1,454 research outputs found

    Application of Sliding Mode Trajectory Tracking Control Design for Two-Wheeled Mobile Robots

    Get PDF
    A trajectory tracking controller is proposed to drive the wheeled mobile robot (WMR) to follow a predefined trajectory robustly within a finite time under the presence of uncertainties. The two-wheeled mobile robot and tracking error system are modelled by kinematic equations, the stability and reachability of the sliding mode controller are analysed based on the system models. A two-wheeled mobile robot is built by using the STM32F407 (ARM Cortex-M4 microcontroller) board and a MATLAB GUI, and a cooperative real-time operating system are implemented by using C programming language in order to provide convenient system configuration and improve the overall tracking performance. It is demonstrated that the line and circular trajectories are well tracked in simulation and experiment

    Experimental comparison of control strategies for trajectory tracking for mobile robots

    Get PDF
    The purpose of this paper is to implement, test and compare the performance of different control strategies for tracking trajectory for mobile robots. The control strategies used are based on linear algebra, PID controller and on a sliding mode controller. Each control scheme is developed taking into consideration the model of the robot. The linear algebra approaches take into account the complete kinematic model of the robot; and the PID and the sliding mode controller use a reduced order model, which is obtained considering the mobile robot platform as a black-box. All the controllers are tested and compared, firstly by simulations and then, by using a Pioneer 3DX robot in field experiments.Fil: Capito, Linda. Escuela Politécnica Nacional; EcuadorFil: Proaño, Pablo. Escuela Politécnica Nacional; EcuadorFil: Camacho, Oscar. Escuela Politécnica Nacional; EcuadorFil: Rosales, Andrés. Escuela Politécnica Nacional; EcuadorFil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentin

    Robust adaptive controller for wheel mobile robot with disturbances and wheel slips

    Get PDF
    In this paper an observer based adaptive control algorithm is built for wheel mobile robot (WMR) with considering the system uncertainties, input disturbances, and wheel slips. Firstly, the model of the kinematic and dynamic loops is shown with presence of the disturbances and system uncertainties. Next, the adaptive controller for nonlinear mismatched disturbance systems based on the disturbances observer is presented in detail. The controller includes two parts, the first one is for the stability purpose and the later is for the disturbances compensation. After that this control scheme is applied for both two loops of the system. In this paper, the stability of the closed system which consists of two control loops and the convergence of the observers is mathematically analysed based on the Lyapunov theory. Moreover, the proposed model does not require the complex calculation so it is easy for the implementation. Finally, the simulation model is built for presented method and the existed one to verify the correctness and the effectiveness of the proposed scheme. The simulation results show that the introduced controller gives the good performances even that the desired trajectory is complicated and the working condition is hard

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Sliding Mode Control for Trajectory Tracking of an Intelligent Wheelchair

    Get PDF
    This paper deal with a robust sliding-mode trajectory tracking controller, fornonholonomic wheeled mobile robots and its experimental evaluation by theimplementation in an intelligent wheelchair (RobChair). The proposed control structureis based on two nonlinear sliding surfaces ensuring the tracking of the three outputvariables, with respect to the nonholonomic constraint. The performances of theproposed controller for the trajectory planning problem with comfort constraint areverified through the real time acceleration provided by an inertial measurement unit

    Adaptive sliding mode control for uncertain wheel mobile robot

    Get PDF
    In this paper a simple adaptive sliding mode controller is proposed for tracking control of the wheel mobile robot (WMR) systems. The WMR are complicated systems with kinematic and dynamic model so the error dynamic model is built to simplify the mathematical model. The sliding mode control then is designed for this error model with the adaptive law to compensate for the mismatched. The proposed control scheme in this work contains only one control loop so it is simple in both implementation and mathematical calculation. Moreover, the requirement of upper bounds of disturbance that is popular in the sliding mode control is cancelled, so it is convenient for real world applications. Finally, the effectiveness of the presented algorithm is verified through mathematical proof and simulations. The comparison with the existing work is also executed to evaluate the correction of the introduced adaptive sliding mode controller. Thoroughly, the settling time, the peak value, the integral square error of the proposed control scheme reduced about 50% in comparison with the compared disturbance observer based sliding mode control

    Virtual Structure Based Formation Tracking of Multiple Wheeled Mobile Robots: An Optimization Perspective

    Get PDF
    Today, with the increasing development of science and technology, many systems need to be optimized to find the optimal solution of the system. this kind of problem is also called optimization problem. Especially in the formation problem of multi-wheeled mobile robots, the optimization algorithm can help us to find the optimal solution of the formation problem. In this paper, the formation problem of multi-wheeled mobile robots is studied from the point of view of optimization. In order to reduce the complexity of the formation problem, we first put the robots with the same requirements into a group. Then, by using the virtual structure method, the formation problem is reduced to a virtual WMR trajectory tracking problem with placeholders, which describes the expected position of each WMR formation. By using placeholders, you can get the desired track for each WMR. In addition, in order to avoid the collision between multiple WMR in the group, we add an attraction to the trajectory tracking method. Because MWMR in the same team have different attractions, collisions can be easily avoided. Through simulation analysis, it is proved that the optimization model is reasonable and correct. In the last part, the limitations of this model and corresponding suggestions are given

    Trajectory Tracking Control of Skid-Steering Mobile Robots with Slip and Skid Compensation using Sliding-Mode Control and Deep Learning

    Full text link
    Slip and skid compensation is crucial for mobile robots' navigation in outdoor environments and uneven terrains. In addition to the general slipping and skidding hazards for mobile robots in outdoor environments, slip and skid cause uncertainty for the trajectory tracking system and put the validity of stability analysis at risk. Despite research in this field, having a real-world feasible online slip and skid compensation is still challenging due to the complexity of wheel-terrain interaction in outdoor environments. This paper presents a novel trajectory tracking technique with real-world feasible online slip and skid compensation at the vehicle-level for skid-steering mobile robots in outdoor environments. The sliding mode control technique is utilized to design a robust trajectory tracking system to be able to consider the parameter uncertainty of this type of robot. Two previously developed deep learning models [1], [2] are integrated into the control feedback loop to estimate the robot's slipping and undesired skidding and feed the compensator in a real-time manner. The main advantages of the proposed technique are (1) considering two slip-related parameters rather than the conventional three slip parameters at the wheel-level, and (2) having an online real-world feasible slip and skid compensator to be able to reduce the tracking errors in unforeseen environments. The experimental results show that the proposed controller with the slip and skid compensator improves the performance of the trajectory tracking system by more than 27%
    corecore