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SUMMARY

In this paper, a linear parameter varying (LPV) sliding mode sensor fault detection and isolation (FDI)
scheme is proposed wherein knowledge of the measurement redundancy is utilised to achieve FDI in
multiple channels simultaneously. Such a situation is common in some state-of-the-art aircraft fault
diagnosis systems where information is generally/mainly measured based on triplex redundancy. The
scheme proposed in this paper is based on an LPV sliding mode observer and exploits the so-called
equivalent output error injection signal to create estimates of the measurement faults. In the case of sensor
measurement redundancy, and where there exists a fault free (but unknown) sensor amongst the set of
measurements, the fault reconstruction performance of the observer can be improved by isolating and using
the output error injection signal associated with the fault free redundant sensor. Simulation results using the
RECONFIGURE benchmark model demonstrate the effectiveness of the scheme.
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1. MOTIVATION

In recent years, LPV sliding mode observers have been developed to detect and isolate actuator or

sensor faults/failures over a large range of plant operation conditions [1, 2]. These observers contain

nonlinear injection terms driven by the output estimation errors and are quite different from the

Luenberger LPV observers which exist in the literature (e.g. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]).

Sliding mode observers typically create a residual signal which is robust against uncertainties so

that faults/failures can be reconstructed rather than just being detected. Furthermore the system

states can be robustly estimated despite the existence of faults if they can be expressed as matched

uncertainties with respect to the measurements. Usually, the thresholds used to declare faults are

chosen adaptively to satisfy the requirements of early detection, low missed detection rates and

false alarm rates, to further enhance the detection performance (e.g. in [14]). These advantages

have been demonstrated during the EU-FP7 ADDSAFE project [15]. However, one of the lessons

learnt from the ADDSAFE project relating to sensor FDI, is that because of the uncertainty, the

isolation logic required to determine the source of the faults from the three available sensors is

challenging and computationally intensive and contributes to more of the execution time than the
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underlying observer design itself. This results in the schemes being considered as ‘expensive’ in

terms of computation time in the flight control computer [16].

In this paper, an LPV sliding mode observer based scheme is developed based on directly

exploiting sensor redundancy in the context of direct duplication making the scheme much simpler

and with lower computation complexity as compared to [15]. In ADDSAFE a sensor benchmark

problem was developed based on a triplex redundancy configuration and voting logic (as shown in

Fig. 1). Such measurement devices are commonly used in state-of-the-art fault diagnosis systems.

In this paper the observer scheme allows multiple simultaneous sensor measurement faults within

the triplex system to be detected and isolated. Compared with [15], the scheme proposed in this

paper does not require significant extra logic blocks to isolate the location of the faults because a

single observer is driven by all three (redundant and potentially faulty) sensor signals rather than

a single voted signal. Furthermore, the scheme proposed here has the capability of reconstructing

faults in multiple channels simultaneously, which cannot be done using the scheme in [15]. Despite

the fact that the observer proposed in this paper has a higher state-space order than the one in [15]

due to the redundant sensor measurements that are used to drive the observer, the final scheme has a

significantly lower computational load in terms of industrial implementation and therefore a faster

execution time. This is because extensive post-processing of the reconstruction signals in [15] is no

longer necessary. In contrast to [17], it is assumed the sensor providing the measurement for the

LPV scheduling parameters are healthy and provide accurate values [15]. (Indeed this assumption

is true in much of the LPV literature).

Figure 1. Airbus triplex redundancy configuration and the consolidation logic [18]

It is well known in the fault detection literature that if faults and uncertainties share the same

channel, traditional observer designs (without using sensor redundancy) cannot distinguish between

faults and uncertainties, and therefore ‘clean’ fault reconstruction signals are difficult to obtain.

In this study, we propose the equivalent error injection signal associated with fault free sensors

is utilised to reconstruct the uncertainty signal located in the fault free channel. The uncertainty

reconstruction signal is then employed to ‘cancel’ uncertainties appearing in the faulty channels

so that ‘clean’ fault reconstruction signals can be obtained. The problem set-up in this paper is

non-standard because the measured outputs are not independent from a system theory perspective.
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This requires some further initial theoretical development to rigorously understand this ‘unusual’

configuration, since at first glance, the theory in [1, 2] and hence [15] is not directly applicable.

This paper also attempts to bridge the gap between existing fault detection schemes and the

aerospace industry demands for sensor FDI. In current Airbus industrial practice, triplex redundant

air data sensor measurements are available and the fault detection logic (consolidation process)

requires at least two data channels to be fault-free. In the case wherein two or more than two sensors

fail simultaneously (and identically), the consolidation logic may become unreliable [19, 20, 21].

Instead of using the Airbus consolidation logic (in the work presented in [15], the sliding mode

observer is driven by one consolidated sensor output), the consolidation logic can be replaced by

the proposed scheme.

In this paper, a case study based on Airbus’s RECONFIGURE benchmark is used to demonstrate

the efficacy of the proposed scheme. In this study, two of the three angle of attack sensors are

assumed to be simultaneously corrupted by various sensor faults. The simulation results show that

not only can two faults be straightforwardly detected and isolated, but also the fault reconstruction

performance can be improved for a large set of flight conditions. The contribution claimed here is

not in terms of the development of the sliding mode observer per se, but its application within a

novel problem formulation.

The paper is organised as follows: in Section 2 the new problem formulation is proposed for a

generic LPV representation with redundant (identical) measurements; whilst Section 3 discusses the

isolation logic associated with the proposed scheme. In Section 4, the decision making logic, used

to improve the fault reconstruction performance in the presence of a fault free redundant sensor, is

introduced. A case study based on the RECONFIGURE benchmark model is described in Section

5. Finally, Section 6 makes some concluding remarks and offers directions for future work.

2. LPV SLIDING MODE OBSERVER

Consider an LPV model of the plant represented by

ẋp(t) = Ap(ρ)xp(t) +Bp(ρ)u(t) +Mp(ρ)ζ(t)

yp(t) = Cpxp(t) +Npf(t)
(1)

where, Ap(ρ) ∈ R
n×n, Bp(ρ) ∈ R

n×m, Cp ∈ R
p×n and Np ∈ R

p×q , where q < p and Np represents

the sensor fault distribution matrix. The time varying matrix Mp(ρ) ∈ R
n×d represents the

uncertainty distribution matrix. The vector ρ ∈ Θ ⊂ R
h denotes the set of nominal scheduling

parameters belonging to a polytope Θ. In (1) it is assumed that yp(t) and u(t) are measurable but

xp(t) is unknown. The signal f(t) represents faults, which are unknown, and are to be estimated.

The signal ζ(t) represents the uncertainty which is assumed to be bounded by ‖ζ(t)‖ ≤ β. The

scheduling parameter ρ is assumed to be measured accurately (in contrast to [17]).

In this paper, all parameter varying matrices are assumed to depend affinely on ρ, in particular

Ap(ρ) = Ap,0 + ρ1Ap,1 + . . .+ ρhAp,h (2)

where, the scalar ρi represents the ith component of ρ.
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Assumption 1

In the system in (1):

• the columns of Np are taken from the standard basis for Rp;

• rank(Cp) < p, i.e. there exits redundancy within the measurements, and furthermore the

matrix Cp has several identical rows corresponding to repeated identical sensors measuring

the same quantity of interest.

Remark 1

As a consequence of Assumption 1, this paper is quite distinct from [1, 2] and [15] (and indeed

all of the previous work of the authors) and requires some (preliminary) careful development to

account for the rank deficiency in Cp. In the authors’ earlier work, for example in [1, 2] and

[15], several different observers were designed and run in parallel to account for the duplication

of measurements. In this way the output distribution matrices in [1, 2] are of full (row) rank. The

approach proposed here is quite different and the implicit rank deficiency is handled differently.

2.1. Observer structure with the rank deficiency in Cp

Because of the rank deficiency associated with Cp this subsection develops a bespoke framework

because sliding cannot be sustained on the surface associated with the output estimation error being

maintained at zero.

Exploiting the structure of Np, and by permutating the system outputs, it is easy to obtain the

output representation [
yp,1(t)

yp,2(t)

]
=

[
Cp,1

Cp,2

]
xp(t) +

[
0

Iq

]
f(t) (3)

where Cp,1 ∈ R
(p−q)×n and Cp,2 ∈ R

q×n, and yp,2(t) denotes the measurements potentially

corrupted by sensor faults.

Assumption 2

It will be assumed that yp,2 comprises multiple measurements of the same quantities by distinct

identical sensors.

Remark 2

From Assumption 2, Cp,2 is rank 1 and formed from q identical rows. This will be exploited in all

the analysis which follows. Such a situation occurs in many systems (such as aircraft) where critical

information is measured by triplex redundant sensor systems [22], which here would correspond to

q = 3. The ideas of [1, 2] and [15] cannot be directly applied to the formulation in (1)–(3). This

paper addresses and exploits this rank deficiency property in a bespoke way. A specific formulation

is proposed to handle this situation, and this represents the main contribution of the paper.

Suppose rank(Cp,1) = r ≤ p− q. As a consequence the matrix Cp,1 can be written as Cp,1 = QR

where Q ∈ R
(p−q)×(p−q) is a nonsingular square matrix and R ∈ R

(p−q)×n has following structure

R =

[
0

R1

]
(4)
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where R1 ∈ R
r×n. Let ỹp,1 = Q−1yp,1, then ỹp,1 = Rxp. Define a new state component zf(t) ∈ R

q

according to

żf (t) = −Afzf (t) +Afyp,2(t) (5)

where Af = afIq and af is a positive design scalar. From (1), (3) and (5), an augmented system can

be created of the form[
ẋp(t)

żf (t)

]
=

[
Ap(ρ) 0

AfCp,2 −Af

][
xp(t)

zf(t)

]
+

[
Bp(ρ)

0

]
u(t) +

[
0

Af

]
f(t) +

[
Mp(ρ)

0

]
ζ(t)

[
ỹp,1(t)

zf (t)

]
=

[
R 0

0 Iq

][
xp(t)

zf (t)

] (6)

Define a coordinate transformation matrix for (6) by

Ta = Diag{Ts, Iq} (7)

where Ts ∈ R
n×n is any nonsingular matrix such that R1T

−1
s =

[
0 Ir

]
. Let AfCp,2T

−1
s =[

A31 A32

]
. Because Af = afIq where af is a scalar, the matrix sub-block A31 is formed from

repeated rows; i.e. it has the from 1q ⊗A311 where 1q ∈ R
q is a vector of ones, and A311 is a row

vector with n− r elements. Then applying the coordinate transformation xp �→ x where x = Taxp

to (6), yields

⎡
⎢⎣ẋ1(t)

ẋ2(t)

żf (t)

⎤
⎥⎦

︸ ︷︷ ︸
ẋa(t)

=

⎡
⎢⎣A11(ρ) A12(ρ) 0

A21(ρ) A22(ρ) 0

A31 A32 −Af

⎤
⎥⎦

︸ ︷︷ ︸
A(ρ)

⎡
⎢⎣x1(t)

x2(t)

zf (t)

⎤
⎥⎦

︸ ︷︷ ︸
xa(t)

+

[
TsBp(ρ)

0

]
︸ ︷︷ ︸

B(ρ)

u(t)+

[
0

Af

]
︸ ︷︷ ︸

D

f(t)+

[
TsMp(ρ)

0

]
︸ ︷︷ ︸

M(ρ)

ζ(t)

ya(t) = Cxa(t)

(8)

where x1 ∈ R
n−r, x2 ∈ R

r and

C =

[
0 Ir 0

0 0 Iq

]
(9)

Remark 3

Note the form in (8) is bespoke to this paper and arises from the very specific problem formulation

considered here. In particular a very specific manipulation of the ordering of the ordering of the

measurements has been made to create ya from yp.

Remark 4

The system in (8)–(9) is now in the form

ẋa(t) = A(ρ)xa(t) +B(ρ)u(t) +Df(t) +M(ρ)ζ(t)

ya(t) = Cxa(t)
(10)

which has a more conventional unknown input observer (UIO) formulation (i.e. C is full row rank

and CD has full column rank). This has been achieved by the specific creation of ya ∈ R
r+q from
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the measured output y ∈ R
p. The sliding mode observer for (10) is therefore essentially similar to

the one from [1, 2]. Some details are repeated here because specific assumptions need to be exploited

and some subtle differences are present.

Assumption 3

In this paper, it is assumed that (A11(ρ), A21(ρ)) defined in (8) is detectable.

Remark 5

A sufficient condition to guarantee the observability/detectability for (A11(ρ), A21(ρ)) can be found

in [23].

The proposed sliding mode observer has the structure

⎡
⎢⎣
˙̂x1(t)
˙̂x2(t)
˙̂zf(t)

⎤
⎥⎦

︸ ︷︷ ︸
ż(t)

=

⎡
⎢⎣A11(ρ) A12(ρ) 0

A21(ρ) A22(ρ) 0

A31 A32 −Af

⎤
⎥⎦

︸ ︷︷ ︸
A(ρ)

⎡
⎢⎣ x̂1(t)

x̂2(t)

ẑf (t)

⎤
⎥⎦

︸ ︷︷ ︸
z(t)

+

[
TsBp(ρ)

0

]
︸ ︷︷ ︸

B(ρ)

u(t)+Gl(ρ)ey(t)+Gnν(t)

ŷ = Cz

(11)

where the output estimation error ey(t) = C(xa(t)− z(t)) and the output error injection is given by

ν =

⎧⎨
⎩

k(t)
ey
‖ey‖ if ey 	= 0

0 otherwise

(12)

where k(t) is a positive scalar. In (11), ρ(t) ∈ Θ̂ ⊂ R
h and denotes the scheduling parameters of the

SMO, where Θ̂ is a compact set. As in [2], the matrix Gn ∈ R
(n+q)×(q+r) in (11) is given by

Gn =

[
−L

Ir+q

]
(13)

where the design matrix L ∈ R
(n−r)×(p+r) has the structure

L =
[
L1 0

]
(14)

and the matrix L1 ∈ R
(n−r)×r. Note the dimensions of Gl(ρ) and Gn are bespoke to this paper and

are quite different to the generic case in [2], [15]. Here because of the redundancy and hence the

rank deficiency in Cp, the sliding motion is no longer order n.

In the sequel partition M(ρ) as

M(ρ) =

[
M1(ρ)

M2(ρ)

]
(15)

where M1(ρ) ∈ R
(n−r)×d and

M2(ρ) =

[
M21(ρ)

0

]
∈ R

(r+q)×d (16)
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where M21(ρ) ∈ R
r×d. This specific structure of uncertainty will be exploited later in the paper.

Define e = xa − z and let e = col(e1, e2, ezf ) where e1 ∈ R
n−r, e2 ∈ R

r and ezf ∈ R
q . Then

subtracting (8) from (11) yields

⎡
⎢⎣ ė1

ė2

ėzf

⎤
⎥⎦ =

⎡
⎢⎣ A11(ρ) A12(ρ) 0

A21(ρ) A22(ρ) 0

A31 A32 −Af

⎤
⎥⎦
⎡
⎢⎣ e1

e2

ezf

⎤
⎥⎦+

[
0

D2

]
f −

[
Gl1(ρ)

Gl2(ρ)

]
ey −

[
−L

Ir+q

]
ν +

[
M1(ρ)

M2(ρ)

]
ζ

(17)

where the gain Gl(ρ) has been appropriately partitioned, and the matrix D2 ∈ R
(r+q)×q is given by

D2 =

[
0

Af

]
(18)

Define a coordinate transformation e �→ TLe = ẽ, given by

TL =

[
In−r L

0 Ir+q

]
(19)

Applying the above transformation to (17) and using the fact thatLD2 = 0 (because of the structures

of L from (14) and D2 from (18)) generates a new error coordinate system

⎡
⎢⎣

˙̃e1
˙̃e2
˙̃ezf

⎤
⎥⎦

︸ ︷︷ ︸
˙̃e

=

⎡
⎢⎣ Ã11(ρ) Ã12(ρ) 0

A21(ρ) Ã22(ρ) 0

A31 Ã32 −Af

⎤
⎥⎦
⎡
⎢⎣ ẽ1

ẽ2

ẽzf

⎤
⎥⎦

︸ ︷︷ ︸
ẽ

+

[
0

D2

]
f −

[
G̃l1(ρ)

Gl2(ρ)

]
ey −

[
0

Ir+q

]
ν +

[
M̃1(ρ)

M2(ρ)

]
︸ ︷︷ ︸

M̃(ρ)

ζ

(20)

where ẽ1 = e1 + L1e2 and G̃l1(ρ) = Gl1(ρ) + LGl2(ρ). As a result of the change of coordinates in

(20)

Ã11(ρ) = A11(ρ) + L1A21(ρ)

Ã22(ρ) = A22(ρ)−A21(ρ)L1

Ã32 = A32 −A31L1

M̃1(ρ) = M1(ρ) + L1M21(ρ)

(21)

Exploiting Assumption 3, the matrix design freedom L is selected to ensure Ã11(ρ) is quadratically

stable, i.e. there exists a symmetric positive definite matrix P1 such that

P1Ã11(ρ) + Ã11(ρ)
TP1 < 0 (22)

Note that despite this change of coordinates the matrix A31 remains unaffected (and comprises q

identical rows whose elements are the row vector A311).
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Define

Ã21(ρ) =

[
A21(ρ)

A31

]
(23)

where A31 ∈ R
q×(n−r) and does not depend on the scheduling parameter. This follows because the

lower left sub-block of A(ρ) in (11) is independent of the scheduling parameter. This property is

preserved despite the sequence of transformations used to establish (20). This structure is exploited

in the sequel.

In the error system coordinates in (20) define

[
G̃l1(ρ)

Gl2(ρ)

]
=

⎡
⎢⎣ Ã12(ρ) 0

Ã22(ρ) + k2Ir 0

Ã32 −Af + k2Iq

⎤
⎥⎦ (24)

where k2 is a positive design scalar. The following result pertains to the existence of a sliding motion

and establishes conditions on the modulation gain k(t) in (12).

Define a sliding surface in the state estimation error space as

S = {ẽ ∈ R
n+q : Cẽ = 0} (25)

where C is defined in (9).

Theorem 1

Provided the modulation gain k is suitably larger than the fault, a sliding motion on S can be

enforced in finite time.

Proof

Substituting (24) into (20) yields

˙̃e = Ãe(ρ)ẽ+

[
0

D2

]
f + M̃(ρ)ζ −

[
0

Ir+q

]
ν (26)

where

Ãe(ρ) =

[
Ã11(ρ) 0

Ã21(ρ) −k2Ir+q

]
and M̃(ρ) =

[
M̃1(ρ)

M2(ρ)

]
(27)

Let P1 ∈ R
(n−r)×(n−r) be a symmetric strictly positive definite matrix such that (22) holds. Then

for a sufficiently large positive gain k2, the symmetric positive definite matrix P = diag(P1, Ir+q)

has the property that

PÃe(ρ) + Ãe(ρ)
TP < 0 (28)

For details see for example [24]. Note that (22) and (28) can be evaluated and tested at all vertices

of the polytope. Exploiting the fact that the signals f and ζ are bounded, and by construction

ẽTP

[
0

Ir+q

]
ν = k(t)‖ey‖ (29)
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it follows using the Lyapunov function V (ẽ) = ẽTP ẽT that if k > ‖f‖, V̇ ≤ PÃe(ρ) + Ãe(ρ)
TP +

2ẽTM̃(ρ)ζ. Since ‖ζ‖ is bounded, it follows that ẽ(t) in (26) is ultimately bounded and so ẽ1(t) is

also ultimately bounded. Suppose for t > t0, ‖ẽ(t)‖ < χ and define

a21 = max
ρ∈Θ

‖Ã21(ρ)‖, m2 = max
ρ∈Θ

‖M2(ρ)‖ (30)

Then choosing

k = a21χ+ k2‖ey‖+ ‖D2‖‖f‖+m2β + η (31)

where β is the bound on the uncertainty ζ(t) and η is a positive scalar, it follows that

eTy ėy = eTy (Ã21(ρ)ẽ1 − k2ey +D2f +M2(ρ)ζ − ν)

≤ ‖ey‖(a21χ+ k2‖ey‖+ ‖D2‖‖f‖+m2β − k)

≤ −η‖ey‖
(32)

This ensures sliding takes place on S in finite time and can be maintained on S in the face of faults

[25].

Remark 6

Note that Theorem 1 demonstrates that the detectability of (A11(ρ), A21(ρ)) implies detectability of

(A(ρ), C) as a consequence of (28).

2.2. Fault reconstruction

During sliding on S, ˙̃e2(t) = ẽ2(t) = 0 and ˙̃ezf(t) = ẽzf(t) = 0. Let

νeq =

[
νeq,1

νeq,2

]
(33)

where νeq is the equivalent output error injection signal necessary to maintain sliding and νeq,1 ∈ R
r

and νeq,2 ∈ R
q.

During sliding, (20) can be rewritten as

˙̃e1 = Ã11(ρ)ẽ1 + M̃1(ρ)ζ (34)

0 = A21(ρ)ẽ1 − νeq,1 +M21(ρ)ζ (35)

0 = A31ẽ1 +Aff − νeq,2 (36)

Equation (34) governs the dynamics of the sliding motion. The absence of uncertainty in (36)

follows from the structure of M2(ρ) in (16). In order to reduce the effect of the unmatched

uncertainty ζ on ẽ1, whilst ensuring stability of the reduced order sliding motion, L1 is selected

to minimise the L2 norm γ associated with the LPV system H(ρ) : ζ �→ ξ given by

H(ρ) :

{
˙̃e1 = Ã11(ρ)ẽ1 + M̃1(ρ)ζ

ξ = A31ẽ1
(37)
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Using the vertex property and the Bounded Real Lemma, L1 can be calculated by solving a finite

number of linear matrix inequalities (see for example [26, 27, 3]), specifically:

Theorem 2

An upper bound on the L2 gain γ for the LPV system H(ρ) can be computed so that

‖ξ‖L2 ≤ γ‖ζ‖L2 (38)

if there exists a s.p.d matrix P0 and design freedom L1 such that

⎡
⎢⎣ P0Ã11(ρ) + Ã11(ρ)

TP0 P0M̃1(ρ) AT
31

∗ −γI 0

∗ ∗ −γI

⎤
⎥⎦ < 0 (39)

Proof

From the Bounded Real Lemma, (38) is guaranteed if (39) holds. Using the vertex property

discussed in [26], the representation in (39) can be converted into polytopic form and the synthesis

of L and the analysis of (39) is undertaken only at the vertices of the polytope. Writing Y = P0L it

follows (39) is affine with respect to the decision variables P0 and Y .

Corrolary 1. In the absence of uncertainty i.e. when ξ = 0 then ẽ1 → 0 as t → ∞ and

f̂ = A−1
f νeq,2 (40)

is an asymptotic estimate of the fault.

Proof

In the absence of uncertainty, (34) reduces to ˙̃e1 = Ã11(ρ)ẽ1 and ẽ1 → 0 as t → ∞ as claimed. Since

ẽ1 → 0 as t → ∞, it follows from (36) that νeq,2 → Aff as t → ∞.

In the presence of uncertainty, if the fault reconstruction f̂ is chosen as in (40), however it is clear

from (36) that the fault reconstruction signals f̂ will be affected by the unmatched uncertainty since

ẽ1 is driven by the uncertainty ζ.

3. ISOLATION LOGIC

In this section, fault isolation logic is discussed in the presence of uncertainty according to two fault

scenarios.

3.1. All redundant sensors are faulty

In this situation, the ith fault reconstruction signal f̂i for i = 1, . . . , q, calculated using (40), reflects

information about both the faults and the unmatched uncertainty in the ith channel. The signal f̂i

can still be used directly for FDI purposes provided the unmatched uncertainty is small enough

compared with the fault in the ith channel (This is effectively the problem considered in the earlier

work [2]).
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3.2. One redundant sensor is fault free

Without loss of generality, assume the qth redundant sensor is fault-free and the remaining q − 1

redundant sensors are assumed to be faulty.

As defined in (5), the diagonal elements in Af are denoted by af and let the equivalent output error

injection associated with the ith channel be νeq2,i. Then using (40), the ith fault reconstruction signal

is given by

f̂i = a−1
f νeq2,i ∀i = 1, . . . , q (41)

The equivalent error injection signals associated with the faulty channels are given by

νeq2,i = A311ẽ1 + affi ∀i = 1, . . . , q − 1 (42)

where A311 represents one of the repeated row vectors in A31 and fi denotes the actual fault

occurring in the ith channel. Substituting (42) into (41) yields

f̂i = a−1
f A311ẽ1 + fi ∀i = 1, . . . , q − 1 (43)

Obviously, the fault reconstruction performance is degraded due to the term a−1
f A311ẽ1. Now

considering that the qth redundant sensor is fault free, i.e. fq = 0, it follows from (36) that

veq2,q = A311ẽ1 (44)

Substituting (44) into (40) yields f̂q = a−1
f A311ẽ1 and reconstructs the uncertainty in (43). Using

(43), a ‘clean’ fault reconstruction signal f̃i is given by

f̃i = f̂i − f̂q = fi for all i = 1, . . . , q − 1 (45)

Remark 7

It is clear from (45) that the unmatched uncertainty term a−1
f A311ẽ1 can be cancelled in all faulty

channels if fault free sensor redundancy is available. Then the ‘clean’ fault reconstruction signals f̃i
will be used for FDI purposes. It is therefore crucial to be able to identify fault free injection signals.

This will be discussed in the next section.

4. FAULT RECONSTRUCTION DECISION MAKING LOGIC

This section discusses the decision making logic used to create the claimed improved fault

reconstruction performance in the presence of a fault free redundant sensor.

Without loss of generality, assume the qth redundant sensor is fault free, in which case it can

be assumed that the magnitude of f̂q is smaller than f̂i, i = 1, . . . , q − 1. Then ‘clean’ fault

reconstruction signals f̃i, i = 1, . . . , q − 1 are calculated using (45).

Further, partition yp,2 as

yp,2 =
[
yp2,1, . . . , yp2,q

]T
(46)
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and let

ỹp,2 =

⎡
⎢⎢⎢⎢⎣

ỹp2,1
...

ỹp2,q−1

ỹp2,q

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

yp2,1 − f̃i
...

yp2,q−1 − f̃q−1

yp2,q

⎤
⎥⎥⎥⎥⎦ (47)

where yp2,q represents the qth redundant sensor output which is fault free. If

ỹp2,1 ≈ ỹp2,2 ≈ . . . ≈ ỹp2,q (48)

then it is confirmed that a) the fault free measurement has been correctly identified b) that the

reconstruction signals f̃i for i = 1, . . . , q − 1 denotes an improved fault estimation compared with

f̂i for i = 1, . . . , q − 1.

5. RECONFIGURE BENCHMARK CASE STUDY

The RECONFIGURE benchmark is a nonlinear highly representative model of a generic Airbus

civil commercial aircraft [16, 28]. The benchmark contains a baseline gain-scheduled controller,

detailed actuator and sensor models, as well as angle of attack and speed protection components

and measurement filters. This aircraft model, which has been developed within the EU funded

RECONFIGURE project, is used as the basis for all the scenarios and for testing different fault

detection and fault tolerant control strategies. Simplified LPV models are also available for the

design of FDI and fault tolerant control schemes [16, 28].

An LPV model of the benchmark has been established using polynomial interpolation of multiple

longitudinal linear time invariant models linearized under cruise conditions. The chosen scheduling

parameters are

ρ =
[
w(tons) cg(%) Vc(kt) Ma

]
(49)

which represent the aircraft weight, the centre of gravity position, calibrated airspeed and Mach

number. The scheduling parameters have been normalized in the interval
[
0 1

]
. All parameter-

varying matrices are assumed to depend affinely on ρ, in particular A(ρ) = A0 +
∑4

i=1 ρiAi. In this

paper, due to the existence of aggressive pitch stick excitations, significant plant-model mismatch

exists. The plant-model mismatch will be dealt with by ensuring the occurrence of a sliding mode

[29] and fully utilising the sensor redundancy. This is another advantage of the proposed scheme.

The state variables are

xp =
[
q p Vg α θ Zg

]T
(50)

representing pitch rate, roll rate, ground speed, angle of attack, pitch and altitude respectively.

Table I. Flight points on the edge of the flight envelope

Flight Points Gross weight (t) CG(%) VCAS (kt) Zg(ft) S/F conf Landing gear Phase
A MFW Max forward CG VLS-5 Ceiling 0 Up 2
B MFW Medium CG VFE 1000 4 Down 2
C (MTOW+MLW)/2 Max aft CG VLS-5 Ceiling 0 Up 2
D MTOW Max aft CG VFE 1000 4 Down 2
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Suppose the system outputs are only partially measurable. Crucially, the variable Vg is also treated

as ‘unreliable’ due to the potential loss of calibrated airspeed Vc. For the purpose of achieving the

‘output canonical form’, the output variables are reordered as

yp =
[
q θ Zg α1 α2 α3

]T
(51)

where α1, α2 and α3 represent angle of attack measured by three individual air data sensors (before

the consolidation logic in the air data inertial reference system ADIRS) each of which are assumed

to be potentially corrupted by sensor faults. The system input vector is up =
[
δe δstab

]T
where

δe denotes an aggregation of the control deflections of the elevators (which are assumed to move in

tandem) and δstab represents the stabilizer deflection.

The proposed scheme will be evaluated at four edges of the flight envelope, which are listed in

Table II (see bottom of the page) wherein ‘MFW’, ‘MLW’ and ‘MTOW’ denote the maximum flight

weight, the maximum landing weight and the maximum take-off weight, respectively, and ‘VLS’

and ‘VFE’ represent the minimum selectable speed and the maximum speed slat/flap extended,

respectively. The numerical values with respect to the various weights and speeds are not given in

this paper due to industrial restrictions.

The pitch stick excitation associated with the four flight conditions are shown in Fig. 2. In the

example, 3deg and 5deg sensor biases (faults) are assumed to occur on α1 and α2, respectively

(i.e. the first two measurements of angle of attack). The third redundant sensor associated with

α3 is assumed to be fault free. Furthermore, the fault signals f1 and f2 are assumed to occur

simultaneously at 5sec. To facilitate the industrial evaluation of the computational load of the

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

Time (sec)

de
gr

ee

Figure 2. Pitching stick excitation

design, the FDD scheme proposed in this paper has been re-coded purely based on the Airbus

state of practice for Flight Control Computer (FCC) software coding – the SAO (Airbus software,

Computer-Assisted Specification) library [18]. This contains a set of graphical functional blocks

(in the manner of SIMULINK blocks), allowing only a limited set of mathematical operations. For

each SAO block, a specific computational load is defined. Through classifying and counting the

SAO blocks used the FDD scheme, the associated computational load is calculated.
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Due to industrial limitations, the numerical ‘SAO’ coding results are not provided

straightforwardly. As in (52), the ‘scaled’ computational load is treated as a criteria to measure

Airbus’s ‘industrial complexity’. Specifically

ETs =
ET

ETmax
(52)

where ETs represents the ‘scaled’ computational load which is defined as a ratio between the actual

computational load ET and the maximum allowable computational load ETmax predefined by

Airbus.

Table II shows the scaled ‘SAO’ coding results associated with the FDI scheme in this paper and

the one used in [15]. Clearly, the proposed FDI scheme has much lower SAO computational burden.

Table II. Comparison of the scaled industrial computational load

Proposed FDI scheme FDI scheme in [15]
ETs 0.376208 2.317008

5.1. Design results

In this example, n = 6; p = 6, q = 3 and

Cp=

[
Cp,1

Cp,2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Np=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

By choosing a suitable gain matrix for L1 in (13) and (14), the matrix Ã11(ρ) is established. In this

design, k = 3, As
22 = I3 and the value of L has been obtained using the Matlab LMI toolbox as

L =

⎡
⎢⎣ 0.0034 0 0.5334 0 0 0

0.0000 0 0.0028 0 0 0

0.0070 0 1.5471 0 0 0

⎤
⎥⎦ (53)

The filter parameter Af = I3, the scalar  is 13, and the small positive scalar selected for the

sigmoidal approximation [25] to the discontinuous injection term is 0.01.

5.2. Simulation results

During the simulation, the auto-trust is engaged during the whole simulation. Since unexpected

closed-loop behaviour will occur under some flight conditions due to the existence of

uncompensated sensor bias, the fault reconstruction performance will be degraded and ‘perfect’

fault reconstruction is difficult to achieve. The behaviours of the aircraft states are not shown here

due to industrial restrictions.
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The sliding surfaces ‖ey‖ associated with the four flight conditions are shown in Fig. 3. Despite

some flight conditions being on the edge of the flight envelope, ‖ey‖ is close to zero and sliding is

maintained.

The comparisons between the actual sensor bias acting on α1 and α2, the fault reconstruction

signals and the clean fault reconstruction signals, associated with four flight conditions, are shown in

Figs. 4-7. In Figs. 4-7, the red lines represents the actual sensor bias. The blue and green lines depict

the fault reconstruction signals (i.e. f̂1 and f̂2) and the ‘clean’ fault reconstruction signals f̃1 and

f̃2 (as defined in Section 3), respectively. It is clear from Figs. 4-7 that all the fault reconstruction

signals approximate the correct magnitudes of the two sensor biases (despite being tested over a

wide set of flight conditions and in the presence of unexpected closed-loop behaviour caused by

the uncompensated sensor biases being fed to the controller), and therefore fault isolation can be

achieved. Furthermore, the fault reconstruction performance is improved by using the redundant

fault free sensor to create ‘clean’ fault estimates f̃i. These ‘clean’ estimates f̃i are always better

than their original counterparts f̂i.

The fault reconstruction performance is judged using the decision making logic provided in

Section 4. Absolute values of errors between ỹp2,1, ỹp2,2 and ỹp2,3 are shown in Fig. 8. It is clear from

Fig. 8 that the fault reconstruction performance is good despite the wide range of flight conditions.

Spikes at 5sec are caused by the occurrence of the sensor bias.

6. CONCLUSION

This study has proposed a sliding mode sensor FDI scheme wherein the triplex sensor redundancy

is utilised to achieve FDI directly, so that minimal additional logic and post-processing is required

to isolate the location of the faults. To achieve this, a slightly nonstandard sliding mode observer

formulation has been introduced account for the fact that not all of the measurements, in a system

theory sense, are independent. Because of this special formulation, and the absence of any extensive

post-processing, the computational burden of the proposed observer scheme is greatly reduced

compared to earlier work. To achieve this, the equivalent output error injection signal associated

with the fault free redundant sensor can be used to improve the fault reconstruction performance.

The fault isolation logic and decision making logic used to create the fault reconstructions are also

discussed. The proposed scheme is has been applied to the RECONFIGURE benchmark model to

simultaneously detect and isolate two types of sensor bias which act simultaneously on two angle

of attack sensor measurements. Good fault reconstruction results demonstrate the efficacy of the

proposed scheme.
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Figure 3. Sliding surfaces ‖ey‖
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(a) Fault reconstruction performance associated with α1
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Figure 6. Flight point C
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0 5 10 15 20 25 30 35 40 45 50
−5

0

5

Time (sec)

de
gr

ee

 

 
A
B
C
D

(b) errors between ỹp2,1 and ỹp2,3

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

Time (sec)

de
gr

ee

 

 
A
B
C
D

(c) errors between ỹp2,2 and ỹp2,3

Figure 8. Decision marking
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