28 research outputs found

    Object recognition in infrared imagery using appearance-based methods

    Get PDF
    Abstract unavailable please refer to PD

    A survey of face detection, extraction and recognition

    Get PDF
    The goal of this paper is to present a critical survey of existing literatures on human face recognition over the last 4-5 years. Interest and research activities in face recognition have increased significantly over the past few years, especially after the American airliner tragedy on September 11 in 2001. While this growth largely is driven by growing application demands, such as static matching of controlled photographs as in mug shots matching, credit card verification to surveillance video images, identification for law enforcement and authentication for banking and security system access, advances in signal analysis techniques, such as wavelets and neural networks, are also important catalysts. As the number of proposed techniques increases, survey and evaluation becomes important

    Pose-invariant face recognition using real and virtual views

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (p. 173-184).by David James Beymer.Ph.D

    Pose-Invariant Face Recognition Using Real and Virtual Views

    Get PDF
    The problem of automatic face recognition is to visually identify a person in an input image. This task is performed by matching the input face against the faces of known people in a database of faces. Most existing work in face recognition has limited the scope of the problem, however, by dealing primarily with frontal views, neutral expressions, and fixed lighting conditions. To help generalize existing face recognition systems, we look at the problem of recognizing faces under a range of viewpoints. In particular, we consider two cases of this problem: (i) many example views are available of each person, and (ii) only one view is available per person, perhaps a driver's license or passport photograph. Ideally, we would like to address these two cases using a simple view-based approach, where a person is represented in the database by using a number of views on the viewing sphere. While the view-based approach is consistent with case (i), for case (ii) we need to augment the single real view of each person with synthetic views from other viewpoints, views we call 'virtual views'. Virtual views are generated using prior knowledge of face rotation, knowledge that is 'learned' from images of prototype faces. This prior knowledge is used to effectively rotate in depth the single real view available of each person. In this thesis, I present the view-based face recognizer, techniques for synthesizing virtual views, and experimental results using real and virtual views in the recognizer

    Life patterns : structure from wearable sensors

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, February 2003.Includes bibliographical references (leaves 123-129).In this thesis I develop and evaluate computational methods for extracting life's patterns from wearable sensor data. Life patterns are the reoccurring events in daily behavior, such as those induced by the regular cycle of night and day, weekdays and weekends, work and play, eating and sleeping. My hypothesis is that since a "raw, low-level" wearable sensor stream is intimately connected to the individual's life, it provides the means to directly match similar events, statistically model habitual behavior and highlight hidden structures in a corpus of recorded memories. I approach the problem of computationally modeling daily human experience as a task of statistical data mining similar to the earlier efforts of speech researchers searching for the building block that were believed to make up speech. First we find the atomic immutable events that mark the succession of our daily activities. These are like the "phonemes" of our lives, but don't necessarily take on their finite and discrete nature. Since our activities and behaviors operate at multiple time-scales from seconds to weeks, we look at how these events combine into sequences, and then sequences of sequences, and so on. These are the words, sentences and grammars of an individual's daily experience. I have collected 100 days of wearable sensor data from an individual's life. I show through quantitative experiments that clustering, classification, and prediction is feasible on a data set of this nature. I give methods and results for determining the similarity between memories recorded at different moments in time, which allow me to associate almost every moment of an individual's life to another similar moment. I present models that accurately and automatically classify the sensor data into location and activity.(cont.) Finally, I show how to use the redundancies in an individual's life to predict his actions from his past behavior.by Brian Patrick Clarkson.Ph.D

    Object Recognition

    Get PDF
    Vision-based object recognition tasks are very familiar in our everyday activities, such as driving our car in the correct lane. We do these tasks effortlessly in real-time. In the last decades, with the advancement of computer technology, researchers and application developers are trying to mimic the human's capability of visually recognising. Such capability will allow machine to free human from boring or dangerous jobs

    Object detection and activity recognition in digital image and video libraries

    Get PDF
    This thesis is a comprehensive study of object-based image and video retrieval, specifically for car and human detection and activity recognition purposes. The thesis focuses on the problem of connecting low level features to high level semantics by developing relational object and activity presentations. With the rapid growth of multimedia information in forms of digital image and video libraries, there is an increasing need for intelligent database management tools. The traditional text based query systems based on manual annotation process are impractical for today\u27s large libraries requiring an efficient information retrieval system. For this purpose, a hierarchical information retrieval system is proposed where shape, color and motion characteristics of objects of interest are captured in compressed and uncompressed domains. The proposed retrieval method provides object detection and activity recognition at different resolution levels from low complexity to low false rates. The thesis first examines extraction of low level features from images and videos using intensity, color and motion of pixels and blocks. Local consistency based on these features and geometrical characteristics of the regions is used to group object parts. The problem of managing the segmentation process is solved by a new approach that uses object based knowledge in order to group the regions according to a global consistency. A new model-based segmentation algorithm is introduced that uses a feedback from relational representation of the object. The selected unary and binary attributes are further extended for application specific algorithms. Object detection is achieved by matching the relational graphs of objects with the reference model. The major advantages of the algorithm can be summarized as improving the object extraction by reducing the dependence on the low level segmentation process and combining the boundary and region properties. The thesis then addresses the problem of object detection and activity recognition in compressed domain in order to reduce computational complexity. New algorithms for object detection and activity recognition in JPEG images and MPEG videos are developed. It is shown that significant information can be obtained from the compressed domain in order to connect to high level semantics. Since our aim is to retrieve information from images and videos compressed using standard algorithms such as JPEG and MPEG, our approach differentiates from previous compressed domain object detection techniques where the compression algorithms are governed by characteristics of object of interest to be retrieved. An algorithm is developed using the principal component analysis of MPEG motion vectors to detect the human activities; namely, walking, running, and kicking. Object detection in JPEG compressed still images and MPEG I frames is achieved by using DC-DCT coefficients of the luminance and chrominance values in the graph based object detection algorithm. The thesis finally addresses the problem of object detection in lower resolution and monochrome images. Specifically, it is demonstrated that the structural information of human silhouettes can be captured from AC-DCT coefficients

    Boosting for Generic 2D/3D Object Recognition

    Get PDF
    Generic object recognition is an important function of the human visual system. For an artificial vision system to be able to emulate the human perception abilities, it should also be able to perform generic object recognition. In this thesis, we address the generic object recognition problem and present different approaches and models which tackle different aspects of this difficult problem. First, we present a model for generic 2D object recognition from complex 2D images. The model exploits only appearance-based information, in the form of a combination of texture and color cues, for binary classification of 2D object classes. Learning is accomplished in a weakly supervised manner using Boosting. However, we live in a 3D world and the ability to recognize 3D objects is very important for any vision system. Therefore, we present a model for generic recognition of 3D objects from range images. Our model makes use of a combination of simple local shape descriptors extracted from range images for recognizing 3D object categories, as shape is an important information provided by range images. Moreover, we present a novel dataset for generic object recognition that provides 2D and range images about different object classes using a Time-of-Flight (ToF) camera. As the surrounding world contains thousands of different object categories, recognizing many different object classes is important as well. Therefore, we extend our generic 3D object recognition model to deal with the multi-class learning and recognition task. Moreover, we extend the multi-class recognition model by introducing a novel model which uses a combination of appearance-based information extracted from 2D images and range-based (shape) information extracted from range images for multi-class generic 3D object recognition and promising results are obtained

    Active object recognition for 2D and 3D applications

    Get PDF
    Includes bibliographical referencesActive object recognition provides a mechanism for selecting informative viewpoints to complete recognition tasks as quickly and accurately as possible. One can manipulate the position of the camera or the object of interest to obtain more useful information. This approach can improve the computational efficiency of the recognition task by only processing viewpoints selected based on the amount of relevant information they contain. Active object recognition methods are based around how to select the next best viewpoint and the integration of the extracted information. Most active recognition methods do not use local interest points which have been shown to work well in other recognition tasks and are tested on images containing a single object with no occlusions or clutter. In this thesis we investigate using local interest points (SIFT) in probabilistic and non-probabilistic settings for active single and multiple object and viewpoint/pose recognition. Test images used contain objects that are occluded and occur in significant clutter. Visually similar objects are also included in our dataset. Initially we introduce a non-probabilistic 3D active object recognition system which consists of a mechanism for selecting the next best viewpoint and an integration strategy to provide feedback to the system. A novel approach to weighting the uniqueness of features extracted is presented, using a vocabulary tree data structure. This process is then used to determine the next best viewpoint by selecting the one with the highest number of unique features. A Bayesian framework uses the modified statistics from the vocabulary structure to update the system's confidence in the identity of the object. New test images are only captured when the belief hypothesis is below a predefined threshold. This vocabulary tree method is tested against randomly selecting the next viewpoint and a state-of-the-art active object recognition method by Kootstra et al.. Our approach outperforms both methods by correctly recognizing more objects with less computational expense. This vocabulary tree method is extended for use in a probabilistic setting to improve the object recognition accuracy. We introduce Bayesian approaches for object recognition and object and pose recognition. Three likelihood models are introduced which incorporate various parameters and levels of complexity. The occlusion model, which includes geometric information and variables that cater for the background distribution and occlusion, correctly recognizes all objects on our challenging database. This probabilistic approach is further extended for recognizing multiple objects and poses in a test images. We show through experiments that this model can recognize multiple objects which occur in close proximity to distractor objects. Our viewpoint selection strategy is also extended to the multiple object application and performs well when compared to randomly selecting the next viewpoint, the activation model and mutual information. We also study the impact of using active vision for shape recognition. Fourier descriptors are used as input to our shape recognition system with mutual information as the active vision component. We build multinomial and Gaussian distributions using this information, which correctly recognizes a sequence of objects. We demonstrate the effectiveness of active vision in object recognition systems. We show that even in different recognition applications using different low level inputs, incorporating active vision improves the overall accuracy and decreases the computational expense of object recognition systems
    corecore