695 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Computer-aided Diagnosis in Breast Ultrasound

    Get PDF
    Cancer remains a leading cause of death in Taiwan, and the prevalence of breast cancer has increased in recent years. The early detection and diagnosis of breast cancer is the key to ensuring prompt treatment and a reduced death rate. Mammography and ultrasound (US) are the main imaging techniques used in the detection of breast cancer. The heterogeneity of breast cancers leads to an overlap in benign and malignant ultrasonography images, and US examinations are also operator dependent. Recently, computer-aided diagnosis (CAD) has become a major research topic in medical imaging and diagnosis. Technical advances such as tissue harmonic imaging, compound imaging, split screen imaging and extended field-of-view imaging, Doppler US, the use of intravenous contrast agents, elastography, and CAD systems have expanded the clinical application of breast US. Breast US CAD can be an efficient computerized model to provide a second opinion and avoid interobserver variation. Various breast US CAD systems have been developed using techniques which combine image texture extraction and a decision-making algorithm. However, the textural analysis is system dependent and can only be performed well using one specific US system. Recently, several researchers have demonstrated the use of such CAD systems with various US machines mainly for preprocessing techniques designed to homogenize textural features between systems. Morphology-based CAD systems used for the diagnosis of solid breast tumors have the advantage of being nearly independent of either the settings of US systems or different US machines. Future research on CAD systems should include pathologically specific tissue-related and hormonerelated conjecture, which could be applied to picture archiving and communication systems or teleradiology

    Application of Artificial Neural Network Models in Segmentation and Classification of Nodules in Breast Ultrasound Digital Images

    Get PDF
    This research presents a methodology for the automatic detection and characterization of breast sonographic findings. We performed the tests in ultrasound images obtained from breast phantoms made of tissue mimicking material. When the results were considerable, we applied the same techniques to clinical examinations. The process was started employing preprocessing (Wiener filter, equalization, and median filter) to minimize noise. Then, five segmentation techniques were investigated to determine the most concise representation of the lesion contour, enabling us to consider the neural network SOM as the most relevant. After the delimitation of the object, the most expressive features were defined to the morphological description of the finding, generating the input data to the neural Multilayer Perceptron (MLP) classifier. The accuracy achieved during training with simulated images was 94.2%, producing an AUC of 0.92. To evaluating the data generalization, the classification was performed with a group of unknown images to the system, both to simulators and to clinical trials, resulting in an accuracy of 90% and 81%, respectively. The proposed classifier proved to be an important tool for the diagnosis in breast ultrasound

    Recent Advances in Machine Learning Applied to Ultrasound Imaging

    Get PDF
    Machine learning (ML) methods are pervading an increasing number of fields of application because of their capacity to effectively solve a wide variety of challenging problems. The employment of ML techniques in ultrasound imaging applications started several years ago but the scientific interest in this issue has increased exponentially in the last few years. The present work reviews the most recent (2019 onwards) implementations of machine learning techniques for two of the most popular ultrasound imaging fields, medical diagnostics and non-destructive evaluation. The former, which covers the major part of the review, was analyzed by classifying studies according to the human organ investigated and the methodology (e.g., detection, segmentation, and/or classification) adopted, while for the latter, some solutions to the detection/classification of material defects or particular patterns are reported. Finally, the main merits of machine learning that emerged from the study analysis are summarized and discussed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey

    Get PDF

    Artificial Intelligence Techniques in Medical Imaging: A Systematic Review

    Get PDF
    This scientific review presents a comprehensive overview of medical imaging modalities and their diverse applications in artificial intelligence (AI)-based disease classification and segmentation. The paper begins by explaining the fundamental concepts of AI, machine learning (ML), and deep learning (DL). It provides a summary of their different types to establish a solid foundation for the subsequent analysis. The prmary focus of this study is to conduct a systematic review of research articles that examine disease classification and segmentation in different anatomical regions using AI methodologies. The analysis includes a thorough examination of the results reported in each article, extracting important insights and identifying emerging trends. Moreover, the paper critically discusses the challenges encountered during these studies, including issues related to data availability and quality, model generalization, and interpretability. The aim is to provide guidance for optimizing technique selection. The analysis highlights the prominence of hybrid approaches, which seamlessly integrate ML and DL techniques, in achieving effective and relevant results across various disease types. The promising potential of these hybrid models opens up new opportunities for future research in the field of medical diagnosis. Additionally, addressing the challenges posed by the limited availability of annotated medical images through the incorporation of medical image synthesis and transfer learning techniques is identified as a crucial focus for future research efforts

    Artificial Intelligence Techniques for Cancer Detection and Classification: Review Study

    Get PDF
    Cancer is the general name for a group of more than 100 diseases. Although cancer includes different types of diseases, they all start because abnormal cells grow out of control. Without treatment, cancer can cause serious health problems and even loss of life. Early detection of cancer may reduce mortality and morbidity. This paper presents a review of the detection methods for lung, breast, and brain cancers. These methods used for diagnosis include artificial intelligence techniques, such as support vector machine neural network, artificial neural network, fuzzy logic, and adaptive neuro-fuzzy inference system, with medical imaging like X-ray, ultrasound, magnetic resonance imaging, and computed tomography scan images. Imaging techniques are the most important approach for precise diagnosis of human cancer. We investigated all these techniques to identify a method that can provide superior accuracy and determine the best medical images for use in each type of cancer
    • …
    corecore