34 research outputs found

    Development and Evaluation of an Integral Sliding Mode Fault Tolerant Control Scheme on the RECONFIGURE Benchmark

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.This paper describes the development, application and evaluation of a linear parameter-varying integral sliding mode control allocation scheme to the RECONFIGURE benchmark model to deal with an actuator failure/fault scenario. The proposed scheme has the capability to maintain close to nominal (fault free) load factor control performance in the face of elevator failures/faults, by including a retro-fitted integral sliding mode term and then re-routing (via control allocation) the augmented control signal to healthy elevators without reconfiguring the baseline controller. In order to mitigate any chattering appearing in the elevator demands, the retro-fitted signal is based on a super-twisting sliding mode structure. This produces a control signal which is continuous and does not have the discontinuous switching nature of traditional sliding mode schemes. The scheme is evaluated using an industrial Functional Engineering Simulator developed as part of the RECONFIGURE project. Monte-Carlo campaign results are shown to demonstrate the performance of the proposed scheme.The work in this paper is supported by EU-FP7 Grant (FP7-AAT-2012-314544): RECONFIGUR

    On the synthesis of an integrated active LPV FTC scheme using sliding modes

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordThis paper proposes an integrated fault tolerant control scheme for a class of systems, modelled in a linear parameter-varying (LPV) framework and subject to sensor faults. The gain in the LPV sliding mode observer (SMO) and the gain in the LPV static feedback controller are synthesized simultaneously to optimize the performance of the closed-loop system in an L2 sense. In the proposed scheme, the sensor faults are reconstructed by the SMO and these estimates are subsequently used to compensate the corrupted sensor measurements before they are used by the feedback controller. To address the synthesis problem, an iterative algorithm is proposed based on a diagonalization of the closed-loop Lyapunov matrix at each iteration. As a result the NP-hard, non-convex linear parameter-varying bilinear matrix inequality (LPV/BMI) associated with the Bounded Real Lemma formulation, is simplified into a tractable convex LPV/LMI problem. A benchmark scenario, involving the loss of the angle of attack sensor in a civil aircraft, is used as a case study to demonstrate the effectiveness of the scheme.European Commissio

    Sensor Fault Estimation Using LPV Sliding Mode Observers with Erroneous Scheduling Parameters

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.This paper proposes a linear parameter-varying sliding mode observer for the purpose of simultaneously estimating the system states and reconstructing sensor faults. Furthermore, some of the measured scheduling parameters are also assumed to be unreliable, and the corresponding values used in the observer are adapted to maintain the performance level of the observer. The adaptive algorithm is driven by the ‘equivalent output error injection’ signal associated with the reduced-order sliding motion. Sufficient conditions are given to ensure asymptotic stability of the state estimation error system, ensuring both the state estimation errors and the estimation errors associated with the scheduling parameters converge to zero. The efficacy of the scheme has been evaluated based upon an industrial high-fidelity aircraft benchmark scenario involving a simultaneous total loss of airspeed and angle of attack measurements

    Sensor redundancy based FDI using an LPV sliding mode observer

    Get PDF
    This is the author accepted manuscript. The final version is available from IET via the DOI in this record.In this paper, a linear parameter varying (LPV) sliding mode sensor fault detection and isolation (FDI) scheme is proposed wherein knowledge of the measurement redundancy is utilised to achieve FDI in multiple channels simultaneously. Such a situation is common in some state-of-the-art aircraft fault diagnosis systems where information is generally/mainly measured based on triplex redundancy. The scheme proposed in this paper is based on an LPV sliding mode observer and exploits the so-called equivalent output error injection signal to create estimates of the measurement faults. In the case of sensor measurement redundancy, and where there exists a fault free (but unknown) sensor amongst the set of measurements, the fault reconstruction performance of the observer can be improved by isolating and using the output error injection signal associated with the fault free redundant sensor. Simulation results using the RECONFIGURE benchmark model demonstrate the effectiveness of the schemeThis work is supported by the EU Grant (FP7-AAT-2012-314544): RECONFIGUR

    Flight evaluation of an LPV sliding mode controller with online control allocation

    Get PDF
    Thiis is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordThis paper presents the results of flight tests of a fault tolerant sliding mode controller implemented on the Japan Aerospace Exploration Agency's Multi-Purpose Aviation Laboratory aircraft. These represent the first validation tests of a sliding mode control allocation scheme on a piloted flight test. In this scheme, information about the actuator faults is assumed to be estimated online from a fault detection unit and the available actuators are fully utilized in the presence of actuator faults, in an effort to retain nominal fault free performance. Specifically the flight tests results demonstrate good lateral-directional state tracking performance in the fault free case with no visible performance degradation in the presence of rudder and aileron faults. In fact, during the flight test, the evaluation pilot did not detect any degradation in manoeuvrability when the actuator faults occurred.European Union Horizon 2020Japan New Energy and Industrial Technology Development Organizatio

    Flight Evaluation of an LPV Sliding Mode Observer for Sensor FTC

    Get PDF
    This brief develops a sliding mode sensor fault-tolerant control scheme for a class of linear parameter varying (LPV) systems. It incorporates a sliding mode observer that reconstructs the unknown sensor faults based on only the system inputs and outputs. The reconstructed sensor faults are used to compensate for the corrupted sensor measurements before they are used in the feedback controller. Provided accurate fault estimates can be computed; near nominal control performance can be retained without any controller reconfiguration. Furthermore, the closed-loop stability of the fault-tolerant control (FTC) scheme, involving both a sliding mode controller and a sliding mode observer, is rigorously analyzed. The proposed scheme is validated using the Japan Aerospace Exploration Agency’s Multipurpose Aviation Laboratory (MuPAL- α ) research aircraft. These flight tests represent the first validation tests of a sliding mode sensor FTC scheme on a full-scale aircraft

    Hardware-in-the-loop evaluation of an LPV sliding mode fixed control allocation scheme on the MuPAL-α research aircraft

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordThis paper develops a sliding mode fault tolerant control scheme based on an LPV system representation of the plant. The scheme involves a control allocation component, which is capable of fully utilizing the available actuators in the face of actuator faults. In this paper, information about the actuator faults is assumed not to be available and therefore a fixed control allocation structure is utilised in the event of faults. The proposed scheme is validated using the Japanese Aerospace Exploration Agency's Multi-Purpose Aviation Laboratory (MuPAL-α) research aircraft. This paper describes initial hardware-in-the-loop (HIL) tests which serve as a precursor to upcoming real flight tests. The validation results show good lateral-directional state tracking performance in the fault free case with no visible performance degradation in the presence of (aileron) faults. Successful HIL tests demonstrate the potential of the proposed scheme which will be flight tested later this year.European CommissionJapan New Energy and Industrial Technology Development Organizatio

    Integral sliding mode fault tolerant control allocation for a class of affine nonlinear system

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.This paper develops novel fault tolerant integral sliding mode control allocation schemes for a class of over-actuated affine nonlinear system. The proposed schemes rely on an existing baseline controller and the objective is to retain the nominal (fault-free) closed-loop performance in the face of actuator faults/failures by effectively utilizing actuator redundancy. The online control allocation reroutes the control effort to the healthy actuators using knowledge of the actuator effectiveness level estimates. One of the proposed schemes is tested in simulation using a well known high fidelity model of a large civil transport aircraft (B747) from the literature. Good simulation results show the efficacy of the scheme

    Flight evaluation of an LPV sliding mode observer for sensor FTC

    Get PDF
    This brief develops a sliding mode sensor fault-tolerant control scheme for a class of linear parameter varying (LPV) systems. It incorporates a sliding mode observer that reconstructs the unknown sensor faults based on only the system inputs and outputs. The reconstructed sensor faults are used to compensate for the corrupted sensor measurements before they are used in the feedback controller. Provided accurate fault estimates can be computed; near nominal control performance can be retained without any controller reconfiguration. Furthermore, the closed-loop stability of the fault-tolerant control (FTC) scheme, involving both a sliding mode controller and a sliding mode observer, is rigorously analyzed. The proposed scheme is validated using the Japan Aerospace Exploration Agency's Multipurpose Aviation Laboratory (MuPAL-α) research aircraft. These flight tests represent the first validation tests of a sliding mode sensor FTC scheme on a full-scale aircraft

    Integrated sensor FTC using integral sliding mode control

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordIn this paper, a sliding mode sensor fault tolerant control scheme which involves a first order sliding mode observer, fault compensation logic and an integral sliding mode controller, is proposed for a class of uncertain linear parameter-varying systems. The proposed scheme has the capability to retain near nominal fault-free performance in the face of a class of sensor faults/failures. In particular, the closed-loop stability of the sensor fault tolerant scheme involving the sliding mode observer and the sliding mode controller in the presence of faults and uncertainty, is rigorously analysed. Furthermore, the paper proposes an algorithm to simultaneously synthesise the design freedom associated with the observer gains and control law despite the lack of a separation principle in the closed loop system overall caused by the uncertainty. The proposed scheme is validated using a commercial aircraft model. Good simulation results show the efficacy of the scheme.European Union Horizon 2020Japan NED
    corecore