3 research outputs found

    Spatial and Temporal Analysis on the Distribution of Active Radio-Frequency Identification (RFID) Tracking Accuracy with the Kriging Method

    Get PDF
    Radio frequency identification (RFID) technology has already been applied in a number of areas to facilitate the tracking process. However, the insufficient tracking accuracy of RFID is one of the problems that impedes its wider application. Previous studies focus on examining the accuracy of discrete points RFID, thereby leaving the tracking accuracy of the areas between the observed points unpredictable. In this study, spatial and temporal analysis is applied to interpolate the continuous distribution of RFID tracking accuracy based on the Kriging method. An implementation trial has been conducted in the loading and docking area in front of a warehouse to validate this approach. The results show that the weak signal area can be easily identified by the approach developed in the study. The optimum distance between two RFID readers and the effect of the sudden removal of readers are also presented by analysing the spatial and temporal variation of RFID tracking accuracy. This study reveals the correlation between the testing time and the stability of RFID tracking accuracy. Experimental results show that the proposed approach can be used to assist the RFID system setup process to increase tracking accuracy

    A review of cloud-based bim technology in the construction sector

    Get PDF
    Cloud computing technology is regarded as a major transformational force that is causing unprecedented change across the communication and business disciplines. In the architecture, engineering and construction sector, cloud-BIM integration is considered to be the second generation of building information management (BIM) development, and is expected to produce another wave of change across the construction industry. Despite this, few studies to date have attempted to summarise the research literature on cloud-BIM. This paper explores the literature to identify the substantive work on cloud-BIM, particularly regarding building life cycle management, to provide valuable insight for practitioners and to propose avenues for further research. Thirty academic sources, including refereed journal articles and conference papers, were retrieved and analysed in terms of their research focus and nature of application. The review revealed that most cloud-BIM research has focused on the building planning/design and construction stages. The findings suggest that more research should be directed towards operation, maintenance and facility management, energy efficiency and the demolition and deconstruction stages of building life cycle management. Further empirical research on organisational and legal issues, including security, responsibility, liability and model ownership, of the cloud-BIM model is also needed

    Application of Collaborative Mobile System in AR-Based Visualization, Data Storage and Manipulation

    No full text
    Building Information Modeling (BIM) is a technology that can be applied in numerous fields, such as construction management, facility operation and structure and MEP design. BIM enables the representations of digital building information at any construction stages. However, very few instances have been investigated regarding how to apply BIM to effectively facilitate the collaborative work such as planning, design, and information sharing. This paper introduces a collaborative mobile system which integrates a context-aware Augmented Reality (AR) visualization with BIM. The BIM plus AR system visualizes the as-planned data onto the as-built environment. The applications based on this system give the possibility of using this system to address some of the real problems and issues from Australian Liquefied Natural Gas (LNG) construction industry, such as low productivity in retrieving information, tendency of committing error in assembly, low efficiency of communication and problem solving, etc
    corecore