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Flight Evaluation of an LPV Sliding Mode
Observer for Sensor FTC

This paper develops a sliding mode sensor fault tolerant control scheme for a class of LPV systems. It incorporates a sliding
mode observer which reconstructs the unknown sensor faults based on only the system inputs and outputs. The reconstructed
sensor faults are used to compensate the corrupted sensor measurements before they are used in the feedback controller. Provided
accurate fault estimates can be computed, near nominal control performance can be retained without any controller reconfiguration.
Furthermore, the closed-loop stability of the FTC scheme, involving both a sliding mode controller and a sliding mode observer, is
rigorously analysed. The proposed scheme is validated using the Japan Aerospace Exploration Agency’s Multi-Purpose Aviation
Laboratory (MuPAL-α) research aircraft. These flight tests represent the first validation tests of a sliding mode sensor FTC scheme
on a full scale aircraft.

sliding mode control, fault tolerant control, fault detection and diagnosis, flight test.

I. INTRODUCTION
ESPITE all the research interest in fault detection and diagnosis (FDD) and fault tolerant control (FTC) [1], there exists
a significant theory/practice gap. In recent years, a series of European funded projects have sought to develop a range

of model based approaches in an effort to narrow this gap [2]. As argued in [26], although the signal-based FDD methods
do not require the knowledge of models, the design parameters could be insensitive to the models. In addition, under poor
excitation, the issues corresponding to model observability and parameter identifiability need to be addressed. Driven by the
aerospace industry interest, in this paper, a model based approach is adopted. In most application areas – often because of
their safety critical nature – new model based FDD and FTC are only tested by simulations. This is particularly true in the
aerospace sector: literature describing the testing of model based estimation schemes in-flight, or on full scale piloted aircraft (as
opposite to UAVs), is limited. Recent European projects validated a range of model based FDD schemes at a system integration
level using Airbus’s actuator ‘integration bench’ and the ‘ Iron-bird’ platform [3]. The methods tested included slidi ng mode
methods [11], a geometric design [12], H−/H∞ filters [6], and a physical model based approach [7]. In the follow-up project
(RECONFIGURE), integrated FTC/FDD approaches were validated and demonstrated using the Airbus desktop simulator [4].
Despite the advancements in Technology Readiness Levels (TRLs) achieved during the European projects ADDSAFE and

RECONFIGURE, only one FDD scheme, based on an extended Kalman filter formulation, was flight tested and certified on
the A350-XWB aircraft [18]. Such a validation is usually considered the final ‘top level’ check in the aviation industria l
validation process. The recent H2020/Japan co-funded project ‘Validation of Integrated Safety-enhanced Intelligent flight
cONtrol’ (VISION) sought to validate FDI schemes via flight t ests on the Japan Aerospace Exploration Agency (JAXA)’s
Multipurpose Aviation Laboratory (MuPAL-α) aircraft [8], [21]. Sliding mode, H∞ and adaptive estimation schemes have
been developed within the VISION project, and some initial results were reported in [5], [9], [10]. In [5], an actuator FTC
scheme involving a state feedback sliding mode controller was flight validated under the assumption that all sensors were
assumed to be fault free.
It is well known that sliding mode observers (SMOs) have the capability to track plant measurements whilst simultaneously

reconstructing the internal unmeasurable signals including the system states [14]. This unique property distinguishes SMOs
from other types of observers, such as high gain observers [15] and H∞ fault detection filters [16]. Another important property
of SMOs is they can provide finite time convergence of the state estimation errors to zero. Once the sliding mode is attained,
the so-called ‘equivalent output error injection’ signal, required to maintain sliding [14], can be used to reconstruct the unknown
signals (in this case faults) in the FDD problem. In a sensor fault scenario, if they are well reconstructed by the SMO, a ‘virtual
sensor’ can be created by correcting the corrupted measurem ent using the fault estimate [13]. Using the virtual sensor as part
of the feedback loop (rather than the corrupted measurement) helps retain close to nominal fault free closed-loop performance
in the presence of faults, without reconfiguring the underlying baseline control law [11]. In recent years several SMO based
FTC schemes have been developed. In [23], [24], the perturbations and the faults were identified using a higher order sliding
mode (HOSM) differentiator and a dynamic sliding surface was developed to deal with unmatched perturbations. The work in
[25] describes a strategy based on a combination of a feedback linearisation and a quasi-continuous HOSM controller.
In this paper, a sensor FTC scheme based on an SMO is developed and flight tested on JAXA’s MuPAL-α aircraft. The

first order SMO used in this paper follows the general formulation of [22], [19]. However, the work in [22] mitigates the
effects of erroneous scheduling parameters through an adaptation scheme, whilst the work in [19] considers the simultaneous
optimization of the SMO gains and the H∞ controller gains. The flight tests focus on the lateral-directional dynamics, and
various yaw rate sensor fault scenarios are considered. A yaw rate sensor fault is critical since it leads to non-trim offsets
of the control surfaces and a non-optimised aerodynamic configuration. It also represents one of the scenarios needed to be
certified by the aviation industry [3].
The main contribution of this paper is it describes, as far as the authors are aware, the first flight validations of an SMO based

FTC scheme on a piloted aircraft in the presence of sensor faults. Compared with [5], the emphasis of this flight validation was
on the observer performance in the face of sensor faults. Furthermore from theoretical point of view, in this paper, the closed-
loop stability of the FTC scheme, including both a sliding mode observer component and a sliding mode control component,
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is rigorously investigated. In [5], no observer is employed (and hence there is no controller/observer stability analysis) but
instead the robustness of the sliding mode controllers are exploited in an actuator fault scenario.

II. VISION AND FAULT SCENARIOS
The H2020/Japan co-funded project VISION seeks to develop and validate in-flight FDD/FTC techniques for aircraft

guidance, navigation and control, with the key objective of increasing TRLs. The proposed architecture of the FTC scheme
developed and discussed in this paper is a simple one (see Fig. 1).
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Fig. 1. The scheme of sensor FTC using SMO

In Fig. 1, an SMO reconstructs the unknown sensor fault f , based only on the inputs up and outputs yp. The reconstructed
sensor faults f̂ are then used to compensate the corrupted sensor measurements before they are fed back to the controller such
that near nominal control performance can be retained in the face of the sensor faults, without the need of reconfiguring the
controller. The augmented closed loop system in Fig. 1 must be analysed taking into account the observer dynamics. This is
the main theoretical contribution of this paper.

III. LPV SLIDING MODE OBSERVER DESIGN
Consider an uncertain LPV system affected by sensor faults

ẋp(t) = Ap(ρ)xp(t) +Bp(ρ)up(t) +Mp(ρ)ξ(xp, t)

yp(t) = xp(t) +Hpf(t)
(1)

where, Ap(ρ) ∈ R
n×n, Bp(ρ) ∈ R

n×m, Mp(ρ) ∈ R
n×k and Hp ∈ R

n×q where q < n. Here Hp represents the sensor fault
distribution matrix and it is assumed to be rank q. Furthermore the columns of Hp are assumed to belong to the standard basis
for Rn. In (1) it is assumed that up(t) and yp(t) are measurable, and that yp(t) represents the measured state xp(t) (potentially
corrupted by the sensor faults represented by f(t)). The signal f(t) is assumed to be piecewise differentiable and unknown,
and subject to ‖f(t)‖ ≤ α. Finally, the signal ξ(xp, t) denotes lumped (possibly unmatched) system uncertainty which is
assumed to be bounded according to ‖ξ(·)‖ ≤ c1‖xp(t)‖ + c2(t) where c1 is a known positive fixed scalar and the function
c2(t) is unknown but is subject to ‖c2(t)‖ ≤ d where d is a known positive scalar. In this paper, it is assumed the scheduling
parameters ρ ∈ Ω ⊂ R

r are perfectly measurable and belong to a compact set Ω. Furthermore, all the system matrices Ap(ρ),
Bp(ρ) and Mp(ρ) in (1) are assumed to be affinely dependent on ρ.
Since by assumption Hp is composed of columns from the standard basis for Rn, by permutating the components of yp and

partitioning, it is easy to obtain the form
[

yp,1(t)
yp,2(t)

]

=

[

C1

C2

]

xp(t) +

[

0
Iq

]

f(t) (2)

where C1 ∈ R
(n−q)×n has full row rank and C2 ∈ R

q×n. In (2), yp,2(t) denotes the outputs which are potentially corrupted
by sensor faults whereas the subset yp,1(t) are fault free. The observer proposed in [19] will now be described to estimate the
faults f(t). As in [14], define a (stable) filter in the form

żf (t) = −Afzf(t) +Afyp,2(t) (3)
where zf (t) ∈ R

q and the matrix Af is symmetric positive definite (s.p.d). From (1) and (3) create an augmented system with
state vector

[
xT
p zTf

]T . Exploiting the fact that the rows of C1, are rows from In, define

Ta =

[

Ts 0
0 Iq

]

(4)

where the permutation matrix Ts ∈ R
n×n has the property that C1T

−1
s = [ 0 In−q ]. Applying this to the augmented system

with outputs y :=
[
yTp,1 zTf

]T yields a system

ẋa(t) = A(ρ)xa(t) +B(ρ)up(t) +Df(t) +M(ρ)ξ(·)

y(t) = Cxa
(5)

where xa ∈ R
n+q and, in particular, C = [0 In] and D = [0 Af ]

T . Notice that, (5) now constitutes a classical unknown input
formulation. Introducing (3) is a convenient way to pose the problem so that SMOs can be deployed [14]. The selection of a
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good choice of Af is important as it impacts on the performance of the system with respect to any unmatched uncertainties
[14]. The system in (5) will be used as the starting point for the design of an observer.
The sliding mode observer considered here has the structure

ż(t) = A(ρ)z(t) +B(ρ)up(t) +Gl(ρ)ey(t) +Gnν(t) (6)

where z ∈ R
q+n represents the state estimate of xa [19]. In (6) ey(t) = C(z(t) − xa(t)) is the output estimation error and

ν(t) represents the discontinuous output error injection vector used to induce the sliding motion. Here as in [19],

ν = −k(t)
ey

‖ey‖
if ey 6= 0 (7)

where the modulation function k(·) will be defined later. In (5), decompose the augmented system and disturbance matrices as

A(ρ) :=

[

A11(ρ) A12(ρ)
A21(ρ) A22(ρ)

]

M(ρ) :=

[

M1(ρ)
M2(ρ)

]

(8)

where A11(ρ) ∈ R
q×q , M2(ρ) ∈ R

n×k and note that A21(ρ) has the following structure as explained in [19]:

A21(ρ) =

[

A211(ρ)
A212

]

(9)

where A211(ρ) ∈ R
(n−q)×q and A212 ∈ R

q×q . Define the observer gains in (6) as

Gl(ρ) =

[

A11(ρ)L −A12(ρ) + k2L
−A22(ρ) +A21(ρ)L− k2I

]

, Gn =

[

−L
In

]

(10)

where k2 is a positive design scalar and the design freedom L ∈ R
q×n has the structure

L = [ L1 0 ] (11)

and L1 ∈ R
q×(n−q).

Assumption 3.1: The pair (A11(ρ), A211(ρ)) is assumed to be quadratically detectable, i.e. there exists a s.p.d matrix P1 and
a gain L1 such that

P1(A11(ρ)+L1A211(ρ))+(A11(ρ)+L1A211(ρ))
TP1<0 (12)

for all ρ ∈ Ω. It can be shown that (A11(ρ), A211(ρ)) is quadratically detectable if (Ap(ρ), C1) is quadratically detectable.
Define the state estimation error as e = z − xa = [eT1 eTy ]

T , where e1 ∈ R
q , then define another coordinate transformation

ẽ = TLe where
TL =

[

Iq L
0 In

]

(13)

and as a result ẽ = [ẽT1 eTy ]
T where ẽ1 = e1 +Ley. From Assumption 3.1, as argued in [19], for any positive k2, there exists

a positive scalar p2 > 0 such that P = diag(P1, p2In) satisfies

PÃe(ρ) + Ãe(ρ)
TP +Q0 < 0 ∀ρ ∈ Ω (14)

where Q0 > 0 is s.p.d and Ãe(ρ) = TL(A(ρ) +Gl(ρ)C)T−1
L . Choose η1(·), depending on the upper bound on the faults as

‖ξ‖ ≤ c1‖xp‖+ d ≤ η1(yp, d) (15)

Let a21(t) = ‖Ã21(ρ)‖, m2(t) = ‖M2(ρ)‖ and define the scalar function χ(t) to be the solution of

χ̇(t) = −q0χ(t) + ‖P
1

2 TLM(ρ)‖η1(yp, d), χ(0) = 0 (16)

where the scalar q0 = 1
2λmin(P

− 1

2Q0P
− 1

2 ) > 0 and λmin(·) denotes the minimum eigenvalue. Finally define

χ̃(t) := (χ(t) + χ0)/
√

λmin(P ) (17)

where χ0 is a positive design scalar. As argued in [19], χ̃(t) in (17) is an upper bound on the evaluation of the state estimation
error ‖ẽ(t)‖, i.e. there exists a t0 ≥ 0 such that for all t ≥ t0

χ̃(t) ≥ ‖ẽ(t)‖ ≥ ‖ẽ1(t)‖ (18)

Since χ̃(t) is known, define the modulation function in (7) as

k(t) = a21(t)χ̃(t) + ‖Af‖α+m2(t)η1(yp, d) + η (19)

where η is a positive scalar. From [19], a sliding motion on

So = {ẽ(t) ∈ R
n+q : Cẽ(t) = ey(t) = 0} (20)

can be enforced in finite time. Consider as a fault estimate

f̂ = Wνeq (21)
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where νeq is the equivalent output error injection signal [19] and the gain W =
[
0 A−1

f

]
where Af is the system matrix of

the filter in (3). It can be shown during sliding [19] that
˙̃e1 = Ã11(ρ)ẽ1 − M̃1(ρ)ξ

ef = −A−1
f A212ẽ1

(22)

where the fault estimation error ef = f̂−f , the system matrix Ã11(ρ) = A11(ρ)+L1A211(ρ) and M̃1(ρ) = M1(ρ)+LM2(ρ).
When there is no uncertainty ξ = 0 and ẽ1 → 0 asymptotically. Consequently ef → 0 as t → ∞. However in the presence of
uncertainty, the fault estimation error no longer tends to zero.

IV. CONTROLLER DESIGN AND CLOSED-LOOP ANALYSIS
To introduce tracking in the controller in Fig. 1, integrator states will be introduced associated with the controlled outputs

yc(t) = Ccxp(t) (23)

where Cc ∈ R
l×n. In the FTC scheme as shown in Fig. 1, the estimated sensor fault is used to correct the measured states

and this ‘corrected’ version of (23) is defined as

x̂p(t) = xp(t) +Hpf(t)−Hpf̂(t) = xp(t)−Hpef(t) (24)
Consequently the integral action states evolve according to

ẋr(t) = r(t) − Ccx̂p(t) = r(t) − Ccxp(t) + CcHpef (t) (25)
where r(t) is the (differentiable) command signal which satisfies the pre-filter equations

ṙ(t) = Γ(r(t) −Rc) (26)

In (26), Rc represents a fixed exogenous command reference vector and Γ ∈ R
l×l is a stable design matrix. Let xc(t) =

[xT
r (t) xT

p (t)]
T and consider the augmented state space system obtained from combining (1) and (25):

ẋc(t)=Ac(ρ)xc(t) +Bc(ρ)up(t) +Brr(t) +Mc(ρ)ξ(·) +Hcef(t) (27)
where Ac(ρ), Bc(ρ), Br, Mc(ρ) are of appropriate dimensions and the gain

Hc =
[
(CcHp)

T 0
]T (28)

The definition of these matrices can be found in [5]. Here as in [5], it is assumed that Bc(ρ) can be factorized as
Bc(ρ) = BvB2(ρ) (29)

where Bv ∈ R
(l+n)×l is a fixed matrix, and B2(ρ) ∈ R

l×m is a matrix with varying components where rank(B2(ρ)) = l for
all ρ ∈ Ω and rank(Bv) = l. Since rank(Bv) = l there exists a coordinate change xc 7→ Tcxc = x̃ where

Tc =

[

Il 0
0 Tn

]

(30)

and Tn ∈ R
n×n is a nonsingular matrix with the property that

B̃v = TcBv =

[

0
Il

]

(31)

In the new coordinate system, (27) can be written as
˙̃x(t)=Ãc(ρ)x̃(t) + B̃vṽ(t) + B̃rr(t) + M̃c(ρ)ξ(·) + H̃cef(t) (32)

where H̃c = Hc and the virtual control ṽ(t) ∈ R
l satisfies

ṽ(t) = B2(ρ)up(t) (33)
To analyse the closed-loop under FTC, define

x̂(t) = x̃(t) +

[

0
TnHp

]

︸ ︷︷ ︸

H̃p

ef (t) (34)

where Tn is defined in (30). Then from (32) and (34)
˙̂x(t)=Ãc(ρ)x̂(t) + B̃vṽ(t) + B̃rr(t) + M̃c(ρ)ξ(·)

+(H̃c − Ãc(ρ)H̃p)ef (t) + H̃pėf (35)
Since from (22)

ėf = −A−1
f A212

˙̃e1 = −A−1
f A212(Ã11(ρ)ẽ1 − M̃1(ρ)ξ) (36)
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it follows that equation (35) can be written as
˙̂x=Ãc(ρ)x̂ + B̃vṽ + B̃rr + M̂(ρ)ξ(·) + Ĥ(ρ)ẽ1 (37)

where
Ĥ(ρ)=(Ãc(ρ)H̃p−H̃c)A

−1
f A212−H̃pA

−1
f A212Ã11(ρ)

M̂(ρ)=M̃c(ρ) + H̃pA
−1
f A212(M1(ρ) + LM2(ρ))

(38)

Here a parameter-dependent switching function is defined as

ŝ(t) = S(ρ)x̂(t) (39)

where S(ρ) = [N(ρ) Il] and N(ρ) represents the design freedom. Clearly S(ρ)Bv = Il and it follows from (37) that
˙̂s(t) = S(ρ)(Ãc(ρ)x̂(t) + B̃rr(t) + M̂(ρ)ξ(·) + Ĥ(ρ)ẽ1(t))

+ṽ(t) + Ṡ(ρ)x̂(t) (40)

Choose the sliding mode control law as in [5]
ṽ(t) = ṽl(t) + ṽn(t) (41)

where
ṽl(t)=−S(ρ)(Ãc(ρ)x̂(t)+B̃rr(t))−Ṡ(ρ)x̂(t)+Φŝ(t) (42)

and Φ ∈ R
l×l is a Hurwitz matrix. The component ṽn(t) will be defined in the sequel. It follows from (40) and (42) that

˙̂s(t) = ṽn(t) +Φŝ(t) + S(ρ)(M̂ (ρ)ξ(·) + Ĥ(ρ)ẽ1(t)) (43)

Note that in (43) whilst ξ and ẽ1 are unknown, upper bounds on ‖ξ‖ and ‖ẽ1‖, used to construct the modulation function k(t)
in (19), are known and defined in (15) and (18). Let

ṽn(t) = −K(t, yp)
P2 ŝ(t)

‖P2 ŝ(t)‖
if ŝ(t) 6= 0 (44)

where the symmetric positive definite matrix P2 satisfies

P2Φ+ ΦTP2 = −Il (45)

A suitable modulation gain K(t, yp) is given by

K(t, yp) = m(t)η1(yp, d) + h(t)χ̃(t) + η2 (46)

where m(t) = ‖S(ρ)M̂(ρ)‖, h(t) = ‖S(ρ)Ĥ(ρ)‖ and η2 denotes a positive scalar. Note that since Ω is compact, ρ is bounded
and therefore both m(t) and h(t) are bounded since both M̂(ρ) and Ĥ(ρ) are affine with respect to ρ.
Proposition 4.1: The choice of the modulation gain in (46) ensures sliding takes palace on

Sc = {x̂ : S(ρ)x̂ = 0} (47)

Proof: Define a candidate Lyapunov equation according to V̂ = 1
2 ŝ

TP2ŝ. It follows from (43) and (44) that
˙̂
V = ŝTP2(ṽn +Φŝ+ S(ρ)M̂(ρ)ξ(·) + S(ρ)Ĥ(ρ)ẽ1)

≤ ‖P2ŝ‖(−K(t, x̂) +m(t)η1(yp, d) + h(t)χ̃(t))
(48)

since by construction χ̃(t) in (17) is an upper bound of ‖ẽ1‖. If K(t, yp) is chosen as in (46), ˙̂V ≤ −η2‖P2ŝ‖ and this ensures
sliding takes place in finite time and is maintained.
Recalling the full order dynamics in (37), define

Ãc(ρ) =

[

Ãc11(ρ) Ãc12(ρ)
Ac21(ρ) Ac22(ρ)

]

M̂(ρ) =

[

M̂1(ρ)

M̂2(ρ)

]

(49)

and
Ĥ(ρ) =

[

Ĥ1(ρ)

Ĥ2(ρ)

]

B̃r =

[

B̃r1

0

]

(50)

In (49), Ãc11(ρ) ∈ R
n×n and the other matrices are partitioned conformal with this. Also define x̂=[x̂T

1 x̂T
2 ]

T where x̂2 ∈ R
l.

Assumption 4.1: Assume there exists a s.p.d matrix P̃1 and a gain N(ρ) so that for all ρ ∈ Ω

P̃1(Ãc11(ρ)−Ãc12(ρ)N(ρ)
︸ ︷︷ ︸

Âs

11
(ρ)

)+(Ãc11(ρ)−Ãc12(ρ)N(ρ))T P̃1<0

Remark 4.1: The synthesis of N(ρ) is based on an LMI formulation involving the vertices of Ãc(ρ) [17]. Here if the vertices
of Ap(ρ) are written as {Ai

p} for i = 1, . . . , 2r and Bvp represents the bottom n rows of Bv, then provided each of the LTI
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systems (Ai
p, Bvp, Cc) for i = 1, . . . , 2r does not have any invariant zeros at the origin, the algorithm in [17] can be employed.

(The presence of invariant zeros at the origin causes pole/zero cancellation during the augmentation of the integral action
states.)
During sliding on Sc, from (39), x̂2 = −N(ρ)x̂1 and the reduced order motion is given by

˙̂x1 = Âs
11(ρ)x̂1 + Ĥ1(ρ)ẽ1 + M̂1(ρ)ξ + B̃r1r (51)

Define ẑ = [x̂T
1 ẽT1 ]

T , then it follows the overall dynamics during sliding are governed by (22) and (51) and can be written

˙̂z =

[

Âs
11(ρ) Ĥ1(ρ)
0 Ã11(ρ)

]

︸ ︷︷ ︸

As(ρ)

ẑ +

[

M̂1(ρ)
M̃1(ρ)

]

︸ ︷︷ ︸

Ms(ρ)

ξ +

[

B̃r1

0

]

r (52)

In the presence of uncertainty, since by assumption ξ is cone bounded with respect to xp, and hence to ẑ, a small gain approach
will be adopted to prove stability. By construction

xc = T−1
c x̃ =

[
Il 0
0 T−1

n

]

x̃ (53)

and then since xp represents the last n rows of xc as shown in (27), it follows

xp =
[
0 T−1

n

]
x̃ (54)

By definition
x̃ = x̂+ H̃pA

−1
f A212ẽ1 (55)

then during sliding, since x̂2 = −N(ρ)x̂1, it follows that

x̂ =

[
I

−N(ρ)

]

x̂1 (56)

Therefore from (54)-(56)
xp=

[
0 T−1

n

]
[ [

I
−N(ρ)

]

H̃pA
−1
f A212

]

︸ ︷︷ ︸

Cs(ρ)

[
x̂1

ẽ1

]

(57)

Since by assumption ‖ξ‖ < c1‖xp‖+ c2(t), the stability of (52) result follows from the use of the small gain theorem, if

G :

{
˙̂z = As(ρ)ẑ +Ms(ρ)ξ
xp = Cs(ρ)ẑ

(58)

has an L2 gain no more than 1/c1. Now the problem becomes easy to solve by directly applying the Bounded Real Lemma
to the LPV system in (58); and L and the vertices of N(ρ) can be calculated by solving a finite number of LMIs [20].

V. OBSERVER AND CONTROLLER DESIGN RESULTS
The theoretical developments in Sections II-IV were employed to create an SMO based sensor fault FTC scheme for JAXA’s

MuPAL-α aircraft (see Fig. 3). The MuPAL-α is based on the twin-propeller engine Dornier Do228-202 aircraft modified to
include a research FBW system and Direct Lift Control (DLC) flaps [8], [21]. An LPV model of MuPAL-α was created via
interpolation of LTI models verified from real flight data provided by JAXA. The scheduling parameters are chosen as

ρ = [ρ1 ρ2] :=
[
veas v2eas

]
(59)

where veas represents the equivalent airspeed [21]. Regulatory constraints mean usually the test flights take place at a similar
altitude and the aircraft set up in terms of mass and the position of the centre of gravity do not change significantly. Therefore,
the scheduling parameter is set only as veas. For design purposes, the conservative assumption was made that the scheduling
parameters ρ1 and ρ2 are independent of each other. This paper focuses on the lateral-directional dynamics.
After re-ordering the system outputs so that the sensor considered potentially prone to faults (i.e. the yaw rate sensor) appears

as the last component of the output vector, the system states are roll angle φ, sideslip angle β, roll rate and yaw rate. In this
paper, it is assumed that all system states are measured. In (1), the system inputs up are given by up = [δa δr]

T where δa and
δr represent the aileron and rudder surface deflections, respectively. Consequently, n = 4, q = 1. The disturbance distribution
matrix Mp(ρ) is assumed to be fixed and to take the form

Mp(ρ) = [02×2 I2]
T (60)

which models uncertainty/disturbances ξ(·) affecting the roll rate and yaw rate channels. Here the matrix is used as (indirect)
design freedom during the synthesis of L from (11).
Remark 5.1: For this testing campaign, pragmatically, ‘channels’ in th e system representation in (1) have been estab-

lished/chosen to capture the plant-model mismatch. In such a situation, parameterizing the uncertainty channels in terms of ρ
provides no great added value. Consequently, here, the fixed matrix M represents the ‘channels’, and the effect of changes in
ρ are incorporated into the uncertainty signal ξ.
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In terms of the observer design, the filter parameter Af = 0.01. The bandwidth of the filter is important and affects the
robustness of the fault estimate: for a detailed discussion see page 216 in [14]. The scalar k2 in (10) is chosen as k2 = 0.1,
and L from (11) is calculated using YALMIP with the SeDuMi LMI solver. For this particular design an upper-bound on the
L2 gain in (58), computed via the Bounded Real Lemma, is 1.2918. Here because the design freedom N(ρ) is chosen as fixed,
the representation in (58) is affine with respect to ρ. An LMI approach ([20], [5]) has been used to compute the upper-bound
on the L2 gain. This gain gives a robustness margin to the uncertainty structure in which c1 = 1/1.2918.
The observer modulation gain k(t) in (7) was chosen as 0.8. The small positive scalar selected for the sigmoidal approximation

[17] to the discontinuous injection term in the observer in (7) is 0.01. The modulation gain must be chosen large enough to
ensure a sliding motion can be maintained even in the presence of faults. This requires a-priori knowledge of the level of
faults the scheme will be able to handle and provide fault tolerance. An unnecessarily large value of k(t) will increase the
level of chattering and will amplify noise and will make the extraction of a smooth equivalent output error injection signal
more difficult to obtain. Typically these values would be tuned during simulations. The modulation gain k(t) comprises three
main elements: a term to bound the evolution of the unknown error e1(t) (particularly initially mismatches between the initial
conditions of the observer and their unknown true plant values), a bound on the lumped disturbances capturing the plant model
mismatches and any unmodelled external disturbance ξ impacting on the plant; and a term to bound the magnitude of the
unknown faults.
In this example the error term e1(t) is a scalar and has physical meaning, and so in this situation it is possible to make

a good initial guess for the initialization of the observer to ensure e1(0) is small. Thus the dominating terms are associated
with the evaluation of e1(t) resulting from the plant model mismatched captured by ξ and the size of the faults. To estimate
the effects of plant model mismatch, the observer was run (off-line) on flight data obtained from the experiments in [5] which
constitutes real sensor fault-free data. Results for different choices of k(t) are illustrated in Fig. 2. This suggests a choice of
k(t) = 1.2. The remaining design freedom is associated with the allowable magnitude of sensor faults to be accommodated.
Here a-priori, for safety reasons, it was determined that the magnitude of the sensor faults would be less that 5deg/s. This
was used as the basis for the choice of α = 0.1rad. The final value of k(t) was decided upon following extensive pre-flight
ground testing on the MuPAL-α aircraft configured in a Hardware-in-the-Loop (HIL) setup [8]. The results encapsulated in
Fig. 2 represent ‘open-loop’ tests since the reconstructio ns from the observer do not affect the control signals applied to the
aircraft. (‘old’ flight test data based on other flight experiments was used). When testing the complete FTC strategy shown
in Fig. 1 on the HIL set up, the closed-loop response was found to improve if a reduced value of k(t) was employed. This
interaction between the FDI scheme (estimating the sensor faults) and the feedback control loop is not unexpected and arises
from the lack of a true separation principle, because of the coupling introduced by the uncertainty. This coupling is a studied
phenomenon in the FDI/FTC literature [27]. Ultimately a value of k(t) = 0.8 was selected – which although not optimal with
respect to Fig. 2, only represents a 12.5% degradation in performance from the open-loop optimal value near k(t) = 1.2 but
yields better closed loop performance.
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Fig. 2. An example of a fine-tuning of the modulation gain

The controller design implemented here is the one described in detail in [5]. The controller in [5] was developed specifically
to provide actuator fault tolerance, but in this paper has been embedded with the scheme in Fig. 1. Extensive tuning of the
controller was undertaken in the HIL environment discussed in [5]. For details of the controller tuning on the HIL and the
trade-offs involved, see [5].

VI. FLIGHT TEST ON MUPAL-α
The FBW configuration of MuPAL-α allows new flight control strategies to be implemented (on the FBW flight control

computer) and then evaluated either on the ground (as part of a HIL configuration) or by actual piloted flight evaluation.
The sensor FTC scheme (as described in Sections II-IV) was written in C-code using a template provided by JAXA to

comply with the input-output interface of the FBW system. Once HIL testing is successfully completed, the control scheme
is ‘burned’ into the FBW computer. The sensor FTC scheme was implemented on the FBW system using an explicit Euler
solver based on a sample rate of 50Hz.
The results presented here were obtained from flight campaigns supervised by a crew of JAXA and Nikanihon Air Service

personnel, between 16-26 April 2018. The flight tests took place in Sagami Bay, south-west of Tokyo.
During the flight test campaign, the FTC sliding mode scheme developed in Sections II-IV was used to achieve lateral-

directional performance. Longitudinal control of altitude and speed was manually maintained by the evaluation pilot using
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Fig. 3. MuPAL-α aircraft

column and throttle lever inputs. In order to demonstrate nominal fault free performance can be retained in the presence of
sensor faults, a coordinated ‘S-turn’ manoeuvre, involvin g a roll angle command of approximately 20deg to −20deg followed
by a sideslip command of −2deg to 3deg, was conducted manually by the evaluation pilot. During the flight tests, faults were
set to occur 30 sec after the FBW system was engaged.

A. Sensor fault tolerant control flight tests
1) Fault free: The flight test results are shown in Fig. 4 in the presence of wind/gusts. A coordinated ‘S-turn’ manoeuvre

described previously was considered here. The trajectories of the aircraft states associated with the lateral-directional motion
and wind/gusts are shown in Fig. 4(a). It is clear from Fig. 4(a) that sideslip and roll angle tracking performance are good.
The aileron and rudder surface deflections are shown in Fig. 4(b). The observer performance is shown in Fig. 4(c) where ‖ey‖
is seen to be small which indicates good sliding mode performance, and that the observer output estimation error is small.
Fig. 4(c) (bottom left) also shows the fault reconstruction error is close to zero in the fault free condition, which indicates
good reconstruction performance.
2) Yaw rate sensor fault – slow drift: Here a set of results are shown when a slow drift fault occurs on the yaw rate sensor

from 30sec onwards with a drift rate of 0.1deg/s2 as shown in Fig. 5. For safety reasons, during flight tests, the maximum
allowable amplitude of the fault is set to be 5deg/s. The trajectories of the lateral-directional states and wind/gusts are shown
in Fig. 5(a) where the same coordinated ‘S-turn’ manoeuvres with ±20deg roll angle and ±2deg sideslip commands were
created by the evaluation pilot. The aileron and rudder surface deflections are shown in Fig. 5(b), which are similar to the fault
free case. Clearly, although a yaw rate sensor fault is present, the proposed sensor FTC scheme can still retain good roll and
sideslip tracking performance (similar in level to the fault free condition). In Fig. 5(c) (top left), the ‘true’ yaw rat e represents
the actual true yaw rate experienced under the fault tolerant control scheme and the ‘corrupted’ signal is the sum of true yaw
rate and the additive yaw rate fault. It is clear that the yaw rate sensor measurement is corrupted by a slow drift and that the
fault can be well reconstructed with the fault reconstruction error close to zero (Fig. 5(c) bottom left). Furthermore, Fig. 5(c)
(bottom right) shows that, during the flight tests, sliding is maintained as ‖ey‖ is close to zero.
3) Yaw rate sensor fault – fast drift: Fig. 6 shows the results associated with a fast runaway sensor fault. Similar to the slow

drift in the previous test, the fault is set to occur from 30sec onwards – except now at a faster rate of 0.4deg/s2. Again, for
safety reasons during the flight test, the maximum amplitude of the runaway is limited to 5deg/s. The same manual pilot input
coordinate ‘S-turn’ is considered here for consistency. Fi g. 6(a) shows the sensor fault FTC scheme managed to maintained
fault-free performance in the presence of wind/gust and sensor faults. Fig. 6(a) shows good controller tracking performance,
and the state responses are similar to the fault free case. The control surface deflections in Fig. 6(b) also show similar behaviour
to the fault free case. Fig. 6(c) (top right) shows the fault estimation performance and demonstrates the fault reconstruction
error is close to zero (bottom left) . Fig. 6(c) (bottom right) also shows that sliding motion ‖ey‖ is maintained is close to zero
despite the presence of faults and wind.
4) Yaw rate sensor fault – sine wave: Fig. 7 shows the flight evaluation results when an additive sine wave fault occurs

on the yaw rate sensor from 30sec onwards. The faulty sine wave signal has a frequency of 0.02Hz and the amplitude of
the fault is 2deg. The same, manual pilot coordinated ‘S-turn’ manoeuvre , is also considered here. The trajectories of the
lateral-directional states of the MuPAL-α and associated wind/gusts are shown in Fig. 7(a) and demonstrate that fault free
tracking performance of roll angle and sideslip angle can be maintained despite the yaw rate sensor corruptions. The aileron
and rudder surface deflections are shown in Fig. 7(b) and indicate similar behaviour to the fault free case. Fig. 7(c) (top left)
shows that the additive sine wave fault appears in the yaw rate sensor measurement from 30sec onwards. Nevertheless, the
fault can be well reconstructed (Fig. 7(c) top right) and both the sliding surface and the fault reconstruction error are close to
zero (Fig. 7(c) bottom left and right).
5) Pilot feedback: After debriefing, the evaluation pilot indicated that he did not perceive any noticeable difference in

performance during the flight tests, regardless of whether the tests were fault free or included fault conditions. Note that the
exact time when sensor fault occurred was not disclosed to the pilot to avoid the pilot anticipating the fault and affecting the
judgement of the pilot.

VII. CONCLUSION
This paper has developed a new LPV sliding mode sensor FTC scheme which aims to maintain near nominal lateral-

directional control performance in the face of yaw rate sensor faults. This is achieved based on only knowledge from measured
system inputs and outputs. The proposed scheme has been implemented on the Japan Aerospace Exploration Agency’s Multi-
Purpose Aviation Laboratory (MuPAL-α) research aircraft and validated in a series of flight tests. The illustrated flight test
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results show that, during the steady turn manoeuvre induced by the evaluation pilot, various yaw rate sensor faults are accurately
reconstructed and roll and sideslip tracking performance is maintained despite the faults.
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Fig. 4. Fault-free case



11

0 50 100 150
−3

−2

−1

0

1

2

3

4

Time (sec)

β 
(d

eg
)

 

 

0 50 100 150
−20

−10

0

10

20

30

Time (sec)

φ 
(d

eg
)

 

 

state φ
ref

actual β
ref

0 50 100 150
−3

−2

−1

0

1

2

3

4

Time (sec)

gu
st

 (m
/s

)

0 50 100 150
−30

−20

−10

0

10

20

30

Time(sec)

Tr
ac

ki
ng

 e
rro

rs
 in

 β 
an

d 
φ 

(d
eg

)

 

 
tracking error in β
tracking error in φ
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Fig. 5. Slow drift fault
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Fig. 7. Sine wave fault




