C14];

function l_mi = jalalmi_dcp(gmt ,P,du_1 ,du_2 ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,...

mpct ,mpsi ,mgama ,igs ,N2,B_m ,C_m ,D_m ,fac)

A11 = F0_mod + (G1_mod*mpct*(-mpsi + N2*eye(igs.n_y ))); A12 = -G1_mod*mpct*N2*C;

A13 = G1_mod *( eye(igs.n_u) + mpct*(-mgama) ); A14 = -G1_mod*mpct*N2*igs.WF;

A21 = (G1_pro + du_1*G2_pro + du_2*G3_pro )*( mpct*( -mpsi + N2*eye(igs.n_y) ) );

A22 = (F0_pro + du_1*F1_pro + du_2*F2_pro) + (G1_pro + du_1*G2_pro + du_2*G3_pro )*(-mpct*N2*C);

A23 = (G1_pro + du_1*G2_pro + du_2*G3_pro )*(eye(igs.n_u) + mpct*( -mgama ) );

A24 = (G1_pro + du_1*G2_pro + du_2*G3_pro )*(-mpct*N2*igs.WF);

A31 = mpct*( -mpsi + N2*eye(igs.n_y) ); A32 = -mpct*N2*C;

A33 = fac.a*eye(igs.n_u) + mpct*( -mgama ); A34 = -mpct*N2*igs.WF;

A41 = zeros(1,igs.n_x); A42 = zeros(1,igs.n_x); A43 = zeros(1,igs.n_u); A44 = igs.BW;

A_m = [...

A11 , A12 , A13 , A14 ; A21 , A22 , A23 , A24 ; ...

A31 , A32 , A33 , A34 ; A41 , A42 , A43 , A44];

e = eig(A_m); eo = abs(e) >= 1;

if sum(eo) ~= 0, fprintf(’outside unit circle\n’), end

l_mi = [...

((A_m ’*P*A_m)-P) , A_m ’*P*B_m , C_m ’ ; ...

B_m ’*P*A_m , (B_m ’*P*B_m)-gmt , D_m ’ ; ...

C_m , D_m , -eye(size(C_m ,1))];

function su_p = pbodei(F0,G1,mpsi ,mgama ,mpct ,igs ,...

Wgama ,N2,cual ,v_fr_an)

A11 = F0 - G1*mpct*mpsi; A12 = G1*( eye(igs.n_u) - mpct*mgama );

A21 = -mpct*mpsi; A22 = eye(igs.n_u)-mpct*mgama;

A_m = [A11 A12 ; A21 A22]; e = eig(A_m); eo = e >= 1;

if sum(eo) ~= 0

error(’outside for Bode\n’)

end

B11 = G1*Wgama; B21 = Wgama; B_m = [B11;B21];

if cual == 1

C_m = [[1 0]* A21 [1 0]*A22];

elseif cual == 2

C_m = [[0 1]* A21 [0 1]*A22];

end

if cual == 1

D_m = [1 0]*B21;% caso antes --> % Wgama (1 ,1);

elseif cual == 2

D_m = [0 1]*B21;% caso antes --> % Wgama (2 ,1);

end

sys = ss(A_m ,B_m ,C_m ,D_m ,igs.tbode);

mag = bode(sys ,{igs.libode ,igs.lsbode });

su_p = mag(mag==max(mag)); %Logical Indexing

function [respuesta ,pnumerica] = crealmi_dcp_esta(igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,...

mgama ,mpsi ,mpct ,N2,op ,fac ,iu1 ,iu2 ,ic1 ,ic2)
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ll_a = @jalalmi_dcp_esta(P,du_1 ,du_2 ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C_con_i ,...

mpct ,mpsi ,mgama ,igs ,N2,fac);

P = sdpvar(7,7,’symmetric ’);

du_1 = 0; du_2 = 0; dc_1 = 0; dc_2 = 0; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L1 = ll_a;

du_1 = -iu1; du_2 = -iu2; dc_1 = -ic1; dc_2 = -ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L2 = ll_a;

du_1 = -iu1; du_2 = -iu2; dc_1 = -ic1; dc_2 = +ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L3 = ll_a;

du_1 = -iu1; du_2 = -iu2; dc_1 = +ic1; dc_2 = -ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L4 = ll_a;

du_1 = -iu1; du_2 = -iu2; dc_1 = +ic1; dc_2 = +ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L5 = ll_a;

du_1 = -iu1; du_2 = +iu2; dc_1 = -ic1; dc_2 = -ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L6 = ll_a;

du_1 = -iu1; du_2 = +iu2; dc_1 = -ic1; dc_2 = +ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L7 = ll_a;

du_1 = -iu1; du_2 = +iu2; dc_1 = +ic1; dc_2 = -ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L8 = ll_a;

du_1 = -iu1; du_2 = +iu2; dc_1 = +ic1; dc_2 = +ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L9 = ll_a;

du_1 = +iu1; du_2 = -iu2; dc_1 = -ic1; dc_2 = -ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L10 = ll_a;

du_1 = +iu1; du_2 = -iu2; dc_1 = -ic1; dc_2 = +ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L11 = ll_a;

du_1 = +iu1; du_2 = -iu2; dc_1 = +ic1; dc_2 = -ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L12 = ll_a;

du_1 = +iu1; du_2 = -iu2; dc_1 = +ic1; dc_2 = +ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L13 = ll_a;

du_1 = +iu1; du_2 = +iu2; dc_1 = -ic1; dc_2 = -ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L14 = ll_a;

du_1 = +iu1; du_2 = +iu2; dc_1 = -ic1; dc_2 = +ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L15 = ll_a;

du_1 = +iu1; du_2 = +iu2; dc_1 = +ic1; dc_2 = -ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L16 = ll_a;

du_1 = +iu1; du_2 = +iu2; dc_1 = +ic1; dc_2 = +ic2; C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L17 = ll_a;

F = set(P>0) + set(L1 <0) + set(L2 <0) + set(L3 <0) + set(L4 <0) + ...

set(L5 <0) + set(L6 <0) + set(L7 <0) + set(L8 <0) + set(L9 <0) + ...

set(L10 <0) + set(L11 <0) + set(L12 <0) + set(L13 <0) + set(L14 <0) + ...

set(L15 <0) + set(L16 <0) + set(L17 <0);

options = sdpsettings(’solver ’,op.solver ,...

’verbose ’,op.verb ,’warning ’,op.warn ,...

’cachesolvers ’ ,1);

F_sol = solvesdp(F,[], options );

respuesta = F_sol.problem; pnumerica = double(P);

function l_mi = jalalmi_dcp_esta(P,du_1 ,du_2 ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,...

mpct ,mpsi ,mgama ,igs ,N2,fac)

A11 = F0_mod + (G1_mod*mpct*(-mpsi + N2*eye(igs.n_y ))); A12 = -G1_mod*mpct*N2*C;

A13 = G1_mod *( eye(igs.n_u) + mpct*(-mgama) ); A14 = -G1_mod*mpct*N2*igs.WF;

A21 = (G1_pro + du_1*G2_pro + du_2*G3_pro )*( mpct*( -mpsi + N2*eye(igs.n_y) ) );

A22 = (F0_pro + du_1*F1_pro + du_2*F2_pro) + (G1_pro + du_1*G2_pro + du_2*G3_pro )*(-mpct*N2*C);

A23 = (G1_pro + du_1*G2_pro + du_2*G3_pro )*(eye(igs.n_u) + mpct*( -mgama ) );

A24 = (G1_pro + du_1*G2_pro + du_2*G3_pro )*(-mpct*N2*igs.WF);

A31 = mpct*( -mpsi + N2*eye(igs.n_y) ); A32 = -mpct*N2*C;

A33 = fac.a*eye(igs.n_u) + mpct*( -mgama ); A34 = -mpct*N2*igs.WF;

A41 = zeros(1,igs.n_x); A42 = zeros(1,igs.n_x); A43 = zeros(1,igs.n_u); A44 = igs.BW;

A_m = [...

A11 , A12 , A13 , A14 ; A21 , A22 , A23 , A24 ; ...

A31 , A32 , A33 , A34 ; A41 , A42 , A43 , A44];

l_mi = (A_m ’*P*A_m)-P;

function [gamita ,ex,kc] = bis_grande_dcp(igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,...

mgama ,mpsi ,mpct ,N2,op ,fac ,iu1 ,iu2 ,ic1 ,ic2)

t_upper = igs.tugr; t_lower = 0; t_med = igs.tmgr;

si_z = t_upper:t_med:t_lower; con = ones(length(si_z ),2);

sol = crealmi_dcp(t_lower ,igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,...

mgama ,mpsi ,mpct ,N2,op ,fac ,iu1 ,iu2 ,ic1 ,ic2);

ro = 1; con(ro ,:) = [t_lower sol];

for i=t_lower+abs(t_med):abs(t_med ): t_upper

ro = ro + 1;

sol = crealmi_dcp(i,igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,...
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mgama ,mpsi ,mpct ,N2,op ,fac ,iu1 ,iu2 ,ic1 ,ic2);

con(ro ,:) = [i sol];

if con(ro ,2) * con(ro -1,2) == 0

break

end

end

if igs.prnt == 1

for i=1:ro

fprintf(’%1.3f , %1.0f \n’,con(i,1),con(i,2))

end

fprintf(’\n’)

end

in = find((con(:,2) == 0)); tol = 1E-8; kc = 0; salida = 1;

if isempty(in) == 1

gamita = 1.9; kc = -2; ex = -9;

else

t_upper = con(in(length(in),1),1);

t_lower = t_upper+t_med; t_works = t_upper;

while abs(( t_upper - t_lower))>tol

kc = kc + 1; t_test = (t_upper+t_lower )/2;

sol = crealmi_dcp(t_test ,igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,...

mgama ,mpsi ,mpct ,N2,op ,fac ,iu1 ,iu2 ,ic1 ,ic2);

con(ro ,:) = [i sol];

if sol ~= 0

t_lower = t_test;

else

t_upper = t_test; t_works = t_test;

end

if kc > 50

t_upper = t_lower; salida = 0; fprintf(’Increase iterations \n’)

end

end

if salida == 0,

gamita = 1.8; ex = -8;

else

if t_works >= 0

gamita = sqrt(t_works );

ex = crealmi_dcp(t_works ,igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,...

mgama ,mpsi ,mpct ,N2,op ,fac ,iu1 ,iu2 ,ic1 ,ic2);

else

gamita = 1.7; ex = -7;

end

end

end

function [respuesta ,pnumerica] = crealmi_dcp(gmt ,igs ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C,...

mgama ,mpsi ,mpct ,N2,op ,fac ,iu1 ,iu2 ,ic1 ,ic2)

B11 = zeros(igs.n_x ,1); B21 = zeros(igs.n_x ,1); B31 = zeros(igs.n_u ,1);

B41 = (1-igs.BW); B_m = [B11 ; B21 ; B31 ; B41];

D11 = [zeros(igs.n_y ,1) ; zeros(igs.n_u ,1) ];

P = sdpvar(7,7,’symmetric ’);

ll_a = @jalalmi_dcp(gmt ,P,du_1 ,du_2 ,F0_mod ,G1_mod ,...

F0_pro ,F1_pro ,F2_pro ,G1_pro ,G2_pro ,G3_pro ,C_con_i ,...

mpct ,mpsi ,mgama ,...

igs ,N2 ,B_m ,C_m ,D11 ,fac);

du_1 = 0; du_2 = 0; dc_1 = 0; dc_2 = 0;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L1 = ll_a; clear C_m

du_1 = -iu1; du_2 = -iu2; dc_1 = -ic1; dc_2 = -ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L2 = ll_a; clear C_m
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du_1 = -iu1; du_2 = -iu2; dc_1 = -ic1; dc_2 = +ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L3 = ll_a; clear C_m

du_1 = -iu1; du_2 = -iu2; dc_1 = +ic1; dc_2 = -ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L4 = ll_a; clear C_m

du_1 = -iu1; du_2 = -iu2; dc_1 = +ic1; dc_2 = +ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L5 = ll_a; clear C_m

du_1 = -iu1; du_2 = +iu2; dc_1 = -ic1; dc_2 = -ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L6 = ll_a; clear C_m

du_1 = -iu1; du_2 = +iu2; dc_1 = -ic1; dc_2 = +ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L7 = ll_a; clear C_m

du_1 = -iu1; du_2 = +iu2; dc_1 = +ic1; dc_2 = -ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L8= ll_a; clear C_m

du_1 = -iu1; du_2 = +iu2; dc_1 = +ic1; dc_2 = +ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L9 = ll_a; clear C_m

du_1 = +iu1; du_2 = -iu2; dc_1 = -ic1; dc_2 = -ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L10 = ll_a; clear C_m

du_1 = +iu1; du_2 = -iu2; dc_1 = -ic1; dc_2 = +ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L11 = ll_a; clear C_m

du_1 = +iu1; du_2 = -iu2; dc_1 = +ic1; dc_2 = -ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L12 = ll_a; clear C_m

du_1 = +iu1; du_2 = -iu2; dc_1 = +ic1; dc_2 = +ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L13 = ll_a; clear C_m

du_1 = +iu1; du_2 = +iu2; dc_1 = -ic1; dc_2 = -ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L14 = ll_a; clear C_m

du_1 = +iu1; du_2 = +iu2; dc_1 = -ic1; dc_2 = +ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L15 = ll_a; clear C_m

du_1 = +iu1; du_2 = +iu2; dc_1 = +ic1; dc_2 = -ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L16 = ll_a; clear C_m

du_1 = +iu1; du_2 = +iu2; dc_1 = +ic1; dc_2 = +ic2;

C_m = incer_c_gen3(C,igs ,dc_1 ,dc_2 ,mpct ,mpsi ,N2,mgama); C_con_i = C + C*[dc_1 0 ; 0 dc_2]; L17 = ll_a; clear C_m

F = set(P>0) + set(L1 <0) + set(L2 <0) + set(L3 <0) + set(L4 <0) + ...

set(L5 <0) + set(L6 <0) + set(L7 <0) + set(L8 <0) + set(L9 <0) + ...

set(L10 <0) + set(L11 <0) + set(L12 <0) + set(L13 <0) + set(L14 <0) + ...

set(L15 <0) + set(L16 <0) + set(L17 <0);

options = sdpsettings(’solver ’,op.solver ,...

’verbose ’,op.verb ,’warning ’,op.warn ,...

’cachesolvers ’ ,1);

F_sol = solvesdp(F,[], options );

respuesta = F_sol.problem;

pnumerica = double(P);

function C_m = incer_c_gen3(C,igs ,dc1 ,dc2 ,...

mpct ,mpsi ,N2 ,mgama)

C_con_i = C + C*[dc1 0 ; 0 dc2];

C11 = zeros(igs.n_y ,igs.n_x); C12 = C_con_i; C13 = zeros(igs.n_y ,igs.n_u); C14 = igs.WF;

C21 = igs.pau*(mpct*( -mpsi + N2*eye(igs.n_y) )); C22 = igs.pau*(-mpct*N2*C_con_i );

C23 = igs.pau*(eye(igs.n_u) + mpct*( -mgama )); C24 = igs.pau*(-mpct*N2*igs.WF);

C_m = [C11 , C12 , C13 , C14 ; C21 , C22 , C23 , C24];
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Tables I.3 to I.6 show the programs used to calculates the interconnections matrices

and the µ based robustness test.

Table I.3: List of programs to calculate M for SISO case example

Program Name Description

ssdabmdentro.m Calculate M
ssarribita.m Internal program to calculate M12

ssarriba1.m Internal program to calculate M12

ssbloquev1.m Internal program to calculate M21 (MC1CCD)
ssbloquev2.m Internal program to calculate M21 (MC1CCD)
ssbloquev3.m Internal program to calculate M21 (MC1CCD)
ssbloquev4.m Internal program to calculate M21 (MC1CCD)
ssbloquev5.m Internal program to calculate M21 (MC1CCD)
ssbloquev6.m Internal program to calculate M21 (MC1CCD)
ssbloquev7.m Internal program to calculate M21 (MC1CCD)
ssbloquev8.m Internal program to calculate M21 (MC1CCD)
ssbloquev9.m Internal program to calculate M21 (MC1CCD)
ssabajito.m Internal program to calculate M21

ssabajony1.m Internal program to calculate M21

ssabajovp.m Internal program to calculate M21

ssbloquev1a.m Internal program to calculate M21

ssbloquev2a.m Internal program to calculate M21

ssbloquev3a.m Internal program to calculate M21

ssbloquev4a.m Internal program to calculate M21

ssbloquev5a.m Internal program to calculate M21

ssbloquev6a.m Internal program to calculate M21

ssbloquev7a.m Internal program to calculate M21

ssbloquev8a.m Internal program to calculate M21

ssbloquev9a.m Internal program to calculate M21

function m = ssdabmdentro(esi ,k,ed ,u,h11_ll ,h11_cp ,ic1 ,hy1 ,...

u1zero ,u1menos1 ,du1 ,u1r ,vhll_11 ,vhcp_11 ,vtc ,cal_nom)

marriba = arribita(k,u(1:10,1) , u1zero );

menmedio = [bloquev1(k) ; bloquev2(k) ; bloquev3(k) ; bloquev4(k) ; ...

bloquev5(k) ; bloquev6(k) ; bloquev7(k) ; bloquev8(k) ; ...

bloquev9(k) ];

mabajo = abajito(ed ,ic1 ,h11_ll ,h11_cp ,u1zero ,u1menos1 ,esi ,du1 ,k,...

u1r ,hy1 ,vhll_11 ,vhcp_11 ,cal_nom );

m = zeros (310 ,310);

m(001:143 ,293:310) = marriba; % 143 X 018

m(144:292 ,033:143) = menmedio; % 149 X 111

m(293:310 ,:) = mabajo; % 018 X 310

m(294 ,012) = m(294 ,012) + (1/k)*hy1*m(293 ,011:292)*m(011:292 ,293);

m(295 ,013) = m(295 ,013) + (1/k)*hy1*m(294 ,011:292)*m(011:292 ,294);

m(296 ,014) = m(296 ,014) + (1/k)*hy1*m(295 ,011:292)*m(011:292 ,295);

m(297 ,015) = m(297 ,015) + (1/k)*hy1*m(296 ,011:292)*m(011:292 ,296);

m(298 ,016) = m(298 ,016) + (1/k)*hy1*m(297 ,011:292)*m(011:292 ,297);

m(299 ,017) = m(299 ,017) + (1/k)*hy1*m(298 ,011:292)*m(011:292 ,298);
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m(300 ,018) = m(300 ,018) + (1/k)*hy1*m(299 ,011:292)*m(011:292 ,299);

m(301 ,019) = m(301 ,019) + (1/k)*hy1*m(300 ,011:292)*m(011:292 ,300);

m(302 ,020) = m(302 ,020) + (1/k)*hy1*m(301 ,011:292)*m(011:292 ,301);

function mfinal = ssarribita(k,u1 ,u1zero)

mfinal = zeros (143 ,18);

mfinal (001:010 ,01:10) = k*eye (10); mfinal (011:020 ,01:10) = k*eye (10);

mfinal (021 ,11) = k*u1zero; mfinal (022 ,11) = k*u1(1);

mfinal (023 ,12) = k*u1(1); mfinal (024 ,12) = k*u1(2);

mfinal (025 ,13) = k*u1(2); mfinal (026 ,13) = k*u1(3);

mfinal (027 ,14) = k*u1(3); mfinal (028 ,14) = k*u1(4);

mfinal (029 ,15) = k*u1(1); mfinal (030 ,16) = k*u1(2);

mfinal (031 ,17) = k*u1(3); mfinal (032 ,18) = k*u1(4);

mfinal (033:143 ,01:10) = arriba1(k,u1);

function m = ssarriba1(k,u)

m = zeros (111 ,10);

m(01 ,01) = k*u(1); m(02 ,01) = k*u(1); m(03 ,01) = k*u(1);

m(04 ,02) = k*u(1); m(05 ,02) = k*u(1); m(06 ,03) = k*u(1);

m(08 ,01) = k*u(1)*u(1); m(09 ,02) = k*u(1)*u(1);

m(10 ,03) = k*u(1)*u(1); m(12 ,02) = k*u(2); m(13 ,02) = k*u(2);

m(14 ,03) = k*u(2); m(15 ,04) = k*u(2); m(17 ,02) = k*u(2)*u(2);

m(18 ,03) = k*u(2)*u(2); m(19 ,04) = k*u(2)*u(2); m(21 ,03) = k*u(3);

m(22 ,04) = k*u(3); m(23 ,05) = k*u(3); m(25 ,03) = k*u(3)*u(3);

m(26 ,04) = k*u(3)*u(3); m(27 ,05) = k*u(3)*u(3); m(29 ,04) = k*u(4);

m(30 ,05) = k*u(4); m(31 ,06) = k*u(4); m(33 ,04) = k*u(4)*u(4);

m(34 ,05) = k*u(4)*u(4); m(35 ,06) = k*u(4)*u(4); m(37 ,05) = k*u(5);

m(38 ,06) = k*u(5); m(39 ,07) = k*u(5); m(41 ,05) = k*u(5)*u(5);

m(42 ,06) = k*u(5)*u(5); m(43 ,07) = k*u(5)*u(5); m(45 ,06) = k*u(6);

m(46 ,07) = k*u(6); m(47 ,08) = k*u(6); m(49 ,06) = k*u(6)*u(6);

m(50 ,07) = k*u(6)*u(6); m(51 ,08) = k*u(6)*u(6); m(53 ,07) = k*u(7);

m(54 ,08) = k*u(7); m(55 ,09) = k*u(7); m(57 ,07) = k*u(7)*u(7);

m(58 ,08) = k*u(7)*u(7); m(59 ,09) = k*u(7)*u(7); m(61 ,08) = k*u(8);

m(62 ,09) = k*u(8); m(63 ,10) = k*u(8); m(64 ,08) = k*u(8)*u(8);

m(65 ,09) = k*u(8)*u(8); m(66 ,10) = k*u(8)*u(8); m(67 ,09) = k*u(9);

m(68 ,10) = k*u(9); m(69 ,09) = k*u(9)*u(9); m(70 ,10) = k*u(9)*u(9);

m(71 ,10) = k*u(10); m(72 ,10) = k*u(10)*u(10); m(73 ,02) = k*u(1)*u(2);

m(74 ,03) = k*u(1)*u(2); m(76 ,03) = k*u(2)*u(3); m(77 ,04) = k*u(2)*u(3);

m(79 ,04) = k*u(3)*u(4); m(80 ,05) = k*u(3)*u(4); m(82 ,05) = k*u(4)*u(5);

m(83 ,06) = k*u(4)*u(5); m(85 ,06) = k*u(5)*u(6); m(86 ,07) = k*u(5)*u(6);

m(88 ,07) = k*u(6)*u(7); m(89 ,08) = k*u(6)*u(7); m(91 ,08) = k*u(7)*u(8);

m(92 ,09) = k*u(7)*u(8); m(94 ,09) = k*u(8)*u(9); m(95 ,10) = k*u(8)*u(9);

m(96 ,10) = k*u(9)*u(10); m(97 ,03) = k*u(1)*u(3); m(99 ,04) = k*u(2)*u(4);

m(101 ,05) = k*u(3)*u(5); m(103 ,06) = k*u(4)*u(6); m(105 ,07) = k*u(5)*u(7);

m(107 ,08) = k*u(6)*u(8); m(109 ,09) = k*u(7)*u(9); m(111 ,10) = k*u(8)*u(10);

function m = ssbloquev1(k)

m = zeros (19 ,111);

g1 = [03 , 13 , 21 , 29 , 37 , 45 , 53 , 61 , 67 , 71];

for i=1:10, m(i,g1(i)) = k; end

g2 = [05 , 14 , 22 , 30 , 38 , 46 , 54 , 62 , 68];

for i=1:9, m(10+i,g2(i)) = k; end

function m = ssbloquev2(k)

m = zeros (19 ,111);

g1 = [08 , 17 , 25 , 33 , 41 , 49 , 57 , 64 , 69 , 72];

for i=1:10, m(i,g1(i)) = k; end

g2 = [09 , 18 , 26 , 34 , 42 , 50 , 58 , 65 , 70];

for i=1:9, m(10+i,g2(i)) = k; end
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function m = ssbloquev3(k)

m = zeros (17 ,111);

g1 = [05 , 14 , 22 , 30 , 38 , 46 , 54 , 62 , 68];

for i=1:9, m(i,g1(i)) = k; end

g2 = [06 , 15 , 23 , 31 , 39 , 47 , 55 , 63];

for i=1:8, m(9+i,g2(i)) = k; end

function m = ssbloquev4(k)

m = zeros (17 ,111);

g1 = [09 , 18 , 26 , 34 , 42 , 50 , 58 , 65 , 70];

for i=1:9, m(i,g1(i)) = k; end

g2 = [10 , 19 , 27 , 35 , 43 , 51 , 59 , 66];

for i=1:8, m(9+i,g2(i)) = k; end

function m = ssbloquev5(k)

m = zeros (15 ,111);

g1 = [06 , 15 , 23 , 31 , 39 , 47 , 55 , 63];

for i=1:8, m(i,g1(i)) = k; end

g2 = [07 , 16 , 24 , 32 , 40 , 48 , 56];

for i=1:7, m(8+i,g2(i)) = k; end

function m = ssbloquev6(k)

m = zeros (15 ,111);

g1 = [10 , 19 , 27 , 35 , 43 , 51 , 59 , 66];

for i=1:8, m(i,g1(i)) = k; end

g2 = [11 , 20 , 28 , 36 , 44 , 52 , 60];

for i=1:7, m(8+i,g2(i)) = k; end

function m = ssbloquev7(k)

m = zeros (17 ,111);

g1 = [73 , 76 , 79 , 82 , 85 , 88 , 91 , 94 , 96];

for i=1:9, m(i,g1(i)) = k; end

g2 = [74 , 77 , 80 , 83 , 86 , 89 , 92 , 95];

for i=1:8, m(9+i,g2(i)) = k; end

function m = ssbloquev8(k)

m = zeros (15 ,111);

g1 = [97 , 99 , 101 , 103 , 105 , 107 , 109 , 111];

for i=1:8, m(i,g1(i)) = k; end

g2 = [98 , 100 , 102 , 104 , 106 , 108 , 110];

for i=1:7, m(8+i,g2(i)) = k; end

function m = ssbloquev9(k)

m = zeros (15 ,111);

g1 = [74 , 77 , 80 , 83 , 86 , 89 , 92 , 95];

for i=1:8, m(i,g1(i)) = k; end

g2 = [75 , 78 , 81 , 84 , 87 , 90 , 93];

for i=1:7, m(8+i,g2(i)) = k; end

function mfinal = ssabajito(ed,ic1 ,hll_11 ,hcp_11 ,u1zero ,u1menos1 ,esi ,du1 ,...

k,u1r ,hy1 ,vhll_11 ,vhcp_11 ,cal_nom)

mfinal = zeros (18 ,310);

for i=1:10, mfinal(i,i) = ed(i,1); end

for i=1:10, mfinal(i,10+i) = ic1(i,1); end

mfinal (11 ,21) = +du1 (1); mfinal (11 ,22) = -du1 (1);

mfinal (12 ,23) = +du1 (2); mfinal (12 ,24) = -du1 (2);

mfinal (13 ,25) = +du1 (3); mfinal (13 ,26) = -du1 (3);

mfinal (14 ,27) = +du1 (4); mfinal (14 ,28) = -du1 (4);

mfinal (15 ,29) = k/u1r (1); mfinal (16 ,30) = k/u1r (2);

mfinal (17 ,31) = k/u1r (3); mfinal (18 ,32) = k/u1r (4);

mfinal (01:10 ,033:143) = abajony1(hll_11 ,hcp_11 ,u1zero ,u1menos1 );

192



bvar = abajovp(hy1 ,vhll_11 ,vhcp_11 ,cal_nom );

mfinal (01:10 ,144:292) = bvar;

mfinal (01:18 ,293:310) = esi*eye (18);

function m = ssabajony1(hll ,hcp ,uzero ,umenos1)

m = zeros (10 ,111);

m(01 ,001) = hcp(1,3)* umenos1; m(01 ,002) = hcp (1 ,2)* uzero;

m(01 ,003) = hll(1,1); m(02 ,004) = hcp(2,3)* uzero;

m(02 ,005) = hll(1,2); m(03 ,006) = hll(1,3); m(01 ,008) = hcp (1 ,1);

m(02 ,009) = hcp(2,2); m(03 ,010) = hcp(3,3); m(02 ,012) = hcp (1 ,3)* uzero;

m(02 ,013) = hll(1,1); m(03 ,014) = hll(1,2); m(04 ,015) = hll (1 ,3);

m(02 ,017) = hcp(1,1); m(03 ,018) = hcp(2,2); m(04 ,019) = hcp (3 ,3);

m(03 ,021) = hll(1,1); m(04 ,022) = hll(1,2); m(05 ,023) = hll (1 ,3);

m(03 ,025) = hcp(1,1); m(04 ,026) = hcp(2,2); m(05 ,027) = hcp (3 ,3);

m(04 ,029) = hll(1,1); m(05 ,030) = hll(1,2); m(06 ,031) = hll (1 ,3);

m(04 ,033) = hcp(1,1); m(05 ,034) = hcp(2,2); m(06 ,035) = hcp (3 ,3);

m(05 ,037) = hll(1,1); m(06 ,038) = hll(1,2); m(07 ,039) = hll (1 ,3);

m(05 ,041) = hcp(1,1); m(06 ,042) = hcp(2,2); m(07 ,043) = hcp (3 ,3);

m(06 ,045) = hll(1,1); m(07 ,046) = hll(1,2); m(08 ,047) = hll (1 ,3);

m(06 ,049) = hcp(1,1); m(07 ,050) = hcp(2,2); m(08 ,051) = hcp (3 ,3);

m(07 ,053) = hll(1,1); m(08 ,054) = hll(1,2); m(09 ,055) = hll (1 ,3);

m(07 ,057) = hcp(1,1); m(08 ,058) = hcp(2,2); m(09 ,059) = hcp (3 ,3);

m(08 ,061) = hll(1,1); m(09 ,062) = hll(1,2); m(10 ,063) = hll (1 ,3);

m(08 ,064) = hcp(1,1); m(09 ,065) = hcp(2,2); m(10 ,066) = hcp (3 ,3);

m(09 ,067) = hll(1,1); m(10 ,068) = hll(1,2); m(09 ,069) = hcp (1 ,1);

m(10 ,070) = hcp(2,2); m(10 ,071) = hll(1,1); m(10 ,072) = hcp (1 ,1);

m(02 ,073) = hcp(1,2); m(03 ,074) = hcp(2,3); m(03 ,076) = hcp (1 ,2);

m(04 ,077) = hcp(2,3); m(04 ,079) = hcp(1,2); m(05 ,080) = hcp (2 ,3);

m(05 ,082) = hcp(1,2); m(06 ,083) = hcp(2,3); m(06 ,085) = hcp (1 ,2);

m(07 ,086) = hcp(2,3); m(07 ,088) = hcp(1,2); m(08 ,089) = hcp (2 ,3);

m(08 ,091) = hcp(1,2); m(09 ,092) = hcp(2,3); m(09 ,094) = hcp (1 ,2);

m(10 ,095) = hcp(2,3); m(10 ,096) = hcp(1,2); m(03 ,097) = hcp (1 ,3);

m(04 ,099) = hcp(1,3); m(05 ,101) = hcp(1,3); m(06 ,103) = hcp (1 ,3);

m(07 ,105) = hcp(1,3); m(08 ,107) = hcp(1,3); m(09 ,109) = hcp (1 ,3);

m(10 ,111) = hcp(1,3);

function m = ssabajovp(hy1 ,vhll_11 ,vhcp_11 ,c_nom)

v1 = bloquev1a(hy1 ,vhll_11 ,c_nom );

v2 = bloquev2a(hy1 ,vhcp_11 ,c_nom );

v3 = bloquev3a(hy1 ,vhll_11 ,c_nom );

v4 = bloquev4a(hy1 ,vhcp_11 ,c_nom );

v5 = bloquev5a(hy1 ,vhll_11 ,c_nom );

v6 = bloquev6a(hy1 ,vhcp_11 ,c_nom );

v7 = bloquev7a(hy1 ,vhcp_11 ,c_nom );

v8 = bloquev8a(hy1 ,vhcp_11 ,c_nom );

v9 = bloquev9a(hy1 ,vhcp_11 ,c_nom );

m = [v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 , v9];

function m = ssbloquev1a(hy1 ,vhll_11 ,c_nom)

m = zeros (10 ,19);

m(01:10 ,01:10) = vhll_11 (1,1)* eye (10);

m(02:10 ,11:19) = hy1*vhll_11 (1,1)*eye (09);

if c_nom == 1

m(01:09 ,01:10) = 0*m(01:09 ,01:10);

m(02:09 ,11:19) = 0*m(02:09 ,11:19);

end

function m = ssbloquev2a(hy1 ,vhcp_11 ,c_nom)

m = zeros (10 ,19);

m(01:10 ,01:10) = vhcp_11 (1,1)* eye (10);

m(02:10 ,11:19) = hy1*vhcp_11 (1,1)*eye (09);
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if c_nom == 1

m(01:09 ,01:10) = 0*m(01:09 ,01:10);

m(02:09 ,11:19) = 0*m(02:09 ,11:19);

end

function m = ssbloquev3a(hy1 ,vhll_11 ,c_nom)

m = zeros (10 ,17);

m(02:10 ,01:09) = vhll_11 (1,2)* eye (9);

m(03:10 ,10:17) = hy1*vhll_11 (1,2)*eye (8);

if c_nom == 1

m(02:09 ,01:09) = 0*m(02:09 ,01:09);

m(03:09 ,10:17) = 0*m(03:09 ,10:17);

end

function m = ssbloquev4a(hy1 ,vhcp_11 ,c_nom)

m = zeros (10 ,17);

m(02:10 ,01:09) = vhcp_11 (2,2)* eye (9);

m(03:10 ,10:17) = hy1*vhcp_11 (2,2)*eye (8);

if c_nom == 1

m(02:09 ,01:09) = 0*m(02:09 ,01:09);

m(03:09 ,10:17) = 0*m(03:09 ,10:17);

end

function m = ssbloquev5a(hy1 ,vhll_11 ,c_nom)\

m = zeros (10 ,15);

m(03:10 ,01:08) = vhll_11 (1,3)* eye (8);

m(04:10 ,09:15) = hy1*vhll_11 (1,3)*eye (7);

if c_nom == 1

m(03:09 ,01:08) = 0*m(03:09 ,01:08);

m(04:09 ,09:15) = 0*m(04:09 ,09:15);

end

function m = ssbloquev6a(hy1 ,vhcp_11 ,c_nom)

m = zeros (10 ,15);

m(03:10 ,01:08) = vhcp_11 (3,3)* eye (8);

m(04:10 ,09:15) = hy1*vhcp_11 (3,3)*eye (7);

if c_nom == 1

m(03:09 ,01:08) = 0*m(03:09 ,01:08);

m(04:09 ,09:15) = 0*m(04:09 ,09:15);

end

function m = ssbloquev7a(hy1 ,vhcp_11 ,c_nom)

m = zeros (10 ,17);

m(02:10 ,01:09) = vhcp_11 (1,2)* eye (9);

m(03:10 ,10:17) = hy1*vhcp_11 (1,2)*eye (8);

if c_nom == 1

m(02:09 ,01:09) = 0*m(02:09 ,01:09);

m(03:09 ,10:17) = 0*m(03:09 ,10:17);

end

function m = ssbloquev8a(hy1 ,vhcp_11 ,c_nom)

m = zeros (10 ,15);

m(03:10 ,01:08) = vhcp_11 (1,3)* eye (8);

m(04:10 ,09:15) = hy1*vhcp_11 (1,3)*eye (7);

if c_nom == 1

m(03:09 ,01:08) = 0*m(03:09 ,01:08);

m(04:09 ,09:15) = 0*m(04:09 ,09:15);

end

194



function m = ssbloquev9a(hy1 ,vhcp_11 ,c_nom)

m = zeros (10 ,15);

m(03:10 ,01:08) = vhcp_11 (2,3)* eye (8);

m(04:10 ,09:15) = hy1*vhcp_11 (2,3)*eye (7);

if c_nom == 1

m(03:09 ,01:08) = 0*m(03:09 ,01:08);

m(04:09 ,09:15) = 0*m(04:09 ,09:15);

end

Table I.4: List of programs to calculate M for MIMO case example with M = 2

Program Name Description

dabmdentro p10.m Calculate M with nu = 2, ny = 2 and M = 2
arribita p10.m Internal program M12

arriba1 p10.m Internal program M12

bloquev1 p10.m Internal program M21 (MC1CCD)
bloquev2 p10.m Internal program M21 (MC1CCD)
bloquev3 p10.m Internal program M21 (MC1CCD)
bloquev4 p10.m Internal program M21 (MC1CCD)
bloquev7 p10.m Internal program M21 (MC1CCD)
abajito p10.m Internal program M21

abajony1 p10.m Internal program M21

abajony2 p10.m Internal program M21

abajovp p10.m Internal program M21

bloquev1a p10.m Internal program M21

bloquev2a p10.m Internal program M21

bloquev3a p10.m Internal program M21

bloquev4a p10.m Internal program M21

bloquev7a p10.m Internal program M21

function m = dabmdentro_p10(esi ,k,ed,u,h11_ll ,h12_ll ,h21_ll ,h22_ll ,...

h11_cp ,h12_cp ,h21_cp ,h22_cp ,ic1 ,ic2 ,hy1 ,hy2 ,u1zero ,u1menos1 ,...

u2zero ,u2menos1 ,du1 ,du2 ,u1r ,u2r ,vhll_11 ,vhcp_11 ,...

vhll_12 ,vhcp_12 ,vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,vtc ,cal_nom)

marriba = arribita_p10(k,u(01:10 ,1) ,u(11:20 ,1) , u1zero ,u2zero ); % 340 X 28

menmedio = [bloquev1_p10(k) ; bloquev2_p10(k) ; bloquev3_p10(k) ; ...

bloquev4_p10(k) ; bloquev7_p10(k) ];

mabajo = abajito_p10(ed ,ic1 ,ic2 ,h11_ll ,h11_cp ,h12_ll ,h12_cp ,...

h21_ll ,h21_cp ,h22_ll ,h22_cp ,u1zero ,u1menos1 ,u2zero ,u2menos1 ,...

esi ,du1 ,du2 ,k,u1r ,u2r ,hy1 ,hy2 ,vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,...

vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,cal_nom ); % 28 X 724

m = zeros (724 ,724);

m( 001 : 340 , 697 : 724 ) = marriba;

m( 341 : 696 , 053 : 340 ) = menmedio;

m( 697 : 724 , : ) = mabajo;

m(698 ,022) = m(698 ,022) + (1/k)*hy1*m(697 ,021:696)*m(021:696 ,697);

m(699 ,023) = m(699 ,023) + (1/k)*hy1*m(698 ,021:696)*m(021:696 ,698);

m(700 ,024) = m(700 ,024) + (1/k)*hy1*m(699 ,021:696)*m(021:696 ,699);

m(701 ,025) = m(701 ,025) + (1/k)*hy1*m(700 ,021:696)*m(021:696 ,700);

m(702 ,026) = m(702 ,026) + (1/k)*hy1*m(701 ,021:696)*m(021:696 ,701);

m(703 ,027) = m(703 ,027) + (1/k)*hy1*m(702 ,021:696)*m(021:696 ,702);

m(704 ,028) = m(704 ,028) + (1/k)*hy1*m(703 ,021:696)*m(021:696 ,703);
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m(705 ,029) = m(705 ,029) + (1/k)*hy1*m(704 ,021:696)*m(021:696 ,704);

m(706 ,030) = m(706 ,030) + (1/k)*hy1*m(705 ,021:696)*m(021:696 ,705);

m(708 ,032) = m(708 ,032) + (1/k)*hy2*m(707 ,021:696)*m(021:696 ,707);

m(709 ,033) = m(709 ,033) + (1/k)*hy2*m(708 ,021:696)*m(021:696 ,708);

m(710 ,034) = m(710 ,034) + (1/k)*hy2*m(709 ,021:696)*m(021:696 ,709);

m(711 ,035) = m(711 ,035) + (1/k)*hy2*m(710 ,021:696)*m(021:696 ,710);

m(712 ,036) = m(712 ,036) + (1/k)*hy2*m(711 ,021:696)*m(021:696 ,711);

m(713 ,037) = m(713 ,037) + (1/k)*hy2*m(712 ,021:696)*m(021:696 ,712);

m(714 ,038) = m(714 ,038) + (1/k)*hy2*m(713 ,021:696)*m(021:696 ,713);

m(715 ,039) = m(715 ,039) + (1/k)*hy2*m(714 ,021:696)*m(021:696 ,714);

m(716 ,040) = m(716 ,040) + (1/k)*hy2*m(715 ,021:696)*m(021:696 ,715);

function mfinal = arribita_p10(k,u1,u2 ,u1zero ,u2zero)

mfinal = zeros (340 ,28);

mfinal (001:020 ,01:20) = k*eye (20); mfinal (021:040 ,01:20) = k*eye (20);

mfinal (041 ,21) = k*u1zero; mfinal (043 ,22) = k*u1(1);

mfinal (044 ,22) = k*u1(2); mfinal (045 ,23) = k*u2zero;

mfinal (046 ,23) = k*u2(1); mfinal (047 ,24) = k*u2(1);

mfinal (048 ,24) = k*u2(2); mfinal (049 ,25) = k*u1(1);

mfinal (050 ,26) = k*u1(2); mfinal (051 ,27) = k*u2(1);

mfinal (052 ,28) = k*u2(2);

mfinal (053:196 ,01:20) = arriba1_p10(k,u1); % 144 X 20

mfinal (197:340 ,01:20) = arriba1_p10(k,u2); % 144 X 20

function m = arriba1_p10(k,u)

m = zeros (144 ,20);

m(01 ,01) = k*u(01); m(02 ,01) = k*u(01); m(03 ,02) = k*u(01);

m(05 ,11) = k*u(01); m(06 ,11) = k*u(01); m(07 ,12) = k*u(01);

m(09 ,01) = k*u(01)*u(01); m(10 ,02) = k*u(01)*u(01);

m(12 ,11) = k*u(01)*u(01); m(13 ,12) = k*u(01)*u(01); m(15 ,02) = k*u(02);

m(16 ,03) = k*u(02); m(18 ,12) = k*u(02); m(19 ,13) = k*u(02);

m(21 ,02) = k*u(02)*u(02); m(22 ,03) = k*u(02)*u(02);

m(24 ,12) = k*u(02)*u(02); m(25 ,13) = k*u(02)*u(02); m(27 ,03) = k*u(03);

m(28 ,04) = k*u(03); m(30 ,13) = k*u(03); m(31 ,14) = k*u(03);

m(33 ,03) = k*u(03)*u(03); m(34 ,04) = k*u(03)*u(03);

m(36 ,13) = k*u(03)*u(03); m(37 ,14) = k*u(03)*u(03); m(39 ,04) = k*u(04);

m(40 ,05) = k*u(04); m(42 ,14) = k*u(04); m(43 ,15) = k*u(04);

m(45 ,04) = k*u(04)*u(04); m(46 ,05) = k*u(04)*u(04);

m(48 ,14) = k*u(04)*u(04); m(49 ,15) = k*u(04)*u(04); m(51 ,05) = k*u(05);

m(52 ,06) = k*u(05); m(54 ,15) = k*u(05); m(55 ,16) = k*u(05);

m(57 ,05) = k*u(05)*u(05); m(58 ,06) = k*u(05)*u(05);

m(60 ,15) = k*u(05)*u(05); m(61 ,16) = k*u(05)*u(05); m(63 ,06) = k*u(06);

m(64 ,07) = k*u(06); m(66 ,16) = k*u(06); m(67 ,17) = k*u(06);

m(69 ,06) = k*u(06)*u(06); m(70 ,07) = k*u(06)*u(06);

m(72 ,16) = k*u(06)*u(06); m(73 ,17) = k*u(06)*u(06); m(75 ,07) = k*u(07);

m(76 ,08) = k*u(07); m(78 ,17) = k*u(07); m(79 ,18) = k*u(07);

m(81 ,07) = k*u(07)*u(07); m(82 ,08) = k*u(07)*u(07);

m(84 ,17) = k*u(07)*u(07); m(85 ,18) = k*u(07)*u(07); m(87 ,08) = k*u(08);

m(88 ,09) = k*u(08); m(90 ,18) = k*u(08); m(91 ,19) = k*u(08);

m(93 ,08) = k*u(08)*u(08); m(94 ,09) = k*u(08)*u(08);

m(96 ,18) = k*u(08)*u(08); m(97 ,19) = k*u(08)*u(08); m(99 ,09) = k*u(09);

m(100 ,10) = k*u(09); m(101 ,19) = k*u(09); m(102 ,20) = k*u(09);

m(103 ,09) = k*u(09)*u(09); m(104 ,10) = k*u(09)*u(09);

m(105 ,19) = k*u(09)*u(09); m(106 ,20) = k*u(09)*u(09);

m(107 ,10) = k*u(10); m(108 ,20) = k*u(10); m(109 ,10) = k*u(10)*u(10);

m(110 ,20) = k*u(10)*u(10); m(111 ,02) = k*u(01)*u(02);

m(113 ,12) = k*u(01)*u(02); m(115 ,03) = k*u(02)*u(03);

m(117 ,13) = k*u(02)*u(03); m(119 ,04) = k*u(03)*u(04);

m(121 ,14) = k*u(03)*u(04); m(123 ,05) = k*u(04)*u(05);

m(125 ,15) = k*u(04)*u(05); m(127 ,06) = k*u(05)*u(06);

m(129 ,16) = k*u(05)*u(06); m(131 ,07) = k*u(06)*u(07);
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m(133 ,17) = k*u(06)*u(07); m(135 ,08) = k*u(07)*u(08);

m(137 ,18) = k*u(07)*u(08); m(139 ,09) = k*u(08)*u(09);

m(141 ,19) = k*u(08)*u(09); m(143 ,10) = k*u(09)*u(10);

m(144 ,20) = k*u(09)*u(10);

function m = bloquev1_p10(k)

m = zeros (76 ,288);

g1 = [002 , 015 , 027 , 039 , 051 , 063 , 075 , 087 , 099 , 107];

for i=1:10, m(i,g1(i)) = k; end

g2 = [003 , 016 , 028 , 040 , 052 , 064 , 076 , 088 , 100];

for i=1:9, m(10+i,g2(i)) = k; end

g3 = [006 , 018 , 030 , 042 , 054 , 066 , 078 , 090 , 101 , 108];

for i=1:10, m(19+i,g3(i)) = k; end

g4 = [007 , 019 , 031 , 043 , 055 , 067 , 079 , 091 , 102];

for i=1:9, m(29+i,g4(i)) = k; end

g5 = 144+g1;

for i=1:10, m(38+i,g5(i)) = k; end

g6 = 144+g2;

for i=1:9, m(48+i,g6(i)) = k; end

g7 = 144+g3;

for i=1:10, m(57+i,g7(i)) = k; end

g8 = 144+g4;

for i=1:9, m(67+i,g8(i)) = k; end

function m = bloquev2_p10(k)

m = zeros (76 ,288);

g1 = [009 , 021 , 033 , 045 , 057 , 069 , 081 , 093 , 103 , 109];

for i=1:10, m(i,g1(i)) = k; end

g2 = [010 , 022 , 034 , 046 , 058 , 070 , 082 , 094 , 104];

for i=1:9, m(10+i,g2(i)) = k; end

g3 = [012 , 024 , 036 , 048 , 060 , 072 , 084 , 096 , 105 , 110];

for i=1:10, m(19+i,g3(i)) = k; end

g4 = [013 , 025 , 037 , 049 , 061 , 073 , 085 , 097 , 106];

for i=1:9, m(29+i,g4(i)) = k; end

g5 = 144+g1;

for i=1:10, m(38+i,g5(i)) = k; end

g6 = 144+g2;

for i=1:9, m(48+i,g6(i)) = k; end

g7 = 144+g3;

for i=1:10, m(57+i,g7(i)) = k; end

g8 = 144+g4;

for i=1:9, m(67+i,g8(i)) = k; end

function m = bloquev3_p10(k)

m = zeros (68 ,288);

g1 = [003 , 016 , 028 , 040 , 052 , 064 , 076 , 088 , 100];

for i=1:9, m(i,g1(i)) = k; end

g2 = [004 , 017 , 029 , 041 , 053 , 065 , 077 , 089];

for i=1:8, m(9+i,g2(i)) = k; end

g3 = [007 , 019 , 031 , 043 , 055 , 067 , 079 , 091 , 102];

for i=1:9, m(17+i,g3(i)) = k; end

g4 = [008 , 020 , 032 , 044 , 056 , 068 , 080 , 092];

for i=1:8, m(26+i,g4(i)) = k; end

g5 = 144+g1;

for i=1:9, m(34+i,g5(i)) = k; end

g6 = 144+g2;

for i=1:8, m(43+i,g6(i)) = k; end

g7 = 144+g3;

for i=1:9, m(51+i,g7(i)) = k; end

g8 = 144+g4;

for i=1:8, m(60+i,g8(i)) = k; end
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function m = bloquev4_p10(k)

m = zeros (68 ,288);

g1 = [010 , 022 , 034 , 046 , 058 , 070 , 082 , 094 , 104];

for i=1:9, m(i,g1(i)) = k; end

g2 = [011 , 023 , 035 , 047 , 059 , 071 , 083 , 095];

for i=1:8, m(9+i,g2(i)) = k; end

g3 = [013 , 025 , 037 , 049 , 061 , 073 , 085 , 097 , 106];

for i=1:9, m(17+i,g3(i)) = k; end

g4 = [014 , 026 , 038 , 050 , 062 , 074 , 086 , 098];

for i=1:8, m(26+i,g4(i)) = k; end

g5 = 144+g1;

for i=1:9, m(34+i,g5(i)) = k; end

g6 = 144+g2;

for i=1:8, m(43+i,g6(i)) = k; end

g7 = 144+g3;

for i=1:9, m(51+i,g7(i)) = k; end

g8 = 144+g4;

for i=1:8, m(60+i,g8(i)) = k; end

function m = bloquev7_p10(k)

m = zeros (68 ,288);

g1 = [111 , 115 , 119 , 123 , 127 , 131 , 135 , 139 , 143];

for i=1:9, m(i,g1(i)) = k; end

g2 = [112 , 116 , 120 , 124 , 128 , 132 , 136 , 140];

for i=1:8, m(9+i,g2(i)) = k; end

g3 = [113 , 117 , 121 , 125 , 129 , 133 , 137 , 141 , 144];

for i=1:9, m(17+i,g3(i)) = k; end

g4 = [114 , 118 , 122 , 126 , 130 , 134 , 138 , 142];

for i=1:8, m(26+i,g4(i)) = k; end

g5 = 144+g1;

for i=1:9, m(34+i,g5(i)) = k; end

g6 = 144+g2;

for i=1:8, m(43+i,g6(i)) = k; end

g7 = 144+g3;

for i=1:9, m(51+i,g7(i)) = k; end

g8 = 144+g4;

for i=1:8, m(60+i,g8(i)) = k; end

function mfinal = abajito_p10(ed,ic1 ,ic2 ,hll_11 ,hcp_11 ,hll_12 ,hcp_12 ,...

hll_21 ,hcp_21 ,hll_22 ,hcp_22 ,u1zero ,u1menos1 ,u2zero ,u2menos1 ,esi ,...

du1 ,du2 ,k,u1r ,u2r ,hy1 ,hy2 ,vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,...

vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,cal_nom)

mfinal = zeros (28 ,724);

for i=1:20, mfinal(i,i) = ed(i,1); end

for i=01:10 , mfinal(i,20+i) = ic1(i,1); end

for i=11:20 , mfinal(i,20+i) = ic2(i-10 ,1); end

mfinal (21 ,41) = +du1 (1); mfinal (21 ,42) = -du1 (1);

mfinal (22 ,43) = +du1 (2); mfinal (22 ,44) = -du1 (2);

mfinal (23 ,45) = +du2 (1); mfinal (23 ,46) = -du2 (1);

mfinal (24 ,47) = +du2 (2); mfinal (24 ,48) = -du2 (2);

mfinal (25 ,49) = k/u1r (1); mfinal (26 ,50) = k/u1r (2);

mfinal (27 ,51) = k/u2r (1); mfinal (28 ,52) = k/u2r (2);

bny1nu1 = abajony1_p10(hll_11 ,hcp_11 ,u1zero ); % 10 X 144

bny1nu2 = abajony1_p10(hll_12 ,hcp_12 ,u2zero ); % 10 X 144

bny2nu1 = abajony2_p10(hll_21 ,hcp_21 ,u1zero ); % 10 X 144

bny2nu2 = abajony2_p10(hll_22 ,hcp_22 ,u2zero ); % 10 X 144

p1 = [bny1nu1 , bny1nu2 ]; p2 = [bny2nu1 , bny2nu2 ]; p3 = [p1 ; p2];

mfinal (01:20 ,053:340) = p3;

bvar = abajovp_p10(hy1 ,hy2 ,vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,...

vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,cal_nom );
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mfinal (01:20 ,341:696) = bvar;

mfinal (01:28 ,697:724) = esi*eye (28);

function m = abajony1_p10(hll ,hcp ,uzero)

m = zeros (10 ,144);

m(01 ,001) = hcp(1,2)* uzero; m(01 ,002) = hll(1,1); m(02 ,003) = hll (1 ,2);

m(01 ,009) = hcp(1,1); m(02 ,010) = hcp(2,2); m(02 ,015) = hll (1 ,1);

m(03 ,016) = hll(1,2); m(02 ,021) = hcp(1,1); m(03 ,022) = hcp (2 ,2);

m(03 ,027) = hll(1,1); m(04 ,028) = hll(1,2); m(03 ,033) = hcp (1 ,1);

m(04 ,034) = hcp(2,2); m(04 ,039) = hll(1,1); m(05 ,040) = hll (1 ,2);

m(04 ,045) = hcp(1,1); m(05 ,046) = hcp(2,2); m(05 ,051) = hll (1 ,1);

m(06 ,052) = hll(1,2); m(05 ,057) = hcp(1,1); m(06 ,058) = hcp (2 ,2);

m(06 ,063) = hll(1,1); m(07 ,064) = hll(1,2); m(06 ,069) = hcp (1 ,1);

m(07 ,070) = hcp(2,2); m(07 ,075) = hll(1,1); m(08 ,076) = hll (1 ,2);

m(07 ,081) = hcp(1,1); m(08 ,082) = hcp(2,2); m(08 ,087) = hll (1 ,1);

m(09 ,088) = hll(1,2); m(08 ,093) = hcp(1,1); m(09 ,094) = hcp (2 ,2);

m(09 ,099) = hll(1,1); m(10 ,100) = hll(1,2); m(09 ,103) = hcp (1 ,1);

m(10 ,104) = hcp(2,2); m(10 ,107) = hll(1,1); m(10 ,109) = hcp (1 ,1);

m(02 ,111) = hcp(1,2); m(03 ,115) = hcp(1,2); m(04 ,119) = hcp (1 ,2);

m(05 ,123) = hcp(1,2); m(06 ,127) = hcp(1,2); m(07 ,131) = hcp (1 ,2);

m(08 ,135) = hcp(1,2); m(09 ,139) = hcp(1,2); m(10 ,143) = hcp (1 ,2);

function m = abajony2_p10(hll ,hcp ,uzero)

m = zeros (10 ,144); m(01 ,005) = hcp(1,2)* uzero; m(01 ,006) = hll(1,1);

m(02 ,007) = hll(1,2); m(01 ,012) = hcp(1,1); m(02 ,013) = hcp (2 ,2);

m(02 ,018) = hll(1,1); m(03 ,019) = hll(1,2); m(02 ,024) = hcp (1 ,1);

m(03 ,025) = hcp(2,2); m(03 ,030) = hll(1,1); m(04 ,031) = hll (1 ,2);

m(03 ,036) = hcp(1,1); m(04 ,037) = hcp(2,2); m(04 ,042) = hll (1 ,1);

m(05 ,043) = hll(1,2); m(04 ,048) = hcp(1,1); m(05 ,049) = hcp (2 ,2);

m(05 ,054) = hll(1,1); m(06 ,055) = hll(1,2); m(05 ,060) = hcp (1 ,1);

m(06 ,061) = hcp(2,2); m(06 ,066) = hll(1,1); m(07 ,067) = hll (1 ,2);

m(06 ,072) = hcp(1,1); m(07 ,073) = hcp(2,2); m(07 ,078) = hll (1 ,1);

m(08 ,079) = hll(1,2); m(07 ,084) = hcp(1,1); m(08 ,085) = hcp (2 ,2);

m(08 ,090) = hll(1,1); m(09 ,091) = hll(1,2); m(08 ,096) = hcp (1 ,1);

m(09 ,097) = hcp(2,2); m(09 ,101) = hll(1,1); m(10 ,102) = hll (1 ,2);

m(09 ,105) = hcp(1,1); m(10 ,106) = hcp(2,2); m(10 ,108) = hll (1 ,1);

m(10 ,110) = hcp(1,1); m(02 ,113) = hcp(1,2); m(03 ,117) = hcp (1 ,2);

m(04 ,121) = hcp(1,2); m(05 ,125) = hcp(1,2); m(06 ,129) = hcp (1 ,2);

m(07 ,133) = hcp(1,2); m(08 ,137) = hcp(1,2); m(09 ,141) = hcp (1 ,2);

m(10 ,144) = hcp(1,2);

function m = abajovp_p10(hy1 ,hy2 ,vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,...

vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,c_nom)

v1 = bloquev1a_p10 (...

hy1 ,hy2 ,vhll_11 ,vhll_12 ,vhll_21 ,vhll_22 ,c_nom );

v2 = bloquev2a_p10 (...

hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom );

v3 = bloquev3a_p10 (...

hy1 ,hy2 ,vhll_11 ,vhll_12 ,vhll_21 ,vhll_22 ,c_nom );

v4 = bloquev4a_p10 (...

hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom );

v7 = bloquev7a_p10 (...

hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom );

m = [ v1 , v2 , v3 , v4 , v7 ];

function m = bloquev1a_p10(hy1 ,hy2 ,vhll_11 ,vhll_12 ,vhll_21 ,vhll_22 ,c_nom)

m = zeros (20 ,76);

m(01:10 ,01:10) = vhll_11 (1,1)* eye (10);

m(02:10 ,11:19) = hy1*vhll_11 (1,1)*eye (09);

m(11:20 ,20:29) = vhll_21 (1,1)* eye (10);

m(12:20 ,30:38) = hy2*vhll_21 (1,1)*eye (09);
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m(01:10 ,39:48) = vhll_12 (1,1)* eye (10);

m(02:10 ,49:57) = hy1*vhll_12 (1,1)*eye (09);

m(11:20 ,58:67) = vhll_22 (1,1)* eye (10);

m(12:20 ,68:76) = hy2*vhll_22 (1,1)*eye (09);

if c_nom == 1

m(01:09 ,:) = 0*m(01:09 ,:);

m(11:19 ,:) = 0*m(11:19 ,:);

end

function m = bloquev2a_p10(hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom)

m = zeros (20 ,76);

m(01:10 ,01:10) = vhcp_11 (1,1)* eye (10);

m(02:10 ,11:19) = hy1*vhcp_11 (1,1)*eye (09);

m(11:20 ,20:29) = vhcp_21 (1,1)* eye (10);

m(12:20 ,30:38) = hy2*vhcp_21 (1,1)*eye (09);

m(01:10 ,39:48) = vhcp_12 (1,1)* eye (10);

m(02:10 ,49:57) = hy1*vhcp_12 (1,1)*eye (09);

m(11:20 ,58:67) = vhcp_22 (1,1)* eye (10);

m(12:20 ,68:76) = hy2*vhcp_22 (1,1)*eye (09);

if c_nom == 1

m(01:09 ,:) = 0*m(01:09 ,:);

m(11:19 ,:) = 0*m(11:19 ,:);

end

function m = bloquev3a_p10(hy1 ,hy2 ,vhll_11 ,vhll_12 ,vhll_21 ,vhll_22 ,c_nom)

m = zeros (20 ,68);

m(02:10 ,01:09) = vhll_11 (1,2)* eye (9);

m(03:10 ,10:17) = hy1*vhll_11 (1,2)*eye (8);

m(12:20 ,18:26) = vhll_21 (1,2)* eye (9);

m(13:20 ,27:34) = hy2*vhll_21 (1,2)*eye (8);

m(02:10 ,35:43) = vhll_12 (1,2)* eye (9);

m(03:10 ,44:51) = hy1*vhll_12 (1,2)*eye (8);

m(12:20 ,52:60) = vhll_22 (1,2)* eye (9);

m(13:20 ,61:68) = hy2*vhll_22 (1,2)*eye (8);

if c_nom == 1

m(01:09 ,:) = 0*m(01:09 ,:);

m(11:19 ,:) = 0*m(11:19 ,:);

end

function m = bloquev4a_p10(hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom)

m = zeros (20 ,68);

m(02:10 ,01:09) = vhcp_11 (2,2)* eye (9);

m(03:10 ,10:17) = hy1*vhcp_11 (2,2)*eye (8);

m(12:20 ,18:26) = vhcp_21 (2,2)* eye (9);

m(13:20 ,27:34) = hy2*vhcp_21 (2,2)*eye (8);

m(02:10 ,35:43) = vhcp_12 (2,2)* eye (9);

m(03:10 ,44:51) = hy1*vhcp_12 (2,2)*eye (8);

m(12:20 ,52:60) = vhcp_22 (2,2)* eye (9);

m(13:20 ,61:68) = hy2*vhcp_22 (2,2)*eye (8);

if c_nom == 1

m(01:09 ,:) = 0*m(01:09 ,:);

m(11:19 ,:) = 0*m(11:19 ,:);

end

function m = bloquev7a_p10(hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom)

m = zeros (20 ,68);

m(02:10 ,01:09) = vhcp_11 (1,2)* eye (9);

m(03:10 ,10:17) = hy1*vhcp_11 (1,2)*eye (8);

m(12:20 ,18:26) = vhcp_21 (1,2)* eye (9);

m(13:20 ,27:34) = hy2*vhcp_21 (1,2)*eye (8);

m(02:10 ,35:43) = vhcp_12 (1,2)* eye (9);
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m(03:10 ,44:51) = hy1*vhcp_12 (1,2)*eye (8);

m(12:20 ,52:60) = vhcp_22 (1,2)* eye (9);

m(13:20 ,61:68) = hy2*vhcp_22 (1,2)*eye (8);

if c_nom == 1

m(01:09 ,:) = 0*m(01:09 ,:);

m(11:19 ,:) = 0*m(11:19 ,:);

end

Table I.5: List of programs to calculate M for MIMO case example with M = 3

Program Name Description

dabmdentro.m Calculate M with nu = 2, ny = 2 and M = 3
arribita.m Internal Program M12

arriba1.m Internal program M12

bloquev1.m Internal program M21 (MC1CCD)
bloquev2.m Internal program M21 (MC1CCD)
bloquev3.m Internal program M21 (MC1CCD)
bloquev4.m Internal program M21 (MC1CCD)
bloquev5.m Internal program M21 (MC1CCD)
bloquev6.m Internal program M21 (MC1CCD)
bloquev7.m Internal program M21 (MC1CCD)
bloquev8.m Internal program M21 (MC1CCD)
bloquev9.m Internal program M21 (MC1CCD)
abajito.m Internal program M21

abajony1.m Internal program M21

abajony2.m Internal program M21

abajovp.m Internal program M21

bloquev1a.m Internal program M21

bloquev2a.m Internal program M21

bloquev3a.m Internal program M21

bloquev4a.m Internal program M21

bloquev5a.m Internal program M21

bloquev6a.m Internal program M21

bloquev7a.m Internal program M21

bloquev8a.m Internal program M21

bloquev9a.m Internal program M21

function m = dabmdentro(esi ,k,ed,u,h11_ll ,h12_ll ,h21_ll ,h22_ll ,...

h11_cp ,h12_cp ,h21_cp ,h22_cp ,ic1 ,ic2 ,hy1 ,hy2 ,u1zero ,u1menos1 ,...

u2zero ,u2menos1 ,du1 ,du2 ,u1r ,u2r ,vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,...

vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,vtc ,cal_nom)

marriba = arribita(k,u(1:10,1) ,u(11:20 ,1) , u1zero ,u2zero ); % 508 X 36

menmedio = [bloquev1(k) ; bloquev2(k) ; bloquev3(k) ; bloquev4(k) ; ...

bloquev5(k) ; bloquev6(k) ; bloquev7(k) ; bloquev8(k) ; bloquev9(k) ];

mabajo = abajito(ed ,ic1 ,ic2 ,h11_ll ,h11_cp ,h12_ll ,h12_cp ,h21_ll ,h21_cp ,...

h22_ll ,h22_cp ,u1zero ,u1menos1 ,u2zero ,u2menos1 ,esi ,du1 ,du2 ,...

k,u1r ,u2r ,hy1 ,hy2 ,vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,vhll_21 ,vhcp_21 ,...

vhll_22 ,vhcp_22 ,cal_nom ); % 38 X 1140

m = zeros (1140 ,1140);
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m(0001 : 0508 , 1105 : 1140) = marriba;

m(0509 : 1104 , 0065 : 0508) = menmedio;

m(1105 : 1140 , : ) = mabajo;

m(1106 ,022) = m(1106 ,022) + (1/k)*hy1*m(1105 ,021:1104)*m(021:1104 ,1105);

m(1107 ,023) = m(1107 ,023) + (1/k)*hy1*m(1106 ,021:1104)*m(021:1104 ,1106);

m(1108 ,024) = m(1108 ,024) + (1/k)*hy1*m(1107 ,021:1104)*m(021:1104 ,1107);

m(1109 ,025) = m(1109 ,025) + (1/k)*hy1*m(1108 ,021:1104)*m(021:1104 ,1108);

m(1110 ,026) = m(1110 ,026) + (1/k)*hy1*m(1109 ,021:1104)*m(021:1104 ,1109);

m(1111 ,027) = m(1111 ,027) + (1/k)*hy1*m(1110 ,021:1104)*m(021:1104 ,1110);

m(1112 ,028) = m(1112 ,028) + (1/k)*hy1*m(1111 ,021:1104)*m(021:1104 ,1111);

m(1113 ,029) = m(1113 ,029) + (1/k)*hy1*m(1112 ,021:1104)*m(021:1104 ,1112);

m(1114 ,030) = m(1114 ,030) + (1/k)*hy1*m(1113 ,021:1104)*m(021:1104 ,1113);

m(1116 ,032) = m(1116 ,032) + (1/k)*hy2*m(1115 ,021:1104)*m(021:1104 ,1115);

m(1117 ,033) = m(1117 ,033) + (1/k)*hy2*m(1116 ,021:1104)*m(021:1104 ,1116);

m(1118 ,034) = m(1118 ,034) + (1/k)*hy2*m(1117 ,021:1104)*m(021:1104 ,1117);

m(1119 ,035) = m(1119 ,035) + (1/k)*hy2*m(1118 ,021:1104)*m(021:1104 ,1118);

m(1120 ,036) = m(1120 ,036) + (1/k)*hy2*m(1119 ,021:1104)*m(021:1104 ,1119);

m(1121 ,037) = m(1121 ,037) + (1/k)*hy2*m(1120 ,021:1104)*m(021:1104 ,1120);

m(1122 ,038) = m(1122 ,038) + (1/k)*hy2*m(1121 ,021:1104)*m(021:1104 ,1121);

m(1123 ,039) = m(1123 ,039) + (1/k)*hy2*m(1122 ,021:1104)*m(021:1104 ,1122);

m(1124 ,040) = m(1124 ,040) + (1/k)*hy2*m(1123 ,021:1104)*m(021:1104 ,1123);

function mfinal = arribita(k,u1,u2 ,u1zero ,u2zero)

mfinal = zeros (508 ,36); mfinal (001:020 ,01:20) = k*eye (20);

mfinal (021:040 ,01:20) = k*eye (20); mfinal (041 ,21) = k*u1zero;

mfinal (042 ,21) = k*u1(1); mfinal (043 ,22) = k*u1(1);

mfinal (044 ,22) = k*u1(2); mfinal (045 ,23) = k*u1(2);

mfinal (046 ,23) = k*u1(3); mfinal (047 ,24) = k*u1(3);

mfinal (048 ,24) = k*u1(4); mfinal (049 ,25) = k*u2zero;

mfinal (050 ,25) = k*u2(1); mfinal (051 ,26) = k*u2(1);

mfinal (052 ,26) = k*u2(2); mfinal (053 ,27) = k*u2(2);

mfinal (054 ,27) = k*u2(3); mfinal (055 ,28) = k*u2(3);

mfinal (056 ,28) = k*u2(4); mfinal (057 ,29) = k*u1(1);

mfinal (058 ,30) = k*u1(2); mfinal (059 ,31) = k*u1(3);

mfinal (060 ,32) = k*u1(4); mfinal (061 ,33) = k*u2(1);

mfinal (062 ,34) = k*u2(2); mfinal (063 ,35) = k*u2(3);

mfinal (064 ,36) = k*u2(4); mfinal (065:286 ,01:20) = arriba1(k,u1);

mfinal (287:508 ,01:20) = arriba1(k,u2);

function m = arriba1(k,u)

m = zeros (222 ,20);

m(001 ,01) = k*u(01); m(002 ,01) = k*u(01); m(003 ,01) = k*u(01);

m(004 ,02) = k*u(01); m(005 ,02) = k*u(01); m(006 ,03) = k*u(01);

m(008 ,11) = k*u(01); m(009 ,11) = k*u(01); m(010 ,11) = k*u(01);

m(011 ,12) = k*u(01); m(012 ,12) = k*u(01); m(013 ,13) = k*u(01);

m(015 ,01) = k*u(01)*u(01); m(016 ,02) = k*u(01)*u(01);

m(017 ,03) = k*u(01)*u(01); m(019 ,11) = k*u(01)*u(01);

m(020 ,12) = k*u(01)*u(01); m(021 ,13) = k*u(01)*u(01);

m(023 ,02) = k*u(02); m(024 ,02) = k*u(02); m(025 ,03) = k*u(02);

m(026 ,04) = k*u(02); m(028 ,12) = k*u(02); m(029 ,12) = k*u(02);

m(030 ,13) = k*u(02); m(031 ,14) = k*u(02); m(033 ,02) = k*u(02)*u(02);

m(034 ,03) = k*u(02)*u(02); m(035 ,04) = k*u(02)*u(02);

m(037 ,12) = k*u(02)*u(02); m(038 ,13) = k*u(02)*u(02);

m(039 ,14) = k*u(02)*u(02); m(041 ,03) = k*u(03); m(042 ,04) = k*u(03);

m(043 ,05) = k*u(03); m(045 ,13) = k*u(03); m(046 ,14) = k*u(03);

m(047 ,15) = k*u(03); m(049 ,03) = k*u(03)*u(03);

m(050 ,04) = k*u(03)*u(03); m(051 ,05) = k*u(03)*u(03);

m(053 ,13) = k*u(03)*u(03); m(054 ,14) = k*u(03)*u(03);

m(055 ,15) = k*u(03)*u(03); m(057 ,04) = k*u(04);

m(058 ,05) = k*u(04); m(059 ,06) = k*u(04); m(061 ,14) = k*u(04);

m(062 ,15) = k*u(04); m(063 ,16) = k*u(04); m(065 ,04) = k*u(04)*u(04);
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m(066 ,05) = k*u(04)*u(04); m(067 ,06) = k*u(04)*u(04);

m(069 ,14) = k*u(04)*u(04); m(070 ,15) = k*u(04)*u(04);

m(071 ,16) = k*u(04)*u(04); m(073 ,05) = k*u(05); m(074 ,06) = k*u(05);

m(075 ,07) = k*u(05); m(077 ,15) = k*u(05); m(078 ,16) = k*u(05);

m(079 ,17) = k*u(05); m(081 ,05) = k*u(05)*u(05);

m(082 ,06) = k*u(05)*u(05); m(083 ,07) = k*u(05)*u(05);

m(085 ,15) = k*u(05)*u(05); m(086 ,16) = k*u(05)*u(05);

m(087 ,17) = k*u(05)*u(05); m(089 ,06) = k*u(06); m(090 ,07) = k*u(06);

m(091 ,08) = k*u(06); m(093 ,16) = k*u(06); m(094 ,17) = k*u(06);

m(095 ,18) = k*u(06); m(097 ,06) = k*u(06)*u(06);

m(098 ,07) = k*u(06)*u(06); m(099 ,08) = k*u(06)*u(06);

m(101 ,16) = k*u(06)*u(06); m(102 ,17) = k*u(06)*u(06);

m(103 ,18) = k*u(06)*u(06); m(105 ,07) = k*u(07);

m(106 ,08) = k*u(07); m(107 ,09) = k*u(07); m(109 ,17) = k*u(07);

m(110 ,18) = k*u(07); m(111 ,19) = k*u(07); m(113 ,07) = k*u(07)*u(07);

m(114 ,08) = k*u(07)*u(07); m(115 ,09) = k*u(07)*u(07);

m(117 ,17) = k*u(07)*u(07); m(118 ,18) = k*u(07)*u(07);

m(119 ,19) = k*u(07)*u(07); m(121 ,08) = k*u(08);

m(122 ,09) = k*u(08); m(123 ,10) = k*u(08); m(124 ,18) = k*u(08);

m(125 ,19) = k*u(08); m(126 ,20) = k*u(08); m(127 ,08) = k*u(08)*u(08);

m(128 ,09) = k*u(08)*u(08); m(129 ,10) = k*u(08)*u(08);

m(130 ,18) = k*u(08)*u(08); m(131 ,19) = k*u(08)*u(08);

m(132 ,20) = k*u(08)*u(08); m(133 ,09) = k*u(09); m(134 ,10) = k*u(09);

m(135 ,19) = k*u(09); m(136 ,20) = k*u(09); m(137 ,09) = k*u(09)*u(09);

m(138 ,10) = k*u(09)*u(09); m(139 ,19) = k*u(09)*u(09);

m(140 ,20) = k*u(09)*u(09); m(141 ,10) = k*u(10); m(142 ,20) = k*u(10);

m(143 ,10) = k*u(10)*u(10); m(144 ,20) = k*u(10)*u(10);

m(145 ,02) = k*u(01)*u(02); m(146 ,03) = k*u(01)*u(02);

m(148 ,12) = k*u(01)*u(02); m(149 ,13) = k*u(01)*u(02);

m(151 ,03) = k*u(02)*u(03); m(152 ,04) = k*u(02)*u(03);

m(154 ,13) = k*u(02)*u(03); m(155 ,14) = k*u(02)*u(03);

m(157 ,04) = k*u(03)*u(04); m(158 ,05) = k*u(03)*u(04);

m(160 ,14) = k*u(03)*u(04); m(161 ,15) = k*u(03)*u(04);

m(163 ,05) = k*u(04)*u(05); m(164 ,06) = k*u(04)*u(05);

m(166 ,15) = k*u(04)*u(05); m(167 ,16) = k*u(04)*u(05);

m(169 ,06) = k*u(05)*u(06); m(170 ,07) = k*u(05)*u(06);

m(172 ,16) = k*u(05)*u(06); m(173 ,17) = k*u(05)*u(06);

m(175 ,07) = k*u(06)*u(07); m(176 ,08) = k*u(06)*u(07);

m(178 ,17) = k*u(06)*u(07); m(179 ,18) = k*u(06)*u(07);

m(181 ,08) = k*u(07)*u(08); m(182 ,09) = k*u(07)*u(08);

m(184 ,18) = k*u(07)*u(08); m(185 ,19) = k*u(07)*u(08);

m(187 ,09) = k*u(08)*u(09); m(188 ,10) = k*u(08)*u(09);

m(189 ,19) = k*u(08)*u(09); m(190 ,20) = k*u(08)*u(09);

m(191 ,10) = k*u(09)*u(10); m(192 ,20) = k*u(09)*u(10);

m(193 ,03) = k*u(01)*u(03); m(195 ,13) = k*u(01)*u(03);

m(197 ,04) = k*u(02)*u(04); m(199 ,14) = k*u(02)*u(04);

m(201 ,05) = k*u(03)*u(05); m(203 ,15) = k*u(03)*u(05);

m(205 ,06) = k*u(04)*u(06); m(207 ,16) = k*u(04)*u(06);

m(209 ,07) = k*u(05)*u(07); m(211 ,17) = k*u(05)*u(07);

m(213 ,08) = k*u(06)*u(08); m(215 ,18) = k*u(06)*u(08);

m(217 ,09) = k*u(07)*u(09); m(219 ,19) = k*u(07)*u(09);

m(221 ,10) = k*u(08)*u(10); m(222 ,20) = k*u(08)*u(10);

function m = bloquev1(k)

m = zeros (76 ,444);

g1 = [003 , 024 , 041 , 057 , 073 , 089 , 105 , 121 , 133 , 141];

for i=1:10, m(i,g1(i)) = k; end

g2 = [005 , 025 , 042 , 058 , 074 , 090 , 106 , 122 , 134];

for i=1:9, m(10+i,g2(i)) = k; end

g3 = [010 , 029 , 045 , 061 , 077 , 093 , 109 , 124 , 135 , 142];

for i=1:10, m(19+i,g3(i)) = k; end

g4 = [012 , 030 , 046 , 062 , 078 , 094 , 110 , 125 , 136];
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for i=1:9, m(29+i,g4(i)) = k; end

g5 = 222+g1; for i=1:10, m(38+i,g5(i)) = k; end

g6 = 222+g2; for i=1:9, m(48+i,g6(i)) = k; end

g7 = 222+g3; for i=1:10, m(57+i,g7(i)) = k; end

g8 = 222+g4; for i=1:9, m(67+i,g8(i)) = k; end

function m = bloquev2(k)

m = zeros (76 ,444);

g1 = [015 , 033 , 049 , 065 , 081 , 097 , 113 , 127 , 137 , 143];

for i=1:10, m(i,g1(i)) = k; end

g2 = [016 , 034 , 050 , 066 , 082 , 098 , 114 , 128 , 138];

for i=1:9, m(10+i,g2(i)) = k; end

g3 = [019 , 037 , 053 , 069 , 085 , 101 , 117 , 130 , 139 , 144];

for i=1:10, m(19+i,g3(i)) = k; end

g4 = [020 , 038 , 054 , 070 , 086 , 102 , 118 , 131 , 140];

for i=1:9, m(29+i,g4(i)) = k; end

g5 = 222+g1; for i=1:10, m(38+i,g5(i)) = k; end

g6 = 222+g2; for i=1:9, m(48+i,g6(i)) = k; end

g7 = 222+g3; for i=1:10, m(57+i,g7(i)) = k; end

g8 = 222+g4; for i=1:9, m(67+i,g8(i)) = k; end

function m = bloquev3(k)

m = zeros (68 ,444);

g1 = [005 , 025 , 042 , 058 , 074 , 090 , 106 , 122 , 134];

for i=1:9, m(i,g1(i)) = k; end

g2 = [006 , 026 , 043 , 059 , 075 , 091 , 107 , 123];

for i=1:8, m(9+i,g2(i)) = k; end

g3 = [012 , 030 , 046 , 062 , 078 , 094 , 110 , 125 , 136];

for i=1:9, m(17+i,g3(i)) = k; end

g4 = [013 , 031 , 047 , 063 , 079 , 095 , 111 , 126];

for i=1:8, m(26+i,g4(i)) = k; end

g5 = 222+g1; for i=1:9, m(34+i,g5(i)) = k; end

g6 = 222+g2; for i=1:8, m(43+i,g6(i)) = k; end

g7 = 222+g3; for i=1:9, m(51+i,g7(i)) = k; end

g8 = 222+g4; for i=1:8, m(60+i,g8(i)) = k; end

function m = bloquev4(k)

m = zeros (68 ,444);

g1 = [016 , 034 , 050 , 066 , 082 , 098 , 114 , 128 , 138];

for i=1:9, m(i,g1(i)) = k; end

g2 = [017 , 035 , 051 , 067 , 083 , 099 , 115 , 129];

for i=1:8, m(9+i,g2(i)) = k; end

g3 = [020 , 038 , 054 , 070 , 086 , 102 , 118 , 131 , 140];

for i=1:9, m(17+i,g3(i)) = k; end

g4 = [021 , 039 , 055 , 071 , 087 , 103 , 119 , 132];

for i=1:8, m(26+i,g4(i)) = k; end

g5 = 222+g1; for i=1:9, m(34+i,g5(i)) = k; end

g6 = 222+g2; for i=1:8, m(43+i,g6(i)) = k; end

g7 = 222+g3; for i=1:9, m(51+i,g7(i)) = k; end

g8 = 222+g4; for i=1:8, m(60+i,g8(i)) = k; end

function m = bloquev5(k)

m = zeros (60 ,444);

g1 = [006 , 026 , 043 , 059 , 075 , 091 , 107 , 123];

for i=1:8, m(i,g1(i)) = k; end

g2 = [007 , 027 , 044 , 060 , 076 , 092 , 108];

for i=1:7, m(8+i,g2(i)) = k; end

g3 = [013 , 031 , 047 , 063 , 079 , 095 , 111 , 126];

for i=1:8, m(15+i,g3(i)) = k; end

g4 = [014 , 032 , 048 , 064 , 080 , 096 , 112];

for i=1:7, m(23+i,g4(i)) = k; end
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g5 = 222+g1; for i=1:8, m(30+i,g5(i)) = k; end

g6 = 222+g2; for i=1:7, m(38+i,g6(i)) = k; end

g7 = 222+g3; for i=1:8, m(45+i,g7(i)) = k; end

g8 = 222+g4; for i=1:7, m(53+i,g8(i)) = k; end

function m = bloquev6(k)

m = zeros (60 ,444);

g1 = [017 , 035 , 051 , 067 , 083 , 099 , 115 , 129];

for i=1:8, m(i,g1(i)) = k; end

g2 = [018 , 036 , 052 , 068 , 084 , 100 , 116];

for i=1:7, m(8+i,g2(i)) = k; end

g3 = [021 , 039 , 055 , 071 , 087 , 103 , 119 , 132];

for i=1:8, m(15+i,g3(i)) = k; end

g4 = [022 , 040 , 056 , 072 , 088 , 104 , 120];

for i=1:7, m(23+i,g4(i)) = k; end

g5 = 222+g1; for i=1:8, m(30+i,g5(i)) = k; end

g6 = 222+g2; for i=1:7, m(38+i,g6(i)) = k; end

g7 = 222+g3; for i=1:8, m(45+i,g7(i)) = k; end

g8 = 222+g4; for i=1:7, m(53+i,g8(i)) = k; end

function m = bloquev7(k)

m = zeros (68 ,444);

g1 = [145 , 151 , 157 , 163 , 169 , 175 , 181 , 187 , 191];

for i=1:9, m(i,g1(i)) = k; end

g2 = [146 , 152 , 158 , 164 , 170 , 176 , 182 , 188];

for i=1:8, m(9+i,g2(i)) = k; end

g3 = [148 , 154 , 160 , 166 , 172 , 178 , 184 , 189 , 192];

for i=1:9, m(17+i,g3(i)) = k; end

g4 = [149 , 155 , 161 , 167 , 173 , 179 , 185 , 190];

for i=1:8, m(26+i,g4(i)) = k; end

g5 = 222+g1; for i=1:9, m(34+i,g5(i)) = k; end

g6 = 222+g2; for i=1:8, m(43+i,g6(i)) = k; end

g7 = 222+g3; for i=1:9, m(51+i,g7(i)) = k; end

g8 = 222+g4; for i=1:8, m(60+i,g8(i)) = k; end

function m = bloquev8(k)

m = zeros (60 ,444);

g1 = [193 , 197 , 201 , 205 , 209 , 213 , 217 , 221];

for i=1:8, m(i,g1(i)) = k; end

g2 = [194 , 198 , 202 , 206 , 210 , 214 , 218];

for i=1:7, m(8+i,g2(i)) = k; end

g3 = [195 , 199 , 203 , 207 , 211 , 215 , 219 , 222];

for i=1:8, m(15+i,g3(i)) = k; end

g4 = [196 , 200 , 204 , 208 , 212 , 216 , 220];

for i=1:7, m(23+i,g4(i)) = k; end

g5 = 222+g1; for i=1:8, m(30+i,g5(i)) = k; end

g6 = 222+g2; for i=1:7, m(38+i,g6(i)) = k; end

g7 = 222+g3; for i=1:8, m(45+i,g7(i)) = k; end

g8 = 222+g4; for i=1:7, m(53+i,g8(i)) = k; end

function m = bloquev9(k)

m = zeros (60 ,444);

g1 = [146 , 152 , 158 , 164 , 170 , 176 , 182 , 188];

for i=1:8, m(i,g1(i)) = k; end

g2 = [147 , 153 , 159 , 165 , 171 , 177 , 183];

for i=1:7, m(8+i,g2(i)) = k; end

g3 = [149 , 155 , 161 , 167 , 173 , 179 , 185 , 190];

for i=1:8, m(15+i,g3(i)) = k; end

g4 = [150 , 156 , 162 , 168 , 174 , 180 , 186];

for i=1:7, m(23+i,g4(i)) = k; end

g5 = 222+g1; for i=1:8, m(30+i,g5(i)) = k; end
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g6 = 222+g2; for i=1:7, m(38+i,g6(i)) = k; end

g7 = 222+g3; for i=1:8, m(45+i,g7(i)) = k; end

g8 = 222+g4; for i=1:7, m(53+i,g8(i)) = k; end

function mfinal = abajito(ed,ic1 ,ic2 ,hll_11 ,hcp_11 ,hll_12 ,hcp_12 ,...

hll_21 ,hcp_21 ,hll_22 ,hcp_22 ,u1zero ,u1menos1 ,u2zero ,u2menos1 ,esi ,...

du1 ,du2 ,k,u1r ,u2r ,hy1 ,hy2 ,vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,...

vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,cal_nom)

mfinal = zeros (36 ,1140);

for i=1:20, mfinal(i,i) = ed(i,1); end

for i=1:10, mfinal(i,20+i) = ic1(i,1); end

for i=11:20 , mfinal(i,20+i) = ic2(i-10 ,1); end

mfinal (21 ,41) = +du1 (1); mfinal (21 ,42) = -du1 (1);

mfinal (22 ,43) = +du1 (2); mfinal (22 ,44) = -du1 (2);

mfinal (23 ,45) = +du1 (3); mfinal (23 ,46) = -du1 (3);

mfinal (24 ,47) = +du1 (4); mfinal (24 ,48) = -du1 (4);

mfinal (25 ,49) = +du2 (1); mfinal (25 ,50) = -du2 (1);

mfinal (26 ,51) = +du2 (2); mfinal (26 ,52) = -du2 (2);

mfinal (27 ,53) = +du2 (3); mfinal (27 ,54) = -du2 (3);

mfinal (28 ,55) = +du2 (4); mfinal (28 ,56) = -du2 (4);

mfinal (29 ,57) = k/u1r (1); mfinal (30 ,58) = k/u1r (2);

mfinal (31 ,59) = k/u1r (3); mfinal (32 ,60) = k/u1r (4);

mfinal (33 ,61) = k/u2r (1); mfinal (34 ,62) = k/u2r (2);

mfinal (35 ,63) = k/u2r (3); mfinal (36 ,64) = k/u2r (4);

bny1nu1 = abajony1(hll_11 ,hcp_11 ,u1zero ,u1menos1 ); % 10 X 222

bny1nu2 = abajony1(hll_12 ,hcp_12 ,u2zero ,u2menos1 ); % 10 X 222

bny2nu1 = abajony2(hll_21 ,hcp_21 ,u1zero ,u1menos1 ); % 10 X 222

bny2nu2 = abajony2(hll_22 ,hcp_22 ,u2zero ,u2menos1 ); % 10 X 222

p1 = [bny1nu1 , bny1nu2 ]; p2 = [bny2nu1 , bny2nu2 ]; p3 = [p1 ; p2];

mfinal (01:20 ,065:508) = p3;

bvar = abajovp(hy1 ,hy2 ,vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,vhll_21 ,vhcp_21 ,...

vhll_22 ,vhcp_22 ,cal_nom ); mfinal (01:20 ,509:1104) = bvar;

mfinal (01:36 ,1105:1140) = esi*eye (36);

function m = abajony1(hll ,hcp ,uzero ,umenos1)

m = zeros (10 ,222);

m(01 ,001) = hcp(1,3)* umenos1; m(01 ,002) = hcp(1,2)* uzero;

m(01 ,003) = hll(1,1); m(02 ,004) = hcp(2,3)* uzero; m(02 ,005) = hll (1 ,2);

m(03 ,006) = hll(1,3); m(01 ,015) = hcp(1,1); m(02 ,016) = hcp (2,2);

m(03 ,017) = hcp(3,3); m(02 ,023) = hcp(1,3)* uzero; m(02 ,024) = hll (1 ,1);

m(03 ,025) = hll(1,2); m(04 ,026) = hll(1,3); m(02 ,033) = hcp (1,1);

m(03 ,034) = hcp(2,2); m(04 ,035) = hcp(3,3); m(03 ,041) = hll (1,1);

m(04 ,042) = hll(1,2); m(05 ,043) = hll(1,3); m(03 ,049) = hcp (1,1);

m(04 ,050) = hcp(2,2); m(05 ,051) = hcp(3,3); m(04 ,057) = hll (1,1);

m(05 ,058) = hll(1,2); m(06 ,059) = hll(1,3); m(04 ,065) = hcp (1,1);

m(05 ,066) = hcp(2,2); m(06 ,067) = hcp(3,3); m(05 ,073) = hll (1,1);

m(06 ,074) = hll(1,2); m(07 ,075) = hll(1,3); m(05 ,081) = hcp (1,1);

m(06 ,082) = hcp(2,2); m(07 ,083) = hcp(3,3); m(06 ,089) = hll (1,1);

m(07 ,090) = hll(1,2); m(08 ,091) = hll(1,3); m(06 ,097) = hcp (1,1);

m(07 ,098) = hcp(2,2); m(08 ,099) = hcp(3,3); m(07 ,105) = hll (1,1);

m(08 ,106) = hll(1,2); m(09 ,107) = hll(1,3); m(07 ,113) = hcp (1,1);

m(08 ,114) = hcp(2,2); m(09 ,115) = hcp(3,3); m(08 ,121) = hll (1,1);

m(09 ,122) = hll(1,2); m(10 ,123) = hll(1,3); m(08 ,127) = hcp (1,1);

m(09 ,128) = hcp(2,2); m(10 ,129) = hcp(3,3); m(09 ,133) = hll (1,1);

m(10 ,134) = hll(1,2); m(09 ,137) = hcp(1,1); m(10 ,138) = hcp (2,2);

m(10 ,141) = hll(1,1); m(10 ,143) = hcp(1,1); m(02 ,145) = hcp (1,2);

m(03 ,146) = hcp(2,3); m(03 ,151) = hcp(1,2); m(04 ,152) = hcp (2,3);

m(04 ,157) = hcp(1,2); m(05 ,158) = hcp(2,3); m(05 ,163) = hcp (1,2);

m(06 ,164) = hcp(2,3); m(06 ,169) = hcp(1,2); m(07 ,170) = hcp (2,3);

m(07 ,175) = hcp(1,2); m(08 ,176) = hcp(2,3); m(08 ,181) = hcp (1,2);

m(09 ,182) = hcp(2,3); m(09 ,187) = hcp(1,2); m(10 ,188) = hcp (2,3);
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m(10 ,191) = hcp(1,2); m(03 ,193) = hcp(1,3); m(04 ,197) = hcp (1,3);

m(05 ,201) = hcp(1,3); m(06 ,205) = hcp(1,3); m(07 ,209) = hcp (1,3);

m(08 ,213) = hcp(1,3); m(09 ,217) = hcp(1,3); m(10 ,221) = hcp (1,3);

function m = abajony2(hll ,hcp ,uzero ,umenos1)

m = zeros (10 ,222); m(01 ,008) = hcp (1 ,3)* umenos1;

m(01 ,009) = hcp(1,2)* uzero; m(01 ,010) = hll (1 ,1);

m(02 ,011) = hcp(2,3)* uzero; m(02 ,012) = hll (1 ,2); m(03 ,013) = hll (1 ,3);

m(01 ,019) = hcp(1,1); m(02 ,020) = hcp(2,2); m(03 ,021) = hcp (3,3);

m(02 ,028) = hcp(1,3)* uzero; m(02 ,029) = hll (1 ,1); m(03 ,030) = hll (1 ,2);

m(04 ,031) = hll(1,3); m(02 ,037) = hcp(1,1); m(03 ,038) = hcp (2,2);

m(04 ,039) = hcp(3,3); m(03 ,045) = hll(1,1); m(04 ,046) = hll (1,2);

m(05 ,047) = hll(1,3); m(03 ,053) = hcp(1,1); m(04 ,054) = hcp (2,2);

m(05 ,055) = hcp(3,3); m(04 ,061) = hll(1,1); m(05 ,062) = hll (1,2);

m(06 ,063) = hll(1,3); m(04 ,069) = hcp(1,1); m(05 ,070) = hcp (2,2);

m(06 ,071) = hcp(3,3); m(05 ,077) = hll(1,1); m(06 ,078) = hll (1,2);

m(07 ,079) = hll(1,3); m(05 ,085) = hcp(1,1); m(06 ,086) = hcp (2,2);

m(07 ,087) = hcp(3,3); m(06 ,093) = hll(1,1); m(07 ,094) = hll (1,2);

m(08 ,095) = hll(1,3); m(06 ,101) = hcp(1,1); m(07 ,102) = hcp (2,2);

m(08 ,103) = hcp(3,3); m(07 ,109) = hll(1,1); m(08 ,110) = hll (1,2);

m(09 ,111) = hll(1,3); m(07 ,117) = hcp(1,1); m(08 ,118) = hcp (2,2);

m(09 ,119) = hcp(3,3); m(08 ,124) = hll(1,1); m(09 ,125) = hll (1,2);

m(10 ,126) = hll(1,3); m(08 ,130) = hcp(1,1); m(09 ,131) = hcp (2,2);

m(10 ,132) = hcp(3,3); m(09 ,135) = hll(1,1); m(10 ,136) = hll (1,2);

m(09 ,139) = hcp(1,1); m(10 ,140) = hcp(2,2); m(10 ,142) = hll (1,1);

m(10 ,144) = hcp(1,1); m(02 ,148) = hcp(1,2); m(03 ,149) = hcp (2,3);

m(03 ,154) = hcp(1,2); m(04 ,155) = hcp(2,3); m(04 ,160) = hcp (1,2);

m(05 ,161) = hcp(2,3); m(05 ,166) = hcp(1,2); m(06 ,167) = hcp (2,3);

m(06 ,172) = hcp(1,2); m(07 ,173) = hcp(2,3); m(07 ,178) = hcp (1,2);

m(08 ,179) = hcp(2,3); m(08 ,184) = hcp(1,2); m(09 ,185) = hcp (2,3);

m(09 ,189) = hcp(1,2); m(10 ,190) = hcp(2,3); m(10 ,192) = hcp (1,2);

m(03 ,195) = hcp(1,3); m(04 ,199) = hcp(1,3); m(05 ,203) = hcp (1,3);

m(06 ,207) = hcp(1,3); m(07 ,211) = hcp(1,3); m(08 ,215) = hcp (1,3);

m(09 ,219) = hcp(1,3); m(10 ,222) = hcp(1,3);

function m = abajovp(hy1 ,hy2 ,vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,...

vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,c_nom)

v1 = bloquev1a(hy1 ,hy2 ,vhll_11 ,vhll_12 ,vhll_21 ,vhll_22 ,c_nom); % 20 X 76

v2 = bloquev2a(hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom); % 20 X 76

v3 = bloquev3a(hy1 ,hy2 ,vhll_11 ,vhll_12 ,vhll_21 ,vhll_22 ,c_nom); % 20 X 68

v4 = bloquev4a(hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom); % 20 X 68

v5 = bloquev5a(hy1 ,hy2 ,vhll_11 ,vhll_12 ,vhll_21 ,vhll_22 ,c_nom); % 20 X 60

v6 = bloquev6a(hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom); % 20 X 60

v7 = bloquev7a(hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom); % 20 X 68

v8 = bloquev8a(hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom); % 20 X 60

v9 = bloquev9a(hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom); % 20 X 60

m = [v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 , v9];

function m = bloquev1a(hy1 ,hy2 ,vhll_11 ,vhll_12 ,vhll_21 ,vhll_22 ,c_nom)

m = zeros (20 ,76);

m(01:10 ,001:010) = vhll_11 (1 ,1)*eye (10);

m(02:10 ,011:019) = hy1*vhll_11 (1,1)* eye (09);

m(11:20 ,020:029) = vhll_21 (1 ,1)*eye (10);

m(12:20 ,030:038) = hy2*vhll_21 (1,1)* eye (09);

m(01:10 ,039:048) = vhll_12 (1 ,1)*eye (10);

m(02:10 ,049:057) = hy1*vhll_12 (1,1)* eye (09);

m(11:20 ,058:067) = vhll_22 (1 ,1)*eye (10);

m(12:20 ,068:076) = hy2*vhll_22 (1,1)* eye (09);

if c_nom == 1

m(01:09 ,:) = 0*m(01:09 ,:);

m(11:19 ,:) = 0*m(11:19 ,:);

end

207



function m = bloquev2a(hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom)

m = zeros (20 ,76);

m(01:10 ,001:010) = vhcp_11 (1 ,1)*eye (10);

m(02:10 ,011:019) = hy1*vhcp_11 (1,1)* eye (09);

m(11:20 ,020:029) = vhcp_21 (1 ,1)*eye (10);

m(12:20 ,030:038) = hy2*vhcp_21 (1,1)* eye (09);

m(01:10 ,039:048) = vhcp_12 (1 ,1)*eye (10);

m(02:10 ,049:057) = hy1*vhcp_12 (1,1)* eye (09);

m(11:20 ,058:067) = vhcp_22 (1 ,1)*eye (10);

m(12:20 ,068:076) = hy2*vhcp_22 (1,1)* eye (09);

if c_nom == 1

m(01:09 ,:) = 0*m(01:09 ,:);

m(11:19 ,:) = 0*m(11:19 ,:);

end

function m = bloquev3a(hy1 ,hy2 ,vhll_11 ,vhll_12 ,vhll_21 ,vhll_22 ,c_nom)

m = zeros (20 ,68);

m(02:10 ,001:009) = vhll_11 (1 ,2)*eye (9);

m(03:10 ,010:017) = hy1*vhll_11 (1,2)* eye (8);

m(12:20 ,018:026) = vhll_21 (1 ,2)*eye (9);

m(13:20 ,027:034) = hy2*vhll_21 (1,2)* eye (8);

m(02:10 ,035:043) = vhll_12 (1 ,2)*eye (9);

m(03:10 ,044:051) = hy1*vhll_12 (1,2)* eye (8);

m(12:20 ,052:060) = vhll_22 (1 ,2)*eye (9);

m(13:20 ,061:068) = hy2*vhll_22 (1,2)* eye (8);

if c_nom == 1

m(01:09 ,:) = 0*m(01:09 ,:);

m(11:19 ,:) = 0*m(11:19 ,:);

end

function m = bloquev4a(hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom)

m = zeros (20 ,68);

m(02:10 ,001:009) = vhcp_11 (2 ,2)*eye (9);

m(03:10 ,010:017) = hy1*vhcp_11 (2,2)* eye (8);

m(12:20 ,018:026) = vhcp_21 (2 ,2)*eye (9);

m(13:20 ,027:034) = hy2*vhcp_21 (2,2)* eye (8);

m(02:10 ,035:043) = vhcp_12 (2 ,2)*eye (9);

m(03:10 ,044:051) = hy1*vhcp_12 (2,2)* eye (8);

m(12:20 ,052:060) = vhcp_22 (2 ,2)*eye (9);

m(13:20 ,061:068) = hy2*vhcp_22 (2,2)* eye (8);

if c_nom == 1

m(01:09 ,:) = 0*m(01:09 ,:);

m(11:19 ,:) = 0*m(11:19 ,:);

end

function m = bloquev5a(hy1 ,hy2 ,vhll_11 ,vhll_12 ,vhll_21 ,vhll_22 ,c_nom)

m = zeros (20 ,60);

m(03:10 ,001:008) = vhll_11 (1 ,3)*eye (8);

m(04:10 ,009:015) = hy1*vhll_11 (1,3)* eye (7);

m(13:20 ,016:023) = vhll_21 (1 ,3)*eye (8);

m(14:20 ,024:030) = hy2*vhll_21 (1,3)* eye (7);

m(03:10 ,031:038) = vhll_12 (1 ,3)*eye (8);

m(04:10 ,039:045) = hy1*vhll_12 (1,3)* eye (7);

m(13:20 ,046:053) = vhll_22 (1 ,3)*eye (8);

m(14:20 ,054:060) = hy2*vhll_22 (1,3)* eye (7);

if c_nom == 1

m(01:09 ,:) = 0*m(01:09 ,:);

m(11:19 ,:) = 0*m(11:19 ,:);

end
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function m = bloquev6a(hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom)

m = zeros (20 ,60);

m(03:10 ,001:008) = vhcp_11 (3 ,3)*eye (8);

m(04:10 ,009:015) = hy1*vhcp_11 (3,3)* eye (7);

m(13:20 ,016:023) = vhcp_21 (3 ,3)*eye (8);

m(14:20 ,024:030) = hy2*vhcp_21 (3,3)* eye (7);

m(03:10 ,031:038) = vhcp_12 (3 ,3)*eye (8);

m(04:10 ,039:045) = hy1*vhcp_12 (3,3)* eye (7);

m(13:20 ,046:053) = vhcp_22 (3 ,3)*eye (8);

m(14:20 ,054:060) = hy2*vhcp_22 (3,3)* eye (7);

if c_nom == 1

m(01:09 ,:) = 0*m(01:09 ,:);

m(11:19 ,:) = 0*m(11:19 ,:);

end

function m = bloquev7a(hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom)

m = zeros (20 ,68);

m(02:10 ,001:009) = vhcp_11 (1 ,2)*eye (9);

m(03:10 ,010:017) = hy1*vhcp_11 (1,2)* eye (8);

m(12:20 ,018:026) = vhcp_21 (1 ,2)*eye (9);

m(13:20 ,027:034) = hy2*vhcp_21 (1,2)* eye (8);

m(02:10 ,035:043) = vhcp_12 (1 ,2)*eye (9);

m(03:10 ,044:051) = hy1*vhcp_12 (1,2)* eye (8);

m(12:20 ,052:060) = vhcp_22 (1 ,2)*eye (9);

m(13:20 ,061:068) = hy2*vhcp_22 (1,2)* eye (8);

if c_nom == 1

m(01:09 ,:) = 0*m(01:09 ,:);

m(11:19 ,:) = 0*m(11:19 ,:);

end

function m = bloquev8a(hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom)

m = zeros (20 ,60);

m(03:10 ,001:008) = vhcp_11 (1 ,3)*eye (8);

m(04:10 ,009:015) = hy1*vhcp_11 (1,3)* eye (7);

m(13:20 ,016:023) = vhcp_21 (1 ,3)*eye (8);

m(14:20 ,024:030) = hy2*vhcp_21 (1,3)* eye (7);

m(03:10 ,031:038) = vhcp_12 (1 ,3)*eye (8);

m(04:10 ,039:045) = hy1*vhcp_12 (1,3)* eye (7);

m(13:20 ,046:053) = vhcp_22 (1 ,3)*eye (8);

m(14:20 ,054:060) = hy2*vhcp_22 (1,3)* eye (7);

if c_nom == 1

m(01:09 ,:) = 0*m(01:09 ,:);

m(11:19 ,:) = 0*m(11:19 ,:);

end

function m = bloquev9a(hy1 ,hy2 ,vhcp_11 ,vhcp_12 ,vhcp_21 ,vhcp_22 ,c_nom)

m = zeros (20 ,60);

m(03:10 ,001:008) = vhcp_11 (2 ,3)*eye (8);

m(04:10 ,009:015) = hy1*vhcp_11 (2,3)* eye (7);

m(13:20 ,016:023) = vhcp_21 (2 ,3)*eye (8);

m(14:20 ,024:030) = hy2*vhcp_21 (2,3)* eye (7);

m(03:10 ,031:038) = vhcp_12 (2 ,3)*eye (8);

m(04:10 ,039:045) = hy1*vhcp_12 (2,3)* eye (7);

m(13:20 ,046:053) = vhcp_22 (2 ,3)*eye (8);

m(14:20 ,054:060) = hy2*vhcp_22 (2,3)* eye (7);

if c_nom == 1

m(01:09 ,:) = 0*m(01:09 ,:);

m(11:19 ,:) = 0*m(11:19 ,:);

end
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Table I.6: List of programs to calculate µ-test

Program Name Description

main mu.m Main program used to calculate the cost function
che int bis.m Internal program (calcute bounds for kssv)

fkssv.m Finds kssv such that µ∆ (M) ≥ kssv

dasigno.m Internal Program
res bratz vf0.m Internal Program

% Program used to calculate the Control Law for the

% Robust Volterra series based NMPC

% Information required for the program

% fv = initial guess value for k_ssv

% blk = matrix describing the uncertainty structure (used by matlab

% function "mussv ")

% ed = vector of feedback for ny=1 and ny=2

% kuig = vector of initial guesses for the manipulated variables

% h11_ll = nominal value of the linear Volterra series coefficients for

% ny=1 and nu=1

% h12_ll = nominal value of the linear Volterra series coefficients for

% ny=1 and nu=2

% h21_ll = nominal value of the linear Volterra series coefficients for

% ny=2 and nu=1

% h22_ll = nominal value of the linear Volterra series coefficients for

% ny=2 and nu=2

% h11_cp = nominal value of the nonlinear Volterra series coefficients

% for ny=1 and nu=1

% h12_cp = nominal value of the nonlinear Volterra series coefficients

% for ny=1 and nu=2

% h21_cp = nominal value of the nonlinear Volterra series coefficients

% for ny=2 and nu=1

% h22_cp = nominal value of the nonlinear Volterra series coefficients

% for ny=2 and nu=2

% ic1 = vector of initial conditions for ny=1

% ic2 = vector of initial conditions for ny=2

% hy1 = autoregressive Volterra series coefficient for ny=1

% hy2 = autoregressive Volterra series coefficient for ny=2

% u1zero = manipulated variable value at u(k -1) for nu=1

% u1menos1 = manipulated variable at sambling instant u(k -2) for nu=1

% u2zero = manipulated variable value at u(k -1) for nu=2

% u2menos1 = manipulated variable at sambling instant u(k -2) for nu=2

% du1 = vector of manipulated variable weighting movements for nu=1

% du2 = vector of manipulated variable weighting movements for nu=2

% u1r = vector of manipulated variables bounds for nu=1

% u2r = vector of manipulated variables bounds for nu=2

% vh11_ll = uncertain value of the linear Volterra series coefficients

% for ny=1 and nu=1

% vh12_ll = uncertain value of the linear Volterra series coefficients

% for ny=1 and nu=2

% vh21_ll = uncertain value of the linear Volterra series coefficients

% for ny=2 and nu=1

% vh22_ll = uncertain value of the linear Volterra series coefficients

% for ny=2 and nu=2

% vh11_cp = uncertain value of the nonlinear Volterra series coefficients

% for ny=1 and nu=1

% vh12_cp = uncertain value of the nonlinear Volterra series coefficients
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% for ny=1 and nu=2

% vh21_cp = uncertain value of the nonlinear Volterra series coefficients

% for ny=2 and nu=1

% vh22_cp = uncertain value of the nonlinear Volterra series coefficients

% for ny=2 and nu=2

% vtc = vector of terminal conditions , value at y(k+p) for

% ny=1 and ny=2

esi = 1E-5;

cal_nom = 0;

opmu = ’d’; % Options for the Matlab program mussv

% (possible options "fd", "fdU ")

f_mu = @fminsearch; % Matlab optimization function

% (possible options " fminsearch ", "fminunc", "fmincon ")

opvar = optimset(f_mu);

opvar.Display = ’iter’;

% Preliminary search for k_ssv

[c_l ,li ,ls] = che_int_bis(fv ,blk ,esi ,ed,kuig ,...

h11_ll ,h12_ll ,h21_ll ,h22_ll ,h11_cp ,h12_cp ,h21_cp ,h22_cp ,ic1 ,ic2 ,...

hy1 ,hy2 ,u1zero ,u1menos1 ,u2zero ,u2menos1 ,du1 ,du2 ,u1r ,u2r ,...

vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,...

vtc ,cal_nom ,opmu);

if c_l == 0

error(’Under the current conditions the problem is unfeasible ’)

else

factorcillo = 1.00;

end

[umu ,rek] = f_mu(@(ku)fkssv(li,ls ,blk ,esi ,ed,ku ,...

h11_ll ,h12_ll ,h21_ll ,h22_ll ,h11_cp ,h12_cp ,h21_cp ,h22_cp ,...

ic1 ,ic2 ,hy1 ,hy2 ,u1zero ,u1menos1 ,u2zero ,u2menos1 ,du1 ,du2 ,u1r ,u2r ,...

vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,...

vtc ,cal_nom ,opmu),factorcillo*kuig ,opvar );

function [cal ,li,ls] = che_int_bis(iguess ,blk ,esi ,ed ,uu ,...

h11_ll ,h12_ll ,h21_ll ,h22_ll ,h11_cp ,h12_cp ,h21_cp ,h22_cp ,...

ic1 ,ic2 ,hy1 ,hy2 ,u1zero ,u1menos1 ,u2zero ,u2menos1 ,du1 ,du2 ,u1r ,u2r ,...

vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,...

vtc ,cal_nom ,opmu)

if iguess == 0, iguess = 1E-5; end

for inj = 1:2

if inj == 1

gfzero = [ iguess - iguess *0.99 , iguess + iguess *0.99 ];

elseif inj == 2

gfzero = [1E-5 1E-4 1E-3 1E-2 1E-1 1E0 1E1];

end

ef = zeros(length(gfzero ),1); cou = 0; cal = 0;

for i=gfzero

cou = cou + 1;

ef(cou ,1) = sign (...

res_bratz_vf0(blk ,esi ,i,ed,uu ,...

h11_ll ,h12_ll ,h21_ll ,h22_ll ,h11_cp ,h12_cp ,h21_cp ,h22_cp ,...

ic1 ,ic2 ,hy1 ,hy2 ,u1zero ,u1menos1 ,u2zero ,u2menos1 ,...

du1 ,du2 ,u1r ,u2r ,vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,...

vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,vtc ,cal_nom ,opmu ));

if cou > 1

si = ef(cou ,1) * ef(cou -1,1);
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if si < 0

li = gfzero(1,cou -1); ls = gfzero(1,cou);

cal = 1; fprintf(’li = %1.7f , ls = %1.7f \n’,li ,ls)

break

end

end

end

if cal == 1,

break

end

end

if cal == 0

fprintf(’Unfeasible problem under the current conditions \n’)

end

function kcillo = fkssv(t_lower ,t_upper ,blk ,esi ,ed,uu ,h11_ll ,h12_ll ,...

h21_ll ,h22_ll ,h11_cp ,h12_cp ,h21_cp ,h22_cp ,ic1 ,ic2 ,hy1 ,hy2 ,...

u1zero ,u1menos1 ,u2zero ,u2menos1 ,du1 ,du2 ,u1r ,u2r ,vhll_11 ,vhcp_11 ,...

vhll_12 ,vhcp_12 ,vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,vtc ,cal_nom ,opmu)

tit = clock; tol = 1e-3; kc = 0; t_works = t_upper;

while abs(( t_upper - t_lower))>tol

kc = kc + 1;

t_test = (t_upper+t_lower )/2;

sol = da_signo(t_test ,blk ,esi ,ed ,uu,h11_ll ,h12_ll ,h21_ll ,h22_ll ,...

h11_cp ,h12_cp ,h21_cp ,h22_cp ,ic1 ,ic2 ,hy1 ,hy2 ,u1zero ,u1menos1 ,...

u2zero ,u2menos1 ,du1 ,du2 ,u1r ,u2r ,vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,...

vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,vtc ,cal_nom ,opmu);

if sol ~= 0

t_lower = t_test;

else

t_upper = t_test;

t_works = t_test;

end

if kc > 20

fprintf(’Iteration number reached kfssv \n’)

t_upper = t_lower;

end

end

kcillo = t_works;

function s_i = da_signo(k_ssv ,blk ,esi ,ed,uu ,h11_ll ,h12_ll ,h21_ll ,h22_ll ,...

h11_cp ,h12_cp ,h21_cp ,h22_cp ,ic1 ,ic2 ,hy1 ,hy2 ,u1zero ,u1menos1 ,...

u2zero ,u2menos1 ,du1 ,du2 ,u1r ,u2r ,vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,...

vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,vtc ,cal_nom ,opmu)

ef = res_bratz_vf0(blk ,esi ,k_ssv ,ed,uu,h11_ll ,h12_ll ,h21_ll ,h22_ll ,...

h11_cp ,h12_cp ,h21_cp ,h22_cp ,ic1 ,ic2 ,hy1 ,hy2 ,u1zero ,u1menos1 ,...

u2zero ,u2menos1 ,du1 ,du2 ,u1r ,u2r ,vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,...

vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,vtc ,cal_nom ,opmu);

if ef >= 0

s_i = 0;

else

s_i = 1;

end

function c = res_bratz_vf0(blk ,esi ,k,ed ,kuig ,h11_ll ,h12_ll ,h21_ll ,h22_ll ,...

h11_cp ,h12_cp ,h21_cp ,h22_cp ,ic1 ,ic2 ,hy1 ,hy2 ,u1zero ,u1menos1 ,...

u2zero ,u2menos1 ,du1 ,du2 ,u1r ,u2r ,vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,...

vhll_21 ,vhcp_21 ,vhll_22 ,vhcp_22 ,vtc ,cal_nom ,opmu)

ts = clock; u = zeros (20 ,1); m = length(kuig )/2;

switch m

case 1
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u(01:10) = kuig (1); u(11:20) = kuig (2);

case 2

u(01:02) = kuig (1:2); u(03:10) = kuig (2);

u(11:12) = kuig (3:4); u(13:20) = kuig (4);

case 3

u(01:03) = kuig (1:3); u(04:10) = kuig (3);

u(11:13) = kuig (4:6); u(14:20) = kuig (6);

case 4

u(01:04) = kuig (1:4); u(05:10) = kuig (4);

u(11:14) = kuig (5:8); u(15:20) = kuig (8);

end

%This corresponds to the example when M=3

mb = dabmdentro(esi ,k,ed,u,h11_ll ,h12_ll ,h21_ll ,h22_ll ,h11_cp ,h12_cp ,...

h21_cp ,h22_cp ,ic1 ,ic2 ,hy1 ,hy2 ,u1zero ,u1menos1 ,u2zero ,u2menos1 ,...

du1 ,du2 ,u1r ,u2r ,vhll_11 ,vhcp_11 ,vhll_12 ,vhcp_12 ,vhll_21 ,vhcp_21 ,...

vhll_22 ,vhcp_22 ,vtc ,cal_nom ); %This corresponds to the example when M=3

bn = mussv(mb ,blk ,opmu); c = k-bn(1,1);

Table I.7 show the programs that was used to generate the normalized input sequence

and the programs that convert the normalized input sequence to absolute units for the

empirical models, i.e, state-affine and Volterra series.

Table I.7: List of programs to generate the input sequence used for the identification pro-
cess

Program Name Description

c sequence.m
Program to calculate the points

for the normalized sequence

man var values
Program to convert the normalized input sequences

to absolute units for the
state-affine model

man var values volterra siso
Program to convert the normalized input sequence

to absolute units for the
SISO Volterra series model

man var values volterra mimo
Program to convert the normalized input sequences

to absolute units for the
MIMO Volterra series model

function data_seq_to_use = c_sequence(nran ,repetir)

% nran number of initial points

% repetir number of sequence value repetitions in the final sequence

%Only 3 levels are considered

level_1 = -1;

level_2 = 0;

level_3 = +1;

probability_1 = 1/3;

probability_2 = 1/3;
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probability_3 = 1/3;

seq_levels = [level_1 , level_2 , level_3 ];

pro_levels = [probability_1 , probability_2 , probability_3 ];

data_seq = randsrc(nran ,2,[ seq_levels ; pro_levels ]);

data_seq (1,:) = 0;

data_seq_to_use = zeros(repetir*length(data_seq ),2);

for i=1: length(data_seq)

data_seq_to_use(repetir *(i -1)+1: repetir*i,1) = data_seq(i,1);

data_seq_to_use(repetir *(i -1)+1: repetir*i,2) = data_seq(i,2);

end

figure

subplot (2,2,1) , plot(data_seq (: ,1))

ylim ([ -1.1 1.1]) , title(’MV_1’)

subplot (2,2,2) , plot(data_seq (: ,2))

ylim ([ -1.1 1.1]) , title(’MV_2’)

subplot (2,2,3) , plot(data_seq_to_use (:,1))

ylim ([ -1.1 1.1]) , title(’MV_1 with repetitions ’)

subplot (2,2,4) , plot(data_seq_to_use (:,2))

ylim ([ -1.1 1.1]) , title(’MV_2 with repetitions ’)

function mv = man_var_values_sa(s_data ,uss ,sin)

% This function takes:

% a) the normalized data (s_data),

% b) the value of the manipulated variables at the steady state for a

% specific value of S_in (uss),

% c) the average value of s_in , which is used to calculate the 2 scaling

% factors (pv1mv and pv2mv)

% This function returns the real value of the manipulated variables that

% will be used to identify the process

ro = size(s_data );

mv = zeros(ro ,2); % preallocation

% The scaling factors were used as follows:

% Sin = 2.0, pv1mv = 0.1, pv2mv = 0.1

% Sin = 2.5, pv1mv = 0.04 , pv2mv = 0.04

% Sin = 3.0 , pv1mv = 0.015 , pv2mv = 0.015

if sin == 2.0

pv1mv = 0.1;

pv2mv = 0.1;

elseif sin == 2.5

pv1mv = 0.04;

pv2mv = 0.04;

elseif sin == 3.0

pv1mv = 0.015;

pv2mv = 0.015;

else

error(’Incorrect option ’)

mv(:,1) = ( uss(1,1) * pv1mv * s_data (:,1) ) + uss (1 ,1);

mv(:,2) = ( uss(2,1) * pv2mv * s_data (:,2) ) + uss (2 ,1);

function mv = man_var_values_volterra_siso(s_data ,u_ss)
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% This function takes:

% a) the normalized data (s_data),

% b) the value of the manipulated variable at the steady state (u_ss) for a

% specific value of \Beta

% This function returns the real value of the manipulated variable that

% will be used to identify the process

ro = size(s_data );

pv1 = 9/14;

mv = 0.075* pv1*s_data (:,1) + u_ss (1,1);

function mv = man_var_values_volterra_mimo(s_data ,uss)

% This function takes:

% a) the normalized data (s_data),

% b) the value of the manipulated variables at the steady state for a

% specific value of q_2 , Cv and n (uss),

% This function returns the real value of the manipulated variables that

% will be used to identify the process

ro = size(s_data );

mv = zeros(ro ,2); % preallocation

pv1mv = 0.025;

pv2mv = 0.025;

mv(:,1) = ( uss(1,1) * pv1mv * s_data (:,1) ) + uss (1 ,1);

mv(:,2) = ( uss(2,1) * pv2mv * s_data (:,2) ) + uss (2 ,1);
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