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Abstract

This paper proposes a linear parameter-varying sliding mode observer for the purpose of simultaneously estimating the system
states and reconstructing sensor faults. Furthermore, some of the measured scheduling parameters are also assumed to be
unreliable, and the corresponding values used in the observer are adapted to maintain the performance level of the observer.
The adaptive algorithm is driven by the ‘equivalent output error injection’ signal associated with the reduced-order sliding
motion. Sufficient conditions are given to ensure asymptotic stability of the state estimation error system, ensuring both the
state estimation errors and the estimation errors associated with the scheduling parameters converge to zero. The efficacy of
the scheme has been evaluated based upon an industrial high-fidelity aircraft benchmark scenario involving a simultaneous
total loss of airspeed and angle of attack measurements.
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1 Introduction

Sliding mode observer (SMO) techniques have been increasingly applied to solve Fault Detection and Diagnosis
(FDD) problems, exploiting the equivalent injection concept (Alwi et al., 2011). In Edwards et al. (2000), an SMO
was first employed to provide fault reconstruction in a linear system. Fault reconstruction, as a special case of
the more general fault detection and isolation problem, is very useful in terms of developing active fault tolerant
controllers (FTC) (Alwi and Edwards, 2008; Rotondo et al., 2015). A number of authors have extended typical
adaptive observer structures and included sliding mode injection terms to improve parameter estimation robustness
with respect to ‘matched’ uncertainty (Jiang et al., 2004; Efimov et al., 2016). More recently this work has been
broadened to consider the presence of ‘unmatched’ uncertainty i.e. uncertainties or mismatches which affect the
reduced order sliding dynamics (e.g. see Yan and Edwards (2008); de Loza et al. (2013); Alwi and Edwards (2014)).
This is important because if the reduced-order sliding motion is affected by ‘unmatched’ uncertainty, the state
estimation performance will be compromised, and the quality of the parameter estimation or fault reconstruction
will be degraded.

To overcome these deficiencies, the work in Yan and Edwards (2008) employs an adaptive law within an SMO frame-
work to recover fault reconstruction performance in the presence of significant ‘unmatched’ uncertainty. However, the
adaptive algorithm proposed in Yan and Edwards (2008) requires knowledge of both the outputs and their deriva-
tives. Also, to ensure asymptotic convergence of the error system, a nonlinear matrix inequality must be satisfied,
which may be difficult to solve in practice for real engineering systems.

In recent years there has been significant interest in linear parameter-varying (LPV) system representations as a
mechanism for extending the rich collection of linear based FDD/FTC methods to nonlinear systems (Marcos and
Balas, 2004; Vanek et al., 2014, 2011; Varga and Ossmann, 2014; Ossmann and Varga, 2015; Hoffmann and Werner,
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2015). However most of these existing FDD/FTC methods usually rely on accurate knowledge of the scheduling
parameters. Some work has attempted to reduce the effect of inaccurate knowledge of the scheduling parameters
during the synthesis process (Daafouz et al., 2008; Sato and Peaucelle, 2013; Chandra et al., 2016) by considering
its effect as a plant/model mismatch to be mitigated by adopting a robust observer design. However, the mismatch
in the scheduling parameters has to be relatively small to maintain FDD performance. In this paper, the problem
is not predicated on the fact that the inaccuracy in the knowledge of the scheduling parameters is small. A generic
adaptive LPV SMO scheme is proposed in this paper to simultaneously reconstruct the states and sensor faults
whilst estimating accurately the value of the scheduling parameters. An adaptive algorithm is developed exploiting
knowledge of the ‘equivalent output error injection’ signal. Assuming a Persistently Exciting (PE) plant trajectory, a
sufficient condition is proposed to guarantee asymptotic stability of the error system. It is proved that the estimated
scheduling parameters accurately approximate slowly varying scheduling parameters and ‘unmatched’ uncertainty
in the reduced-order sliding mode is eliminated. Consequently, compared to Chandra et al. (2016), more accurate
fault estimation can be achieved.

One application area in which LPV approaches have been extensively adopted is the field of aerospace. A challenge
for upcoming and future aircraft is the extension of automatic Guidance Navigation and Control (GNC) functions
to reduce pilot workload and to optimize the aircraft performance. One of the ways this can be achieved is to
facilitate the automated handling of off-nominal so-called abnormal events. The aim of the EU-FP7 funded project
RECONFIGURE (Reconfiguration of Control in Flight for Integral Global Upset Recovery) (Goupil et al., 2015) was
to investigate and develop advanced GNC technologies to optimize the aircraft’s status by automatically reconfiguring
the aircraft to its optimal flight condition. Various specific scenarios have been identified by AIRBUS, and high fidelity
benchmark simulations have been developed during the project to use for testing different FDD/FTC strategies.
Descriptions of the benchmark model and the fault/failure scenarios are given in Goupil et al. (2015). This paper
is motivated by one of the RECONFIGURE benchmark scenarios wherein measurements of both the airspeed and
angle of attack are simultaneously totally lost (Goupil et al., 2015). The proposed scheme is applied to estimate both
the calibrated airspeed (one of LPV scheduling parameters) and the angle of attack (one of output measurements).
Once the sensor faults are well estimated, the corrupted measurements can be corrected before being used by the
existing controller and the protection logic in an effort to ensure nominal performance is maintained (Alwi et al.,
2012).

The remainder of the paper is structured as follows: the preliminaries are given in Section 2. In Section 3 the
adaptive sliding mode observer scheme is developed for estimating the scheduling parameters and providing sensor
fault reconstruction. The reaching and stability analysis of the sliding motion are given in Section 4 and Section 5,
respectively. The fault estimation mechanism is discussed in Section 6. In Section 7, a systematic way of designing
the observer is summarised. The RECONFIGURE benchmark problem developed by AIRBUS, which is used to
demonstrate the efficacy of the scheme, is introduced in Section 8 and the design and industrial evaluation (Monte
Carlo) campaign results are also given, whilst Section 9 gives some concluding remarks.

2 Problem Formulation and Preliminaries

In this section, an LPV sliding mode observer is proposed for a scenario in which the measured scheduling parameters
are potentially corrupted. This distinguishes this paper from many of the earlier papers in the field of sliding mode
based LPV FDD/FTC systems (Alwi and Edwards, 2014). Specifically, consider an LPV model of a plant with sensor
faults:

ẋp(t) = Ap(ρ)xp(t) +Bp(ρ)u(t)

yp(t) = Cpxp(t) +Npf(t)
(1)

where Ap(ρ) ∈ R
n×n, Bp(ρ) ∈ R

n×m, Cp ∈ R
p×n and Np ∈ R

p×q, where q < p. The matrix Np is assumed to be full
(column) rank and represents the sensor fault distribution matrix whose columns belong to the standard basis for
R

p. The scheduling parameter ρ is taken to belong to a polytope Θ ⊂ R
r. It is assumed that the signals yp(t) and u(t)

are available but the state vector xp(t) is unknown. The nominal scheduling parameter ρ is assumed to be measured
but subject to possible faults. In (1), the signal f(t) represents unknown faults (which are to be estimated).

Assumption 1 The unknown faults f(t) are norm bounded and ‖f(t)‖ < χ2, where χ2 is a known positive scalar.

In this paper, the parameter varying matrices are assumed to depend affinely on ρ, in particular,

Ap(ρ)=Ap,0+

r∑
i

ρiAp,i Bp(ρ)=Bp,0+

r∑
i

ρiBp,i (2)
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where the scalar ρi represents the ith component of ρ. Based on (2) define aggregated matrices

A =
[
Ap,1 Ap,2 · · · Ap,r

]
∈ R

n×nr

B =
[
Bp,1 Bp,2 · · · Bp,r

]
∈ R

n×mr
(3)

Since the columns of Np are assumed to belong to the standard basis for Rp, by permutating the outputs it is possible
to obtain the representation [

yp,1(t)

yp,2(t)

]
=

[
Cp,1

Cp,2

]
xp(t) +

[
0

Iq

]
f(t) (4)

where Cp,1 ∈ R
(p−q)×n and Cp,2 ∈ R

q×n. In (4), Cp,1 is assumed to be full rank and yp,2(t) denotes the outputs
which are potentially corrupted by faults whilst yp,1(t) are fault free. As in Alwi et al. (2011), define a new filter
state zf (t) ∈ R

q according to
żf(t) = −Afzf(t) +Afyp,2(t) (5)

where Af ∈ R
q×q is a symmetric positive definite (s.p.d) matrix. Consider the augmented system from (1), (4) and

(5), given by [
ẋp(t)

żf (t)

]
=

[
Ap(ρ) 0

AfCp,2 −Af

][
xp(t)

zf (t)

]
+

[
Bp(ρ)

0

]
u(t) +

[
0

Af

]
f(t)

[
yp,1(t)

zf (t)

]
=

[
Cp,1 0

0 Iq

][
xp(t)

zf (t)

] (6)

For the system in (6), define a coordinate transformation matrix

Ta = Diag{Ts, Iq} (7)

where Ts ∈ R
n×n is any nonsingular matrix with the property that Cp,1T

−1
s =

[
0 Ip−q

]
. Applying the coordinate

transformation xp �→ x where x = Taxp to the augmented system in (6), yields[
ẋ(t)

żf (t)

]
︸ ︷︷ ︸

ẋa(t)

=

[
TsAp(ρ)T

−1
s 0

AfCp,2T
−1
s −Af

]
︸ ︷︷ ︸

A(ρ)

[
x(t)

zf(t)

]
︸ ︷︷ ︸

xa(t)

+

[
TsBp(ρ)

0

]
︸ ︷︷ ︸

B(ρ)

u(t) +

[
0

Af

]
︸ ︷︷ ︸

D

f(t)
(8)

where y = col(yp,1, zf) = Cxa, and C =
[
0 Ip

]
.

The representation in (8) will now be used as the basis for the observer design. This is now a classical unknown input
formulation in which f(t) affects the states of the system and the outputs y = Cxa. The structure of the proposes
scheme is shown in Fig. 1.

3 Observer Formulation

The proposed sliding mode observer for the augmented system in (8) is

ż(t) = A(ρ̂)z(t) +B(ρ̂)u(t) +Gley(t) +Gnν(t) (9)

where z(t) = col(x̂(t), ẑf (t)) and x̂ represents the estimate of x. In (9) the output estimation error is ey(t) =
C(xa(t)− z(t)) and the nonlinear output error injection vector

ν(t) =

⎧⎨
⎩ k(t)

ey
‖ey‖ if ey �= 0

0 otherwise
(10)
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Fig. 1. The structure of the proposed scheme

where the modulation gain k(t) is a positive scalar which will be defined later. In the observer structure in (9), if ρ
was measured perfectly and known, ideally, ρ̂ would be chosen equal to ρ. Here the aim is to create a scheme to adapt
ρ̂ so that A(ρ̂) = A(ρ) and B(ρ̂) = B(ρ) so as to avoid plant/observer model mismatches. A sufficient condition to
ensure this is to force the mismatch ρ – ρ̂ to zero. In practice the choice of scheduling parameters when creating the
LPV model and the selection of an over-bounding polytope is important in term of minimising conservatism and
promoting efficiency of the related observer design (Anstett et al., 2009).

Assumption 2 The number of erroneous components of ρ is h ≤ r and the other components of ρ̂ are identical to
those in ρ.

Define the scheduling parameter estimation error as

ρ̃ := ρ− ρ̂ = col(ρ̃1, ρ̃2, · · · , ρ̃r) (11)

then, when knowledge of the jth scheduling parameter ρj is exact (fault free), ρ̃j ≡ 0. Define a matrix U ∈ R
h×r to

select the erroneous components of ρ̃, say ρ̃e ∈ R
h, so that

ρ̃e = Uρ̃ (12)

Each row of U is taken from an rth order permutation matrix and so only one element per row is unity and the
other terms are zeros. An example of calculating U will be given in Section 8.1. Correspondingly define

ρe = Uρ and ρ̂e = Uρ̂ (13)

As in Alwi and Edwards (2014), the gain matrix Gn ∈ R
(n+q)×p in (9) has the structure

Gn =

[
−L

Ip

]
(14)

where the parameter design matrix L ∈ R
(n+q−p)×p is

L =
[
L1 0

]
(15)

and L1 ∈ R
(n+q−p)×(p−q). Here the other gain matrix

Gl =

[
−λL

λIp

]
(16)

where λ is a positive design scalar (although other choices are possible (Alwi and Edwards, 2014)).

4



Define the state estimation error e = xa − z, then from (8) and (9)

ė = A(ρ)e+

[
Ts(Ap(ρ)−Ap(ρ̂))T

−1
s x̂+Ts(Bp(ρ)−Bp(ρ̂))u

0

]
+Df −Gley −Gnν (17)

Define

Ae = A(UT ⊗ In) ∈ R
n×nh

Be = B(UT ⊗ Im) ∈ R
n×mh

(18)

where ⊗ represents the Kronecker product and A and B are defined in (3). It is easy to verify from (12) that in the
right hand side of (17)

Ts(Ap(ρ)−Ap(ρ̂))T
−1
s x̂ = TsAe(ρ̃e ⊗ In)T

−1
s x̂ (19)

and
Ts(Bp(ρ)−Bp(ρ̂))u = TsBe(ρ̃e ⊗ Im)u (20)

By direct computation
(ρ̃e ⊗ In)T

−1
s x̂ = (Ih ⊗ (T−1

s x̂))ρ̃e (21)

and
(ρ̃e ⊗ Im)u = (Ih ⊗ u)ρ̃e (22)

and therefore (17) can be conveniently written as

ė = A(ρ)e +

[
TsAe(Ih ⊗ (T−1

s x̂)) + TsBe(Ih ⊗ u)

0

]
ρ̃e +Df −Gley −Gnν (23)

Assumption 3 It is assumed

rank(
[
Ae Be

]
) = l < n (24)

Using Assumption 3 in (23), the expression

Ae(Ih ⊗ (T−1
s x̂)) +Be(Ih ⊗ u) = Hpφ(x̂, u) (25)

where Hp ∈ R
n×l and in particular φ(x̂, u) ∈ R

l×h is a known function.

Assumption 4 The time varying matrix φ(x̂, u) are bounded.

Remark 1 Equation (24) is a structural constraint on the matrices
[
Ae Be

]
and may be viewed as a limitation on

the number of rows/channels in Ap(ρ) and Bp(ρ) which can depend on the erroneous scheduling variables ρ. It is of
course a restriction, but an example of its application to a real engineering system will be given in Section 8.

As a consequence of (25), system (23) be written as

ė=A(ρ)e+

[
TsHp

0

]
φ(x̂, u)ρ̃e+Df−Gley−Gnν (26)

Suppose e = col(e1, ey), where, e1 ∈ R
n+q−p. Note the last p states in e correspond to the output estimation ey since

C =
[
0 I

]
. Then (26) can be rewritten in the form

[
ė1

ėy

]
=

[
A11(ρ) A12(ρ)

A21(ρ) A22(ρ)

][
e1

ey

]
+

[
H1

H2

]
φ(x̂, u)ρ̃e +

[
0

D2

]
f −

[
Gl1

Gl2

]
ey −

[
−L

Ip

]
ν (27)
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where A11(ρ) ∈ R
(n+q−p)×(n+q−p) and the fixed distribution matrix D2 ∈ R

p×q is given by

D2 =

[
0

Af

]
(28)

Based on the parameter L from (15) define another coordinate transformation e �→ TLe = ẽ, given by

TL =

[
In+q−p L

0 Ip

]
(29)

Then exploiting the fact that LD2 = 0 (because of the structures of L and D2 from (15) and (28)), in the new
coordinates equation (27) becomes

[
˙̃e1

ėy

]
=

[
Ã11(ρ) Ã12(ρ)

Ã21(ρ) Ã22(ρ)

][
ẽ1

ey

]
+

[
H̃1

H̃2

]
φ(x̂, u)ρ̃e +

[
0

D2

]
f −

[
0

λIp

]
ey −

[
0

Ip

]
ν (30)

where ẽ = col(ẽ1, ey) and ẽ1 = e1 + Ley. In these new coordinates, the varying matrix

Ã11(ρ) = A11(ρ) + LA21(ρ) (31)

In this paper, the design freedom L is selected to ensure Ã11(ρ) from (31) is quadratically stable with respect to a
Lyapunov function V (ẽ1) = ẽT1 P1ẽ1. These dynamics govern the sliding motion.

4 Reaching Analysis

In this section the state estimation error in (30) will be analysed to demonstrate a sliding motion takes place on
ey = 0 in finite time.

Assumption 5 There exists a s.p.d matrix P1 such that for all ρ ∈ Θ

P1Ã11(ρ) + Ã11(ρ)
TP1 + q1I < 0 (32)

where the scalar q1 > 0.

Remark 2 Since A11(ρ) and A21(ρ) depend linearly on the scheduling parameters and ρ ∈ Θ where Θ is a polytope,
to satisfy the requirement (32), it is sufficient to synthesise L at the 2r vertices of Θ and knowledge of ρ is not required.

Necessary conditions for (31) to be solvable can be obtained by examining the vertices of Ã11(ρ), and requires each
(A11,i, A21,i) be detectable. It can be shown unobservable modes of (A11,i, A21,i) correspond to (open-loop) eigenvalue
of Ai (Tan and Edwards, 2002), and so a sufficient condition is that at each vertex the system is open loop stable.

Remark 3 Using the variable change Y = P1L, inequality (32) can be posed as an LMI problem in terms of P1 and
Y at each vertex of Θ.

Lemma 1 If Assumption 5 holds then, for a sufficiently large λ in (16), the matrix P = Diag{P1, Ip} has the
property that

Q(ρ) = PÃ0(ρ) + Ã0(ρ)
TP < 0 (33)

where

Ã0(ρ) =

[
Ã11(ρ) Ã12(ρ)

Ã21(ρ) Ã22(ρ)− λIp

]
(34)
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Proof It follows from (33) and (34) and the diagonal structure of P that

Q(ρ)=

[
P1Ã11(ρ)+Ã11(ρ)

TP1 Ã21(ρ)
T +P1Ã12(ρ)

∗ Ã22(ρ)
T +Ã22(ρ)−2λIp

]

:=

[
Q11(ρ) Q12(ρ)

∗ Q22(ρ)− 2λIp

]
(35)

Since by hypothesis (Assumption 5) Q11(ρ) < 0, exploiting the Schur complement, Q(ρ) < 0 if and only if

2λIp −Q22(ρ) +Q12(ρ)
TQ11(ρ)

−1Q12(ρ) > 0 (36)

So choosing (for a given P1 > 0) the scalar λ such that

λ >
1

2
λmax

(
Q22(ρ)−Q12(ρ)

TQ11(ρ)
−1Q12(ρ)

)
(37)

ensures (33). In (37), λmax denotes the maximum eigenvalue. �

By design it is assumed that P1, Ã11(ρ) and λ have been chosen so that in (35)

Q(ρ) < −Q0 < 0 (38)

where Q0 is a fixed design matrix. Define, in the state estimation error space ẽ = col(ẽ1, ey), a sliding surface

S = {ẽ ∈ R
n+q : Cẽ(t) = 0} (39)

Since Θ is bounded, and from equations (11) and (13) ρ̃e = ρe − ρ̂e, it follows using the triangle inequality

‖ρ̃e(t)‖ ≤ ‖ρe(t)‖+ ‖ρ̂e(t)‖ ≤ θmax + ‖ρ̂e(t)‖ (40)

where θmax represents a known upper bound of ‖ρe‖. Consequently

‖φ(x̂, u)ρ̃e‖ ≤ η1(x̂, u, ρ̂e) (41)

where
η1(x̂, u, ρ̂e) = ‖φ(x̂, u)‖(θmax + ‖ρ̂e‖) (42)

Note although ρ̃e is unknown (because ρe is unknown), η1(·) is known since x̂, u are known (and ρ̂e is known being
the estimate of the scheduling parameter). Therefore whilst the left hand side of the inequality in (41) is unknown,
the upper bound η1(x̂, u, ρ̂e) is known. Also note that, prior to sliding, it is assumed that ρ̂e(t) = ρ̂e(0) and no
adaptation takes place. In the remainder of this section, for improved readability the dependence of the signal φ on
x̂ and u will be dropped. Equation (30) can be written as

˙̃e(t) = Ã0(ρ)ẽ(t) +

[
H̃1

H̃2

]
︸ ︷︷ ︸

H̃

φ(·)ρ̃e(t) +
[
0

D2

]
f(t)−

[
0

Ip

]
ν(t) (43)

where Ã0(ρ) is defined in (34), and λ and the Lyapunov matrix P for Ã0(ρ) are obtained from Lemma 1. Exploiting
the structure of P in Lemma 1 it follows

ẽT (t)P

[
0

Ip

]
ν(t) = k(t)‖ey(t)‖ (44)
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and
ẽT (t)PD2f(t) = ẽTy (t)D2f(t) (45)

where ν(t) and k(t) are from (10) and ẽ = col(ẽ1, ey). The objective is to obtain an upper bound on the evolution
of ‖ẽ(t)‖ (to use in the modulation gain k(t) employed to induce sliding). If k(t) > ‖D2‖χ2(t) where χ2(t) is defined
in Assumption 1 (i.e. larger than the worst case norm of the fault) then using the Lyapunov function V (ẽ) = ẽTP ẽ,
from (43), (44) and (45), it can be shown that

V̇ (t) ≤ ẽ(t)TQ(ρ)ẽ(t) + 2ẽ(t)TPH̃φ(·)ρ̃e(t) (46)

It follows from (46) that

V̇ ≤−(P
1
2 ẽ)TP− 1

2Q0P
− 1

2P
1
2 ẽ+2(P

1
2 ẽ)TP

1
2 H̃φρ̃e(·) ≤ −λmin(P

− 1
2Q0P

− 1
2 )V +2

√
V ‖P 1

2 H̃‖‖φρ̃e(·)‖ (47)

where Q0 is defined in (38) and λmin denotes the minimum eigenvalue. In (47) the signal ‖φρ̃e(·)‖ is unknown

because ρ̃e is unknown. However the upper bound from (41) depending on η1(x̂, u, ρ̂e) is available. Writing V =
√
V

it follows directly from (47) that

2VV̇ ≤ −λmin(P
− 1

2Q0P
− 1

2 )V2 + 2V‖P 1
2 H̃‖η1(x̂, u, ρ̂e) (48)

or equivalently for ẽ �= 0

V̇(t) ≤ −q0V(t) + ‖P 1
2 H̃‖η1(x̂, u, ρ̂e) (49)

where

q0 =
1

2
λmin(P

− 1
2Q0P

− 1
2 ) > 0 (50)

Define the scalar χ(t) as the solution of

χ̇(t) = −q0χ(t) + ‖P 1
2 H̃‖η1(x̂, u, ρ̂e) (51)

where χ(0) = 0. Comparing the solution of (51) with (49) it follows

V(t)≤e−q0tV(0)+
∫ t

0

e−q0(t−s)‖P 1
2 H̃‖η1(x̂, u, ρ̂e)ds = e−q0tV(0) + χ(t) (52)

Let χ0 be a positive design scalar, then χ(t) + χ0 > V(t) for t ≥ t0 where t0 = min{0, 1
q0

log(V(0)/χ0)}. Define

χ̃(t) := (χ(t) + χ0)/
√
λmin(P ) (53)

then since V(t)>√
λmin(P )‖ẽ(t)‖, χ̃(t) ≥ ‖ẽ(t)‖ for t ≥ t0.

Remark 4 χ̃(t) is an available quantity (since χ(t) can be obtained from solving (51) where η1(x̂, u, ρ̂e) is known)
and represents an upper bound on ‖ẽ(t)‖ for all t > t0.

Let
a21 :=max

ρ∈Θ
‖Ã21(ρ)‖ a22 :=max

ρ∈Θ
‖Ã22(ρ)− λIp‖ (54)

Lemma 2 If the modulation gain in (10) is chosen to satisfy

k(t) ≥ a21χ̃(t) + a22‖ey(t)‖ + ‖H̃2‖η1(x̂, u, ρ̂e) + ‖D2‖χ2(t) + η (55)

where χ2 represents a bound on the fault from Assumption 1 and η is a positive scalar, a sliding motion takes place
for all t ≥ ts ≥ t0 where ts is the finite time at which sliding is established.
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Proof Define Ṽ (ey) =
1
2e

T
y ey then it follows from the expression for ėy in (30) that for all t ≥ t0

˙̃V = eTy (Ã21(ρ)ẽ1+Ã22(ρ)ey− λIpey +H̃2φρ̃e+D2f−ν)

≤ ‖ey‖(a21χ̃+ a22‖ey‖+ ‖H̃2‖η1(·) + ‖D2‖χ2 − k)≤−η‖ey‖ = −η
√
2Ṽ

This ensures sliding takes place in finite time (Utkin (1992); Shtessel et al. (2013)). �

The next section analyses the sliding motion and the adaptation law for ρ̂e(t).

5 Reduced Order Sliding Motion Analysis

During sliding on S, ėy = ey = 0 (Utkin, 1992). Consequently from (30) the reduced order sliding motion is governed
by

˙̃e1 = Ã11(ρ)ẽ1 + H̃1φ(x̂, u)ρ̃e

0 = Ã21(ρ)ẽ1 + H̃2φ(x̂, u)ρ̃e +D2f − νeq
(56)

where the quantity νeq is the equivalent output error injection necessary to maintain sliding (Utkin, 1992). By
exploiting the structure of D2 in (28), the bottom equation of (56) (associated with ey = 0) can be further sub-
partitioned into two parts: terms that are not directly affected by the fault f and those which are. To create this
sub-partition define

Ã21(ρ)=

[
Ã211(ρ)

Ã212(ρ)

]
, νeq=

[
νeq,1

νeq,2

]
, H̃2=

[
H̃21

H̃22

]
(57)

where Ã211(ρ) ∈ R
(p−q)×(n−p+q), H̃21 ∈ R

(p−q)×l and νeq,1 ∈ R
p−q, then from (56)

˙̃e1 = Ã11(ρ)ẽ1 + H̃1φ(x̂, u)ρ̃e

νeq,1 = Ã211(ρ)ẽ1 + H̃21φ(x̂, u)ρ̃e
(58)

Note the system in (58) does not directly depend on the faults f(t).

During sliding, an arbitrary close approximation to νeq can be obtained (see for example (Shtessel et al., 2013)) and
so νeq,1 in (58) is known. The objective is to devise an adaption scheme for the observer scheduling parameter vector
ρ̂e to force the estimation error ρ̃e → 0 (and consequently to ensure ẽ1 → 0).

Remark 5 Note that the adaptation scheme described in this paper can only be employed whilst sliding is taking
place during which the equivalent injection concept is valid. Here it is assumed in the adaption process will only take
place for t > ts where ts is given from Lemma 2.

Remark 6 It is clear from (58) that errors in estimating the scheduling parameters resulting in ρ̃e �= 0, generates
an ‘unmatched’ term.

An adaptive law will now be developed to describe the evolution of ρ̂e(t) driven by the equivalent injection component
νeq,1.

Lemma 3 (Zhang, 2002) A bounded and piecewise continuous vector or matrix Ω(t) is Persistently Exciting (PE),
if for all t > 0, there exists T > 0 and ε > 0, such that∫ t+T

t

Ω(σ)TΩ(σ)dσ ≥ εI (59)

Furthermore under these conditions, if Γ is a s.p.d matrix, then the system

ω̇ = −ΓΩ(t)TΩ(t)ω (60)

is exponentially stable. �
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Introduce a design matrix S ∈ R
h×(p−q) subject to the following assumption being satisfied:

Assumption 6 The signal SH̃21φ(x̂, u) is PE 1 .

Then from (58) the available output signal Sνeq,1 evolves according to

˙̃e1(t) = Ã11(ρ)ẽ1 + H̃1φ(x̂, u)ρ̃e

Sνeq,1 = SÃ211(ρ)ẽ1 + SH̃21φ(x̂, u)ρ̃e
(61)

Assumption 7 The scheduling parameter ρ(t) associated with the plant is smooth and slowly varying.

Remark 7 Assumption 7 is a common assumption in LPV papers (and is quite reasonable for the civil aircraft
example discussed later in the paper since such a system is not typically subject to aggressive acrobatic maneuvers).

The following adaptation algorithm is proposed for ρ̂e:

˙̂ρe = Γ(SH̃21φ(x̂, u))
TSνeq,1 (62)

where Γ ∈ R
h×h is a s.p.d design matrix.

Under Assumption 7, by substituting (62) into (61) and using (11)

˙̃e1=Ã11(ρ)ẽ1 + H̃1φρ̃e (63)
˙̃ρe=−Γ(SH̃21φ)

TSÃ211(ρ)ẽ1−Γ(SH̃21φ)
TSH̃21φρ̃e (64)

The system in (63)-(64) is equivalent to the nonlinear interconnected system shown in Fig. 2, where Σ1 and Σ2

represent the systems in (63) and (64) respectively.

  

  
+ 

+ 

+ 

+ 

Fig. 2. Nonlinear interconnected error model

Define the time-varying matrices Â(t) and B̂(t) as

Â(t) = −Γ(SH̃21φ)
TSH̃21φ

B̂(t) = −Γ(SH̃21φ)
TSÃ211(ρ)

(65)

From Assumption 6, SH̃21φ is PE, and therefore from Lemma 3, Σ2 is zero input exponentially stable, i.e.

˙̃ρe = Â(t)ρ̃e (66)

is exponentially stable. Consequently (see Theorem 4.11 in Khalil (2000)) the transition matrix Φ(t, t0) associated
with the solution to (66) satisfies

‖Φ(t, t0)‖ < m0e
−λ0(t−t0) (67)

for strictly positive scalars m0 and λ0. Define two scalars

p2 =
m2

0

λ0
(68)

1 This implies the trajectory, and u(t), must be sufficiently exciting.
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and
b0 ≥ ‖B̂(t)‖ = ‖Γ(SH̃21φ)

TSÃ211(ρ)‖ (69)

Note that the values of m0 and λ0 can be found since Â(t) is known. A finite value for b0 can be found since the
boundedness of the right hand side of (69) follows from the boundedness of φ(x̂, u) (Assumption 5).

Lemma 4 For a scalar γ2 > p2b0√
1−ε2

where b0 satisfies (69), p2 is defined in (68) and ε2 < 1 is a small positive

scalar, then there always exists a time-varying matrix P2(t) ∈ R
h×h such that

0 < p1Ih ≤ P2(t) ≤ p2Ih (70)

for a finite positive scalar p1 and

Ṗ2(t) + P2(t)Â(t) + Â(t)TP2(t) + (1 + ε2)Ih +
1

γ2
2

P2(t)B̂(t)B̂(t)TP2(t) < 0 (71)

Proof Consider the time-varying matrix

P2(t) = 2

∫ ∞

t

Φ(s, t)TΦ(s, t)ds (72)

where Φ(t, t0) is the transition matrix associated with (66). From Theorem 4.12 in Khalil (2000), since (66) is
exponentially stable there exist positive p1 and p2 such that (70) holds where a suitable choice for p2 is given in
(68). Furthermore, as argued in Theorem 4.12 in Khalil (2000), the matrix P2(t) satisfies (the Lyapunov equation)

Ṗ2(t) + P2(t)Â(t) + Â(t)TP2(t) + 2Ih = 0 (73)

Now consider the left hand side of the inequality in (71): if γ2 > p2b0√
1−ε2

where b0 ≥ ‖B̂(t)‖, then

1

γ2
2

P2(t)B̂(t)B̂(t)TP2(t) < (1− ε2)Ih (74)

and therefore

Ṗ2(t)+P2(t)Â(t)+Â(t)TP2(t)+
1

γ2
2

P2(t)B̂(t)B̂(t)TP2(t) + (1 + ε2)Ih ≤ Ṗ2(t)+P2(t)Â(t)+Â(t)TP2(t) + 2Ih(75)

By construction P2(t) satisfies (73) and the right hand side of (75) zero. Therefore P2(t) from (72) satisfies inequality
(71). �

Since Ã11(ρ) is quadratically stable and φ(x̂, u) is assumed to be bounded, there exist a positive scalar γ1 and a
fixed matrix P1 > 0 such that

P1Ã11(ρ)+Ã11(ρ)
TP1+

1

γ2
1

P1H̃1φφ
T H̃T

1 P1+(1+ε1)I < 0 (76)

where ε1 is a positive scalar.

Theorem 1 Let γ1 be chosen so there exists a P1 that (76) holds, and suppose γ2 satisfies the conditions of Lemma
4. Then if

γ1γ2 < 1 (77)

the nonlinear system in Fig. 2 is exponentially stable.
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Proof As shown in Fig. 2, let the two interconnected systems Σ1 : ρ̃e �→ ẽ1 and Σ2 : ẽ1 �→ ρ̃e be given by
(Ã11(ρ), H̃1φ(t), I) and (Â(t), B̂(t), I) respectively. From Lemma 4 there exist a γ2 and p1I < P2(t) ≤ p2I such that

Ṗ2(t) + P2(t)Â(t) + Â(t)TP2(t) + ε2I +
1

γ2
2

P2(t)B̂(t)B̂(t)TP2(t) + I < 0 (78)

Now for the system in Fig. 2 consider as a candidate Lyapunov function

V (t) =
1

γ2
1

ẽT1 P1ẽ1 + ρ̃Te P2(t)ρ̃e (79)

which is positive definite w.r.t to ẽ1 and ρ̃e and radially unbounded. It follows

V̇ (t)=
1

γ2
1

(
ẽT1 (P1Ã11(ρ)+Ã11(ρ)

TP1)ẽ1+2ẽT1 P1H̃1φρ̃e
)
+ρ̃Te Ṗ2(t)ρ̃e+ρ̃Te (P2(t)Â(t) + Â(t)TP2(t))ρ̃e+2ρ̃Te P2(t)B̂(t)ẽ1

(80)
and using Young’s Inequality,

V̇ (t) ≤ 1

γ2
1

(
ẽT1 (P1Ã11(ρ) + Ã11(ρ)

TP1)ẽ1 +
1

γ2
1

ẽT1 P1H̃1φφ
T H̃1P1ẽ1 + γ2

1‖ρ̃e‖2
)

+ ρ̃Te Ṗ2(t)ρ̃e + ρ̃Te (P2(t)Â(t) + Â(t)TP2(t))ρ̃e +
1

γ2
2

ρ̃Te P2(t)B̂(t)B̂(t)TP2ρ̃e + γ2
2‖ẽ1‖2

Then using (76) and (78), it follows from (81) that

V̇ (t) ≤ 1

γ2
1

(γ2
1‖ρ̃e‖2 − (1 + ε1)‖ẽ1‖2) + γ2

2‖ẽ1‖2 − (1 + ε2)‖ρ̃e‖2

= ‖ρ̃e‖2 − (1 + ε1)

γ2
1

‖ẽ1‖2 + γ2
2‖ẽ1‖2 − (1 + ε2)‖ρ̃e‖2

= − 1

γ2
1

‖ẽ1‖2 + γ2
2‖ẽ1‖2 −

ε1
γ2
1

‖ẽ1‖ − ε2‖ρ̃e‖2

= (− 1

γ2
1

+ γ2
2)‖ẽ1‖2 −

ε1
γ2
1

‖ẽ1‖ − ε2‖ρ̃e‖2

(81)

It is clear from (81) that if γ1γ2 < 1,

V̇ (t) ≤ − ε1
γ2
1

‖ẽ1‖ − ε2‖ρ̃e‖2 (82)

and the system in Fig. 2 is asymptotically stable. �

6 Fault Estimation

The previous section has provided a set of conditions under which the adaption scheme to estimate the corrupted
scheduling parameters guarantee the reduced order sliding motion in (83) is asymptotically stable and ẽ1(t) → 0 as
t → ∞. To develop the adaption law for ρ̂e(t) in (62) the equivalent injection signal νeq from (83) was decomposed as
col(νeq,1, νeq,2) and only νeq,1 ∈ R

p−q was used in the adaption law. By construction the adaption loop is independent

of the faults. Since, as argued in Section 5, νeq,2 is available in real time, an estimate of the fault f̂(t) will be created
based on νeq,2.

From (57) it follows the other component of νeq, namely νeq,2 ∈ R
q, satisfies

νeq,2 = Ã212(ρ)ẽ1 + H̃22φ(x̂, u)ρ̃e +Aff (83)

If the conditions in Section 5 are met then it follows ẽ1(t) → 0 and ρ̃e(t) → 0 as t → ∞ and it follows from (83)
that νeq,2 → Aff . Therefore

f̂ := A−1
f νeq,2 (84)
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represents a useful reconstruction of the fault after the convergence of ρ̃e(t) and and ẽ1(t) to zero. Specifically, once

sliding is established, if the conditions of Theorem 1 in Section 5 hold, f̂(t) → f(t) as t → ∞.

7 Design Summary and Notes on Tuning

An outline of the design method summarizing the developments in the previous section is as follows:

(1) Re-order the system states such that the sensors considered prone to faults are in the lower half of the output
vector as given in (4).

(2) Augment the plant model from (1) with the filtered version of the sensors prone to faults to create the system
in (6). This involves selection of the matrix Af in (5) which governs the bandwidth of the filter.

(3) Change the coordinates of the augmented system using (7) so that the output distribution matrix C is as given
in (8).

(4) Compute the perturbation matrix U from the indices of erroneous scheduling parameters and calculate Ae

and Be from (18). Then find Hp from (25) which identifies the rows in the system matrix associated with the
erroneous scheduling variables. Consequently H1 and H2 can be calculated from (26) and (27).

(5) Using Remark 3, (32) becomes an LMI. Then compute the Lyapunov matrix P1 and the gain L to satisfy (32).
(6) Once P1 and L have been obtained from Step (5), λ can be selected from (37) and the observer gain Gl in (16)

is completely specified.
(7) Once L has been obtained, the nonlinear gain Gn given in (14) is specified.
(8) Once P1 and L have been obtained, first Q0 can be selected from (38), then q0 from (50).
(9) Create the observer in (9) using the scheduling parameters ρ̂ constructed from (62). In (62), the design matrix Γ

is selected to improve the exponential convergence rate and the gain S is chosen to adjust and ensure persistence
of excitation.

(10) The modulation gain k(t) must be chosen to satisfy (55). In (55), χ2 is known and defined in Assumption 1,
a21 and a22 are selected from (54), H2 is known from Step (4), D2 is from (28), χ̃(t) is from (53) where χ(t) is
obtained by solving (51) (since q0 in Step(8) and η1(x̂, u, ρ̂e) are known).

(11) According to the stability analysis in Section 5, once the sliding motion occur, the adaptation process takes

place and ρ̃e starts converging to zero. From equation (83), the reconstruction signal is defined as f̂ := A−1
f νeq,2

after the convergence of ρ̃e.

8 RECONFIGURE Benchmark Problem

In this section, the proposed scheme will be applied to solve a RECONFIGURE benchmark problem. The RECON-
FIGURE benchmark developed by AIRBUS is based on a nonlinear highly representative model of a generic civil
commercial aircraft. This aircraft model has been used within the EU funded RECONFIGURE project as the basis
for all the scenarios and for testing different fault detection and fault tolerant control strategies. In this paper a
benchmark scenario involving the simultaneous total loss of the calibrated airspeed (VCAS) measurement and an
angle of attack (AOA) measurement sensor fault is considered. In the benchmark scenario, it is assumed the VCAS
and AOA measurements are lost simultaneously and almost immediately. Once lost they are not recovered (Goupil
et al., 2015). In this section, both preliminary design results based on a simplified LPV model and RECONFIGURE
benchmark simulation results based on the industrial V&V (validation and verification) campaign will be shown, to
demonstrate the design efficacy.

8.1 Preliminary design results

To improve the transparency of the design process, this section describes preliminary design and simulation results
based on a simplified LPV model built via interpolation of multiple LTI models 2 . In this subsection, it is used for
both design and initial testing.

The affine aircraft LPV model in the form of (1) is described Appendix A and the four scheduling parameters are

ρ =
[
w(t) CG(%) VCAS(kt) h(ft)

]T
(85)

2 LTI models associated with various flight conditions were provided by Airbus for the design of FDD/FTC schemes.
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These represent the aircraft weight, the position of the centre of gravity, calibrated airspeed and altitude. The
RECONFIGURE benchmark is a civil aircraft, and so the assumption that the velocity VCAS is slowly varying is a
reasonable one for this application. In this paper, the ranges of the scheduling parameters are not provided due to
industrial confidentiality restrictions, and all the scheduling parameters have been normalized to lie in the interval
[0 1]. The state variables are

xp =
[
q Vg α θ Zg

]T
(86)

and represent pitch rate, ground speed, angle of attack, pitch angle and altitude respectively. In this paper it is
assumed only a subset of the states are measured. In particular, the variable Vg is not regarded as available. For the
purpose of achieving the ‘output canonical form’ described earlier, the output variables are reordered as

yp =
[
q θ Zg α

]T
(87)

The system input vector is given by u =
[
δe δstab

]T
where δe denotes the deflection of the elevators and δstab is the

deflection of the horizontal stabilizer.

Since the third scheduling parameter VCAS is erroneous, from (12), U = [0 0 1 0] and h = 1. The matrices Ae

and Be formed from the coefficients associated with ρ3 are

[
Ae Be

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.5247 0.0025 −0.5898 0 0 −0.6856 −1.4287
0 −0.0007 0.0216 0 0 0 0.0033

−0.0137 0.0086 −0.3832 0 0 −0.0220 −0.0493
0 0 0 0 0 0 0

0 0 −0.1411 0.1411 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(88)

Clearly, l = rank([Ae Be]) = 4 and Assumption 3 is verified. The matrix Hp from (26) can be selected as

Hp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

H1 =

[
0 −1 0 0

0 0 −1 0

]
H2 =

⎡
⎢⎢⎢⎢⎣
1 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎥⎦ (89)

and relates to rows in which the scheduling parameter ρ3 appears. Once Hp is defined, in this example, it can be
shown that matrices H1 and H2 have the structures given above. As a consequence, from (25)

φ(x̂, u) =

⎡
⎢⎢⎢⎢⎣
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
[
Ae Be

] [T−1
s x̂

u

]
(90)

where Ts is known and satisfies Cp,1T
−1
s = [0 Ip−q ]. The filter parameter Af from (5) has been chosen as Af = 1.

After computing a suitable gain matrix L using YALMIP (Löfberg, 2004), the matrices Ã11(ρ), H̃1 and H̃2 can be
established. In this example, the scalar γ1 from (76) is 0.7433. In this design

S =
[
1 0 0

]
(91)

and λ = 78. Furthermore from (50), q0 = 0.0453. From (62), the matrix Γ = 16 (which governs the convergence
rate of the estimation error). Since ρ3 has been normalized in the interval [0 1], in (41), θmax = 1 and hence
η1 = ‖φ(x̂, u)‖(1 + ‖ρ̂e‖). This will be used to create χ̃(t) obtained from solving the differential equation (51).
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In order to show the effectiveness of the preliminary design, one vertex of the polytope is selected as the testing
point. The robust performance of the scheme will be subsequently demonstrated in Section 8.2 using the nonlinear
RECONFIGURE benchmark. In this example, the pilot input, shown in Fig. 3(a), provides sufficient excitation for
the adaptive scheme.

Simulation results involving the total loss of the VCAS and AOA signals are shown in Figs. 3-5. Here it is assumed
the VCAS signal (the third scheduling parameter) is totally lost from the beginning of the simulation, whereas the
AOA (output) measurement becomes faulty (and is assumed to be totally lost) after 10 sec which coincides with an
AOA manoeuvre. The values of AOA in both the nominal and faulty cases are shown in Fig. 3(b).

The parameter χ̃(t) created from (51) and (53) is shown in Fig. 4(a). Figure 4(b) shows sliding occurs almost
immediately whilst Fig. 4(c) shows the norm of the states of the estimation error ‖e1‖, which is vanishing since the
unmatched uncertainties relating to ρ̃e are compensated for.

The error between the nominal VCAS measurement and its estimates (i.e. ρ̃e), is shown in Fig. 5(a). Despite the fact
VCAS measurement is totally lost from the beginning of the simulation, the estimation error ρ̃e rapidly converge
to zero only once persistent excitation has been induced by the pilot from 5sec onwards (See Fig. 3(a)). The zero
estimation errors for ρ̃e indicate that the observer has managed to provide a good reconstruction of the actual VCAS.
The AOA fault reconstruction is shown in Fig. 5(b). It shows that the fault reconstruction signal can approximate
the actual faults accurately after the convergence of VCAS.

8.2 RECONFIGURE benchmark simulation

The RECONFIGURE benchmark is a nonlinear highly representative model of a generic civil commercial aircraft
which contains a baseline gain-scheduled controller, detailed actuator and sensor models, as well as angle of attack
and speed protection components and measurement filters. The simulation model of RECONFIGURE is ‘invisible’
for design purposes and runs as a ‘blackbox’ in a LINUX environment. The flight control computer component is
extracted in a Simulink model which includes the baseline LPV controller, and ways to ‘plug in’ FDD/FTC designs
(Goupil et al., 2015).

During the industrial V&V campaign, both the VCAS and AOA measurements are assumed to be lost and almost
immediately from the beginning of the simulation. The objective of the design is to maintain longitudinal C-NZ
performance in the face of the total loss of VCAS and AOA for various operating conditions and deliberate validation
activities.

In this section, one of the industrial C-NZ validation activities, the so-called ‘NZLAW-05’ maneuver is performed
for the verification of GNC performance and is used for assessing robustness and performance of the design in
the presence of a total loss of VCAS and AOA. Details of this maneuver will be discussed later. The efficacy of the
proposed scheme during ‘NZLAW-05‘ will be evaluated based on the accuracy of the fault estimation and longitudinal
C-NZ performance. Once the LPV sliding mode observer has the capability of reconstructing VCAS and AOA faults,
the reconstruction signals are used to ‘correct’ the corrupted VCAS and AOA measurements before they are used
by the existing AIRBUS controller and protection logic. According to Alwi et al. (2012), only a small modification
to the feedback loop is required to implement this approach and the observer can be designed independently of the
controller. The idea in Alwi et al. (2012) results in a scheme with low computational load, as a result of retrofitting
within the existing control system, and the nominal protected C-NZ performance is retained in the presence of
VCAS and AOA faults. This is appealing especially for aerospace applications where strict certification rules apply.
Details of the stability analysis appear in Alwi et al. (2012).

For each validation activity associated with the fault estimation and longitudinal C-NZ performance, the proposed
scheme will be evaluated at the various flight conditions shown in Table 1 and 2 wherein ‘MFW’, ‘MLW’, ‘MZFW’
and ‘MTOW’ denote the maximum flight weight, the maximum landing weight, the maximum zero fuel weight and
the maximum take-off weight, respectively. The acronyms ‘VLS’, ‘VMO’, ‘MMO’, ‘ARS’, ‘AES’ and ‘VFE’ represent
the minimum selectable speed, the maximum operating speed, the maximum Mach operating speed, the automatic
retraction speed for the high-lift system, the automatic extension speed for the high-lift system and the maximum
speed when slat/flap (S/F) is extended, respectively. Specific numerical values for the various weights and speeds
are not given in this paper due to industrial confidentiality requirements. In this paper, 228 various flight conditions
which include 12 different mass cases and 19 different flight points (listed in Table–1 and 2) will be used for industrial
Monte-Carlo V&V evaluation purposes in the presence of faults.

In this paper, the industrial V&V campaign results are generated using the RECONFIGURE Function Engineering
Simulator (FES) developed by DEIMOS (Fernandez et al., 2015), which is a simulation software tool based on the
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Table 1
Mass cases (MC) definition

Gross weight (t) Centre Gravity (CG)(%)

MFW Max forward CG

MFW Medium CG

MFW Max aft CG

(MLW+MZFW)/2 Max forward CG

(MLW+MZFW)/2 Medium CG

(MLW+MZFW)/2 Max aft CG

(MTOW+MLW)/2 Max forward CG

(MTOW+MLW)/2 Medium CG

(MTOW+MLW)/2 Max aft CG

MTOW Max forward CG

MTOW Medium CG

MTOW Max aft CG

Table 2
Flight points (FP) definition

VCAS (kt) Altitude h (ft) S/F conf Landing gear

VLS-5 Ceiling 0 Up

VMO/MMO Ceiling 0 Up

VLS 30000 0 Up

VMO 30000 0 Up

VLS 15000 0 Up

250 15000 0 Up

VMO 15000 0 Up

(ARS+AES)/2-10 7500 1 Up

VFE 7500 1 Up

VLS 7500 1 Up

(ARS+AES)/2+10 7500 1 Up

VLS 5000 2 Up

VFE 5000 2 Up

VLS 2000 3 Up

VFE 2000 3 Up

VLS 1000 3 Down

VFE 1000 3 Down

VLS 1000 4 Down

VFE 1000 4 Down

MATLAB/SIMULINK modeling and simulation environment, specifically designed to support the industrial verifi-
cation and benchmarking of the FDD/FTC algorithm prototypes designed by the partners in the RECONFIGURE
project. The FES includes all the benchmark scenarios defined by AIRBUS with traditional Monte Carlo analysis,
and provides an interface for a worst-case search tool for implementing advanced clearance methods (Goupil et al.,
2015).

8.2.1 AIRBUS Technical Limitations and Constraints

On a large civil aircraft, the available computing capability of the Flight Control Computer (FCC) is relatively low,
and proven reliable processors must be used for critical applications. Therefore, it is prohibited to use advanced
processors capable of executing on-line optimisations or even wavelet or Fourier transforms in real time. In RECON-
FIGURE, to allow industry to evaluate the computational load of a particular design, each approach has been coded
following the AIRBUS state of practice for FCC software coding – the SAO (AIRBUS software, Computer-Assisted
Specification) library, which contains a set of graphical functional blocks (similar to SIMULINK blocks), allowing
only a limited set of mathematical operations. An automatic generation tool then calculates the computational load
and produces code to be implemented on the FCC. The computational load of the FTC scheme described in the
earlier sections was deemed ‘very low’ when evaluated by AIRBUS, which is a positive feature of the design.
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8.2.2 Monte Carlo campaign results in ‘NZLAW-05’

The ‘NZLAW-05’ scenario has been used to evaluate the schemes’ capability to maintain an ideal response to the load
factor 3 demand across all flight conditions in the presence of a total loss of VCAS and AOA. The pilot excitations
are shown in Fig. 6 wherein a sequence of positive and negative stick deflections are injected. In ‘NZLAW-05’, the
‘AutoThrust’ is engaged during the whole simulation. Note that due to AIRBUS industrial confidentiality constraints,
the trajectories of the aircraft and details of the sensor faults cannot be shown in this paper.

It can be seen from Fig. 7 that ‖ey‖ is close to zero which demonstrates that sliding can be maintained despite
the presence of faults in the AOA and VCAS measurements and various flight conditions. The fault reconstruction
performance associated with VCAS faults and AOA faults are shown in Fig. 8 and Fig. 9, respectively. Figure. 8(a)
shows the absolute value of the difference between the nominal VCAS and estimated VCAS, and Fig. 9(a) depicts
the absolute value of the difference between the nominal AOA and the reconstructed AOA. Instead of showing the
actual faults or system states, the fault reconstruction errors are depicted as percentages in this paper. Figure. 8(b)
shows the absolute value of the normalized (percentage) VCAS fault reconstruction errors. The absolute value of
the normalized (percentage) AOA fault reconstruction errors are shown in Fig. 9(b). It can be seen from Fig. 8 and
Fig. 9 that the sliding mode observer scheme has the capability of estimating the scheduling parameter VCAS whilst
reconstructing the AOA faults in all 228 operational conditions.

Note that in this test activity, only the absolute values of the differences associated with the crucial parameters of
C-NZ control, (i.e. load factor nz and the pitch rate q) between the nominal, the faulty (without any compensation)
and the FTC cases are allowed to be shown due to industrial confidentiality restrictions. The absolute value of
the differences in the nz and q performance between the nominal and the faulty cases in the absence of the FTC
scheme are shown in Fig. 10(a) and Fig. 11(a), respectively. The absolute value of the differences in the nz and q
performance between the nominal and the FTC cases are shown in Fig. 10(b) and Fig. 11(b), respectively. Clearly
from Fig. 10 and 11, near nominal (fault-free) C-NZ performance can be retained using the FTC scheme in the
presence of a simultaneous total loss of VCAS and AOA, throughout a large range of the flight envelope involving
all the operational conditions defined in Table 1 and 2.

9 Conclusion

In this paper, an adaptive LPV sliding mode observer scheme has been proposed for sensor fault reconstruction
despite erroneous scheduling parameter information. The algorithm has been developed based upon knowledge of
the equivalent output error injection signal. The scheme attempts to estimate the erroneous scheduling parameters
via an adaption scheme while simultaneously estimating the faults. Using the estimate of the faults, a virtual sensor
can be created by compensating the measurements. The proposed scheme has been applied to a RECONFIGURE
benchmark scenario that involves the total loss of the sensor measurement of AOA and the scheduling parameter
VCAS. The industrial Monte Carlo campaign results show that the VCAS and AOA signals can be estimated
accurately to achieve effective fault tolerant C-NZ performance.
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Fig. 3. Pilot excitation and AOA signals
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Fig. 6. Pitching stick excitations during ‘NZLAW05’

0 10 20 30 40 50 60
0

2

4

6

8

10

Time (sec)

S
lid

in
g 

su
rf

ac
es

 ||
ey

||

Fig. 7. Sliding surfaces ‖ey‖ during ‘NZLAW05’

22



0 10 20 30 40 50 60
0

100

200

300

400

Time (sec)

V
C

A
S

 e
st

im
at

io
n 

er
ro

rs
 (

kt
s)
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Fig. 8. VCAS reconstruction performance
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Fig. 9. AOA reconstruction performance
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(b) The absolute values of the differences between the nominal and the FTC cases

Fig. 10. Load factor nz performance in the presence of VCAS and AOA faults
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(b) The absolute values of the differences between the nominal and the FTC cases

Fig. 11. Pitch rate q performance in the presence of VCAS and AOA faults
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