23,067 research outputs found

    Multivariate time series analysis for short-term forecasting of ground level ozone (O3) in Malaysia

    Get PDF
    The declining of air quality mostly affects the elderly, children, people with asthma, as well as a restriction on outdoor activities. Therefore, there is an importance to provide a statistical modelling to forecast the future values of surface layer ozone (O3) concentration. The objectives of this study are to obtain the best multivariate time series (MTS) model and develop an online air quality forecasting system for O3 concentration in Malaysia. The implementations of MTS model improve the recent statistical model on air quality for short-term prediction. Ten air quality monitoring stations situated at four (4) different types of location were selected in this study. The first type is industrial represent by Pasir Gudang, Perai, and Nilai, second type is urban represent by Kuala Terengganu, Kota Bharu, and Alor Setar. The third is suburban located in Banting, Kangar, and Tanjung Malim, also the only background station at Jerantut. The hourly record data from 2010 to 2017 were used to assess the characteristics and behaviour of O3 concentration. Meanwhile, the monthly record data of O3, particulate matter (PM10), nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon monoxide (CO), temperature (T), wind speed (WS), and relative humidity (RH) were used to examine the best MTS models. Three methods of MTS namely vector autoregressive (VAR), vector moving average (VMA), and vector autoregressive moving average (VARMA), has been applied in this study. Based on the performance error, the most appropriate MTS model located in Pasir Gudang, Kota Bharu and Kangar is VAR(1), Kuala Terengganu and Alor Setar for VAR(2), Perai and Nilai for VAR(3), Tanjung Malim for VAR(4) and Banting for VAR(5). Only Jerantut obtained the VMA(2) as the best model. The lowest root mean square error (RMSE) and normalized absolute error is 0.0053 and <0.0001 which is for MTS model in Perai and Kuala Terengganu, respectively. Meanwhile, for mean absolute error (MAE), the lowest is in Banting and Jerantut at 0.0013. The online air quality forecasting system for O3 was successfully developed based on the best MTS models to represent each monitoring station

    Machine Learning tools for global PDF fits

    Get PDF
    The use of machine learning algorithms in theoretical and experimental high-energy physics has experienced an impressive progress in recent years, with applications from trigger selection to jet substructure classification and detector simulation among many others. In this contribution, we review the machine learning tools used in the NNPDF family of global QCD analyses. These include multi-layer feed-forward neural networks for the model-independent parametrisation of parton distributions and fragmentation functions, genetic and covariance matrix adaptation algorithms for training and optimisation, and closure testing for the systematic validation of the fitting methodology.Comment: 12 pages, 9 figures, to appear in the proceedings of the XXIIIth Quark Confinement and the Hadron Spectrum conference, 1-6 August 2018, University of Maynooth, Irelan

    A conjugate gradient minimisation approach to generating holographic traps for ultracold atoms

    Get PDF
    Direct minimisation of a cost function can in principle provide a versatile and highly controllable route to computational hologram generation. However, to date iterative Fourier transform algorithms have been predominantly used. Here we show that the careful design of cost functions, combined with numerically efficient conjugate gradient minimisation, establishes a practical method for the generation of holograms for a wide range of target light distributions. This results in a guided optimisation process, with a crucial advantage illustrated by the ability to circumvent optical vortex formation during hologram calculation. We demonstrate the implementation of the conjugate gradient method for both discrete and continuous intensity distributions and discuss its applicability to optical trapping of ultracold atoms.Comment: 11 pages, 4 figure

    Pseudo derivative evolutionary algorithm and convergence analysis

    Get PDF

    A Learning Framework for Morphological Operators using Counter-Harmonic Mean

    Full text link
    We present a novel framework for learning morphological operators using counter-harmonic mean. It combines concepts from morphology and convolutional neural networks. A thorough experimental validation analyzes basic morphological operators dilation and erosion, opening and closing, as well as the much more complex top-hat transform, for which we report a real-world application from the steel industry. Using online learning and stochastic gradient descent, our system learns both the structuring element and the composition of operators. It scales well to large datasets and online settings.Comment: Submitted to ISMM'1

    Review of Metaheuristics and Generalized Evolutionary Walk Algorithm

    Full text link
    Metaheuristic algorithms are often nature-inspired, and they are becoming very powerful in solving global optimization problems. More than a dozen of major metaheuristic algorithms have been developed over the last three decades, and there exist even more variants and hybrid of metaheuristics. This paper intends to provide an overview of nature-inspired metaheuristic algorithms, from a brief history to their applications. We try to analyze the main components of these algorithms and how and why they works. Then, we intend to provide a unified view of metaheuristics by proposing a generalized evolutionary walk algorithm (GEWA). Finally, we discuss some of the important open questions.Comment: 14 page
    • …
    corecore