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Abstract

In this paper a novel evolutionary algorithm (EA), called pseudo derivative evolutionary algorithm (PDEA), is proposed. The basic
idea of PDEA is to use pseudo derivative, which is obtained based on the information produced during the evolution, to help search
the solution of optimization problem. The pseudo derivative drives the search process in a more informed direction. That makes
PDEA different from the random optimization methods. The convergence of PDEA is first analyzed based on systems theory.
The convergence condition of PDEA is then derived, though this condition is too strong to be satisfied. Next, this condition is
relaxed based on entropy theory. Finally, performances of PDEA are evaluated on the benchmark functions and an adaptive liquid
level control system of a surge tank. The numeric simulation results show that PDEA is capable of finding the solutions to the
optimization problems with good accuracy, reliability, and speed.

Keywords: pseudo derivative evolutionary algorithm (PDEA), evolutionary algorithm (EA), convergence analysis, entropy theory

1. Introduction

Evolutionary algorithm (EA) is a kind of population algo-
rithm to search for an optimal or near optimal solution to com-
plex problems in polynomial time. Common variants of EA in-
clude genetic algorithm (GA) [1–3], genetic programming [4]
[5], differential evolution (DE) [6] [7], particle swarm optimiza-
tion (PSO) [8–10], bacterial foraging optimization (BFO) [11–
13], artificial bee colony algorithm (ABC) [14] etc.

EAs do not require gradient information. Therefore, they
are capable of solving a wide variety of optimization problems,
which may be linear, quadratic, unimodal, discontinuous, non-
differentiable, strongly convex, etc [15–18]. However, different
from derivative based iterative methods for optimization, the
convergence of EAs have not proved explicitly, or is proved
under some very strong hypothesis.

To analyse the convergence of GA, a Markov chain model
is proposed [19–22]. The process of GA can be proved as a ho-
mogeneous Markov chain. Then GA is analysed based on the
properties and theorems of the Markov chain. GA is proved to
be convergent with the assumption that the number of genera-
tions is infinite. PSO can be modelled by dynamical equations
[23–26]. The evolution process of PSO can be divided into two
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different parts. The first part assumes each individual has an
initial position and velocity. The second part is about how to
produce the next generation individuals. The velocity is mod-
ified by two kinds of information, i.e., the best position in all
preceding generations and the best postition the individual ever
obtained. With iterations of these two parts, PSO is able to
find the solution to an optimization problem. By modelling the
iteration process, the dynamic equations of PSO can be formu-
lated. Thereafter, PSO is analysed based on the dynamic equa-
tions. However, the convergence condition of PSO is too strong
that even the standard PSO is not convergent. BFO, modelling
the individual and group behaviour of E.Coli bacteria, is a dis-
tributed optimization process. Reference [27] analyses BFO by
formulating the mathematical model of the chemotactic move-
ments in continuous time. Then the Lyapunov stability theorem
is used to analyse the convergence of the dynamic model. It
assumes the objective function is continuously differentiable.
References [28] [29] analyse the one-dimensional DE based on
a mathematical model. The model has been formulated based
on probability theory and dynamic equation. It assumes the
trial solutions are limited within a small region, and the fitness
landscape has a moderate gradient.

This paper proposes a pseudo derivative EA (PDEA), which
explicitly uses the pseudo derivative obtained based on the in-
formation produced during the evolution process to search for
the optimal solution. First of all, the convergence of PDEA is
studied based on systems theory. PDEA is proved to be conver-
gent. The convergence condition is derived, though this condi-
tion is too strict and hardly satisfied. Then, we relax the con-
vergence condition based on entropy theory.

The remainder of this paper is arranged as follows. The
principle of PDEA is presented in Section 2. In Section 3, con-



vergence analysis is conducted to PDEA based on systems the-
ory and entropy theory. In Section 4, performance evaluations
are conducted by applying PDEA to benchmark functions and
an adaptive liquid level control system. Finally, conclusions are
drawn in Section 5.

2. PDEA

2.1. Pseudo Derivative
Iterative methods for optimization, such as Newton’s method,

gradient descent method, employ derivative of the objective
function in searching the solution. By analogy, we introduce the
concept of pseudo derivative to EAs. The basic idea of PDEA
is to make use of a pseudo derivative information explicitly in
searching the solution to the optimization problem.

The information produced during the evolution contains the
individual position and fitness value in preceding and current
generations, and the distance between two individuals. There-
fore, we define a pseudo derivative as below.

pdx =
f (i) − f ( j)

‖pos(i) − pos( j)‖
i , j (1)

where i, j are indices of individuals, f (i) and pos(i) denote the
fitness value and position of individual i within the search space.
‖pos(i) − pos( j)‖ is the distance between individual i and indi-
vidual j. The right-hand side of Eq.1 means the average change
of fitness value over ‖pos(i) − pos( j)‖. Actually, we can find
that lim‖pos(i)−pos( j)‖→0 pdx is the derivative in the direction of
vector (pos(i) − pos( j)). Therefore, pdx is called the pseudo
derivative.

Using the best fitness values in the current generation and
across all the preceding generations, we have

pdc =
f cbest − f (i)

‖pcbest − pos(i)‖
(2)

pdh =
f hbest − f (i)

‖phbest − pos(i)‖
(3)

where f cbest denotes the best fitness value in current gener-
ation, pcbest the corresponding position. f hbest and phbest
denote the best fitness value and position across all preceding
generations. pdc and pdh are the pseudo derivatives which rep-
resent the average fitness change in the direction of a individual
towards the best individual. Compared with true derivative, pdc
and pdh represent the approximations of fitness value changes
during the search process in the directions towards pcbest and
phbest, respectively.

2.2. Algorithm
Now, we have two kinds of pseudo derivative informations

pdc and pdh in PDEA. Different from true derivative, pseudo
derivatives just reflect the approximation of the fitness value
changes in two certain directions, but still, pdc and pdh can
provide the information of objective function. In order to ex-
pand the search region and avoid premature convergence, we
encourage the individual to explore its search region. For this

Figure 1: Pseudo derivatives of individual

purpose, we design the algorithm such that each individual has
a random direction which is defined by pdr with a step to move
within the neighbourhood, as illustrated in Fig.1.

The individual behaviour is driven by the three kinds of
pseudo derivatives, i.e., pdc, pdh, and pdr. Regardless of the
driving strategies, the procedure of PDEA can be described as
in Algorithm 1.

Algorithm 1 PDEA

Input: maximum number of iterations Nmax, and k = 0
1: generate the initial individuals and calculate the fitness val-

ues;
2: for k 6 Nmax do
3: obtain pdc, pdh, and pdr of every individual;
4: update individuals according to the driving strategy and

form the new generation
new individual:= S k(individual, pdc, pdh, pdr);

5: end for
Output: the best individual and its fitness value;

Different driving strategies defined by S (�) will result in dif-
ferent paradigms of PDEA. The driving strategies S (�) used to
update individuals can take various forms. Without loss of gen-
erality, here we consider the strategy as follows.

S k+1(i) = α · u1 · (pcbest(k) − posk(i))
+ β · u2 · (phbest(k) − posk(i)) + γ · u3 · S k(i) (4)

S 1(i) = d (5)

posk+1(i) = posk(i) + S k+1(i) (6)

where α, β, and γ are the weight coefficients in the direction of
pdc, pdh, and S k. S 1 is determined by pdr. The value of α,
β, and γ are determined by pdc, pdh, and pdr. d is a random
vector for the local search strategy with a given length. k is
the index of iterations. posk(i) denotes the position of individ-
ual i in generation k. pcbest(k), phbest(k) denote the position
of the best individual in current generation k and all preceding
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generations prior to k. u = (u1, u2, u3) represents the probabil-
ity weight coefficients. Each element of u can be a probabil-
ity distribution or a logistic variable for determining whether
to use the corresponding pseudo derivative. For example, if
u = (0, 0, 1), S (i, pdc, pdh, pdr) it is the same as the mutation
part of DE/rand/1 algorithm [30].

3. Convergence Analysis of PDEA

3.1. Proof of PDEA convergence
Considering Eqs. (4) (5) (6), for individual i in generation k,

let’s use notations omitting the individual’s index, denote x(k) =

S k(i), y(k) = posk(i). Then we have

x(k + 1) = ϕ1(pcbest(k) − y(k)) + ϕ2(phbest(k) − y(k)) + ϕ3x(k)
(7)

y(k + 1) = y(k) + x(k + 1) (8)

ϕ1 = α · u1 (9)

ϕ2 = β · u2 (10)

ϕ3 = γ · u3 (11)

By arranging Eqs. (7) and (8) into matrix form, we will
have the state space model of PDEA as below.[

x(k + 1)
y(k + 1)

]
=

[
ϕ3 −ζ
ϕ3 1 − ζ

] [
x(k)
y(k)

]
+

[
ζ
ζ

]
Γ (12)

where
ζ = ϕ1 + ϕ2 (13)

Γ =
ϕ1 · pcbest(k) + ϕ2 · phbest(k)

ϕ1 + ϕ2
(14)

Eq. (12) describes PDEA as a dynamic system, [x(k), y(k)]T is
its augmented state vector, where T denotes transposition and
Γ is the control input.

Now, we can analyse the convergence of PDEA by system
of Eq. (12). From the point of view of systems theory, if system
of Eq. (12) is controllable, no matter what the desired state is,
there must be a control that drives the system to there. That
means the system can reach any point one wishes by means of
a suitable input. In this case, we say the system is convergent.
Let’s denote

z(k) = [x(k), y(k)]T (15)

A =

[
ϕ3 −ζ
ϕ3 1 − ζ

]
(16)

B = [ζ, ζ]T (17)

Definition 3.1. The discrete-time state space system of Eq. (12)
is said controllable if for any initial state z(0) = z0 and any tar-
get state zt, there exists an input series that transfers z0 to zt.
Otherwise, the system is said uncontrollable.

Lema 3.1. The discrete-time state space system of Eq. 12 is
controllable, if the controllability matrix

C = [B AB A2B ... An−1B] (18)

has a full row rank of n, where n is the dimension of matrix A.

Therefore, we have

Cz =

[
ζ ϕ3ζ − ζ

2

ζ ϕ3ζ − ζ
2 + ζ

]
(19)

It is clear that matrix Cz is of full rank when ζ , 0. So,
system of Eq. (12) is controllable, that is, it is convergent.

3.2. Convergence condition of PDEA
Consider the autonomous system

z(k + 1) = Az(k) (20)

Definition 3.2. System z(k + 1) = Az(k) is marginally stable or
stable in the sense of Lyapunov if every finite state z0 excites
a bounded response. It is asymptotically stable if every finite
initial state excites a bounded response, which approaches 0 as
t → ∞.

Lema 3.2. System z(k + 1) = Az(k) is marginally stable iff all
eigenvalues of A have magnitudes less than or equal to 1 and
those equal to 1 are simple roots of the minimal polynomial
of A. It is asymptotically stable iff all eigenvalues of A have
magnitudes less than 1.

The eigenvalues of A are as follows e1 =
ϕ3+1−ζ+

√
∆

2

e2 =
ϕ3+1−ζ−

√
∆

2

(21)

∆ = (ϕ3 + 1 − ζ)2 − 4ϕ3 (22)

When ∆ < 0, e1 and e2 is a pair of conjugate complex. ‖e1‖ =

‖e2‖ =
√
ϕ3. If 0 ≤

√
ϕ3 < 1, the system is convergent. When

∆ ≥ 0, if both ‖e1‖ and ‖e2‖ are less than 1, the system is con-
vergent. So, the convergence condition is the union of the two
cases above, that is.

Rz = {∆ < 0 and ϕ3 ∈ [0, 1)} ∪ {∆ ≥ 0 and ‖e1,2‖ < 1} (23)

Rz is termed the convergence region. ‖e1,2‖ < 1 represents both
‖e1‖ and ‖e2‖ are less than 1.

To further examine the convergence, we can derive system
Eq. (12) as follows

x(k + 2) − (ϕ3 − ζ + 1)x(k + 1) + ϕ3x(k) = 0 (24)

y(k) = Γ −
x(k + 1) − ϕ3x(k)

ζ
(25)

So, we obtain
x(k) = c1ek

1 + c2ek
2 (26)

y(k) = Γ −
c1ek

1(e1 − ϕ3) + c2ek
2(e2 − ϕ3)

ζ
(27)

c1 and c2 are defined by initial state z0. Since both ‖e1‖ and ‖e2‖

are less than 1 under the convergence condition, limk→∞ x(k) =

0, limk→∞ y(k) = Γ.
In order to investigate the convergence process, we set ϕ3 =

0, ζ = 1.5 to satisfy Rz and test in the 2 dimensional Rastigin
function. It’s shown in Fig.2.
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Figure 2: The convergence process of PDEA testing in the 2 dimensional Rast-
rigin function based on control theory.

3.3. Convergence condition relaxation

However, the convergence condition Rz is too strong to be
satisfied. Here we will relax it. Let’s consider the main proce-
dure of PDEA. At the beginning, the initial generation is created
randomly. Each individual appears with the same probability p
in the solution space. Then, the individual is driven by the strat-
egy consisted of pdc, pdh, and pdr to the convergence point.
The closer the individual to the convergence point, the greater
the probability that it appears in the area near the convergence
point.

From the point of view of entropy theory, we define the en-
tropy of the individual as log(1/p(i)), where p(i) denotes the
probability of individual i appearing in a certain area of the so-
lution space. log(1/p(i)) represents the uncertainty of individ-
ual i. Therefore, the entropy of generation k can be defined as
follows.

H(k) = E[log(1/pk(i))] =

n∑
i=1

pk(i) · log(1/pk(i)) (28)

Then, the behaviour of the individual is analyzed by H(k).
From the convergence condition, Eqs. (26) and (27) derived

of system of Eq. (12), it shows that all the individuals converge
to the point determined by Γ. To inspect the system, during the
iterations, x(k) trends to 0 and y(k) trends to Γ. That reflects
the variation tendency of individuals is that their positions are
getting closer to Γ. The area where individuals appear is be-
coming more and more certain. Therefore, H(k) is decreasing
to 0, when k → ∞.

However, the convergence condition that all the eigenvalues
of A have magnitudes less than 1 is too strong. Consider the
general situation that u = (u1, u2, u3) is some probability dis-
tributions. According to the analysis based on systems theory,
PDEA is convergent if and only if all the range of the distri-
bution falls fully within Rz. However, in terms of the analysis

(a) The convergence region. (b) The Veen diagram.

Figure 3: An example of illustration of the convergence region before and after
relaxation. Rz is the convergence region based on systems theory. Re is the
convergence region based on entropy theory.
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Figure 4: The convergence process of PDEA testing in the 2 dimensional Rast-
rigin function based on entropy theory.

based on entropy theory, the convergence condition is relaxed.
Let’s Illustrate it by an example.

Consider the system of Eq. (12), the solution is[
x(k)
y(k)

]
=

[
c1

−c1(e1−ϕ3)
ζ

] [
ek

1

]
+

[
c2

−c2(e2−ϕ3)
ζ

] [
ek

2

]
+

[
0
Γ

]
(29)

To inspect the convergence condition relaxation, we assume
ϕ3 = 0 and ζ ∼ N(2, 2), where N(2, 2) denotes the Gaussian
distribution with the means and variance both equal to 2. There-
fore, when ζ ≥ 2, ‖e1‖ = 0 and ‖e2‖ ≥ 1. When ζ < 2, ‖e1‖ < 1
and ‖e2‖ < 1. So, according to systems theory, if ζ < 2, the
system is convergent. If ζ ≥ 2, the system is not convergent.
However, from the point of view of entropy theory, when ζ ≥ 2,
H(k) does not decrease. When ζ < 2, H(k) decreases. Because
E(ζ < 2) = E(ζ ≥ 2) = 0.5. So, limk→∞H(k) = 0.5H(1). The
convergence region is illustrated in Fig. 3.

The convergence process based on entropy theory is plotted
in Fig. 4. It is clear that even though individuals do not con-
verge to a certain point, they converge to a certain area. Over
the convergence process, H(k) decreases to a certain value.

Using entropy theory, we derive the relaxed convergence
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condition. If H(k) < H(1) as k → ∞, the system is convergent.
This means that PDEA is convergent, iff Rz ∩ Re , ∅.

However, in practice, to guarantee the performance of PDEA,
we suggest keeping limk→∞H(k) ≤ 0.5H(1).

4. Comparison with other EAs

Convergence analysis of EAs is an important and challeng-
ing issue. Markov chain model is proposed to study the con-
vergence of GA. However, the convergence analysis is based
on the assumption of infinite population and generation. PSO,
BFO, and DE are analysed based on dynamic equations. How-
ever, the convergence condition of PSO is too strong, and the
standard PSO is not convergent. The convergence analyses of
BFO and DE are both based on the assumption that the objec-
tive function is differentiable.

Unlike the above analysis, PDEA convergence analysis does
not require such strong assumptions. First, from the point of
view of systems theory, we consider PDEA as a linear discrete-
time state space system and prove that it is controllable. For
PDEA, controllability is convergence. We derive the conver-
gence condition of PDEA according to systems theory. Then
we relax the convergence condition from the point of view of
entropy theory. That can also be used to relax the convergence
condition of DE, PSO, and BFO.

5. Numeric Evaluations

In this section, PDEA is applied to solve 16 benchmark
functions [31] for numeric evaluations. These functions are se-
lected from commonly used optimization test functions. Fur-
thermore, PDEA is applied to an adaptive liquid level control
system of a surge tank.

5.1. Evaluations with benchmark functions

The properties of these test functions are summarized in Ta-
ble 1, where f (x∗) denotes the optimum of the benchmark func-
tions.

GA, as a popular EA, is used as the comparison reference
for PDEA. The crossover, mutation probabilities and encode
accuracy of GA are set as 0.9, 0.1, and 10−4, respectively. The
parameters of PDEA are set as below. α and β are determined
by pdc and pdh. We set α/β = pdc/pdh, α+β = 4, max(α/β) =

3, min(α/β) = 1/3, and γ = 1. u = (u1, u2, u3) obeys uniform
distribution in (0, 1).

The simulation environment is Matlab version 2010b, run
in Operating System of MS Windows 10, 64-bit, Processor of
Intel Core I7-4790, Memory of 8GB DDR3 RAM.

To make the tests complete, 50 independent tests are carried
out for each benchmark function. The population size is set as
100, maximum iteration is set 200. The performance metrics,
including computation time, mean error, and variance, are listed
in Table 1.

From the numeric simulation results, it is clear that PDEA is
capable of finding the optimal or near optimal solutions despite

Figure 5: PDEA for adaptive control (r(t) is the reference input)

of the diversity of benchmark functions, with GA as the com-
parison reference. In terms of the mean value, variance value,
and computation time, the accuracy, reliability and computation
speed of PDEA, are acceptable.

5.2. Adaptive liquid level control

Optimization methods can be used to estimate models and
design controllers in adaptive control. Therefore, in order to
evaluate the engineering performance, PDEA is applied to an
adaptive liquid level control of a surge tank.

The purpose of applying PDEA in Fig. 5 is to learn the
plant model during the operation of the indirect adaptive control
system. To evaluate the learning capability of PDEA, the error
between the model output and the plant output is the objective
function as defined. During each interval, PDEA searches in
the objective function space to find the plant model of minimum
identification error. Then, the best model is selected and applied
to the standard certainty-equivalence control law.

We consider the surge tank liquid level control problem as
in [13]. The model is below

dh(t)
dt

=
−d̄
√

2gh(t)
A(h(t))

+
c̄

A(h(t))
u(t) (30)

where h(t) is the liquid level, u(t) is the input. A(h(t)) =

‖āh(t) + b̄‖ represents the tank cross-sectional area; ā, b̄, c̄, and
d̄ are constants. However, the tank cross-sectional area is not
known. We have to estimate the plant dynamics so that control
can be designed for compensation.

The parameters of PDEA are set as follows. u = (u1, u2, u3)
is uniform distribution in (0, 1). α = β = 1, and γ = 0.5, which
means we set pdc and pdh with the same weight, pdr has a half
weight. Population size N p = 10. The maximum number of
iteration Nmax = 10.

Each individual corresponds to the model parameter. The
objective function is defined as the sum of squares of the 50 past
identification error values. For parameter adjustment, PDEA
searches the objective function space to find the best plant pa-
rameters. The tracking performance and the best objective func-
tion value are plotted in Fig.6. The reference input of liquid
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Table 1: PDEA performances on benchmark functions

Benchmark Function Property f (x∗) GA PDEA
Mean Variance Time (s) Mean Variance Time (s)

Ackley

Many Local Minima

0 0.8167 1.4899 0.3860 0.0086 2.3880E-5 0.1850
Griewank 0 0.0700 0.0060 0.3470 0.0014 4.4960E-6 0.1980
Rastrigin 0 0.3419 0.2230 0.2910 0.0057 3.2567E-5 0.1590

Drop-Wave -1 -0.9372 0.0020 0.3310 -0.9996 1.4190E-7 0.1810
Bohachevsky Bowl Shaped 0 0.8386 3.0724 0.3260 8.9568E-4 9.1872E-7 0.1830

Sphere 0 8.6769E-4 1.4583E-5 0.3060 1.0455E-5 8.2029E-11 0.1550
Zakharow Plate Shaped 0 0.0205 0.0048 0.3110 1.0539E-5 9.1300E-11 0.1890

Power Sum 0 0.1032 0.0189 0.6790 0.0171 1.7254E-4 0.4480
Easom Steep Drops -1 -0.0730 0.0012 0.3340 -0.9584 0.0391 0.170

Michalewicz -1.8013 -1.7993 3.6263E-5 0.3100 -1.8011 2.4055E-8 0.2000
Six Hump

Valley Shaped
-1.0316 -1.0300 1.8835E-5 0.3190 -1.0316 1.4779E-9 0.1710

Dixon & Price 0 0.0292 0.0041 0.3210 3.7151E-5 1.5795E-9 0.1700
Rosenbrock’s 0 0.2101 0.1591 0.3240 1.1036E-4 1.4905E-8 0.1710

Beale
Others

0 0.0127 0.0120 0.3130 1.6613E-5 2.0765E-10 0.1630
Branin 0.3978 0.4081 4.5087E-4 0.3080 0.3979 6.0497E-10 0.1690

Goldstein&Price 3 3.0962 0.0460 0.2950 3.0022 8.1864E-6 0.1790
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Figure 6: The response of adaptive controller.

level is a periodic square wave. For each square input, only
at the first sampling interval, the tracking error is a little big.
The maximum error value is 23.15%. But after 2 or 3 intervals,
the tracking liquid level approaches the reference input quickly.
The tracking error is almost zero.

6. Conclusions

In this paper, we have proposed a novel evolutionary algo-
rithm called pseudo derivative evolutionary algorithm (PDEA).
PDEA combines derivative with evolutionary algorithms. The
advantage of PDEA is utilizing pseudo derivative to drive the
optimization process. The convergence of PDEA is first anal-
ysed based on systems theory and the convergence condition is

derived. Next, this condition, which is too strong, is relaxed
based on entropy theory. Different from common convergence
analysis with other EAs, the convergence of PDEA does not re-
quire strong assumptions, such as differentiability and infinite
population or generation. And the strict convergence region
is also extended. Finally, we apply PDEA to both benchmark
functions and adaptive control problem for evaluating the nu-
meric and engineering performances. For the benchmark func-
tions, PDEA shows strong ability in finding the optimal solu-
tion of different kinds of benchmark functions. For the adap-
tive control problem, PDEA is capable of identifying the plant
model and tracking the reference input well.
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