2,611 research outputs found

    Intelligent methods for complex systems control engineering

    Get PDF
    This thesis proposes an intelligent multiple-controller framework for complex systems that incorporates a fuzzy logic based switching and tuning supervisor along with a neural network based generalized learning model (GLM). The framework is designed for adaptive control of both Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) complex systems. The proposed methodology provides the designer with an automated choice of using either: a conventional Proportional-Integral-Derivative (PID) controller, or a PID structure based (simultaneous) Pole and Zero Placement controller. The switching decisions between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using the fuzzy logic based supervisor operating at the highest level of the system. The fuzzy supervisor is also employed to tune the parameters of the multiple-controller online in order to achieve the desired system performance. The GLM for modelling complex systems assumes that the plant is represented by an equivalent model consisting of a linear time-varying sub-model plus a learning nonlinear sub-model based on Radial Basis Function (RBF) neural network. The proposed control design brings together the dominant advantages of PID controllers (such as simplicity in structure and implementation) and the desirable attributes of Pole and Zero Placement controllers (such as stable set-point tracking and ease of parameters’ tuning). Simulation experiments using real-world nonlinear SISO and MIMO plant models, including realistic nonlinear vehicle models, demonstrate the effectiveness of the intelligent multiple-controller with respect to tracking set-point changes, achieve desired speed of response, prevent system output overshooting and maintain minimum variance input and output signals, whilst penalising excessive control actions

    Fuzzy control and its application to a pH process

    Get PDF
    In the chemical industry, the control of pH is a well-known problem that presents difficulties due to the large variations in its process dynamics and the static nonlinearity between pH and concentration. pH control requires the application of advanced control techniques such as linear or nonlinear adaptive control methods. Unfortunately, adaptive controllers rely on a mathematical model of the process being controlled, the parameters being determined or modified in real time. Because of its characteristics, the pH control process is extremely difficult to model accurately. Fuzzy logic, which is derived from Zadeh's theory of fuzzy sets and algorithms, provides an effective means of capturing the approximate, inexact nature of the physical world. It can be used to convert a linguistic control strategy based on expert knowledge, into an automatic control strategy to control a system in the absence of an exact mathematical model. The work described in this thesis sets out to investigate the suitability of fuzzy techniques for the control of pH within a continuous flow titration process. Initially, a simple fuzzy development system was designed and used to produce an experimental fuzzy control program. A detailed study was then performed on the relationship between fuzzy decision table scaling factors and the control constants of a digital PI controller. Equation derived from this study were then confirmed experimentally using an analogue simulation of a first order plant. As a result of this work a novel method of tuning a fuzzy controller by adjusting its scaling factors, was derived. This technique was then used for the remainder of the work described in this thesis. The findings of the simulation studies were confirmed by an extensive series of experiments using a pH process pilot plant. The performance of the tunable fuzzy controller was compared with that of a conventional PI controller in response to step change in the set-point, at a number of pH levels. The results showed not only that the fuzzy controller could be easily adjusted to provided a wide range of operating characteristics, but also that the fuzzy controller was much better at controlling the highly non-linear pH process, than a conventional digital PI controller. The fuzzy controller achieved a shorter settling time, produced less over-shoot, and was less affected by contamination than the digital PI controller. One of the most important characteristics of the tunable fuzzy controller is its ability to implement a wide variety of control mechanisms simply by modifying one or two control variables. Thus the controller can be made to behave in a manner similar to that of a conventional PI controller, or with different parameter values, can imitate other forms of controller. One such mode of operation uses sliding mode control, with the fuzzy decision table main diagonal being used as the variable structure system (VSS) switching line. A theoretical explanation of this behavior, and its boundary conditions, are given within the text. While the work described within this thesis has concentrated on the use of fuzzy techniques in the control of continuous flow pH plants, the flexibility of the fuzzy control strategy described here, make it of interest in other areas. It is likely to be particularly useful in situations where high degrees of non-linearity make more conventional control methods ineffective

    An investigation into the merits of fuzzy logic control versus classical control.

    Get PDF
    A project report submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Engineering.Up to now the benefits and problems with fuzzy control have not been fully identified and its role in the control domain needs investigation. The past trend has been to show that a fuzzy controller can provide better control than classical control, without examining what is actually being achieved. The aim in this project report is to give a fair comparison between classical and fuzzy control. Robustness, disturbance rejection, noise suppression" nonminimurn phase and dead time are examined for both controllers. The comparison is performed through computer simulation of classical and fuzzy controlled plant models. Fuzzy control has the advantage of non-linear performance and the ability to capture linguistic information. Translating quantitative information into the fuzzy domain is difficult; therefore when the system is easily mathematically modelled and linear, classical control is usually better. Which controller should be used depends on the application, control designer and information available.Andrew Chakane 201

    Incipient fault detection and isolation of sensors and field devices

    Get PDF
    The purpose of this research is to develop a robust fault detection and isolation method, for detecting faults in process sensors, actuators, controllers and other field devices. The approach to the solution to this problem is summarized below. A novel approach for the validation of control system components and sensors was developed in this research. The process is composed of detecting a system anomaly, isolating the faulty component (such as sensors, actuators, and controllers), computing its deviation from expected value for a given system\u27s normal condition, and finally reconstructing its output when applicable. A variant of the Group Method of Data Handling (GMDH) was developed in this research for generating analytical redundancy from relationships among different system components. A rational function approximation was used for the data-driven modeling scheme. This analytical redundancy is necessary for detecting system anomalies and isolating faulty components. A rule-base expert system was developed in order to isolate the faulty component. The rule-based was established from model-simulated data. A fuzzy-logic estimator was implemented to compute the magnitude of the loop component fault so that the operator or the controller might take corrective actions. This latter engine allows the system to be operated in a normal condition until the next scheduled shutdown, even if a critical component were detected as degrading. The effectiveness of the method developed in this research was demonstrated through simulation and by implementation to an experimental control loop. The test loop consisted of a level control system, flow, pressure, level and temperature measuring sensors, motor-operated valves, and a pump. Commonly observed device faults were imposed in different system components such as pressure transmitters, pumps, and motor-operated valves. This research has resulted in a framework for system component failure detection and isolation, allowing easy implementation of this method in any process control system (power plants, chemical industry, and other manufacturing industry). The technique would also aid the plant personnel in defining the minimal number of sensors to be installed in a process system, necessary for reliable component validation

    Design and implementation of fuzzy logic controller for a process control application

    Get PDF
    Many industrial applications of fuzzy logic control have been reported. This thesis studies and reports the problems associated with the Heat-exchanger temperature control via conventional PID control implemented with Programmable Logic Controllers (PLC) and provides an example of design and implementation of fuzzy logic controllers (FLC\u27s) for a Heat exchanger in a Water for Injection (WFI) system. After a basic FLC was designed and tested, it is shown how its rule base evolved to achieve superior performance by utilizing additional low-cost sensing information in the process and its environment. A method for the implementation of FLC\u27s into the existing PLC is discussed. The system performance of the five designed FLC rule-base strategies is compared with that of the existing PIID controller and it is concluded that better performance can be achieved by using the fuzzy logic control technology. Finally, this thesis discusses some blocking problems in widespread industrial applications of FLCs and the possible solutions to them

    Switching control systems and their design automation via genetic algorithms

    Get PDF
    The objective of this work is to provide a simple and effective nonlinear controller. Our strategy involves switching the underlying strategies in order to maintain a robust control. If a disturbance moves the system outside the region of stability or the domain of attraction, it will be guided back onto the desired course by the application of a different control strategy. In the context of switching control, the common types of controller present in the literature are based either on fuzzy logic or sliding mode. Both of them are easy to implement and provide efficient control for non-linear systems, their actions being based on the observed input/output behaviour of the system. In the field of fuzzy logic control (FLC) using error feedback variables there are two main problems. The first is the poor transient response (jerking) encountered by the conventional 2-dimensional rule-base fuzzy PI controller. Secondly, conventional 3-D rule-base fuzzy PID control design is both computationally intensive and suffers from prolonged design times caused by a large dimensional rule-base. The size of the rule base will increase exponentially with the increase of the number of fuzzy sets used for each input decision variable. Hence, a reduced rule-base is needed for the 3-term fuzzy controller. In this thesis a direct implementation method is developed that allows the size of the rule-base to be reduced exponentially without losing the features of the PID structure. This direct implementation method, when applied to the reduced rule-base fuzzy PI controller, gives a good transient response with no jerking

    Jätevedenpuhdistamojen prosessinohjauksen ja operoinnin kehittäminen data-analytiikan avulla: esimerkkejä teollisuudesta ja kansainvälisiltä puhdistamoilta

    Get PDF
    Instrumentation, control and automation are central for operation of municipal wastewater treatment plants. Treatment performance can be further improved and secured by processing and analyzing the collected process and equipment data. New challenges from resource efficiency, climate change and aging infrastructure increase the demand for understanding and controlling plant-wide interactions. This study aims to review what needs, barriers, incentives and opportunities Finnish wastewater treatment plants have for developing current process control and operation systems with data analytics. The study is conducted through interviews, thematic analysis and case studies of real-life applications in process industries and international utilities. Results indicate that for many utilities, additional measures for quality assurance of instruments, equipment and controllers are necessary before advanced control strategies can be applied. Readily available data could be used to improve the operational reliability of the process. 14 case studies of advanced data processing, analysis and visualization methods used in Finnish and international wastewater treatment plants as well as Finnish process industries are reviewed. Examples include process optimization and quality assurance solutions that have proven benefits in operational use. Applicability of these solutions for identified development needs is initially evaluated. Some of the examples are estimated to have direct potential for application in Finnish WWTPs. For other case studies, further piloting or research efforts to assess the feasibility and cost-benefits for WWTPs are suggested. As plant operation becomes more centralized and outsourced in the future, need for applying data analytics is expected to increase.Prosessinohjaus- ja automaatiojärjestelmillä on keskeinen rooli modernien jätevedenpuhdistamojen operoinnissa. Prosessi- ja laitetietoa paremmin hyödyntämällä prosessia voidaan ohjata entistä tehokkaammin ja luotettavammin. Kiertotalous, ilmastonmuutos ja infrastruktuurin ikääntyminen korostavat entisestään tarvetta ymmärtää ja ohjata myös eri osaprosessien välisiä vuorovaikutuksia. Tässä työssä tarkastellaan tarpeita, esteitä, kannustimia ja mahdollisuuksia kehittää jätevedenpuhdistamojen ohjausta ja operointia data-analytiikan avulla. Eri sidosryhmien näkemyksiä kartoitetaan haastatteluilla, joiden tuloksia käsitellään temaattisen analyysin kautta. Löydösten perusteella potentiaalisia ratkaisuja kartoitetaan suomalaisten ja kansainvälisten puhdistamojen sekä prosessiteollisuuden jo käyttämistä sovelluksista. Löydökset osoittavat, että monilla puhdistamoilla tarvitaan nykyistä merkittävästi kattavampia menetelmiä instrumentoinnin, laitteiston ja ohjauksen laadunvarmistukseen, ennen kuin edistyneempien prosessinohjausmenetelmien käyttöönotto on mahdollista. Operoinnin toimintavarmuutta ja luotettavuutta voitaisiin kehittää monin tavoin hyödyntämällä jo kerättyä prosessi- ja laitetietoa. Työssä esitellään yhteensä 14 esimerkkiä puhdistamoilla ja prosessiteollisuudessa käytössä olevista prosessinohjaus- ja laadunvarmistusmenetelmistä. Osalla ratkaisuista arvioidaan sellaisenaan olevan laajaa sovelluspotentiaalia suomalaisilla jätevedenpuhdistamoilla. Useiden ratkaisujen käyttöönottoa voitaisiin edistää pilotoinnilla tai jatkotutkimuksella potentiaalisten hyötyjen ja kustannusten arvioimiseksi. Jo kerättyä prosessi- ja laitetietoa hyödyntävien ratkaisujen kysynnän odotetaan tulevaisuudessa lisääntyvän, kun puhdistamojen operointi keskittyy ja paineet kustannus- ja energiatehokkuudelle kasvavat

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    FAST : a fault detection and identification software tool

    Get PDF
    The aim of this work is to improve the reliability and safety of complex critical control systems by contributing to the systematic application of fault diagnosis. In order to ease the utilization of fault detection and isolation (FDI) tools in the industry, a systematic approach is required to allow the process engineers to analyze a system from this perspective. In this way, it should be possible to analyze this system to find if it provides the required fault diagnosis and redundancy according to the process criticality. In addition, it should be possible to evaluate what-if scenarios by slightly modifying the process (f.i. adding sensors or changing their placement) and evaluating the impact in terms of the fault diagnosis and redundancy possibilities. Hence, this work proposes an approach to analyze a process from the FDI perspective and for this purpose provides the tool FAST which covers from the analysis and design phase until the final FDI supervisor implementation in a real process. To synthesize the process information, a very simple format has been defined based on XML. This format provides the needed information to systematically perform the Structural Analysis of that process. Any process can be analyzed, the only restriction is that the models of the process components need to be available in the FAST tool. The processes are described in FAST in terms of process variables, components and relations and the tool performs the structural analysis of the process obtaining: (i) the structural matrix, (ii) the perfect matching, (iii) the analytical redundancy relations (if any) and (iv) the fault signature matrix. To aid in the analysis process, FAST can operate stand alone in simulation mode allowing the process engineer to evaluate the faults, its detectability and implement changes in the process components and topology to improve the diagnosis and redundancy capabilities. On the other hand, FAST can operate on-line connected to the process plant through an OPC interface. The OPC interface enables the possibility to connect to almost any process which features a SCADA system for supervisory control. When running in on-line mode, the process is monitored by a software agent known as the Supervisor Agent. FAST has also the capability of implementing distributed FDI using its multi-agent architecture. The tool is able to partition complex industrial processes into subsystems, identify which process variables need to be shared by each subsystem and instantiate a Supervision Agent for each of the partitioned subsystems. The Supervision Agents once instantiated will start diagnosing their local components and handle the requests to provide the variable values which FAST has identified as shared with other agents to support the distributed FDI process.Per tal de facilitar la utilització d'eines per la detecció i identificació de fallades (FDI) en la indústria, es requereix un enfocament sistemàtic per permetre als enginyers de processos analitzar un sistema des d'aquesta perspectiva. D'aquesta forma, hauria de ser possible analitzar aquest sistema per determinar si proporciona el diagnosi de fallades i la redundància d'acord amb la seva criticitat. A més, hauria de ser possible avaluar escenaris de casos modificant lleugerament el procés (per exemple afegint sensors o canviant la seva localització) i avaluant l'impacte en quant a les possibilitats de diagnosi de fallades i redundància. Per tant, aquest projecte proposa un enfocament per analitzar un procés des de la perspectiva FDI i per tal d'implementar-ho proporciona l'eina FAST la qual cobreix des de la fase d'anàlisi i disseny fins a la implementació final d'un supervisor FDI en un procés real. Per sintetitzar la informació del procés s'ha definit un format simple basat en XML. Aquest format proporciona la informació necessària per realitzar de forma sistemàtica l'Anàlisi Estructural del procés. Qualsevol procés pot ser analitzat, només hi ha la restricció de que els models dels components han d'estar disponibles en l'eina FAST. Els processos es descriuen en termes de variables de procés, components i relacions i l'eina realitza l'anàlisi estructural obtenint: (i) la matriu estructural, (ii) el Perfect Matching, (iii) les relacions de redundància analítica, si n'hi ha, i (iv) la matriu signatura de fallades. Per ajudar durant el procés d'anàlisi, FAST pot operar aïlladament en mode de simulació permetent a l'enginyer de procés avaluar fallades, la seva detectabilitat i implementar canvis en els components del procés i la topologia per tal de millorar les capacitats de diagnosi i redundància. Per altra banda, FAST pot operar en línia connectat al procés de la planta per mitjà d'una interfície OPC. La interfície OPC permet la possibilitat de connectar gairebé a qualsevol procés que inclogui un sistema SCADA per la seva supervisió. Quan funciona en mode en línia, el procés està monitoritzat per un agent software anomenat l'Agent Supervisor. Addicionalment, FAST té la capacitat d'implementar FDI de forma distribuïda utilitzant la seva arquitectura multi-agent. L'eina permet dividir sistemes industrials complexes en subsistemes, identificar quines variables de procés han de ser compartides per cada subsistema i generar una instància d'Agent Supervisor per cadascun dels subsistemes identificats. Els Agents Supervisor un cop activats, començaran diagnosticant els components locals i despatxant les peticions de valors per les variables que FAST ha identificat com compartides amb altres agents, per tal d'implementar el procés FDI de forma distribuïda.Postprint (published version

    Intelligent methods for complex systems control engineering

    Get PDF
    This thesis proposes an intelligent multiple-controller framework for complex systems that incorporates a fuzzy logic based switching and tuning supervisor along with a neural network based generalized learning model (GLM). The framework is designed for adaptive control of both Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) complex systems. The proposed methodology provides the designer with an automated choice of using either: a conventional Proportional-Integral-Derivative (PID) controller, or a PID structure based (simultaneous) Pole and Zero Placement controller. The switching decisions between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using the fuzzy logic based supervisor operating at the highest level of the system. The fuzzy supervisor is also employed to tune the parameters of the multiple-controller online in order to achieve the desired system performance. The GLM for modelling complex systems assumes that the plant is represented by an equivalent model consisting of a linear time-varying sub-model plus a learning nonlinear sub-model based on Radial Basis Function (RBF) neural network. The proposed control design brings together the dominant advantages of PID controllers (such as simplicity in structure and implementation) and the desirable attributes of Pole and Zero Placement controllers (such as stable set-point tracking and ease of parameters’ tuning). Simulation experiments using real-world nonlinear SISO and MIMO plant models, including realistic nonlinear vehicle models, demonstrate the effectiveness of the intelligent multiple-controller with respect to tracking set-point changes, achieve desired speed of response, prevent system output overshooting and maintain minimum variance input and output signals, whilst penalising excessive control actions.EThOS - Electronic Theses Online ServiceBiruni Remote Sensing Centre, LibyaGBUnited Kingdo
    • …
    corecore