18,880 research outputs found

    A case study on theme-based approach in health technology engineering education : customer oriented software applications

    Get PDF
    Metropolia University of Applied Sciences (MUAS) Information and Communication Technology (ICT) Degree Programme provides full-time Bachelor-level undergraduate studies. ICT Degree Programme has seven different major options; this paper focuses on Health Technology. In Health Technology, a significant curriculum change in 2014 enabled transition from fragmented curriculum including dozens of courses to a new integrated curriculum built around three 30 ECTS themes. This paper focuses especially on the second theme called Customer Oriented Software Applications. From students’ point of view, the goal of this theme is to get familiar with existing health related ICT solutions and systems, understand business around health technology, recognize social and healthcare operating principles and services, and identify customers and users and their special needs and perspectives. This also acts as a background for health related web application development. Built web application is tested, developed and evaluated with real users utilizing versatile user centred development methods. This paper presents experiences obtained from the first implementation of Customer Oriented Software Applications theme. Student feedback was gathered with two questionnaires, one in the middle of the theme and other at the end of the theme. Questionnaires had qualitative and quantitative parts. Similar questionnaire was implemented in the first theme; this paper evaluates how the theme-based integrated curriculum has progressed in Health Technology major by comparing results between theme 1 and 2. In general, students were satisfied for the implementation, timing and synchronization of the courses, and the amount of work. However there is still room for development. Student feedback and teachers’ observations have been and will be used to develop the content and operating principles of the themes and whole curriculum

    Epistemic Communities Facing a New Type of Agora? Centres of Science, Technology and Innovation as Defining the New Research Landscape in Finland

    Get PDF
    We analyse the question of what role and positions epistemic communities have in the agora, and more specifically in the new mediating organizations that are established at the interface of the state, businesses and universities. These new organizational structures embody the present politics of knowledge that reign in national science policy globally. The new organizational structures, as potentially new agoras, also epitomize several of the changes that have taken place in the science and industry landscape of the past decades all over Europe and the world. We are interested in understanding how epistemic communities are situated vis-ïżœ-vis agora in knowledge production. The empirical example comes from Finland, where major new institutional reforms in science policy, the new strategic centres of science, technology and innovations, have been implemented to create possibilities for new knowledge creation and new product and service development. These centres of science, technology and innovations (CSTIs) were originally planned as functioning agoras, open, simultaneous and joint platforms for the state, businesses, researchers and universities. In the article we show how the organizational structure and decision making processes adopted in the CSTIs have changed the original idea of agora, thus changing also the position of epistemic communities involved. In the process, we evaluate Nowotny\'s interpretation of agora.Epistemic Communities, Agora, Science Policy, Finland, Research Landscape, STS Studies, Critical Research, Qualitative Study, Company, Power

    CoESS’ Facts and Figures 2013

    Get PDF

    Harmonizing CMMI-DEV 1.2 and XP Method to Improve The Software Development Processes in Small Software Development Firms

    Get PDF
    Most software development organizations are small firms, and they have realized the need to manage and improve their software development and management activities. Traditional Software Process Improvement (SPI) models and standards are not realistic for these firms because of high cost, limited resources and strict project deadlines. Therefore, these firms need a lightweight software development method and an appropriate SPI model to manage and improve their software development and management processes. This study aims to construct a suitable software development process improvement framework for Small Software Development Firms (SSDFs) based on eXtreme Programming (XP) method and Capability Maturity Model Integration for Development Version 1.2 (CMMI-Dev1.2) model. Four stages are involved in developing the framework: (1) aligning XP practices to the specific goals of CMMI-Dev1.2 Key Process Areas (KPAs); (2) developing the proposed software development process improvement framework based on extending XP method by adapting the Extension-Based Approach (EBA), CMMI-Dev1.2, and generic elements of the SPI framework; (3) verifying the compatibility of the proposed framework to the KPAs of CMMI-Dev1.2 by using focus group method coupled with Delphi technique; and (4) validating the modified framework by using CMMI-Dev1.2 questionnaire as a main item to validate the suitability of the modified framework for SSDFs, and conducting two case studies to validate the applicability and effectiveness of this framework for these firms. The result of aligning XP practices to the KPAs of CMMI-Dev1.2 shows that twelve KPAs are largely supported by XP practices, eight KPAs are partially supported by XP practices, and two KPAs are not-supported by XP practices. The main contributions of this study are: software development process improvement framework for SSDFs, elicit better understanding of how to construct the framework, and quality improvement of the software development processes. There are possible avenues for extending this research to fulfil the missing specific practices of several KPAs, examining other agile practices and using CMMI-Dev1.3 to improve the framework, and conducting more case studie

    Energizing collaborative industry‑academia learning: a present case and future visions

    Get PDF
    In Industry-Academia Collaborations (IAC) both academic, scientific research results and industrial practitioner findings and experiences are produced. Both types of knowledge should be gathered, codified, and disseminated efficiently and effectively. This paper investigates a recent (2014-2017) large-scale IAC R&D&I program case (Need for Speed, N4S) from a learning perspective. It was one of the programs in the Finnish SHOK (Strategic Centres of Science, Technology, and Innovation) system. The theoretical bases are in innovation management, knowledge management, and higher education (university) pedagogy. In the future, IAC projects should be more and more commonplace since major innovations are hardly ever done in isolation, not even by the largest companies. Both intra-organizational and inter-organizational learning networks are increasingly critical success factors. Collaborative learning capabilities will thus be required more often from all the participating parties. Efficient and effective knowledge creation and sharing are underpinning future core competencies. In this paper, we present and evaluate a collaboratively created and publicly shared digital knowledge repository called "Treasure Chest" produced during our case program. The starting point was a jointly created Strategic Research and Innovation Agenda (SRIA), which defined the main research themes and listed motivating research questions to begin with-i.e., intended learning outcomes (ILO). During the 4-year program, our collaborative industry-academia (I-A) learning process produced a range of theoretical and empirical results, which were iteratively collected and packaged into the Treasure Chest repository. Outstandingly, it contained, in addition to traditional research documents, narratives of the industrial learning experiences and more than 100 actionable knowledge items. In conclusion, our vision of the future is that such transparently shared, ambitious, and versatile outcome goals with a continuous integrative collection of the results are keys to effective networked I-A collaboration and learning. In that way, the N4S largely avoided the general problem of often conflicting motives between industrial firms seeking answers and applied solutions to their immediate practical problems and academic researchers aiming at more generalizable knowledge creation and high-quality scientific publications.Peer reviewe

    Ethics and taxation : a cross-national comparison of UK and Turkish firms

    Get PDF
    This paper investigates responses to tax related ethical issues facing busines

    Redesigning work organizations and technologies: experiences from European projects

    Get PDF
    Currently distributed business process (re) design (resulting in components of business networks) basically relies on technical criteria. And that are the main purposes of most research projects supported by EC. Through the process of building a European Research Area, this means a strong influence in the national research programmes. However it is generally accepted that it should also take into account social criteria and aspects such as the quality of working life, or participation in decision processes. Those were some of the objectives of projects in de 80s decade, and framed some of the main concepts and scientific approaches to work organisation. The democratic participation of network and organisations members in the design process is a critical success factor. This is not accepted by everyone, but is based in sufficient case studies. Nevertheless, in order to achieve an optimization that can satisfying the requirements of agility of a network of enterprises, more complex design methods must be developed. Thus, the support to the collaborative design of distributed work in a network of enterprises, through a concurrent approaching business processes, work organisation and task content is a key factor to achieve such purposes. Increasing needs in terms of amounts of information, agility, and support for collaboration without time and space constrains, imposes the use of a computer-based model.business process; networks; decision processes; collaborative design;
    • 

    corecore