539 research outputs found

    Application of Blockchain and Internet of Things to Ensure Tamper-Proof Data Availability for Food Safety

    Get PDF
    Food supply chain plays a vital role in human health and food prices. Food supply chain inefficiencies in terms of unfair competition and lack of regulations directly affect the quality of human life and increase food safety risks. This work merges Hyperledger Fabric, an enterprise-ready blockchain platform with existing conventional infrastructure, to trace a food package from farm to fork using an identity unique for each food package while keeping it uncomplicated. It keeps the records of business transactions that are secured and accessible to stakeholders according to the agreed set of policies and rules without involving any centralized authority. This paper focuses on exploring and building an uncomplicated, low-cost solution to quickly link the existing food industry at different geographical locations in a chain to track and trace the food in the market.Comment: Journal of Food Quality, 202

    The Applications of Blockchain To Cybersecurity

    Get PDF
    A blockchain is a decentralized public ledger facilitating secure transactions between untrusted network nodes. It has garnered significant recognition for its pivotal role in cryptocurrency systems, where it ensures secure and decentralized transaction records. Over the past decade, blockchain has attracted considerable attention from various industries, as it holds the potential to revolutionize multiple sectors, including cybersecurity. However, this field of study is relatively new, and numerous questions remain unanswered regarding the effectiveness of blockchain in cybersecurity. This research adopted a qualitative research design to investigate the current implementations of blockchain-based security and their applicability in the current cybersecurity context. Additionally, this work explored the mechanisms employed by blockchain to uphold the security triad. Findings indicate that blockchain exhibits substantial potential in addressing existing challenges in cybersecurity, particularly those related to the Internet of Things, data integrity and ownership, and network security. Nonetheless, widespread adoption faces limitations due to technological immaturity, high-cost complexity, and regulatory hurdles. Therefore, utilizing blockchain-based solutions in cybersecurity necessitates a thorough analysis of their applicability to an organization\u27s specific needs, a clear definition of implementation goals, and careful navigation of challenges

    Towards CRISP‐BC: 3TIC specification framework for Blockchain use‐cases

    Get PDF
    The application of Blockchain and augmented technologies such as IoT, AI, and Big Data platforms present a feasible approach for resolving the implementation challenges of trusted, decentralized platforms. This article proposes a DevOps framework for the specification of Blockchain use‐cases that enables evaluation, replication, and benchmarking. Specifically, it could be applied to specify the requirements and design characteristics of Blockchain applications in terms of key attributes such as: (i) transparency; (ii) traceability; (iii) tamper‐resistance; (iv) immutability; and (v) compliance. The article first introduces the design characteristics of Blockchain as a Platform and then examines successful use‐cases for its implementation using the above attributes. It may be conjectured that the 3TIC framework would serve as the basis of a cross industry process for Blockchain. The intended contribution is that such a standard process will support industry‐academia collaboration in the development of Blockchain platforms and services of relevance and utility as it can be applied by firms to structure their requirements and design specifications. As Blockchain technology moves from nascent to emergence, it is opportune to discuss standards in the context of use‐cases. This article provides some arguments for why and how requirements and design specifications could be standardised

    What is a Blockchain? A Definition to Clarify the Role of the Blockchain in the Internet of Things

    Get PDF
    The use of the term blockchain is documented for disparate projects, from cryptocurrencies to applications for the Internet of Things (IoT), and many more. The concept of blockchain appears therefore blurred, as it is hard to believe that the same technology can empower applications that have extremely different requirements and exhibit dissimilar performance and security. This position paper elaborates on the theory of distributed systems to advance a clear definition of blockchain that allows us to clarify its role in the IoT. This definition inextricably binds together three elements that, as a whole, provide the blockchain with those unique features that distinguish it from other distributed ledger technologies: immutability, transparency and anonimity. We note however that immutability comes at the expense of remarkable resource consumption, transparency demands no confidentiality and anonymity prevents user identification and registration. This is in stark contrast to the requirements of most IoT applications that are made up of resource constrained devices, whose data need to be kept confidential and users to be clearly known. Building on the proposed definition, we derive new guidelines for selecting the proper distributed ledger technology depending on application requirements and trust models, identifying common pitfalls leading to improper applications of the blockchain. We finally indicate a feasible role of the blockchain for the IoT: myriads of local, IoT transactions can be aggregated off-chain and then be successfully recorded on an external blockchain as a means of public accountability when required

    Deploying Blockchain Technology in the Supply Chain

    Get PDF
    In the rapidly evolving environment of the international supply chain, the traditional network of manufacturers and suppliers has grown into a vast ecosystem made of various products that move through multiple parties and require cooperation among stakeholders. Additionally, the demand for improved product visibility and source-to-store traceability has never been higher. However, traditional data sharing procedures in today’s supply chain are inefficient, costly, and unadaptable as compared to new and innovative technology. Blockchain technology has shown promising results for improving supply chain networks in recent applications and has already impacted our society and lifestyle by reshaping many business and industry processes. In an effort to understand the integration of blockchain technology in the supply chain, this paper systematically summarizes its current status, key characteristics, potential challenges, and pilot applications

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    Decentralized procurement mechanisms for efficient logistics services mapping - a design science research approach

    Get PDF
    Companies tend to outsource logistics services for flexibility or platform operating costs reduction. To do so, they typically use centralized platforms to delegate the services procurement process. However, those platforms can be prone to information asymmetries between carriers and shippers which can lead to sub-optimal procurement outcomes. A more transparent and efficient way to manage the procurement of logistics services between carriers and shippers could be a decentralized platform based on blockchain and smart contracts. In this paper, we design, implement, and evaluate the potential for a decentralized logistics services procurement system, following a design science research approach. In so doing, we contribute by (1) developing such a decentralized logistics services procurement system that addresses the allocation problem, and (2) developing a set of nascent design principles guiding the elaboration of decentralized procurement mechanisms on blockchain

    Reinforcing Digital Trust for Cloud Manufacturing Through Data Provenance Using Ethereum Smart Contracts

    Get PDF
    Cloud Manufacturing(CMfg) is an advanced manufacturing model that caters to fast-paced agile requirements (Putnik, 2012). For manufacturing complex products that require extensive resources, manufacturers explore advanced manufacturing techniques like CMfg as it becomes infeasible to achieve high standards through complete ownership of manufacturing artifacts (Kuan et al., 2011). CMfg, with other names such as Manufacturing as a Service (MaaS) and Cyber Manufacturing (NSF, 2020), addresses the shortcoming of traditional manufacturing by building a virtual cyber enterprise of geographically distributed entities that manufacture custom products through collaboration. With manufacturing venturing into cyberspace, Digital Trust issues concerning product quality, data, and intellectual property security, become significant concerns (R. Li et al., 2019). This study establishes a trust mechanism through data provenance for ensuring digital trust between various stakeholders involved in CMfg. A trust model with smart contracts built on the Ethereum blockchain implements data provenance in CMfg. The study covers three data provenance models using Ethereum smart contracts for establishing digital trust in CMfg. These are Product Provenance, Order Provenance, and Operational Provenance. The models of provenance together address the most important questions regarding CMfg: What goes into the product, who manufactures the product, who transports the products, under what conditions the products are manufactured, and whether regulatory constraints/requisites are met
    • 

    corecore