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Abstract: Direct minimisation of a cost function can in principle provide

a versatile and highly controllable route to computational hologram genera-

tion. Here we show that the careful design of cost functions, combined with

numerically efficient conjugate gradient minimisation, establishes a practi-

cal method for the generation of holograms for a wide range of target light

distributions. This results in a guided optimisation process, with a crucial

advantage illustrated by the ability to circumvent optical vortex formation

during hologram calculation. We demonstrate the implementation of the

conjugate gradient method for both discrete and continuous intensity dis-

tributions and discuss its applicability to optical trapping of ultracold atoms.

© 2014 Optical Society of America

OCIS codes: (020.0020) Atomic and molecular physics; (020.1475) Bose-Einstein conden-

sates; (020.7010) Laser trapping; (090.1760) Computer holography; (090.1995) Digital holog-

raphy; (230.6120) Spatial light modulators.
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1. Introduction

In recent years there has been extraordinary progress in cold atom physics and its applications

in fields such as quantum computation and simulation of condensed-matter systems, precision

measurements, and matter-wave interferometry [1, 2]. In this context, arbitrary time-dependent

optical trapping potentials are particularly appealing, with a variety of geometries including
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toroids and ring lattices already realised by acousto-optic or holographic means [3, 4]. Exper-

iments have been performed with discrete arrays of optical dipole traps, loaded with either

thermal atoms [4, 5] or quantum degenerate atomic gases [3, 6, 7], in which individual trap-

ping sites can be moved, addressed and manipulated. Important too are continuous trapping

geometries: the primary subject of the present work are extended (as opposed to diffraction-

limited) power-law potentials, proposed both as a static supplement to a trapping potential to

cancel unwanted external potentials [8], and in a dynamic sequence as a tool for the efficient

production of Bose-Einstein condensates [9]. Other interesting continuous potentials include

engineered waveguides with dynamic bright regions, shown to be suitable for studies of BEC

superfluidity [10].

Technologies employed so far in the realisation of these arbitrary optical trapping pat-

terns include acousto-optic deflection of a laser beam to produce either a composite static

intensity distribution [8] or a rapidly-scanned profile [3, 7, 11], digital micro-mirror devices

(DMDs) [4], and computer-generated holograms implemented with phase-only spatial light

modulators (SLMs) [5,6,9,10,12–17]. The high phase-resolution available in phase-only SLMs

offers significant advantages for versatility of the accessible trapping patterns, though at the cost

of lower switching speed between frames if compared to acousto-optic modulators and digi-

tal mirror devices. However, with new technologies currently being developed for grey-scale

phase-only SLMs with kHz refresh rates [18], this versatility may become accessible at suffi-

ciently high update rates for high-speed dynamic manipulation of trapped atoms. The primary

challenge of phase-only SLMs is the computational complexity inherent in reproducing the tar-

get intensity distribution on the trapping plane. This paper demonstrates an alternative reliable

and efficient method to address this problem.

Our investigation concerns an SLM consisting of 256×256 programmable pixels; each pixel

is able to impose a phase retardation between 0 and 2π in steps of 2π/256 on an incident laser

beam. The resulting digital hologram is calculated to reconstruct a given target intensity pattern

in the far field, or equivalently in the focal plane of a lens, in which atoms will be trapped.

The calculated phase mask φpq and the incident laser field A0Spq, with indices p and q denoting

pixel position, determine the SLM–plane electric field:

Ein = A0Spq exp(iφpq) . (1)

We express this electric field as an array of N pixels; propagation through focussing optics

can be calculated by a fast Fourier transform. The electric field in the output plane is therefore

given by

Eout =
A0

N
∑
pq

Spq exp(iφpq)exp

(

−
2πi

N
(pn+qm)

)

, (2)

with output–plane coordinates denoted by n and m. As only the modulus of Eout is relevant

for optical trapping, we have output–plane phase freedom: consequently the phase φpq required

to recreate a given target intensity is not unique, and solutions are found numerically. The gen-

eral problem of phase retrieval, which includes both the above case of laser beam shaping where

the modulus of the field is known in both planes, and the related problem of image reconstruc-

tion where the field modulus is known only in the output plane, can be solved using a variety of

methods. These fall broadly into two categories: iterative Fourier transform algorithms (IFTAs),

and algorithms based on the minimisation of a cost function. The IFTA calculation encourages

convergence from an initial phase guess to one yielding the target intensity using successive

Fourier transforms between SLM and output planes, imposing the known or desired electric

field amplitude at each step. For the purpose of atom trapping in arbitrary geometries, where

smoothness is a primary consideration (as corrugations of the trapping potential cause fragmen-

tation of cold atom clouds [19]), the best results so far have been achieved by the mixed-region
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amplitude freedom (MRAF) variant of the IFTA [9,10,13,14,17]. In MRAF, the output plane is

divided into two regions: a signal region in which the intensity is restricted to match the target

intensity pattern, and a noise region in which the intensity is unconstrained. This separation al-

lows for increased accuracy and smoothness in the signal region, leading to computed intensity

patterns with residual root-mean-square (RMS) errors of less than a few percent. A secondary

consideration in designing optical traps is the light-usage efficiency of the computer-generated

hologram. One motivation for the use of phase-only spatial light modulators rather than am-

plitude modulators is that the former do not deliberately remove light from the incident beam.

However, the MRAF algorithm gains accuracy by deliberately lowering this efficiency. Further-

more, lacking a minimisation principle, IFTA approaches provide no guarantee of converging,

and their final state can be highly dependent on the initial phase pattern used.

In contrast, cost function minimisation algorithms are inherently more directional than IF-

TAs: the cost function encodes all constraints and desired properties of the intensity pattern, and

can be designed with terms accounting for specific output plane features (such as high light-

usage efficiency) in addition to adherence to the target intensity profile. Within this category,

established beam shaping methods include genetic algorithms and direct search algorithms,

both of which are less computationally efficient than IFTAs [13]. Genetic algorithms [20] seek

the global minimum of the cost function, and as such are computationally demanding but ac-

curate. Direct search algorithms [21, 22], in which SLM pixel values are sequentially altered

with only changes reducing the cost function being retained, are limited to just a few phase

levels due to computational intensity, and as such work well for simple targets but struggle to

reproduce more intricate patterns.

In this paper, we consider an alternative approach to the beam shaping problem, in which the

cost function is minimised by a conjugate gradient local search algorithm. Conjugate gradient

minimisation, a well–established method for minimising high-dimensional smooth functions,

is widely used in contexts such as electronic structure [23]. Here we find that this approach

successfully combines computational efficiency and algorithm versatility, allowing the accu-

rate reproduction of a variety of target intensity profiles relevant for optical trapping of atoms.

The simplest cost function we study, a least-squares difference from the desired pattern, leaves

localised defects which have low cost but present significant problems for atom trapping. How-

ever, these defects can be removed by systematically modifying the cost function, and we dis-

cuss the forms of cost functions required to eliminate them. This flexibility in cost function

definition, a useful feature common to all minimisation algorithms, also allows us to go beyond

the simple definitions of signal and noise regions, and to fine-tune our algorithm for different

experimental requirements simply by adding cost function terms and applying different weight-

ings across the output plane.

Laser beam shaping via an algorithm that relies entirely on gradient-based local search has

been relatively unexplored so far. Examples of this are found in [24–26], where conjugate gra-

dient minimisation is used to generate pseudo-non diffractive beams in which the target is a

given axial intensity distribution. Gradient-based local search techniques are also used as part

of more complex algorithms, such as hybrid algorithms for beam shaping in which they are

combined with genetic algorithms to increase the reliability in locating the global minimum

for the generation of flat top laser beams [27, 28]. The present work shows that gradient-based

local search can be applied to a much wider range of beam shaping problems, and that it can be

applied on its own: finding a local minimum is sufficient for a good reproduction of a variety

of targets.
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2. The conjugate gradient calculation method

At the heart of this method is quantifying the error between target and predicted intensity by

defining a cost function C. Minimisation of C is performed over all SLM pixel phase values,

while computational efficiency is ensured by incorporating gradient information. Figure 1 il-

lustrates the application of conjugate gradient minimisation to hologram calculation.

Incident laser field S

SLM phase profile ϕ 

Target intensity T

Initialisation

Ein = A0SeiϕSLM plane 

Eout = F{Ein} 

I = |Eout|
2

C = ∑|Tnm- Inm|2
nm

Output plane 

Minimisation

Iteration i≠1Iteration i=1

γi = 
gi ∙ gi

gi-1 ∙ gi-1

di = gi+γidi-1

Follow di by changing phase values. 
Stop when achieve 1D minimisation.

Has cost function change stagnated?

Export phase to SLM

Yes

No Take ϕ values 
from line minimum

gi = direction of steepest descent

di = conjugate direction

di = gi

Fig. 1. Block diagram illustrating the conjugate gradient minimisation approach to holo-

gram solution.

The process is initialised by defining a target intensity distribution, an incident laser field am-

plitude, and an initial phase guess. This may be the summation of analytically-expressed phase

patterns to form an educated guess, e.g. quadratic and linear phase gradients giving expansion

and position-offset of the intensity in the output plane [13], or it may be a random array taking

values between 0 and 2π , with each element corresponding to an SLM pixel.

Weighting arrays are also defined during this initialisation stage. This weighting process is

significantly more flexible than the simple definition of signal and noise regions characteristic

of the MRAF IFTA. Output plane regions can be arbitrarily weighted according to their impor-

tance: we can allocate a pixel-dependent prefactor to individual cost function terms according

to their relative importance in different output plane regions. For the remainder of this paper, the

high-intensity output region forming the trapping pattern is referred to as the trapping region,

with the signal and noise regions retaining the same meanings as in MRAF: the signal region

is the trapping region plus some border which will remain devoid of light, while the noise re-
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gion is the remainder of the plane where light may be deposited without adversely affecting

the trapping potential. For example, the cost function can be allocated a larger weighting, so

greater importance, in the trapping region than the remainder of the output plane, while the

highest intensity parts of this region preferentially seen by the atoms can be given yet more

prominence than those of lower intensity. With our cost function approach, we can provide a

smooth transition between signal and noise region weightings which reduces noise accumula-

tion at the signal region border. By comparison, a typical light pattern calculated using MRAF

places much of the noise region light at the boundary of the signal and noise regions.

Upon each iteration, the output electric field corresponding to the current phase profile is

calculated, with phase array components generated by the minimisation routine. This multidi-

mensional minimisation is composed of one-dimensional steps, each seeking to minimise the

cost function by changing phase values. The initial step minimises the cost function in the local

gradient direction; subsequent consecutive minimisation directions are conjugate and indepen-

dent, to avoid repetition of minimisation directions [29, 30]. Conjugate directions d are those

satisfying [23, 30]:

di ·HC ·d j = 0, (3)

where HC is the Hessian matrix of the cost function. However, the power of the conjugate

gradient descent approach is that the Hessian does not need to be calculated explicitly, but

is rather built up by application of the following procedure. The ith direction is calculated

using [23]:

di = gi+ γidi−1 (4)

where gi is the direction of steepest descent at the termination point of step i− 1 and γi is the
scalar

γi =
gi ·gi

gi−1 ·gi−1
. (5)

The fast Fourier transforms used in the calculations map a N×N array in the SLM plane

onto a N×N array in the output plane. If N is chosen to be the number of pixels in the SLM,

then the size of each output plane pixel is exactly the diffraction limit of the system. Aliasing in

the output plane is avoided by selecting a value for N, in accordance with the Nyquist criterion,

of twice the number of pixels in the SLM [31]. Therefore the phase array is surrounded by

zeroes to double its size and optimise output plane sampling at each iteration. Correspondingly

enlarging the target array, the resolution of the cost calculation is optimised. Iteration continues

until the difference between consecutive cost values stagnates: a minimum of the chosen cost

function has been located. Our calculations make use of the libatoms library [32].

3. Versatility via cost function definition

The cost function should be such that its minimum corresponds to the desired pattern. There are

however a number of other features required for the algorithm to operate efficiently: it should be

efficient to evaluate derivatives of the cost function; the function should not have local minima

which give poor trapping profiles. Indeed, as we will see below, a naive choice of cost function

leads to local minima containing optical vortices. Furthermore, the conjugate gradient approach

assumes an approximately quadratic function [29]. A simple cost function may purely concern

target reproduction accuracy, expressed as a sum over output plane pixels (n,m) of differences
between target Tnm and calculated output intensity:

C = ∑
nm

(

Tnm−|Eout,nm|
2
)2

= ∑
nm

(

Tnm−|A0ψ̃nm|
2
)2

(6)
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using

ψ̃nm =
1

N
∑
pq

ψpq exp

(

−
2πi

N
(pn+qm)

)

(7)

with ψpq = Spq exp(iφpq), where indices p and q indicate general input plane pixels. A0 is a

free scale parameter allowing for the fact that the overall scale of the target potential is not

necessarily matched to the laser power and Spq allows for the possibility of an input field with

a slowly varying intensity, e.g. a Gaussian input beam. The cost function gradient required by

the minimisation algorithm must be calculated with respect to φrs, the phase value at a specific
SLM pixel. For this cost function, the corresponding gradient is

∂C

∂φrs
= 4A2

0Re(iψ
∗
rsXrs) (8)

where

Xrs =
1

N
∑
nm

[

(

Tnm−|A0ψ̃nm|
2
)

ψ̃∗
nm exp

(

2πi

N
(rn+ sm)

)]

. (9)

Additional terms in the cost function can incorporate experimentally relevant output plane

features. Such features could, for instance, include noise suppression at the signal region bound-

ary to aid trap loading, or in a dynamic sequence for real-time manipulation of trapped atoms,

a cost function term could be introduced to reduce intensity fluctuations between consecutive

frames in the sequence. The application of additional cost function terms is illustrated here by

the suppression of optical vortex formation. We find that the cost function in Eq. (6) is effective

for lattice distributions, but inadequate for large continuous patterns due to the emergence of

optical vortices within the trapping region during calculation. These vortices are characterised

by a sudden drop in intensity coinciding with a local phase winding by a multiple of 2π , and
they arise because they can be initially beneficial to cost function reduction. However, their

prevention is imperative to all hologram calculation schemes. From following the evolution of

our conjugate gradient minimisation, it appears the local vorticity cannot change, and so these

vortices can only be removed by annihilation of oppositely charged vortex pairs, or by moving

vortices to regions of low intensity [33].

Figure 2 illustrates the vortices formed within the output plane of a second-order power-

law intensity distribution calculated using the cost function defined in Eq. (6) with no regional

weightings applied, starting from an educated guess. Since the algorithm has identified a local

minimum of the cost function, the observation of these vortices suggests that the cost function

does not sufficiently penalise them. Indeed, since the vortex cores are small, they only introduce

a very localised deviation from the pattern. Moreover, there is only a small change in cost

function as vortices move through the pattern, and hence minimisation of this cost function does

not effectively eliminate vortices once formed. In minimising this cost function, vortex removal

is principally achieved by gradually shifting them towards lower-intensity regions where their

cost is reduced, but this is obstructed in regions of high vortex density where phase contours

can become tangled [33]. Vortex elimination is therefore only realistically achievable if their

early formation is suppressed such that their numbers remain manageable. Given that the cost

function can be chosen at will (within the constraints given above), our approach to eliminating

vortices becomes a question of choosing a better cost function such that vortices do not remain

frozen in the final pattern.

A cost function that penalises large localised deviations more than the simple cost function

in Eq. (6) is

Ct = ∑
nm

(

Tnm−|A0ψ̃nm|
2
)t

. (10)
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Fig. 2. Second-order power-law trapping potential calculated using the cost function in

Eq. (6). (left) Two-dimensional profiles and vertical line profiles taken through the centre

of the pattern for target (upper inset and cyan line) and calculated output (lower inset and

red points). The colorbar applies to the insets and to all subsequent figures. The predicted

output is distorted by deep optical vortices. These vortices inhibit further improvements

in accuracy, resulting in a poor fit to the target intensity. The root-mean square (RMS)

fractional error between target and predicted output is 26%. (right) Vortex locations on

the output plane, with red pixels indicating 2π phase windings and blue pixels −2π . The
black circle indicates the trapping region. While the vortex density is reduced within this

region in comparison to the remainder of the output plane, 232 are established within the

trapping region with an insignificant fraction removed with further iterations due to the

tangled phase contours.

The higher the value of t, the higher the cost of large discrepancies relative to small, increas-

ing the cost contribution of trapping–region vortices. Fewer vortices persist, but at the expense

of trap smoothness. In practice we find that powers higher than four produce too rough an inten-

sity distribution with insufficient vortex improvements to justify this sacrifice. The Ct gradient

is
∂Ct

∂φrs
= 2tA2

0Re(iψ
∗
rsXrs) . (11)

Alternatively, we can also specify cost functions that perform active smoothing by associat-

ing a cost with intensity variations between neighbouring pixels. For example, to apply active

smoothing over the four nearest-neighbour pixels, we use the cost function

Cs = ∑
nm

[

(

|ψ̃nm|
2−

∣

∣ψ̃n(m−1)

∣

∣

2
)2

+
(

|ψ̃nm|
2−

∣

∣ψ̃n(m+1)

∣

∣

2
)2

+
(

|ψ̃nm|
2−

∣

∣ψ̃(n−1)m

∣

∣

2
)2

+
(

|ψ̃nm|
2−

∣

∣ψ̃(n+1)m

∣

∣

2
)2

]

. (12)

The gradient is calculated in the same way for all four terms inCs. For instance, the gradient

for the first term,C
(1)
s = ∑nm

(

|ψ̃nm|
2−|ψ̃n(m−1)|

2
)2
, is

∂C
(1)
s

∂φrs
=

4

N
Re(iψrs (X

∗
1rs−X∗

2rs)) (13)

where

X1rs =
1

N
∑
nm

[

(

|ψ̃nm|
2−

∣

∣ψ̃n(m−1)

∣

∣

2
)

ψ̃nm exp

(

2πi

N
(rn+ sm)

)]

(14)
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X2rs =
1

N
∑
nm

[

(

|ψ̃nm|
2−

∣

∣ψ̃n(m−1)

∣

∣

2
)

ψ̃n(m−1) exp

(

2πi

N
(rn+ sm)

)]

. (15)

Sequential combination of Ct=4 and Ct=2 establishes a vortex-free trap region with subse-

quent smoothing; as an alternative approach, simultaneous combination of Ct=2 and Cs terms

is also successfully implemented to demand both accuracy and smoothness. Calculated outputs

corresponding to these examples are illustrated in Fig. 3 for the same second-order power-law

pattern shown in Fig. 2.
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Fig. 3. Second-order power-law trapping potentials calculated with more sophisticated cost

functions, starting with an educated guess phase. (left) Line profiles through pattern centre

and two-dimensional profiles as insets. Calculated intensity patterns are denoted by points

while the target profile is indicated with a cyan line. (right) output plane vortex map with the

trapping region indicated by the black circle. (a)Ct=4 (purple, upper inset) and subsequent

Ct=2 application (red, lower inset). ApplyingCt=4 generates an approximate fit to the target

while suppressing the initial vortex number. Subsequent smoothing using Ct=2 improves

the accuracy and smoothness, and clears residual vortices from the trapping region. (b) A

combination ofCt=2 andCs achieves both direct smoothing and high reproduction accuracy.

For the sequential Ct application shown in Fig. 3(a), we initially use Ct=4 to apply coarse

corrections to the calculated intensity pattern, then follow this with more refined corrections

using Ct=2. The cost function on signal region pixels is given a weighting of 10 times that of

noise region pixels during the Ct=4 stage; for Ct=2 application the signal region is weighted by

a factor of 1012(1+T ) relative to the noise region with T the target value of a given pixel, while

a linear slope over 8 pixels smooths the weightings between these two regions and discourages

noise accumulation near the target intensity distribution. The calculated fractional RMS error

is 1.4% after 3000 iterations of Ct=4 application and 0.07% following an additional 10000 it-
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erations of Ct=2 smoothing, with 70 vortices remaining in the signal region. However, as they

are confined to low-intensity regions these vortices do not degrade the trapping pattern. The

efficiency of the algorithm in placing light within the trapping region is 47% prior to smooth-

ing and 45% afterwards. However, efficiency varies widely according to weighting choice: one

method of improving efficiency is to demand an accuracy across the entire output plane com-

parable to that of the signal region, requiring more iterations to achieve the desired trapping

region accuracy.

In the combined Ct=2 and Cs approach, the signal and noise regions are not given relative

weightings for theCt=2 term, but theCs term is weighted according to the target value for each

pixel within the signal region and set to zero in the noise region. Competition between the accu-

racy and smoothing terms reduce accuracy as compared to the pure discrepancy power method,

with a fractional RMS error of 0.43% after 30000 iterations in the example shown in Fig. 3(b).

However, appropriate balancing of terms results in effective vortex suppression and sufficient

prediction accuracy. 130 vortices remain in the low-intensity region of the trapping pattern,

which again is less relevant for atom trapping. Furthermore, regional weightings increase the

efficiency to 64%. We also find that this active smoothing method is particularly resilient to

initialisation conditions, increasing the chance of success of a given iteration run.

(a) (b)

(i) (ii) (i) (ii)

Fig. 4. Target (i) and calculated output intensity (ii) for the square lattice (a) and stirring

ring pattern (b). Both are generated from a random initial phase and have RMS errors of

0.58% and 3.0% respectively.

With MRAF, the output quality depends critically on the initial phase guess and on the ini-

tialisation parameters, which have to be carefully chosen to suppress the formation of optical

vortices during the calculation process [13]. In contrast, with conjugate gradient minimisation,

optical vortex suppression is achieved by a judicious cost function choice. Having determined

these cost functions, the output quality is then largely insensitive to the initial phase guess, to

the point that high accuracy can be achieved even with a random phase guess. For this reason,

while conjugate gradient minimisation converges in more iterations than are required in MRAF,

the two methods end up with a comparable computational efficiency, because with conjugate

gradient minimisation it is not necessary to run the code for many different choices of initial

phase patterns. Initialisation resilience would be of further benefit in dynamical sequences as it

increases the chance of success of all frames from a single initialisation step.

Displayed in Fig. 4 are examples illustrating the general applicability of the method to both

continuous distributions and discrete arrays, showcasing the successful elimination of high-

intensity borders next to the signal region. Both patterns are generated from a random initial

guess; remarkably, for the ring pattern, we find that an initially random phase pattern results in

quicker convergence to the final form than an apparently educated guess. The lattice pattern is

calculated using solely a Ct=2 term: smoothing is found to cause blurring of the pattern edges,

and the Ct=2 term is sufficient to remove vortices from these smaller intensity features before

they become established. The small size of the spots allows the vortices to escape more easily

and they are therefore not frozen into the final pattern. The signal region is weighted by a factor
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of 104 relative to the noise region, with a linearly sloped border of 4 pixels connecting these two

regions sufficient to discourage noise accumulation near the signal region boundary. After 4000

iterations, the RMS signal region error is 0.58%. The stirring ring pattern, so called because it

can be used to induce superfluid rotation [10], has an RMS signal region error of 3.0% after

2500 iterations. This example is calculated using a combination of Ct=2 and Cs terms, with the

signal region given an overall weighting of 10 relative to the noise region with a border of 8

pixels connecting these to prevent disruptive noise accumulation, and the smoothing term given

a weighting of ½(Tmax−Tnm), with Tmax the maximum target value and Tnm the target values on

individual pixels, in the signal region only.

4. Conclusion

Conjugate gradient minimisation of an appropriate cost function has been verified as a viable al-

ternative to the established methods of hologram generation. By applying well-developed con-

jugate gradient approaches and optimised numerical libraries, the cost function minimisation

approach allows careful guiding of the calculation process by choice of a sensible cost function

with an analytical gradient. In particular, we show that tailoring the cost function beyond its

simplest form is important and that the flexibility inherent in the cost function definition should

be exploited to guide output plane features of interest. We illustrate this by directly suppress-

ing optical vortices in the calculated intensity profiles by associating a cost either with large

deviations from the target intensity or with intensity fluctuations between neighbouring pixels.

Both methods successfully suppress vortices to optimise trapping potential accuracy, though

active smoothing is more appropriate in potentials without sharp features. This precision guid-

ing and the ability to tailor the weightings assigned to each pixel has also allowed us to avoid

the formation of the high-intensity signal region border characteristic of the MRAF approach,

while retaining the flexibility characteristic of regional definitions and the ability to accurately

reproduce a wide range of intensity patterns suitable for trapping ultracold atoms. The method

has also proven to be resilient to initialisation conditions, which may be of benefit in designing

dynamic sequences of intensity patterns from a single initialisation step.

The method of conjugate gradient optimisation may also find applications in the fields of

biological, chemical and soft condensed matter physics, where the use of phase-only SLMs is

already well established [34, 35]. Further improvements could be achieved by incorporating a

measured laser beam profile into the calculation process to correct for beam imperfections, and

considering Helmholtz propagation of light within the model [14], while overall computation

times could be reduced by performing the calculations on Graphics Processing Units [36, 37].
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