400 research outputs found

    Body sensor networks: smart monitoring solutions after reconstructive surgery

    Get PDF
    Advances in reconstructive surgery are providing treatment options in the face of major trauma and cancer. Body Sensor Networks (BSN) have the potential to offer smart solutions to a range of clinical challenges. The aim of this thesis was to review the current state of the art devices, then develop and apply bespoke technologies developed by the Hamlyn Centre BSN engineering team supported by the EPSRC ESPRIT programme to deliver post-operative monitoring options for patients undergoing reconstructive surgery. A wireless optical sensor was developed to provide a continuous monitoring solution for free tissue transplants (free flaps). By recording backscattered light from 2 different source wavelengths, we were able to estimate the oxygenation of the superficial microvasculature. In a custom-made upper limb pressure cuff model, forearm deoxygenation measured by our sensor and gold standard equipment showed strong correlations, with incremental reductions in response to increased cuff inflation durations. Such a device might allow early detection of flap failure, optimising the likelihood of flap salvage. An ear-worn activity recognition sensor was utilised to provide a platform capable of facilitating objective assessment of functional mobility. This work evolved from an initial feasibility study in a knee replacement cohort, to a larger clinical trial designed to establish a novel mobility score in patients recovering from open tibial fractures (OTF). The Hamlyn Mobility Score (HMS) assesses mobility over 3 activities of daily living: walking, stair climbing, and standing from a chair. Sensor-derived parameters including variation in both temporal and force aspects of gait were validated to measure differences in performance in line with fracture severity, which also matched questionnaire-based assessments. Monitoring the OTF cohort over 12 months with the HMS allowed functional recovery to be profiled in great detail. Further, a novel finding of continued improvements in walking quality after a plateau in walking quantity was demonstrated objectively. The methods described in this thesis provide an opportunity to revamp the recovery paradigm through continuous, objective patient monitoring along with self-directed, personalised rehabilitation strategies, which has the potential to improve both the quality and cost-effectiveness of reconstructive surgery services.Open Acces

    Improving the validity of shod human footstrike modelling with dynamic loading conditions determined from biomechanical motion capture trials

    Get PDF
    This thesis presents and evaluates a number of finite element footstrike models developed to allow the performance of prospective athletic footwear designs to be evaluated in a virtual environment. Successful implementation of such models would reduce the industry’s traditional reliance on physical prototyping and therefore reduce the time and associated costs required to develop a product. All boundary conditions defined in each of the footstrike models reported were directly determined from biomechanical motion capture trials to ensure that the loading applied was representative of shod human running. Similarly, the results obtained with each model were compared to digitised high speed video footage of experimental trials and validated against biomechanical measures such as foot segment kinematics, ground reaction force and centre of pressure location. A simple model loaded with triaxial force profiles determined from the analysis of plantar pressure data was found to be capable of applying highly representative load magnitudes but the distribution of applied loading was found to be less accurate. Greater success at emulating the deformation that occurs in the footwear during an entire running footstrike was achieved with models employing kinematic foot segment boundary conditions although this approach was found to be highly sensitive to the initial orientation of the foot and footwear components, thus limiting the predictive capacity of such a methodology. A subsequent model was therefore developed to utilise exclusively kinetic load conditions determined from an inverse dynamic analysis of an experimental trial and demonstrated the greatest predictive capacity of all reported models. This was because the kinematics of the foot were allowed to adapt to the footwear conditions defined in the analysis with this approach. Finally, the reported finite element footstrike models were integrated with automated product optimisation techniques. A topology optimisation approach was first utilised to generate lightweight midsole components optimised for subject‐specific loading conditions whilst a similar shape optimisation methodology was subsequently used to refine the geometry of a novel footwear design in order to minimise the peak material strains predicted

    Real-time motion capture for analysis and presentation within virtual environments

    Get PDF
    This thesis describes motion capture methods with an application for real-time recording of extreme human movement. A wireless gyroscopic sensor based system is used to record and evaluate misalignments in ankle position of ballet dancers in a performance environment. Anatomic alignment has been shown to contribute to dance related injuries, and results of this work show that subtle variations in joint rotation can be clearly measured. The workflow has been developed to extract performance analysis data for fault detection in order to assist augmented feedback methods for the prevention of injury and improved performance. Infra-red depth sensing technology, commonly used in garment design, has been used to produce a representation of a scanned human subject and a workflow established to utilise this character avatar for animation using motion capture data. The process of presenting a visually acceptable representation of an overall performance in addition to the numerical evaluation of specific joint orientation provides a significant contribution to knowledge

    Biomechanical assessment of sports bra performance

    Get PDF
    Biomechanical testing has been the cornerstone of sports bra research to date and the quantification of breast kinematics during exercise has received increasing interest. However, comparatively little research has been published regarding the development of biomechanical testing methodology and how this testing may inform the development of sports bra design. Thus, the overall research aim was the ‘Development and application of methods used in the biomechanical assessment of sports bra performance with the end goal of better biomechanical tools for use in the sports bra design process’. Breast kinematics are typically measured relative to the torso, therefore, it is necessary to track both torso and breast motion. The absence of a universally accepted torso tracking model, and information regarding the sensitivity of breast kinematics to the selected torso model were identified as limitations to the existing research. The seven marker torso tracking model presented is the first to be specifically developed for analysing relative breast motion during activities such as treadmill running and is recommended to be implemented in future sports bra research. The torso segment used to calculate relative breast kinematics is assumed to be rigid, however, breast movement resulting from respiration has been reported for a static condition. The effect of breathing on breast kinematics during treadmill running was investigated. Significant differences were observed in the breast kinematics between breathing and non-breathing conditions, notably in the superior-inferior direction; however, they could not definitively be directly linked to breathing since significant differences in running gait were also observed. The results do suggest that increasing the number of gait cycles analysed may reduce any effects of breathing on breast kinematics due to phase-locking, the synchronisation of breathing with running locomotion. Analysing breast kinematics over 30 gait cycles may help minimise any potential effects of phase-locking across all commonly used phase-locking ratios. Further understanding of breast motion and whether markers placed on the bra represent the underlying breast were identified as pertinent to advancing biomechanical assessment of sports bra performance. Motion between the breast and bra (either during an initial bedding in phase or steady state running) has yet to be explored within the existing literature and is assumed to be negligible for a correctly fitted bra. A settling in period of ~30 seconds between the breast and bra was found to occur during the initial phase of treadmill running. Whilst the study is recognised to be exploratory in nature, the findings suggest future breast kinematic study should consider the possibility of a settling in effect. Therefore, experimental protocols may benefit from including a short period of activity after the subject has changed into the bra to help eliminate any settling in effect prior to data capture or application of over bra markers. The results also suggest that motion occurs between the breast and bra irrespective of bra size and that over bra markers underestimate superior-inferior (S-I) breast displacement and anterior-posterior (A-P) displacement at the upper breast. Markers positioned over the bra were found to be less sensitive to variation in A-P and S-I displacement in different regions of the breast. However, use of under bra markers is limited by current motion capture technology and until advances in technology are made the use of over bra markers remains current best practice. Future studies are recommended to state whether breast markers were located over or under the bra and recognise that over bra markers represent bra motion. Bra strap stiffness was identified as a potentially important factor in sports bra performance. The effect was investigated using a modified bra with removable strap sections of three differing stiffness. Bra strap mechanical properties were characterised using a specifically developed tensile testing protocol. Sports bra performance during treadmill running was assessed using biomechanical and perceptual measures. Increasing bra strap stiffness was found to improve sports bra performance with respect to bra kinematics (primarily in the superior-interior direction) and subjective perception ratings (in particular the perception of support), suggesting strap stiffness may have an important role to play in bra design

    Analysis of perceptual-motor calibration processes in indoor climbing

    Get PDF
    This research programme examines how people perceive maximal reach-and grasp-ness in climbing, and as such these questions will be limited to climbing. Is experienced gained from performing daily submaximal reaching sufficient for the accurate perception of maximal horizontal reaching affordances in rock climbing? How is perception of maximal horizontal boundary of reach-and grasp-ness affected by: hold size, body position, additional load, or fatigue. How will inducing fatigue affect how a participant calibrates distance and their movement economy

    The perception of comfort and fit of personal protective equipment in sport

    Get PDF
    During the design of sports equipment, the main focus is usually on physical performance attributes, neglecting key subjective factors such as feel and comfort. The personal protective equipment worn in sport is a typical example, where injury prevention has taken precedence over user comfort, but it is anticipated that with a new approach to the design process, comfort can be improved without sacrificing protection. Using cricket leg guards and taekwondo chest guards as an example, this study aimed to develop a systematic method for assessing user perceptions and incorporating them into the design process. Players perceptions of the factors that influence the comfort of cricket leg guards and taekwondo chest guards were elicited through the use of co-discovery sessions, focus groups and individual interviews, and analysed through an inductive process to produce a comfort model. The relative importance of each different comfort dimension was identified through the use of an online questionnaire utilising the analytical hierarchy process method. Through the combination of these methods, six general dimensions were identified with a weighting regarding the amount to which each one determines a user's perceived comfort. For both cricket and taekwondo, the majority of players ranked Fit as the most important factor affecting comfort. Experimental procedures were developed to objectively test the Fit of cricket leg guards, with regards to batting kinematics, running performance and contact pressure. These methods were combined with subjective assessments of leg guard performance, to determine if there was a relationship between users perceived comfort and objective test results. It was found that shot ROM and performance were not significantly affected by cricket leg guards, despite perceptions of increased restriction whilst wearing certain pads. Wearing cricket leg guards was found to significantly decrease running performance when compared to running without pads (p<0.05). In addition, it was found that the degree of impedance depended on pad design and could not solely be attributed to additional mass. These results correlated with the subjective assessment of three different leg guards, with respondents identifying the pad which had the largest influence on their running biomechanics and impeded their performance the most, as the most restrictive pad. Contact pressure under the pad and straps was also measured for four different leg guards whilst running. The results found that the top strap applied the greatest amount of pressure to the leg, especially at the point of maximum knee flexion. The peak pressure under the top strap was found to reach up to three times that of any other area of the pad. These results were reflected in the subjective assessment of the leg guards, with all nine subjects identifying the top strap as an area of discomfort for certain pads. The results also suggested there was a preference for pads with a larger more consistent contact area, as pad movement was perceived to increase when contact area variation was greater. Finally the results from this research were used to develop a product design specification (PDS) for a cricket leg guard, specifying size, mass, contact pressure and shape. The PDS was used to develop a concept design which would maximise comfort, whilst maintaining protection

    Analysis of perceptual-motor calibration processes in indoor climbing

    Get PDF
    This research programme examines how people perceive maximal reach-and grasp-ness in climbing, and as such these questions will be limited to climbing. Is experienced gained from performing daily submaximal reaching sufficient for the accurate perception of maximal horizontal reaching affordances in rock climbing? How is perception of maximal horizontal boundary of reach-and grasp-ness affected by: hold size, body position, additional load, or fatigue. How will inducing fatigue affect how a participant calibrates distance and their movement economy

    Stretch sensors for measuring knee kinematics in sports

    Get PDF
    The popularity of wearable technology in sport has increased, due to its ability to provide unobtrusive monitoring of athletes. This technology has been used to objectively measure kinetic and kinematic variables, with the aim of preventing injury, maximising athletic performance and classifying the skill level of athletes, all of which can influence training and coaching practices. Wearable technologies overcome the limitations of motion capture systems which are limited in their capture volume, enabling the collection of data in-field, during training and competition. Inertial sensors are a common form of technology used in these environments however, their high-cost and complex calibration due to multiple sensor integration can make them prohibitive for widespread use. This thesis focuses on the development of a strain sensor that can be used to measure knee range of motion in sports, specifically rowing and cycling, as a potential low-cost, lightweight alternative to inertial sensors which can also be integrated into clothing, making them more discreet. A systematic review highlighted the lack of alternate technologies to inertial sensors such as strain sensors, as well as the limited use of wearable technologies in both rowing and cycling. Strain sensors were fabricated from a carbon nanotube-natural rubber composite using solvent exchange techniques and employed a piezoresistive sensing mechanism. These were then characterised using mechanical testing, to determine their electrical properties under cyclical strain. The strain sensors displayed hysteretic behaviour, but were durable, withstanding over 4500 strain cycles. Statistical analysis indicated that over 60% of the tests conducted had good intra-test variability with regards to the resistance response range in each strain cycle and sensor response deviating by less than 10% at strain rates below 100 mm/min and less than 20% at a strain rate of 350 mm/min. These sensors were integrated into a wearable sensor system and tested on rowing and cycling cohorts consisting of ten athletes each, to assess the translational use of the strain sensor. This preliminary testing indicated that strain sensors were able to track the motion of the knee during the rowing stroke and cycling pedalling motion, when compared to the output of a motion capture system. Perspectives of participants on the wearable system were collected, which indicated their desire for a system that they could use in their sport, and they considered the translation of this system for real-life use with further development to improve comfort of the system and consistency of the sensor response. The strain sensors developed in this project, when integrated into a wearable sensor system, have the potential to provide an unobtrusive method of measuring knee kinematics, helping athletes, coaches and other support staff make technical changes that can reduce injury risk and improve performance.Open Acces

    The biomechanical design and analysis of gymnastics training equipment

    Get PDF
    Training aids can play an important role in the training of athletes, but only if they assist in the learning of correct technique. The design of a training aid differs considerably from the design of other products because it is crucial that the mechanisms used in learning a skill must be taken into consideration. Research has shown that this can be achieved by: encouraging specific motor skills, providing feedback, providing support in a safe environment, permitting repetition, permitting progressive learning, or by providing some combination of these. For this to be possible an in-depth understanding of the biomechanical requirements of the sporting activity is essential. A study was carried out to determine the fundamental requirements of a training aid, and to then design and build two working prototype gymnastics training aids. Elite training sessions were observed and High Performance coaches were interviewed to establish the skills that required a training aid and the customer requirements for such a device. On the basis of this information two contrasting gymnastics skills were chosen. The first was a handstand on the rings, a complex motor control skill requiring the gymnast to balance on two moving pendulums, requested by 100% of the coaches interviewed. The second skill was a backward handspring, often the first backward dynamic skill most gymnasts will learn, requested by 89% of the coaches interviewed. The training aids were required to simplify the learning of the skill, whilst still utilising correct technique. The backward handspring aid was also required to effectively support the gymnast but not obstruct a good performance. A biomechanical analysis of each skill was carried out in order to inform the design of suitable training aids. The aids were designed and manufactured in accordance with British Standards, and were then biomechanically assessed to ensure that they correctly aided the learning of the skills. In order to assess the aids: displacement, force and muscle activation data were collected and were used to compare the gymnastics skills with and without the aids. The data showed that the training aids replicated the correct biomechanical requirements of the actual skills: the handstand aid was shown to utilise the same control mechanism as was observed on the rings, and the backward handspring aid permitted a unobstructed good performance and assisted in the learning of the skills with correct technique. Both aids were also demonstrated to out-perform any of the existing training aids.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore