133 research outputs found

    Lost in optimisation of water distribution systems? A literature review of system design

    Get PDF
    This is the final version of the article. Available from MDPI via the DOI in this record.Optimisation of water distribution system design is a well-established research field, which has been extremely productive since the end of the 1980s. Its primary focus is to minimise the cost of a proposed pipe network infrastructure. This paper reviews in a systematic manner articles published over the past three decades, which are relevant to the design of new water distribution systems, and the strengthening, expansion and rehabilitation of existing water distribution systems, inclusive of design timing, parameter uncertainty, water quality, and operational considerations. It identifies trends and limits in the field, and provides future research directions. Exclusively, this review paper also contains comprehensive information from over one hundred and twenty publications in a tabular form, including optimisation model formulations, solution methodologies used, and other important details

    Optimización de la gestión de redes de riego a presión a diferentes escalas mediante Inteligencia Artificial

    Get PDF
    Factors such as climate change, world population growth or the competition for the water resources make freshwater availability become an increasingly large and complex global challenge. Under this scenario of reduced water availability, increasing droughts frequency and uncertainties associated with a changing climate, the irrigated agriculture sector, particularly in the Mediterranean region, will need to be even more efficient in the use of the water resources. In Spain, many irrigation districts have been modernized in recent years, replacing the obsolete open channels by pressurized water distribution networks towards improvements in water use efficiency. Thanks to this, water use has reduced but the energy demand and the water costs have dramatically increased. Thus, strategies to reduce simultaneously water and energy uses in irrigation districts are required. This thesis consists of nine chapters, which include several models to optimize the management of the irrigation districts and increase the efficiency of water and energy use.Factores tales como el cambio climático, el crecimiento de la población mundial o la competencia por los recursos hídricos hacen que la disponibilidad de agua se esté convirtiendo en un desafío global cada vez más grande y complejo. En este escenario de reducción de la disponibilidad de agua, aumento de la frecuencia de las sequías y de las incertidumbres asociadas a un cambio climático, el sector de la agricultura de regadío, en particular en la región mediterránea, tendrá que ser aún más eficiente en el uso de los recursos hídricos. En España, muchas comunidades de regantes se han modernizado en los últimos años, sustituyendo los obsoletos canales abiertos por redes de distribución de agua a presión con el objetivo de mejorar la eficiencia en el uso del agua. Gracias a esto, el uso del agua se ha reducido, pero la demanda de energía y los costos del agua se han incrementado drásticamente. Por lo tanto, se requieren estrategias para reducir simultáneamente el uso de agua y energía en las comunidades de regantes. Esta tesis consta de nueve capítulos que incluyen varios modelos para optimizar la gestión de las comunidades de regantes y aumentar la eficiencia en el uso del agua y la energía

    Embracing Analytics in the Drinking Water Industry

    Get PDF
    Analytics can support numerous aspects of water industry planning, management, and operations. Given this wide range of touchpoints and applications, it is becoming increasingly imperative that the championship and capability of broad-based analytics needs to be developed and practically integrated to address the current and transitional challenges facing the drinking water industry. Analytics will contribute substantially to future efforts to provide innovative solutions that make the water industry more sustainable and resilient. The purpose of this book is to introduce analytics to practicing water engineers so they can deploy the covered subjects, approaches, and detailed techniques in their daily operations, management, and decision-making processes. Also, undergraduate students as well as early graduate students who are in the water concentrations will be exposed to established analytical techniques, along with many methods that are currently considered to be new or emerging/maturing. This book covers a broad spectrum of water industry analytics topics in an easy-to-follow manner. The overall background and contexts are motivated by (and directly drawn from) actual water utility projects that the authors have worked on numerous recent years. The authors strongly believe that the water industry should embrace and integrate data-driven fundamentals and methods into their daily operations and decision-making process(es) to replace established ìrule-of-thumbî and weak heuristic approaches ñ and an analytics viewpoint, approach, and culture is key to this industry transformation

    Optimization Methods Applied to Power Systems â…¡

    Get PDF
    Electrical power systems are complex networks that include a set of electrical components that allow distributing the electricity generated in the conventional and renewable power plants to distribution systems so it can be received by final consumers (businesses and homes). In practice, power system management requires solving different design, operation, and control problems. Bearing in mind that computers are used to solve these complex optimization problems, this book includes some recent contributions to this field that cover a large variety of problems. More specifically, the book includes contributions about topics such as controllers for the frequency response of microgrids, post-contingency overflow analysis, line overloads after line and generation contingences, power quality disturbances, earthing system touch voltages, security-constrained optimal power flow, voltage regulation planning, intermittent generation in power systems, location of partial discharge source in gas-insulated switchgear, electric vehicle charging stations, optimal power flow with photovoltaic generation, hydroelectric plant location selection, cold-thermal-electric integrated energy systems, high-efficiency resonant devices for microwave power generation, security-constrained unit commitment, and economic dispatch problems

    Power systems generation scheduling and optimisation using evolutionary computation techniques

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Optimal generation scheduling attempts to minimise the cost of power production while satisfying the various operation constraints and physical limitations on the power system components. The thermal generation scheduling problem can be considered as a power system control problem acting over different time frames. The unit commitment phase determines the optimum pattern for starting up and shutting down the generating units over the designated scheduling period, while the economic dispatch phase is concerned with allocation of the load demand among the on-line generators. In a hydrothermal system the optimal scheduling of generation involves the allocation of generation among the hydro electric and thermal plants so as to minimise total operation costs of thermal plants while satisfying the various constraints on the hydraulic and power system network. This thesis reports on the development of genetic algorithm computation techniques for the solution of the short term generation scheduling problem for power systems having both thermal and hydro units. A comprehensive genetic algorithm modelling framework for thermal and hydrothermal scheduling problems using two genetic algorithm models, a canonical genetic algorithm and a deterministic crowding genetic algorithm, is presented. The thermal scheduling modelling framework incorporates unit minimum up and down times, demand and reserve constraints, cooling time dependent start up costs, unit ramp rates, and multiple unit operating states, while constraints such as multiple cascade hydraulic networks, river transport delays and variable head hydro plants, are accounted for in the hydraulic system modelling. These basic genetic algorithm models have been enhanced, using quasi problem decomposition, and hybridisation techniques, resulting in efficient generation scheduling algorithms. The results of the performance of the algorithms on small, medium and large scale power system problems is presented and compared with other conventional scheduling techniques.Overseas Development Agenc

    Development of flood prediction models using machine learning techniques

    Get PDF
    Flooding and flash flooding events damage infrastructure elements and pose a significant threat to the safety of the people residing in susceptible regions. There are some methods that government authorities rely on to assist in predicting these events in advance to provide warning, but such methodologies have not kept pace with modern machine learning. To leverage these algorithms, new models must be developed to efficiently capture the relationships among the variables that influence these events in a given region. These models can be used by emergency management personnel to develop more robust flood management plans for susceptible areas. The research investigates machine learning techniques to analyze the relationships between multiple variables influencing flood activities in Missouri. The first research contribution utilizes a deep learning algorithm to improve the accuracy and timelessness of flash flood predictions in Greene County, Missouri. In addition, a risk analysis study is conducted to advise the existing flash flood management strategies for the region. The second contribution presents a comparative analysis of different machine learning techniques to develop a classification model and predict the likelihood of flash flooding in Missouri. The third contribution introduces an ensemble of Long Short-Term Memory (LSTM) deep learning models used in conjunction with clustering to create virtual gauges and predict river water levels at unmonitored locations. The LSTM models predict river water levels 4 hours in advance. These outputs empower emergency management decision makers with an advanced warning to better implement flood management plans in regions of Missouri not served with river gauge monitoring --Abstract, page iv

    IoT Applications Computing

    Get PDF
    The evolution of emerging and innovative technologies based on Industry 4.0 concepts are transforming society and industry into a fully digitized and networked globe. Sensing, communications, and computing embedded with ambient intelligence are at the heart of the Internet of Things (IoT), the Industrial Internet of Things (IIoT), and Industry 4.0 technologies with expanding applications in manufacturing, transportation, health, building automation, agriculture, and the environment. It is expected that the emerging technology clusters of ambient intelligence computing will not only transform modern industry but also advance societal health and wellness, as well as and make the environment more sustainable. This book uses an interdisciplinary approach to explain the complex issue of scientific and technological innovations largely based on intelligent computing

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Smart Energy Management for Smart Grids

    Get PDF
    This book is a contribution from the authors, to share solutions for a better and sustainable power grid. Renewable energy, smart grid security and smart energy management are the main topics discussed in this book
    • …
    corecore