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Abstract

The popularity of wearable technology in sport has increased, due to its ability to provide unobtrusive

monitoring of athletes. This technology has been used to objectively measure kinetic and kinematic

variables, with the aim of preventing injury, maximising athletic performance and classifying the skill

level of athletes, all of which can influence training and coaching practices. Wearable technologies

overcome the limitations of motion capture systems which are limited in their capture volume, enabling

the collection of data in-field, during training and competition. Inertial sensors are a common form of

technology used in these environments however, their high-cost and complex calibration due to multiple

sensor integration can make them prohibitive for widespread use.

This thesis focuses on the development of a strain sensor that can be used to measure knee range

of motion in sports, specifically rowing and cycling, as a potential low-cost, lightweight alternative to

inertial sensors which can also be integrated into clothing, making them more discreet. A systematic

review highlighted the lack of alternate technologies to inertial sensors such as strain sensors, as well

as the limited use of wearable technologies in both rowing and cycling.

Strain sensors were fabricated from a carbon nanotube-natural rubber composite using solvent ex-

change techniques and employed a piezoresistive sensing mechanism. These were then characterised

using mechanical testing, to determine their electrical properties under cyclical strain. The strain sen-

sors displayed hysteretic behaviour, but were durable, withstanding over 4500 strain cycles. Statistical

analysis indicated that over 60% of the tests conducted had good intra-test variability with regards to

the resistance response range in each strain cycle and sensor response deviating by less than 10% at

strain rates below 100 mm/min and less than 20% at a strain rate of 350 mm/min.

These sensors were integrated into a wearable sensor system and tested on rowing and cycling

cohorts consisting of ten athletes each, to assess the translational use of the strain sensor. This

preliminary testing indicated that strain sensors were able to track the motion of the knee during the

rowing stroke and cycling pedalling motion, when compared to the output of a motion capture system.

Perspectives of participants on the wearable system were collected, which indicated their desire for a

system that they could use in their sport, and they considered the translation of this system for real-life

use with further development to improve comfort of the system and consistency of the sensor response.

The strain sensors developed in this project, when integrated into a wearable sensor system, have the

5



potential to provide an unobtrusive method of measuring knee kinematics, helping athletes, coaches

and other support staff make technical changes that can reduce injury risk and improve performance.
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Chapter 1

Introduction

Introducing the motivation behind using wearable technology, specifically strain sensors,

to measure biomechanics in a sporting context

1.1 Project Background and Motivation

Wearable technologies are prominent in our daily lives: for the average person, smart watches, fitness

trackers and even jewellery can allow them to monitor their heart rate, calorie expenditure [1], sleep

and step count [2], among other metrics. The unobtrusive measurement of these metrics over a long

period (months or even years), could help track trends that can help these individuals or healthcare

professionals with health monitoring, early disease identification and thus early management.

These technologies have also been used in sports to individualise training programmes and help

maximise athletic performance [3]. Athletic performance and biofeedback comprise several factors

including: physiological, neurological, biochemical and biomechanical [4]. Monitoring workloads to

understand the physical demands on different athletes and conducting tests to measure lactate thresh-

olds, heart rate or electrolytes in sweat are some examples of what can be measured with various

sensors concerning physiological and biochemical factors [5].

Biomechanics is highly important to monitor and measure in sports, due to its ability to analyse the

movement patterns of highly skilled athletes [6] and influence coaching practice. The use of wearable

technology has the potential to make the field of sports biomechanics more accessible, and can be

used to assess and quantify: injury prevention; performance assessment and optimisation; movement

recognition; and skill level classification [7]. These objective measurement tools can aid those involved

in sport, informing decision-making and backing up current coaching methods. There is a willingness

to embrace such technologies as they make tracking performance-related metrics more accessible and

easier to interpret – coaches and athletes can identify what is being done well and where to improve,

particularly at the elite level where marginal gains can be the difference between a gold medal and no

medal at all [5]. Understanding how injuries can be prevented and training optimised can give athletes
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a competitive advantage with fewer training days missed and more productive training sessions [5].

Wearable technology has the advantage over other objective measurement systems (e.g. camera-

based motion capture) as it can be used in different environments, monitoring athletes while they are

training or competing. It can help bridge the gap between sports scientists, biomechanists, coaches

and athletes, optimising the multi-disciplinary teams that exist in elite training centres. Each person

has a unique knowledge that they can contribute towards achieving a common goal, so nurturing these

relationships is important [8].

Using wearable technology to measure biomechanics is still an emerging field due to each sport

having its specific motor patterns that need to be understood [4, 9]. This leads to challenges that

need to be overcome with regards to understanding the performance-related metrics associated with

each sport. Inertial measurement units (IMUs) are the most common type of system used and some

have been proven to have high accuracy, but are also associated with a high cost when they have been

derived from research [9]. They often require multiple sensors to attain kinematic parameters, which

also drives the cost up. The cost of these systems may be more than people can afford [9], limiting

their usage to elite teams. IMUs are also subject to errors due to signal drift during measurements,

which is compounded during processing and signal integration [10]. More complex tasks, such as

manual handling compared to joint flexion and extension, can also increase the root mean square error

(RMSE) values associated with the device [11].

These challenges drive the motivation to consider other wearable technology systems, which is the

focus of this doctoral work. Focusing on joint kinematics, strain sensors have been demonstrated to

measure the range of motion for different joints including the ankle, knee [12] and wrist [13], with

potential applications in health monitoring and sport [14]. Using multiple inertial sensors requires

precise placement and therefore an expert to set up the system; overcoming the need for multiple

sensors with a single strain sensor can increase the uptake of a wearable system if any user can set it

up themselves.

This work looks to develop a low-cost solution for measuring joint angles which is based on strain

sensor technology, and compare its response to motion capture systems. The sports investigated

were rowing and cycling: two sports featuring a cyclical motion, where performance improvement

can be made from small changes in technique. The focus is on using strain sensors to measure knee

kinematics from an injury prevention and performance enhancement perspective. Coaches will often

look at angular movements of joints including the knee, to determine whether athletes are moving in

an effective way. Considering injury, the knee joint can be a common injury site in both sports due

to inadequate equipment set-up or poor technique, with excessive range of motion putting additional

force on the patella. There are also performance indicators associated with measuring knee kinematics:

in bike-fitting in cycling knee flexion is often used to set saddle height, while in rowing reduction in

both knee extension and flexion have been observed in athletes with increasing intensity [15]. Both of
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these sports have little in the way of sensors placed on the body to measure biomechanics and so there

is scope for athletes and coaches to realise improvements by accessing these kinematic parameters.

1.2 Thesis Aims

Considering the current state of play of wearable technology to measure sports biomechanics, and the

gap in the field presented by the need for a low-cost system that can be used in rowing and cycling

and potentially other sports, this work sets out to answer the following question: Can flexible strain

sensors be used to measure the knee kinematics of athletes during sporting activities?

The overarching aim of this work was: to develop, characterise and validate a flexible strain sensor

that can be incorporated into a wearable system; and to assess the translational use of the sensor for

measuring knee kinematics of athletes in sports.

From this aim, the following objectives were established:

• Review the current state of play of wearable technology in sports to evaluate performance and

injury risk with the use of kinetic and kinematic variables

• Develop a composite strain sensor and optimise the fabrication process

• Characterise the strain sensor and obtain its mechanical and electrical responses under cyclic

loading to determine its suitability for sustained use

• Develop a wearable system integrating the stain sensor that can be worn over the knee and used

to measure knee flexion angles

• Evaluate the potential of the wearable system against 3D optical motion capture as a means of

measuring knee flexion angles in rowers and cyclists

1.3 Summary of Contributions

This thesis contributes to the field of wearable technology for sports biomechanics, by the creation and

testing of a prototype wearable sensor system on rowing and cycling cohorts. These contributions are

summarised as follows:

• The literature has been systematically reviewed by the author of this thesis, to assess the use of

wearable technology that is used in sports biomechanics, while establishing requirements for the

development of new technology

• Carbon nanotube-natural rubber composite strain sensors were fabricated and characterised
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• Composite strain sensors were integrated into a wearable sensor system in order to measure knee

range of motion in rowing and cycling

• The capability of the wearable sensor system to monitor knee range of motion compared to a

motion capture system was evaluated

• The perspectives of the study cohort on wearable technology and experiences with the developed

wearable sensor system were considered

1.4 Publications

1.4.1 Publications to Date

The following systematic review was published by the author of this thesis while undergoing this

doctoral work:

• Adesida, Y.; Papi, E.; McGregor, A.H. Exploring the Role of Wearable Technology in Sport

Kinematics and Kinetics: A Systematic Review. Sensors 2019, 19, 1597. [7]

1.4.2 Proposed Publications

It is proposed that publications will be submitted for review based on the work in this thesis:

• A discussion on the fabrication and characterisation of the carbon nanotube-rubber composite

strain sensor, while also presenting some preliminary data from the cohort study. Journal for

submission - to be determined, but with a focus on materials science and applications

• A qualitative analysis of the views of cohort study participants on the use of wearable technology

in sports. Journal for submission - to be determined, but with a focus on sports coaching practices

1.5 Thesis Structure

This thesis is organised into 8 main chapters, including this introductory chapter, as outlined below in

this section:

Chapter 2: Literature Review

Chapter 2 provides an overview of the role played by biomechanics in sport, followed by a systematic

review that assesses the use of wearable technology to measure kinetic and kinematic parameters. It

also highlights the technology gap in cycling and rowing when it comes to measuring these parameters

and where opportunities lie for development.
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Chapter 3: Sensor Development

Chapter 3 begins with an overview of different strain sensor technologies and narrows the focus onto

piezoresistive sensors, which is the chosen sensing mechanism for this doctoral work. The fabrication

methods for producing the strain sensors utilised in this work are then detailed, as well as the optimi-

sation of this process.

Chapter 4: Sensor Characterisation

Chapter 4 details the mechanical testing methods developed and conducted on fabricated strain sensors

to characterise their mechanical and electrical properties and ascertain their suitability for use within

a wearable sensor system.

Chapter 5: Wearables Development

Chapter 5 describes the design of the wearable sensor system which the strain sensor was incorporated

into. Different fabrics and sensor configurations were considered for the optimal output.

Chapter 6: Cohort Study

Chapter 6 sets out the testing protocols and equipment set-up used to test the usability of the fabri-

cated strain sensor when incorporated into a wearable sensor system. It also assesses the data capture

method and quality of data when compared to the Vicon motion capture system. It details the differ-

ences between the testing protocols for rowing and cycling, as well as describing the cohorts that were

recruited. The quantitative results from these studies are presented and discussed.

Chapter 7: Cohort Study – Questionnaire Results

Chapter 7 presents an analysis of the questionnaires sent out to participants after testing, to understand

the user experience with the wearable sensor system and wearable technology in general. Descriptive

statistics and thematic analyses were conducted on this data set.

Chapter 8: Conclusions and Future Work

Chapter 8 summarises the work presented in this thesis and the important findings that were made.

Recommendations are suggested for future work that can aid the development of this technology,

including sensor coatings and providing live feedback.
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Chapter 2

Literature Review

Assessing the need for wearable technology to measure kinetics and kinematics in sports,

primarily in the context of rowing and cycling

2.1 Introduction

Sports performance encompasses more than how athletes and teams rank in a competition, or how

they perform in distance and time-based events compared to their personal best. There are a number

of factors that influence performance such as an athlete’s physiological capabilities, including VO2

max or lactate threshold; or whether an athlete is able to avoid injury and complete as many sessions

as possible. Finally there is how an athlete moves and the effective forces they can produce, i.e.

their biomechanics. Especially at the elite level, the winning margins are so small that it requires

athletes to be at the top of their game. With restrictions in some sports that limit some technological

advancements to equipment (swimmers have rules surrounding which parts of their body can and

cannot be covered by their swimsuits, while, cycling has minimum weight limits for bicycles and rules

around the texture of materials used for clothing), more focus is being placed on whether an athlete is

moving effectively and efficiently.

Coaches are able to provide feedback on this, but everyone has their own opinion and the human

eye can only see so much. This feedback is subjective, as “Every coach or athlete brings personal

interests to the coaching setting” [16]. Technology can help overcome this subjectivity, quantifying

biomechanics and ultimately performance in an objective manner.

This chapter provides an overview on the importance of sports biomechanics and the role it plays in

sports performance, before moving to a systematic review which assesses the role of wearable technology

to measure biomechanics in sport. The focus then narrows onto two sports, rowing and cycling, the

technology that is already being utilised and how new innovations can benefit athletes, coaches, and

other support staff.
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2.2 Overview of Sports Biomechanics

Biomechanics can be defined as ‘the science which applies mechanical principles in order to understand

the functioning of the biological system’ [17]. Sports biomechanics permits the understanding of how

someone moves in a sporting context, considering the forces, accelerations, velocities and joint angles

involved in these movements. It is a useful tool in improving the technique and performance of athletes,

preventing injury and also influencing training protocols [6]. Biomechanics can be used to quantify the

movement of skilled athletes, which can help coach those who are less skilled, as well as identify trends

and patterns that can be used to predict performance and training outcomes. In addition to skill level,

kinetics and kinematics can be influenced by someone’s age, sex or anthropometric characteristics.

In Japan, through collaboration between athletics sprint coaches and The Japanese Associations of

Athletic Federations (JAAF), the kinematic analysis of World Championship level 100m sprinters by

Ito (1994) was performed to understand which motions were biomechanically advantageous, which in

turn influenced coaching practice and led to the National record over 100m being broken [6, 18]. In the

case of rowing which can be split into two weight classes – lightweight (LW) (where individual rowers

must not exceed 59kg and 72.5kg for female and male athletes respectively) and heavyweight (HW) –

one might want to understand what, if any, differences there are between weight classes when it comes

to motion or forces produced. Doyle et al. (2010) analysed the performance of 24 world class level

rowers, split evenly across the two weight classes, and compared force outputs (a common performance

indicator) [19]. Although the force outputs of the HW rowers were statistically significantly higher

than for LW rowers, two pairs of LW rowers were able to produce boat velocities similar to the HW

crews at different stroke ratings [19]. This suggests perhaps there are other factors that come into play

and how each rower themselves moves should be considered: biomechanical approaches would permit

us to understand movement patterns as well as force outputs.

An area that has not been studied to the same extent is the biomechanics of Paralympic athletes

with regards to performance and preparation for events [20]. The use, configuration and structure of

a prosthetic lower limb for example, can alter step length and vertical ground reaction force (vGRF).

When sprinting around a curve in athletics, a study by Taboga et al. (2016) found that athletes who

wore a prosthetic on their inside leg were 3.9% slower than those whose prosthesis was on their outside

leg, due to their inability to generate large forces with their inside leg [21]. In para-kayaking, those in

the legs/trunk/arms category have lower power outputs (compared to non-para-kayakers) as a result

of a reduced range of motion around certain joints [22]. These examples of asymmetry and reduced

range of motion, as well as lower force production due to neurological conditions [22] has the ability

to, and should, influence training protocols that minimise injury risk whilst enhancing performance.

Despite the wealth of knowledge held by researchers, there is still some disconnect between the

work done in academia and those involved in sports on a day to day basis – athletes, coaches and other
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support staff – as highlighted by Martindale and Nash in 2013 [23]. The relationship between coaches

and biomechanists is one that can be mutually beneficial, with coaches being able to influence research

questions and have an understanding of performance indicators, while the biomechanists can provide

scientific evidence for how to improve technique or performance [8]. Communication is something

important that can help facilitate this relationship, and foster knowledge sharing, requiring a common

understanding of both science and coaching or sport jargon. Research needs to be engaging and the

translation of this (from the lab to the training or competition environment) is still poor [8, 24].

A way of bridging this gap is through the use of wearable technology to measure biomechanics.

Taking technology out of the lab and into the training environment, gives the opportunity for coaches

and athletes to interact and become more familiar with technology that could help them improve

their performance or prevent injury. The following systematic review explores the role that wearable

technology can play in sport, specifically to assess kinetics and kinematics.

2.3 Systematic Review

This section is based on a systematic review that was published in 2019 in Sensors [7], and has since

been updated in August 2022 to reflect the progression of the field since the original review. A copy

of the orginal review can be found in Appendix A.

2.3.1 Abstract

A systematic review was conducted with the aim of understanding the role that wearable technol-

ogy plays in sport in injury prevention and performance improvement. Metrics related to these are

traditionally measured using optical motion capture systems, however the limited capture volume re-

stricts usage to laboratory environments. Wearable technology is able to overcome this by allowing the

same metrics to be measured during training or competition. A search was carried out across seven

databases to find articles where wearable technology has been used to assess kinetic and kinematic

variables in sport. Eighty eight articles were included for full-text analysis, with wearable technologies

used to monitor dynamic movements related to performance of sports participants. A range of devices

including magnetic, angular rate and gravity sensors; flex sensors; and inertial measurement units, were

used to assess motion in 22 sports. The field of wearable technology is rapidly developing, with useful

parameters that can be measured being investigated more widely in order to enhance and improve

athletes’ technique and coaching practice.

2.3.2 Introduction

Feedback in sports is essential for improving performance and preventing injury. Feedback can be

produced in a number of forms, with coaching being the most common, however this can be highly
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subjective. Incorporating objective measurements into the feedback loop can enhance the expertise

and experience of an athlete or coach, with its ability to inform decision making.

Technology capable of providing objective measurements range from video analysis with software

allowing for annotation to measure joint angles; to motion capture systems using cameras and passive

or active markers that have been placed on anatomical landmarks for full-body tracking [7]. Optical

motion capture systems are considered the gold-standard for analysing movement [25, 26], with Vicon

(Oxford Metrics, Oxford, UK) and Qualisys (Qualisys AB, Göteborg, Sweden) the most commonly

used systems [27]. However they are unable to provide measurements in training or competition

environments because of their limited capture volume, as well as the lengthy times needed to set-up

the system and process the data [7, 26]. There is a skill required to run the system and correctly place

markers on anatomical landmarks, some of which can obstruct or be occluded by complex sporting

tasks [7].

These limitations can be overcome with wearable technology, which has the advantage of being

used outside of laboratory environments and the ability to provide concurrent feedback (given in real-

time) as well as terminal feedback (given after completing the movement) [28, 29]. The design is

such that they are generally small and lightweight, and most importantly unobtrusive to any sporting

movements [7]. Examples of such systems include: inertial measurement units (IMUs); flex and strain

sensors; pressure insoles; and microelectromechanical systems (MEMS). These systems have the ability

to measure joint range of motion, accelerations and impact forces, among other metrics, either directly

or indirectly. IMUs are a popular choice, with a number of sports using these to assess biomechanical

outcomes including: football, running, figure skating and baseball [9].

There are requirements that wearable technology must meet in order to be well received by those

involved in sports. Technology should be validated against gold-standard motion capture systems and

tested for reliability, with recommendations made by Düking et al. (2018) with regards to constructing

a testing protocol [30]. Being able to recognise key movements in signals produced by any sensor is

of high importance, therefore the sampling frequency plays a key role in achieving this. The Nyquist-

Shannon sampling theorem provides a starting point for choosing a suitable sampling frequency so

that all information can be found in the signal of interest [30–32]. The nature of wearable technology

is such that it is not connected to a mains output, so the contained power source must enable data to

be recorded for the duration of the measurement period, which will be dependent on the nature of the

sport.

Wearable technology is becoming more integrated within sports as an unobtrusive measurement

tool for injury prevention or performance improvement that can support athletes or coaches with

specific sports metrics related to accelerations, impacts and range of motion. The aim of this review

is to identify which forms of wearable technology are being used to achieve this, focusing specifically

on kinetic and kinematic variables of sports participants performing sport-specific movements. Using
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the review published by the author as a starting point [7], this review seeks to expand upon how the

field of wearable technology has progressed in the three years since initial publication.

2.3.3 Materials and Methods

2.3.3.1 Search Strategy

Two systematic searches were carried out in seven databases with articles included from inception until

31st October 2018, and 1st November 2018 to 11th April 2022. The databases used were: Scopus,

Medline, Embase, Cochrane Library, IEEE Xplore, Web of Science (Core Collection) and Engineering

Village. The Boolean search strategy used was ‘wearable AND sensor AND sport’ with the search

terms grouped under these three key words (see Tables 2.1 and 2.2). Articles were imported into

EndNote20 software (Clarivate Analytics, Philadelphia, USA).

2.3.3.2 Eligibility Criteria

Articles were included if they were: published in English; included at least one of the following out-

come measures: joint, limb and trunk kinematics and kinetics as obtained from wearable technology;

participants took part in a sport (defined as an organized physical activity done alone or with a group);

dynamic movement tasks were performed related to performance in the sport studied. Articles were ex-

cluded if they were a review or case study; were a conference abstract (except peer-reviewed abstracts);

used only non-wearable devices; wearable technology was used to only quantify physical activity or

temporal measures; described a potential technology not validated/used with human subjects [7].

2.3.3.3 Selection Process

Duplicates arising from searches in multiple databases were removed, and the titles and abstracts were

reviewed for inclusion by two independent reviewers (the author and one supervisor.). Full texts of

the remaining articles were retrieved, and these were evaluated against the eligibility criteria [7].
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Table 2.1: Boolean Search Strategy [7].

General Specific

Wearable

Portable OR worn OR cloth*3 OR “body-mounted” OR “non-

invasive” OR mobile OR wearable* OR apparel OR textile

OR “electronic skin”

Cochrane Library

MeSH terms

Wearable electronic devices (exp)

Embase MeSH

terms

Non invasive monitoring ; Clothing

Medline MeSH

terms

Clothing ; Wearable electronic devices

Sensor

Sens*3 OR goniomet* OR acceleromet* OR monitor* OR in-

ertia* OR gyroscope* OR device* OR magnet* OR imu OR

telemet* OR pressure OR strain OR conductive OR stretch*

OR flexible OR smart OR electronic*1 OR electromagnetic

OR microsensor*1 OR microelectronic*1

Cochrane Library

MeSH terms

Monitoring, ambulatory

Embase MeSH

terms

Ambulatory monitoring ; Sensor ; De-

vices ; Monitoring

Medline MeSH

terms

Monitoring, ambulatory

Sport

Cochrane Library

MeSH terms

Athletes ; Sports ; Exercise ; Athletic

performance ; Motor activity

Embase MeSH

terms

Athletes ; Sports ; Exercise ; Training ;

Sports medicine ; Motor activity

Medline MeSH

terms

Athletic performance ; Athletes ; Sports

; Exercise ; Motor activity ; Sports

medicine
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Table 2.2: List of Olympic Sports [7].

archery OR run*4 OR badminton OR basketball OR boxing OR canoe* OR cycl*4

OR bik*3 OR bicycl* OR bmx OR div*3 OR equestrian OR dressage OR fencing

OR football OR soccer OR golf OR gymnastics OR handball OR hockey OR

judo OR pentathlon OR row*3 OR rugby OR sail*3 OR shoot*3 OR swim*4 OR

taekwondo OR tennis OR trampoline OR triathlon OR volleyball OR “water polo”

OR weightlifting OR wrestling OR skiing OR biathlon OR bobsleigh OR curling

OR skat*3 OR luge OR “Nordic combined” OR skeleton OR snowboard*

2.3.4 Results - Summary of Original Review

This section will summarise the results of the initial review conducted and published in 2019 as part

of this project [7]. As part of the article selection process, the search was narrowed down from 27,767

articles (duplicates removed) to the full text of 46 articles were assessed for eligibility. 34 articles met

the inclusion criteria. These articles covered 17 sports, an overview of which is listed in Table 2.3.

This review highlighted different applications for wearable technology, including: injury prevention;

quantifying skill level and expertise; improving technique; and characterizing movements [7]. Included

articles were assessed based on the quality of the information provided, including details on sample

size, protocol and sensor placement. Eleven articles were deemed to be of high quality, with medium

and low quality articles totalling 19 and four respectively.

Systems used to measure kinetic and kinematic variables were dominated by inertial sensors, with

individual sensors being mentioned in 13 articles [33–45] and five articles discussing the use of body suits

[33, 46–49]. Other systems included accelerometers (used in baseball [50], running [51], table tennis

[52], swimming [53] and Nordic walking [54]) magnetic, angular rate and gravity (MARG) sensors

(used in football [55] and cricket [56]) and pressure insoles (used in skiing [57, 58]and snowboarding

[46]). A flex sensor was incorporated into a glove-like structure in badminton [59]. Studies took place

in different environments, but only five of these were within a laboratory setting [36, 40, 47, 55, 60].

There was no mention of location for three studies [35, 59, 61], while the protocols in the remaining

studies were conducted in field, allowing a more realistic movement to be performed by participants

in their relevant sport.

The most common sampling frequency used for data collection by the wearable technologies was

100 Hz [35, 38, 42, 43, 45, 57, 58, 62], enabling sporting movements to be captured, although sampling

frequency was reported to be as low as 10 Hz [33] and as high as 1000 Hz [50]. A number of methods were

employed for data transfer, including storing data on a memory card for later upload and transferring

data using Bluetooth. Live feedback was only used in two articles, with haptic feedback used in

swimming [33] and auditory feedback used in running [60], both to alter technique of the participants.
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A number of technologies were validated using gold-standard systems such as the Vicon motion

capture system, Kistler force platforms (Kistler Instruments Ltd., Hampshire, UK). Optical based sys-

tems were also used to validate technologies, like BTS Bioengineering stereo-photogrammetric system

(BTS Bioengineering Corp., Quincy, MA, USA) and XOS Technologies (Wilmington, MA, USA).

At the stage of this review, the use of wearable technology to measure sports biomechanics was in

more of an exploratory phase. Devices developed in-house were used more than commercially available

technologies, but the translation to general usage was not optimal. It was evident that the potential

was there to improve this translation, influencing athlete technique and coaching practice.

2.3.5 Results - Updated Review

The systematic search was updated in April 2022, with 141 full texts assessed for eligibility. From

this updated search, a further 54 articles satisfied the inclusion criteria, with the selection process and

reasons for exclusion are detailed in Figure2.1. This section will focus on the 54 newly included articles.

22 sports were considered across both sets of included articles, with 14 being discussed in this

updated selection of articles. A summary of this is in Table 2.3. Sports that were not included in

the previous review are: field athletics, speed skating, tennis, basketball, boxing and gymnastics. An

additional 19 articles relating to track athletics and running were included, making this the most

popular sport that used wearable technology to assess movement.

Table 2.3: Sports studied in selection of incldued articles.

Sport
/Review

Football
and rugby

Swimming Skiing Equestrian Cricket Table
Tennis

Original 4 3 6 3 1 1
Updated 1 5 7 0 3 2
Total 5 8 13 3 4 3
Sport Badminton Track

athlet-
ics and
running

Rowing Baseball Snow-
boarding

Golf

Original 1 4 1 3 1 1
Updated 2 19 0 5 0 0
Total 3 23 1 8 1 1
Sport Netball Archery Volleyball Canoeing Nordic

Walking
Field ath-
letics

Original 1 1 1 1 1 0
Updated 0 0 0 0 0 1
Total 1 1 1 1 1 1
Sport Speed

skating
Tennis Basketball Boxing Gymnastics

Original 0 0 0 0 0
Updated 2 2 2 2 1
Total 2 2 2 2 1
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Figure 2.1: PRISMA chart detailing the article selection process [63].

38



2.3.5.1 Article Quality

When considering the amount of detail provided on the study cohort, experiments conducted and

wearable technology used, there is a range in the quality of articles included in this review. Key quality

metrics include: stating the research objective; clearly describing the study design and population;

giving accurate descriptions of the method, equipment used and location of sensors; and stating the

main findings of the study.

Cohort sizes ranged from 1 [64–67] to 100 [68] within the included studies. Kos and Kramberger

(2018) used several participants of different experience, but did not provide any specific detail as to

the actual number of participants or their background [69]. Bańkosz and Winiarski (2020) on the other

hand provided an average weight and height of the cohort consisting of Polish national team tennis

players, as well as including their handedness [70].

Although detail was provided by Sha et al. (2021) on their testing cohort, it was not clear what

actions from the tennis players took place when data was recorded [71]. Similarly, Shang and Cheng

(2021) did not indicate the type of swimming stroke performed when collecting data on hip rotation [72].

In contrast to this, in boxing Menzel and Potthast (2021) gave detail on the four striking techniques

used and how many of each strike were performed within the protocol [66].

In addition to experimental details, giving an accurate description of where sensors are allows

experiments to be replicated by others. The article by Lapinski et al. (2019) is a good example of this,

using images as well as text to give indication of where the sensors are located on the chest, waist and

upper limbs [73]. Cottam et al. (2022) also provide a high level of detail, using specific anatomical

locations to describe the placement of each MIMU used [74].

2.3.5.2 Types of Measuring Systems Used and Evaluated Variables

The types of wearable systems used in the included articles is overwhelmingly dominated by IMU-based

technology, with commercial systems being favoured over those being built in-house, such as Lumo Run

(Lumo Bodytech Inc, San Fransisco, California, United States) [75–77], myoMOTION (Noraxon USA

Inc., Scottsdale, Arizona, USA) [70, 74, 78, 79] and Optimeye by Catapult (Melbourne, Australia) [80].

Pressure insoles from pedar (Novel GmbH, München, Germany) [65, 81–85] and loadsol (Novel GmbH,

München, Germany) [86, 87] were also investigated, as well as nanocomposite piezoresistive foam

(NCPF) sensors placed under standard insoles to also measure foot pressure [88]. In addition to this,

force sensing resistors [66, 89] and stand-alone accelerometers [88] were used to measure biomechanical

variables. A summary of these systems is listed in Table 2.4

Five articles used a combination of systems to increase the number of biomechanical parameters

measured. The Xsens Mtw Awinda system (Xsens Technologies B.V., Enschede, Netherlands) and

Noraxon MyoMOTION Research Pro system (Noraxon USA Inc., Scottsdale, Arizona, USA) were
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used by Cottam et al. (2022) in cricket [74]; Matsumura et al. (2020) used an IMU from Sports

Sensing Co. Ltd (Fukuoka, Japan) alongside the pedar system to observe ski movement [84]; and

nanocomposite piezoresistive foam (NCPF) sensors placed under shoe insoles were used in running by

Seeley et al. (2020) with accelerometers to estimate vertical ground reaction force (vGRF) [88]. Force

sensing resistors and IMUs were combined by Menzel and Potthast (2020) to measure punching force

and understand technique in boxing [66, 89].

Table 2.4: Measuring systems used in included articles to evaluate biomechanical parameters.

Sensor Category System Articles Included

IMU

Lumo Run 3 [75–77]
IMeasureU 4 [78, 90–92]
Dialog Semiconductor 1 [93]
Unspecified 6 [64, 67, 69, 72, 73, 94]
myoMOTION 4 [70, 74, 78, 79]
motusBASEBALL 2 [95, 96]
Wearnotch 2 [97, 98]
RunScribe 5 [99–103]
Xsens Mtw Awinda/MTi 2 [74, 104]
Xsens MVN Link suit 2 [85, 105]
Optimeye S5 (Catapult) 1 [80]
Physilog 2 [106, 107]
InvenSense 1 [108]
IMU (Sports Sensing Co) 3 [84, 109, 110]
BTS G-Sensor 2 1 [111]
WIBASE IMU 1 [112]
WIMU Pro (RealTrack Sys-
tems)

1 [113]

Movesense IMU 1 [68]
APDM Opal V2 inertial sen-
sors

1 [114]

MPU9250 IMU 1 [71]
miPod 1 [115]
iSensor 2 [116, 117]

MEMS Unspecified 1 [93]

Pressure Insoles
loadsol 2 [86, 87]
pedar 6 [65, 81–85]

Other
Force-sensing resistor 2 [66, 89]
Accelerometer (Bosch Sen-
sortec)

1 [88]

Nanocomposite piezoresistive
foam (NCPF) sensors

1 [88]

Within the inclusion criteria of joint, limb and trunk kinematic and kinetic outcomes being obtained

by wearable technology, a number of different variables were observed. The myoMOTION system

comprising 16 inertial sensors was used in table tennis to determine the sagittal plane angles of the

knee joints, as well as the shoulder, elbow and wrist of the playing hand [70]. The same system was

used to determine knee joint angles in speed skating by Tomita et al. (2021) but with eight inertial

sensors [79]; and also in cricket to capture global thorax and lumbar angles, thorax-to-pelvis relative
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angles, and lumbar-to-pelvis relative angles in all three planes of motion by Cottam et al. (2022) using

MIMUs placed on the pelvis, lower back and thorax [74].

The most popular systems reported are the pedar pressure insoles and the RunScribe sensors (San

Fransisco, California, United States), mentioned in six and five articles respectively. While the pedar

system was used in a number of different sports – tennis [82], basketball [81], skiing [65, 84], running

[83] and speed skating [85] – to measure outcomes such as force, mean and peak pressure at the foot

[82]; the RunScribe sensors were only used in a running environment [99–103]. This was to measure

ankle pronation excursion [99–103], maximum pronation velocity [100–103] and peak vGRF [103] using

a pair of sensors placed either on the heel of running shoes [99–102] or attached to the shoelaces [103].

Also in running, pelvic drop and rotation were evaluated with the Lumo Run sensors [75–77],

while sagittal plane kinematics of the left thigh were measured with the IMeasureU IMU (Auckland,

New Zealand) [91]. Physilog5 sensors (Gait Up, Lausanne, Switzerland) measured heel-strike pitch

and eversion [107] and the Movesense sensor was used to estimate vGRF [68]. This same metric was

estimated using the Xsens MVN Link motion capture system [105] and also by using the combination

of an accelerometer and novel NCPF sensors [88].

In skiing, normal GRF, and kinematics (flexion/extension, abduction/adduction and rotation) of

the knee, hip and ankle joints were quantified by Bessone et al. (2019) using the loadsol wireless insoles

[87]; while knee, hip and elbow flexion angles were calculated by Kim et al. (2019) and Choi et al.

(2021), both using the Wearnotch wearable motion capture system (Notch Interfaces Inc, Brooklyn,

New York, United States) [97, 98]. Inclination of the shank, thigh and trunk, in addition to hip and

knee flexion, were determined by Fasel et al. (2018) with Physilog IMUs [106].

Trunk-related parameters were evaluated in cricket with the Optimeye S5 sensors [80]; elbow torque

and shoulder rotation were investigated in baseball with the motusBASEBALL sensor (Motus Global,

New York, United States) (Camp et al., 2021)and IMUs [73]; and centre of pressure, punch force, wrist

trajectory and fist rotation were measured in boxing using force sensing resistors and IMUs [66, 89].

Swimming studies reported a range of parameters, including: lumbar rotation angles [116, 117] and

3D joint kinematics of the hip, knee and ankle [72, 104]. The APDM Opal V2 inertial sensors (APDM

Wearable Technologies Inc., Portland, Oregon, United States) were used to evaluate spine extension

and flexion for different gymnastics skills [114].

The impact of wearable technology and sensors on its users were considered in swimming and in

baseball [73, 108]. One sentence summarised that the Iswim system was not of any inconvenience to

the two recreational swimmers that wore it [108]. Lapinski et al. (2019) stated that their sensor system

was not designed to be used in baseball competition, acknowledging the constraints associated with

this, but that “after a few pitches the player “got used to it” and “did not feel it at all”.” [73].
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2.3.5.3 Testing Environment

Studies were conducted in a laboratory setting in four sports: boxing [66], cricket [74], tennis [82]

and running [68, 88, 90, 94, 102, 105, 107, 111]. All running studies in this environment took place

on an instrumented treadmill in order to validate the estimated GRF from the wearable technology.

The cricket study allowed the wearable systems from Xsens and Noraxon to be validated against the

Vicon motion capture system [74]. The study by Menzel and Potthast (2021) in boxing was also a

validation study, using Kistler force plates (Kistler Group, Winterthur, Switzerland) to validate Centre

of Pressure (CoP) measurements from an instrumented boxing glove [66]. The study by Chen et al.

(2019) in tennis was not used to validate any wearable technology [82]. Four studies did specify where

they were conducted. These were boxing [89], tennis [69], table tennis [71] and one baseball [64].

For those studies performed outside a laboratory, a distinction should be made between those that

used a normal training or race setting, and those where a specific protocol was developed to measure

biomechanical parameters. One study collected data during football matches [113], while in running

data collection took placed during training runs [76, 77] and marathon races [75].

2.3.5.4 Application of Technology

The applications of wearable technology considered in the earlier review by Adesida et al. (2019)

are still present in this selection of articles: characterising movements; quantifying skill level and

expertise of athletes; improving technique; and preventing injury [7], with more crossover between

these different applications. There are also studies designed purely to determine the accuracy of or

validate wearable technology [66, 95, 102, 105]. In swimming and basketball, the development of

technology was considered purely as a performance improvement tool [67, 72].

Injury prevention was the focus in a number of sports: plantar pressure was analysed in tennis and

basketball to determine the kinetic links to overuse injuries [81, 82], while knee internal rotation was

measured using sensors in speed skating as a predictor for anterior cruciate ligament (ACL) injuries

[85]. Different parameters were explored in running in relation to injury: sensors were used to predict

vGRF for running performance and injury risk [88]; kinematic differences were measured between men

and women to aid practitioners [111]; the effects of strapping and bracing on running biomechanics

have been measured [100]; and sensors have been used to determine the differences in runners with

and without chronic ankle instability (CAI) [99].

Studies aiming to classify differences in skill level between athletes recruited groups with at least

two types of experience levels. Wang et al. (2018) used three levels of athletes (professional, sub-elite

and amateur) to determine differences in accelerations obtained from the wrist in various badminton

strokes and be able to classify these levels using machine learning [93]. Sub-elite and amateur athletes

performed similarly to each other, while consistent differences were found in how professional athletes
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performed different badminton strokes [93]. Clermont et al. (2019) started with one cohort of runners

and were able to group them into two clusters based on measured biomechanical variables (including

pelvic drop and rotation) that were linked to performance level, with one cluster running more consis-

tently in the second half of a marathon than the other, in which runners displayed a more “atypical”

approach [75].

Two groups with athletes of different performance levels were studies in skiing [84, 97, 98] and

boxing [89]. In boxing, statistically significant results were determined between experienced and non-

experienced athletes in rotation around the sagittal axis in the cross, hook and jab punches when the

fist moved from a defensive position to a target [89]. Using IMUs in skiing, Choi et al. (2021) quantified

the motions of national and college-level skiers, with the national-level skiers having greater flexion

angles at the hip and knee joints, allowing them to achieve higher speeds than their counterparts [97].

The effects of different environments and equipment have been investigated, particularly in running.

Foot strike patterns while wearing minimalist and traditional running shoes were compared by Jandova

et al. (2018), with traditional running shoes being linked to lower peak pressure and deemed better

for people with foot pain [83]. The RunScribe sensors used by Hollis et al. (2021) were able to identify

changes in maximum pronation velocity and excursion as a result of running on track and grass surfaces

and at different speeds, with both parameters increasing with speed and on the harder track surface

[101].

Live feedback was employed by Li et al. (2020) in swimming for technique improvement, with

the Iswim system recording information on medial-lateral rotation (or roll) angles and audio feedback

provided through the use of bone conductors [108]. Feedback to swimmers improved the left side rolls

by 29.64% and 17.67% for two athletes, with retention tests showing improvement of 27.86% and 4.68%

when compared to no feedback [108].

2.3.6 Discussion

This review set out to determine the application of wearable technology in sport to measure biome-

chanical parameters. Systems used to measure kinetic and kinematic parameters in 14 sports included

inertial based sensors, pressure insoles and resistor-based technology. The common themes established

were characterising movements, quantifying skill level and expertise of athletes through technique; and

injury prevention.

2.3.6.1 Article Quality

As highlighted in the review by Adesida et al. (2019), the amount of detail provided by authors in this

set of included articles regarding methods and participants is variable [7]. When stated, participants

ranged from novices or beginners [64, 89, 93, 116] to elite level athletes [72, 73, 86, 93, 107, 114]. A

range of participants is important, especially when it comes to skill level quantification, however it is
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important that the study population is reflective of the intended user of the wearable technology as

movement patterns will differ [30]. Elite athletes are better for observation when looking at performance

related metrics, while having a healthy and injured cohort is important for studying differences between

the two groups, as in the study by Colapietro et al. (2020) [99]. Cohort sizes ranged from 1 [64–67] to

100 [68] which is important to note, as lower numbers can lead to population bias in the results.

There were also studies lacking appropriate descriptions of the tasks performed by the participants

[71, 72] which makes it difficult for them to be repeated by other researchers and confirm the original

results. The same can be said about reporting on sensor location as this also affects the ability

of experiments to be replicated accurately. Especially in the case where multiple IMUs are used -

as anatomical landmarks are specifically chosen for sensor placement in order to reconstruct human

motion and trajectories – not knowing these locations can have a negative impact on the accuracy and

reliability of the reconstruction [118].

2.3.6.2 Wearable Systems Used

Predominantly inertial sensors were used in the included articles, with commercial systems popular

amongst investigators. The most popular were the pedar insoles and RunScribe IMUs, although as

the name suggest RunScribe was only used to measure parameters in running [99–103], while the

pedar system was used in five sports [65, 81–85]. Another example of a sensor system being used in

multiple sports is myoMOTION, utilised in four different sports [70, 74, 78, 79]. Having a wearable

technology that transcends sports increases its utility, however, how data is interpreted and the reported

metrics will differ between sports. Users outside of a research environment should have confidence that

any technology they use, especially the non-sport specific ones, are able to provide them with useful

information to help monitor technique and performance.

Only two articles in this updated review used the Xsens MVN Link system comprising a full body

suit into which inertial sensors are embedded [85, 105], compared to seven in the review by Adesida

et al. (2019) [7, 34, 37, 38, 46, 48, 49, 119], suggesting that they are becoming less popular as a

measurement tool. Although these suits allow many inertial sensors to be embedded for full body

monitoring, in practice these suits would interfere with normal clothing worn in the sports of running

[105] and speed skating [85]. Furthermore, they may not be very comfortable for long durations or

aerodynamic, which is not suitable for training or competition environments. Fewer, more compact

sensors that provide the same metrics would be able to overcome this problem.

A combination of wearable systems was used in cricket [74], skiing [84], running [88] and boxing

[66, 89] – the advantage of this is that you can obtain both kinetic and kinematic outcomes as in

the case of skiing and boxing [89]. However, collecting data from two different sources can increase

processing and analysis times. Again user comfort must be taken into consideration – it can lead to

potentially more interference (whether that be weight or size of the sensors) with their movement,
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which can have a negative impact on their performance.

Although inertial sensors and pressure insoles have been used in the majority of these included

articles, novel technologies are emerging, such as the nanocomposite piezoresistive foam (NCPF) sensors

tested by Seeley et al. (2020) for predicting vGRF in running and placed inside running shoes [88].

Low-profile, lightweight systems such as these can replace the pedar and loadsol systems, however

there is still developmental work to be done with regards to accuracy as reported by the authors.

For predictions of vGRF impulse and active peak vGRF, per cent error was low at 2-7% and 3-7%

respectively, but high for vGRF load rates at 22-29% [88], which currently is not suitable to replace

other available systems.

As well as considering the design and accuracy of different technologies, the cost must also be taken

into account. At the lower end, the Movesense Developer Kit 2.0 (containing one sensor and a number

of attachment options) retails at e149 [120], while the RunScribe Red Gait Lab technology retails at

$599 for only foot-related metrics and two sensor pods, and $799 for foot and sacral-related metrics

and three sensor pods [121]. A subscription model is offered by IMeasureU of different tiers: the basic

plan includes two sensors, offers a basic level of support and metrics but not real-time feedback, and

costs $6600 per year [122]. While an individual may be able to afford a one-off payment of $799 for the

RunScribe sensor set, the IMeasureU system is not geared at every day athletes, but rather teams or

elite groups that have the money to invest into gathering data in this way. The cost of technology can

be quite prohibitive, and only allows a small number of people to utilise it, which is not representative

of the wider sporting population.

Understanding the unobtrusiveness of a wearable system is also a key factor – a good indicator

of this is monitoring an athlete during training or competition. This is because athletes may expect

discomfort from sensors in a laboratory setting or their range of motion to be affected, but would

not necessarily put up with this when actively practising their sport [7]. Although participants in

swimming and baseball studies were stated as not experiencing any inconvenience or grew accustomed

to wearing sensors [108], being able to quantify any motion differences with and without sensors would

give an understanding of whether they have an impact on any performance parameters or biomechanical

movements.

2.3.6.3 Testing Environment

The majority of included studies took place outside of a laboratory setting – 11 studies stated that

they were conducted in a laboratory [66, 68, 74, 82, 88, 90, 94, 102, 105, 107, 111] – but very few

took place during an actual training or race environment [75–77, 113]. Laboratories are great for

validation studies to test the accuracy of wearable technology, but a real-sporting environment is

better for understanding kinetic and kinematic factors that relate to performance and injury, and a

training session or competition come at the top of this hierarchy. The study conducted by Fantozzi
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et al. (2016) is an example of this, where swimmers simulated the swimming stroke on dry land

with their pelvis, trunk and upper limbs suspended horizontally while their lower limbs were held

down on a box, but this altered their biomechanics [36]. Conditions in an outdoor environment can

be unpredictable, so in sports such as running where this can influence biomechanical motions, it is

important for wearable technology to be tested in this environment to determine kinematic and kinetic

measures more accurately [7].

A change in surface is an example of how running biomechanics can be altered, with stiffer surfaces

leading to a higher foot rotation [101, 115]. The ability to quantify water flow or wind resistance can

provide useful information when assessing outdoor biomechanics. Increased wind resistance can lead to

a cyclist adopting a more aerodynamic position in order to cut a smaller hole in the wind, sometimes

at the expense of power output. Rowers may adjust stroke rate or power application in order to

adapt to different water flow conditions. Awareness of what is happening in the environment can aid

understanding of why athletes sometimes adapt their own technique from what may be considered as

typical.

2.3.6.4 Applications of Wearable Technology

There are a number of applications of wearable technology in sport to measure kinetic and kinematic

parameters, with the following reported in this study: injury prevention; skill level quantification;

technique improvement; and movement characterisation. Sensors were used by athletes of different

levels, from novice to elite, which implies that they have a benefit to everyone and not just those

looking for marginal gains.

Injury prevention is an important theme to consider within this field, the cost of athletes missing

out on training or competition due to injury can be high (whether that is financial or emotional), as

well as the physical harm done by the injury itself. The use of technology is able to provide objective

and quantifiable evidence for movement patterns that could lead to acute or overuse injuries. This

can supplement the anecdotal advice that often forms the basis for injury prevention, which includes

stretching and strength training [123]. Colapietro et al. (2020) observed lower pronation excursion

in runners with chronic ankle instability (CAI) which became more prominent with increased running

distances [99]. This kind of information provided by the RunScribe sensors can influence rehabilitation

protocols and monitoring, increasing the ability to identify someone who may suffer from CAI.

Being able to classify skill level of athletes and identify movement patterns associated with each

group can be useful for the athletes themselves and also for the coaches. Identifying that professional

badminton players have markedly different wrist accelerations [93] can help coaches upskill athletes

not already at this level, providing coaching points to aid them in improving their technique. The

quantification of a movement and linking it to performance parameters, as done in skiing with hip and

knee flexion and speed [97] can help athletes buy into making a technical change if they can understand
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what the desired outcome is.

In the case of technical improvement, live feedback is more beneficial than feedback after the fact,

as trialled by Li et al. (2020) [108]. A minimum of 17.67% improvement in left side rolls with audio

feedback compared to no feedback is significant [108], however a small sample size of two recreational

athletes is not suitable to come to a valid conclusion about the influence of this system. A larger

cohort, and working with athletes of different experience levels would be helpful in understanding the

best target audience for the Iswim system. Offering some type of feedback – whether that is audible,

vibratory or visual – is useful for athletes as it allows them to make biomechanical changes even if they

do not have a coach present.

2.3.7 Limitations

There are limitations that arose when conducting this review, the first being that it was limited to

seven databases, which although returning a high number of results, may have omitted articles from

sport-focused journals. The choice of search terms and inclusion criteria, focusing on specific kinetic

and kinematic parameters, will have had an impact on the number of articles included. However,

with the rapid expansion of the wearable technology field, narrowing the focus slightly allows a deeper

investigation to take place. The search terms and criteria were also guided by previously published

reviews with a similar interest [7].

2.3.8 Conclusions

The use of wearable technology in sport to measure kinetic and kinematic parameters is a field that is

continuing to grow. The emergence of commercially available sensors in running that can be used by

individuals and not just research groups is aiding the translation to the wider population.

Inertial measurement units are still the most common type of device being used across differ-

ent sports, however the utility of force-sensing resistors and piezoresistive technologies are also being

investigated as an alternative to the inertial sensors. These devices were reported in a number of appli-

cations such as quantifying skill level, characterising movement and preventing injury – these all have

the potential to improve athlete technique and influence coaching practices. Using wearable technology

for long-term monitoring can aid rehabilitation protocols and serve as an early-warning system, as it

allows athletes, coaches and support staff to observe biomechanical risk factors over time.

A primary advantage of using wearable technology is that it allows athletes to be monitored in

their sporting environment and not in a laboratory. Many studies have been conducted outside of a

laboratory, but few are being conducted in training or competition, which is the environment that

would provide the most accurate measurements of biomechanical parameters.

There is scope for wearable technologies to be used more outside of a research environment, however

the cost is still prohibitive and the comfort of these systems must also be significantly considered for
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there to be a wider uptake.

2.4 Gap in the field - rowing and cycling focus

From the articles included in the systematic review, it is clear that some sports have had more research

concerning the use of wearable technology to measure biomechanical parameters. One article discussed

the use of inertial sensors to monitor femur and lower back kinematics in rowing [40], while cycling

was not mentioned in any. Since the completion of this systematic review, a validation study has been

published, investigating the LEOMO system (TYPE-R, LEOMO, Boulder, CO, USA), made up of

IMUs, to measure kinematic variables in cycling [124]. However there is still a clear gap in measuring

biomechanics in this way compared to sports such as running. Rowing and cycling were therefore

chosen to give this project a focus and determine how the impact that wearable technology can have.

2.4.1 Current Uses of Technology

Technology is very prominent in these two sports, which is promising for introducing something new

to athletes and coaches. However, this is generally featured as equipment modifications or the use of

computers that can measure a range of metrics from power to cadence, or stroke rate to stroke length.

2.4.1.1 Rowing

In rowing, a vast amount of research has been conducted in laboratory environments. Concept2

(Nottingham, UK) ergometers have been modified with the addition of load cells in the handle to

measure the force of the arm pull [125, 126]; further load cells or strain gauges on the foot stretcher to

measure foot reaction forces, torques and asymmetries [125, 127]; and incremental encoders to measure

stroke length and seat position [125]. A combination of four load cells placed under the sliding seat on

the ergometer have also been used to measure centre of pressure and the force magnitude on the seat

[128].

The Flock of Birds (Ascension Technology Corporation, Shelburne, USA) motion capture system

comprises electromagnetic receivers that are connected to a control unit by a long cable and has been

used to measure the motion occurring in the lumbopelvic region of rowers [129, 130] alongside capturing

data from the various load cells on the ergometer. Similarly, the optical system Optotrak Certus (NDI,

Ontario, Canada), comprising of 14 active infrared light-emitting diode (LED) markers, has been used

alongside kinetic measures to obtain angles of the hip, knee and ankle during the rowing stroke [125].

Both the sensor and marker based systems have been instrumental in improving the technical

aspects of rowing, striving for those marginal gains in performance while minimising the injury risk

to athletes, especially in a high performance environment. The problem is that they are constrained

to indoor environments due to the bulky nature of the sensors and receivers or the multiple camera
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set-up. Using the SIMI motion analysis system, Geng et al. (2012) observed that there was a 60-80%

similarity between the kinematics of ergometer and on the water rowing. Differences were observed in

the drive length and stroke rate but handle acceleration profiles were similar [131]. There is also the

added instability of being in a boat that can alter an athlete’s biomechanics.

Outdoor solutions consist of strain gauges and load cells placed on oarlocks, oars and footplates.

These form telemetry systems that are able to measure handle force, foot force and blade angles.

BioRowTel (BioRow, Cambridge, UK), Powerline (Peach Innovations, Cambridge, UK) and SmartOar

(SMART Tracker, B.T.S., Milan, Italy) are examples of such systems that have been used on the water

to calculate kinematic differences between elite and sub-elite level rowers [132]. However these systems

do not provide outputs related to the body positions that athletes put themselves in, and measures of

these motions is needed to maximise an athlete’s potential on the water, creating the need for wearable

sensors that can do so.

2.4.1.2 Cycling

The cycling landscape is quite similar to rowing in terms of technology usage, however where it is

clear how technique can improve performance in rowing, Turpin and Watier (2020) state “the links

between technique and performance are poorly understood” in cycling. The same power output can

be produced from various combinations of different factors such as joint torque, trunk position and

whether a cyclist is seated versus standing [133]. No one factor solely contributes to power output,

leading to this statement from the authors.

Looking at indoor environments, bike-fitting is a process in cycling that involves setting up a bicycle

to an individual, usually to increase comfort and/or aerodynamics. Systems such as Vantage 3D motion

capture system by Retül (Boulder, CO, USA) offer dynamic measurements of joint angles [134], with

this particular system using LED markers placed on anatomical points on the body which are tracked

by a camera. Wadsworth and Weinrauch (2019) consider how bike-fits can be used to aid cyclists with

hip pain which can be caused by different kinematic motions [134]. Posterior pelvic tilt, pelvic rocking

and knee external rotation can be associated with a saddle and handlebars that are too low and a

crank length that is too long, contributing to this hip pain [134]. Adjusting these components can be

a start to eliminating the hip pain felt by cyclists.

On the bike, sensors that measure cadence and power are hugely popular and are used by recre-

ational cyclists up to elite level athletes. Power meters contain strain gauges that are incorporated into

pedals, cranksets or wheels, with many having the ability to be used interchangeably across different

bikes and allow cyclists to track workloads and monitor their training [135]. As already highlighted,

the LEOMO system has the potential to take some of these measurements outdoors, with some Motion

Performance Indicators listed on their website as torso angle, pelvic angle and pelvic rotation, but does

not include measurements of the knee joint angle that is widely used in bike set-up [136].
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2.4.2 Movement Patterns

Both cycling and rowing are sports made up of a repetitive movement: there is minimal upper body

movement in cycling, while in rowing the torso and upper limbs do have some contribution to moving

a boat through the water. The forwards movement of a bicycle or a rowing boat are primarily driven

by the lower-body, with the hip, knee and ankle joints going through a cycle of flexion and extension.

In rowing the lower limbs move together in phase, while in cycling they are out of phase with each

other. In both sports it is important to optimise this movement pattern that is continuously repeated,

not only to improve performance, but to minimise the impact of an injury.

The knee joint and its movement in the sagittal plane is able to influence how boats and bicycles

are set up and can link to performance indicators. The knee angle range has value in bike fitting as this

can be used to set saddle height, not only to help prevent knee injuries which are the most common

overuse injury in cycling, but to improve power output and therefore performance [136]. Being able

to measure this in a dynamic situation is important compared to measuring the knee angle while the

joint is static – once the pedalling motion starts to take place, increased plantar flexion will increase

the knee angle, with more variation among novice cyclists [137]. This will therefore provide a better

indicator of the motion that will take place on the bike away from the fitting process.

In rowing, the knee is also a common site of injury [138] often as a result of equipment set-up or lack

of mobility that causes the knees to track out of the sagittal plane, as well as the knee going through a

substantial range of motion in each stroke, from near-maximal flexion to full extension. Some athletes

exceed this range of motion, for example by hyperextending the knee joint, increasing the forces it is

already subject to. With regards to performance, the rate of knee extension during the drive phase of

the rowing stroke (which contributes to the forward propulsion of a boat) has links to the force output

on the foot-stretcher: a higher rate of knee extension increases the horizontal force output [139]. Being

able to measure this rate of knee extension, and the joint angles during this movement can inform the

power production and allow comparisons to be made between different rowers.

2.4.3 Research Focus

Rowing and cycling have performance improvement and injury prevention metrics associated with

the knee joint that are not currently being measured by wearable technologies. Although IMUs are

popular and have high accuracy, the limitations associated with cost and signal processing suggest that

an alternative solution is needed. By focusing on the knee joint, strain sensors can be explored as a

low-cost alternative to IMUs, assessing their feasibility and utility in measuring range of motion.
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Chapter 3

Sensor Development

Fabrication, development and optimisation of carbon nanotube-rubber composite strain

sensors

3.1 Introduction

Flexible and conductive strain sensors were fabricated in this project, with the aim of using them to

monitor knee kinematics during sporting activities such as rowing and cycling. These sensors were

created using a commercially available rubber band matrix and a conductive, multi-walled carbon

nanotube (MWCNT) filler. The sensors are piezoresistive in nature: applying mechanical strain to

the sensor causes a change in electrical resistance. On a microscopic level, there is separation between

the conductive elements with the application of strain, contributing to an increase in the overall

resistance. There is also a tunnelling effect that contributes to the overall resistance change. Tunnelling

describes the transfer of electrons through a non-conductive barrier, such as a polymer matrix, between

neighbouring nanoparticles and is best described by Simmon’s theory for tunnelling resistance [140].

These resistance change contributions can be measured as a potential difference by means of an external

instrumentation circuit, thus permitting assessment of movement.

The method used for fabricating strain sensors involved preparing a conductive filler dispersion, into

which swollen rubber bands (expanded with toluene, a solvent) were placed. The nanotubes entered the

rubber band pores via a solvent exchange process, before the rubber band was removed and left to dry.

A range of dispersions (carbon nanotubes (CNTs) and graphene) and concentrations were employed

until an effective selection of materials was found, providing the optimal amount of conductive filler

element uptake from visible inspection and verified using scanning electron microscopy. Keeping the

cost of fabrication down while ensuring the method was simple and repeatable was of great importance.

This chapter provides an overview of strain sensors, their different classifications and the strain-

response mechanisms that can influence material choice and sensor design. There is also a review of the

different polymer matrix and nanomaterial filler combinations that have been investigated in previous
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literature, before detailing the optimisation of the fabrication process used in this project; investigating

the use of different conductive fillers and the concentration of such fillers.

3.2 Literature Review

3.2.1 Strain Sensor Technology

Strain-sensing devices convert an external mechanical deformation produced via a force or temperature

variation into a change in electrical properties (for example resistance or capacitance) that can be

measured. These devices can be split into strain gauges and strain sensors. They differ in both material

choice and deformation response mechanisms, although the terms have been used interchangeably in

the literature [141, 142].

3.2.1.1 Limitations of Strain Gauges

Strain gauges are typically made from metal foils or semiconductors such as silicon. Examples of use in-

clude structural health monitoring, characterisation of structures and detecting damage in engineering

fields. There are numerous advantages such as fabrication costs being low and the fact that the tech-

nology is well developed [143, 144]. Strain gauges rely on geometrical changes and the piezoresistivity

of their component materials in order to generate an electrical signal during deformation [140].

However, strain gauges are generally limited to strain measurements below 5% and are rigid struc-

tures, making them unsuitable for detecting human motion and wearable electronics [145, 146]. Sensors

for these applications need to be stretchable and have the ability to conform to different shapes [146].

Strain gauges require extensive cabling and can be difficult to embed in some structural materials

[144, 147]. Furthermore, measurements of strain with strain gauges are unidirectional, and the gauge

can be subject to transverse sensitivity if used in a biaxial strain field [148]. Strain gauges are only able

to provide localised information with regards to strain measurements [149]. They are also susceptible

to changes in temperature and humidity, however these can be overcome using a Wheatstone Bridge

circuit configuration [150, 151].

3.2.1.2 Strain Sensors

In contrast to strain gauges, strain sensors tend to be made of softer and more robust materials (often a

nanomaterial-polymer composite), resulting in more applications and the ability to withstand a higher

amount of strain before structural failure compared to their brittle strain gauge counterparts [152].

The mechanisms involved to generate a change in electrical properties also differ: strain sensors utilise

the tunnelling effect, crack propagation in thin films and the disconnection between sensing elements

[140], allowing more tuning of properties.
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It is understandable why there is a driving force behind research into strain sensors, particularly

those that can be worn on the body. Traditional electronics based on silicon or metals do not deform

appropriately in this kind of application [153]. Wearable strain sensors are rising in popularity across

different applications including human motion detection; healthcare monitoring; soft robotics and

neuromechanics; gaming and virtual reality; and sport performance monitoring due to their ability to

interact easily with the human body [140, 152]. There is little evidence surrounding the use of strain

sensors in sports with regards to joint measurements, but cues can be taken from healthcare where

there is an overlap between aims such as long-term, remote and unobtrusive monitoring.

Strain sensors can be organised into different classifications which determines material choice and

the sensing mechanisms involved. Previously, authors highlighted resistive and capacitive strain sensors

being the most popular for wearable applications, with other types having poor dynamic performance

and low resolution [140, 154]. A few years after this statement, the most researched sensing methods

in the stretchable strain sensor field have expanded to optical, resistive, capacitive, triboelectric and

piezoelectric [152], indicating how progressive the field is.

Several authors have discussed the important design parameters that should be considered when

developing wearable strain sensors: they should be lightweight and have low power consumption, in

addition to flexibility, stretchability and durability, as stated by Amjadi et al. (2016) [140]. Souri et

al. (2020) also discussed sensitivity (as quantified by the gauge factor, GF); linearity of the response

(quantified by the coefficient of determination, R2); hysteresis; response and recovery time; and over-

shoot behaviour [152]. The sensing classification and the sensing mechanisms, as well as the choice of

materials used will impact these parameters and there may also be a trade-off, e.g. favouring sensitivity

over linearity, when developing new sensor technologies [152].

3.2.2 Sensor Classifications

As discussed in the previous section, there are a number of different classifications of strain sensors. A

summary of the advantages and disadvantages of these is displayed in Table 3.1, which also includes

important design and performance parameters. Piezoelectric and triboelectric sensors are relatively

new technologies compared to resistive, capacitive and optical sensors and so the literature around

them and their application as strain sensors is not as extensive.

3.2.2.1 Resistive Sensors

For resistive-based sensors, structural deformation will lead to a change in electrical resistance and this

mechanism is known as piezoresistivity. Resistance, R, is given by the following equation:

R =
ρL

A
(3.1)
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Where ρ is the electrical resistivity of the material, L is the length of the sensor and A is its

cross-sectional area. The relative change in resistance after deformation, ∆R/R, is calculated as:

∆R

R
= (1 + 2υ)ε+

∆ρ

ρ
(3.2)

Where υ is Poisson’s ratio and ε is strain. The first term is linked to the geometrical changes

of the sensor and their influence on the change in resistance, while the second term describes the

piezoresistivity of the materials themselves [140]. The piezoresistivity of the materials have little

effect, therefore the main contribution to the overall resistance are the geometrical changes of the

sensor [14].

Figure 3.1: Schematic of the resistive sensing mechanism and the change in conductive network when strain
is applied.

In this class of sensors, piezoresistive conductive polymer composite (CPC) based strain sensors

are very popular due to their simple configuration, fabrication process and read-out system, as well as

demonstrating high flexibility and stretchability [14]. Stretching these sensors will increase the separa-

tion between these conductive elements (e.g. carbon nanotubes) and increase the overall resistance of

the sensor, as demonstrated in Figure 3.1. Upon recovery, the resistance should return to its original

value, however resistive sensors are subject to hysteresis which can affect the reported outputs over

time [152]. The high stretchability associated with these sensors allows them to be applied in wearable

electronic devices that are used for healthcare and human motion monitoring, as well as structural

damage monitoring [14, 152].
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3.2.2.2 Capacitive Sensors

Capacitive sensors are based on a parallel-plate capacitor structure. Capacitors are devices that store

electrical energy and a parallel-plate capacitor will consist of two electrically conductive plates (usually

metallic although for stretch sensors this could be a polymer/nanomaterial composite), separated by a

dieletric material which is electrically insulating and can exhibit an electric dipole structure (separating

positive and negative charged dipole moments) in the presence of an electric field [155].

Figure 3.2: Schematic of the capacitive sensing mechanism and the change in sensor dimensions when strain
is applied.

A geometrical effect comes into play with this sensing mechanism – when a capacitive sensor is

stretched, the change in surface area and reduction in thickness of the dielectric layer will cause a

change in capacitance, C, a measure of the amount of charge stored on one of the plates (see Figure

3.2). The original capacitance of the sensor at rest, C0, can be represented by the following equation:

C0 = ε0εr
l0w0

d0
(3.3)

Where ε0 is the permittivity of a vacuum, εr is the relative permittivity of the dielectric material,

and the original length, width and thickness of the dielectric layer are given by l0, w0 and d0 respectively.

The application of strain, ε, will increase the length of the capacitor, and the thickness and width will

decrease according to the material’s Poisson’s ratio, υ. The capacitance after stretching, C, would

therefore be:

C = ε0εr
(1 + ε)l0(1− υelectrode)w0

(1− υdielectric)d0
(3.4)

Assuming that the conductive plates and dielectric layer have the same Poisson’s ratio, then Equa-

tion 3.4 can be simplified to:

C = ε0εr
(1 + ε)l0w0

d0
= (1 + ε)C0 (3.5)
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Equation 3.5 shows that the capacitance of a capacitive strain sensor increases linearly with respect

to strain but it is only limited to a certain amount of strain, past which the linear relationship between

the Poisson’s ratio is no longer valid [140].

The sensitivity of these sensors is limited due to the parallel-plate structure, with the best theoret-

ical gauge factor being 1, however investigation into different structures such as a wrinkled capacitor,

has enabled a slightly higher gauge factor of 3 to be achieved [156]. Similar applications are seen with

capacitive sensors as with resistive sensors: measuring physiological parameters and body movements

are possible as a result of their compatibility with soft materials and easy electronic read-out [152, 157].

3.2.2.3 Optical Sensors

Optical sensors have the potential to overcome the trade-off between sensitivity and stretchability that

can be encountered with some resistive and capacitive based sensors, and they do not suffer from

electrical safety issues [158]. They are also small, lightweight, biocompatible, have a large bandwidth,

are not subject to electromagnetic interference [159] and can be used in harsh environments such as

those that are corrosive or of high temperature [160]. As a result, fibre optic sensors were introduced

in the 1960s and have been used for in vivo measurements in humans to study bones and muscles since

the 1980s [161].

Figure 3.3: Schematic of the optical sensing mechanism and change in transmitted and reflacted light due to
the fibre Bragg grating.

For wearable applications, the use of silica fibres in conventional optical sensors is not appropriate

as a result of their high stiffness and maximum strain of 1% [162], however several types of optical-

based strain sensors have been used in wearable applications [163]. These include a gold nanoparticle-

elastomer composite, a notched side-ablated polymer optical fibre on a fabric substrate, a plastic optical

fibre (POF), a fibre Bragg grating (FBG) and a side-polished FBG [163].
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FBG are the simplest type of optical sensors and work through the wavelength modulation of light

[161]. Within the core of an optical fibre are diffractive elements that act like filters when a light packet

enters the fibre and reflects the light back according to the Bragg relation [162]:

λB = 2neffΛ (3.6)

Where λB is the Bragg wavelength, neff is the effective refractive index of the fibre core and Λ

is the grating period or spacing between diffractive elements. When the optical fibre is strained the

spatial period is changed, shifting the Bragg wavelength, which can be converted into a measure of

strain [164]. Figure 3.3 provides a schematic of the change to incident light when using a FBG.

In the context of human monitoring, FBG optical sensors encased in polyvinyl chloride (PVC) have

been used to monitor knee joint motion during gait cycles [165] and more recently a highly flexibile

POF sensor has been used to monitor wrist joint motion to aid rehabilitation following a stroke, with

low errors in angle measurement [163].

While these sensors can demonstrate flexibility, they are limited by their stretchability. FBG sensors

are only able to reach a maximum strain of about 10% [143]. Furthermore, optical sensors are more

difficult to integrate with existing software and hardware, leading to an additional cost when using

this type of sensor [166].

3.2.2.4 Piezoelectric Sensors

Piezoelectric sensors rely on the use of materials that contain a non-symmetrical distribution of elec-

trical charges within the crystal structure. These charges, or dipole moments will normally cancel each

other out, but the application of stress or strain will deform the structure and result in a net electric

charge that can be measured (see Figure 3.4). Lead zirconate titanate (PZT) is the most well-known

of the piezoelectric materials but is brittle and is cause for concern with regards to safety with the

incorporation of lead [167].

Research into polymer-based piezoelectric materials such as polyvinylidene flouride (PVDF) has

increased in order to expand the application of this class of sensors. The fabrication processes are of

a lower cost and can take place at a lower temperature [168].

Chen at al. (2017) has been able to overcome the limited stretchability that some sensors face, using

a BaTiO3 and polydimethylsiloxane (PDMS) composite structure, demonstrating lateral stretching up

to 60% and the ability to monitor different human physiological functions [169]. Most applications of

piezoelectric sensors focus on energy harvesting: converting applied mechanical energy into electrical

energy. This means that devices can be self-powered, but there is little surrounding the use of these

sensors as a mechanism for measuring strain in relation to human kinematics.
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Figure 3.4: Schematic of the piezoelectric sensing mechanism and the separation of charges when strain is
applied (direct effect).

3.2.2.5 Triboelectric Sensors

Like piezoelectric sensors, triboelectric sensors are also self-powered and so not limited by their lifetime

or mobility like other sensing mechanisms [170]. Triboelectric nanogenerators (TENGs) instead utilise

mechanical energy from the surrounding environment [170]. The working principles of TENGs combine

triboelectrification and electrostatic induction, mechanisms that are normally avoided in everyday life,

and utilise common materials such as paper, fabric and different polymers [171].

Figure 3.5: Schematic of the various triboelectric sensing modes: a)vertical contact-separation mode, b)
contact-sliding mode, c) single-electrode mode and d) freestanding triboelectric-layer mode.

The triboelectric effect is a phenomenon by which a material becomes electrically charged after

coming into frictional contact with a different material [172]. An example of this is a balloon sticking

to a wall after becoming triboelectrically charged from being rubbed on hair [173]. Materials can be

ranked in a triboelectric series and the greater the separation between their rankings in this series,

the more effectively charge can be transferred between the two materials [172]. Electrostatic induction
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takes place when there is a redistribution of charges in an object as a result of nearby charges.

There are two factors that contribute to the current, I, generated during mechanical compression,

and can be explained by the following equation [174]:

I = C
δV

δt
+ V

δC

δt
(3.7)

Where C is the capacitance of the system, V is voltage across the electrodes and t is time. The

first term corresponds to the electrostatically induced charges and the potential drop between the

electrodes, while the second term corresponds to the change in capacitance as the distance between

the electrodes is reduced during compression.

The four modes of TENGs that were invented by Wang et al. (2014) will vary in how much

these terms contribute to the overall current. They are: vertical contact-separation, contact-sliding,

single-electrode and freestanding triboelectric-layer mode [171], as presented in Figure 3.5. Each has

two electrodes apart from the single-electrode mode. Except in the case of the final mode, electrical

charges are generated by contact and friction between different materials which has a downside in that

this requires materials to be highly durable to withstand constant friction.

Another disadvantage is that for a common phenomenon, it is not one that is well understood.

Contradictory triboelectric series have been published over time, and also researchers do not yet have

a complete understanding of the species that transfer charge between materials [173]. TENG sensors

have been demonstrated to detect finger bending which can be quite a low frequency movement [175],

but the magnitude of the electrical output changes with bending frequency as well as strain [174],

increasing the complexity of calibration if the same sensor were to be used for a higher frequency

movement.

3.2.2.6 Classifications Summary

The requirements for the use of strain sensors to measure sports kinematics are a dynamic response

capable of capturing high-speed motions, ideally with a quick response time; long-term durability so the

sensor can withstand repeated use; high stretchability and a large working range. An overview of these

properties are listed in Table 3.1 for each sensor classification. Optical sensors fall short on a number

of these parameters, coupled with the additional cost of integrating the sensors with existing software

and hardware. Although piezoelectric and triboelectric sensors are self-powered, they are limited in

their ability to sense static loads – in human monitoring it is important to be able to distinguish when

someone is holding a position, at rest, or in motion. This leaves resistive and capacitive-based sensors

as the classifications of choice.

There is no clear-cut choice between the two remaining classifications. Resistive-based sensors offer

high sensitivity and stretchability at the expense of linearity and non-hysteretical behaviour, while ca-
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Table 3.1: Advantages and disadvantages of different sensing classifications.

Sensing method Advantages Disadvantages
Resistive High gauge factors achievable [152] Generally non-linear output [152]

High stretchability and sensitivity
[152]

viscoelastic behaviour of substrates
contributes to hysteresis [152]

Easy and low cost fabrication [14] subject to high overshoot [152]
Simple read-out and uncomplicated
sensor configuration [14]

Capacitive Higher linearity (compared to resis-
tive sensors) (Souri et al., 2020b)

Maximum theoretical gauge factor
= 1 (for parallel-plate structure)
[152]

Show less hysteresis than other
methods (resistive and optical) [152]

Poor sensitivity [152]

Faster response time [152]
Simple readout [152]

Optical Higher linearity (compared to resis-
tive sensors) [152]

Poor dynamic performance [152]

Negligible hysteresis [176] Long response time [152]
Good environmental stability (tem-
perature, humidity) [176]

Poor long-term durability [152]

Fibre Bragg Grating sensors limited
to maximum strain of about 10%
[143]
Difficult to integrate with existing
software and hardware [166]

Piezoelectric High sensitivity and fast response
when detecting mechanical defor-
mations [177]

Poor ability to sense static loads
[178]

Can convert mechanical forces di-
rectly into electrical signals [177]

Little information regarding kinet-
ics monitoring

Triboelectric Can convert mechanical forces di-
rectly into electrical signals [179]

Poor ability to sense static loads
[178]

Easy assembly, low cost and high
output voltage [179]

Residual charges at high frequencies
[174]
Output affected by humidity levels
and ionic particles [180]
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pacitive based sensors provide better linearity and minimal hysteresis, however, compromise sensitivity

and stretchability. Many resistive sensors have linear output regions that surpass the required working

range for measuring joint range of motion [181, 182]. Furthermore, Shintake et al. (2018) highlight

that the majority of the literature does not compare how the two classifications respond to strain rate

and temperature [183], which are also important factors to consider in a sporting context, and so no

distinction can be made here.

All considered, resistive-based sensors are able to provide the high stretchability and sensitiv-

ity needed to detect joint motion and accurately distinguish between different joint positions that

capacitive-based sensors cannot, suggesting that they are more suitable for this type of application.

3.2.3 Strain Sensor Performance Parameters

When developing sensors for long-term joint measurement, stretchability, durability and stability of

the sensor output are very important parameters to consider, among others. Each of these can be

affected by the fabrication process, the sensor microstructure and also sensor classification.

Stretchability is defined by Souri et al. (2020) as “the maximum strain where the sensor maintains its

physical integrity and response stability” [152] and it can be improved by using high-aspect ratio fillers

such as nanotubes, as these form percolation networks more easily than rounder nanoparticles [140].

However achieving high stretchability can come at a detriment, affecting the ability to also achieve

high sensitivity, defined as “the relative change in electrical resistance per unit strain” and quantified

by the gauge factor (GF) [184]. The gauge factor for a resistive strain sensor can be expressed as:

GF =

(R−R0)
R0

ε
(3.8)

Where R is the resistance under strain, R0 is the unstrained resistance and ε is the strain. For

capacitive sensors, capacitance, C, would replace resistance in Equation 3.8. A higher GF means high

sensitivity and for polymer-nanoparticle based sensors it requires a conductive network that can be

easily damaged, whereas the requirement for high stretchability is a network that is more stable [185].

Round nanoparticles could be used to make a network but it would be easily damaged; when a

sensor is stretched there is separation of these particles and they are unlikely to overlap with other

particles with further application of strain and thus the conductive network is lost as indicated in

Figure 3.6. Nanotubes provide a more stable network – with the application of strain there will still

be overlap between the fillers due to their high aspect ratio and the conductive network is therefore

not completely destroyed (see Figure 3.1).

Sensor stability encompasses several behaviours including hysteresis, response time, recovery time

and overshoot behaviour. When considering wearable applications, these are especially important as

sensors are subject to dynamic load. Hysteresis arises as a result of the viscoelastic nature of polymers,
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Figure 3.6: Round nanoparticles under strain.

as well as the interaction of those polymer matrices with the nanomaterial fillers [140]. Mechanical

hysteresis describes the behaviour of the polymer when loaded and then unloaded. The strain will

be recovered but the loading curve will follow a different path to the unloading curve [186] – in one

complete cycle there will be two stress values recorded for the same strain value, as represented in

Figure 3.7. This can be considered a rate-dependent form of hysteresis and can be defined by the

following equation:

Hysteresis(%) =
|Rload −Runload|
Rmax −Rmin

× 100% (3.9)

Where |Rload − Runload| corresponds to the greatest difference between the loading and unload-

ing responses, and Rmax and Rmin are the resistance values at the maximum and minimum strain

respectively.

Figure 3.7: Load-unload behaviour of a polymer.
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There is a trade-off between hysteresis and recovery: strong interfacial binding between the filler

and matrix will minimise hysteresis but a weaker binding between the components will promote better

sensor recovery, with nanomaterials returning to their initial positions when strain is released [140]. Be-

tween sensor classifications, resistive-type sensors exhibit more hysteresis behaviour compared to their

capacitive and optical counterparts [140, 152]. This is an important factor to consider as repeatability

of the sensor output can be negatively influenced by high amounts of hysteretic behaviour.

There is also a difference between sensor classifications when observing response and recovery time

of strain sensors. Response time is defined as “how quickly the strain sensors move toward steady

state response” after experiencing a change in load [140], while recovery is linked to the return of the

sensor output to its original, unstrained value. Viscoelasticity has a role to play here too, and so all

polymer-based strain sensors will experience some degree of delay in their response. Response times

can be calculated theoretically or measured experimentally and the 90% time constant (τ90%) is often

the reported metric [140, 152]. Treating a strain sensor as a first-order dynamic system, the following

relationship applies [187]:

C(S)

R(S)
=

1

τS + 1
(3.10)

Where R(S) and C(S) are the Laplace functions for the input and output of the system respectively,

and τ is the time constant of the system. For a ramp input (e.g. strain increased from 0 to 16% at a

rate of 100 mm/min), R(S) can be defined as:

R(S) =
k

S2
(3.11)

where k is the steady-state gain, and so:

C(S) =
k

S2(τS + 1)
(3.12)

A solution for Equation 3.12 is:

C(t) = k(t− τ(1− e−
t

τ )) (3.13)

Where t is time. Souri and Bhattacharyya (2018) used the MATLAB curve fitting tool to fit their

experimental data to Equation 13 to determine a value for τ [187].

Again capacitive sensors have been shown to be more promising, having a faster response time

than resistive sensors [140]. Material choice also impacts response, softer polymers will have a lower

recovery force with the removal of strain and so will have a higher response time [152].

Overshoot behaviour is caused by stress-relaxation of polymers and is dependent on both internal

and external factors: GF, viscoelasticity and strain rate [140, 152]. An example of this is a carbon
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nanotube-Ecoflex composite strain sensor which displayed overshoot behaviour in the sensor response

when it was stretched to and held at a strain of 270% [188]. A sudden application or reversal of

strain leads to an instant release of stress by polymer matrices which causes this type of behaviour,

more prominent in resistive-type sensors compared to capacitive and optical sensors [140, 145, 152]. A

schematic representation of stress-relaxation behaviour is shown in Figure 3.8.

Figure 3.8: Stress-relaxation behaviour of a polymer.

Linearity is another important performance parameter, referring to the relationship between the

strain sensor response and the applied strain. A linear sensor response (quantified by a high R2 value)

will make calibration and the subsequent data processing easier when equating it to joint kinematics.

Capacitive and optical sensors tend to have higher linearity [152], however capacitive sensors have low

sensitivity as a result [140]. Resistive sensors tend to not have a linear response due to the development

of an inhomogeneous network after strain is applied, however sensors have now been developed with

linear regions and can be applicable to human motion capture if used within this range.

Finally, dynamic durability and the stability of a sensor’s structural integrity and output over a

number of strain cycles are important to consider. Strain sensors used for wearable applications need

to be able to accommodate large and dynamic strains with minimal or no degradation in performance.

This degradation is dictated by the materials used to construct these sensors: buckling and fracture of

nanomaterial fillers, fatigue and plastic deformation of the polymer matrices, as well as the interaction

between filler and matrix are examples of this [140]. Some sensors have reported impressive dynamic

durability. For example, a metal nanowire/elastomer composite resistive-based sensor has been de-

veloped that displays durability and reliability over 10,000 cycles at 150% strain [189]. However, no

indication was given as to the strain rates used when testing this sensor, and this is an important

consideration for sports where faster actions may occur and affect the properties of the sensor as a

result.
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3.3 Piezoresistive Sensors

When considering the performance parameters discussed in Section 3.2.3, piezoresistive conductive

polymer composites (CPCs), where the conductive element is a nanomaterial contained in a poly-

mer matrix, are able to provide superior properties such as high stretchability, tuned sensitivity and

improved dynamic durability at a high strain when compared to CPCs using alternative sensing mech-

anisms [14] . These sensors can also have a high signal to noise ratio, as demonstrated by Wichmann

et al. (2009) with epoxy-based sensors containing carbon fillers [190]. As briefly discussed in Section

3.2.2.1, deformation will cause a change in electrical resistance in piezoresistive sensors, with the main

contribution coming from the geometrical changes experienced by the strain sensor rather than the

piezoresistivity of the materials used. This section will focus on CPC composites, material choice,

charge transport mechanisms and applications of these sensors.

3.3.1 Material Choice

3.3.1.1 Matrices and Substrates

Polymers are an advantageous choice as a sensor matrix or substrate due to their stretchability and

ability to conform to the human body, with elastomers and rubbers being the preferred subsets within

this group. Examples of elastomers and rubbers that have been used in strain sensing applications

include: natural rubber (NR), styrene-butadiene rubber (SBR), epoxy, Ecoflex, polypropylene (PP),

polyvinylidene fluoride (PVDF), thermoplastic polyurethane (TPU) and the most common, PDMS

[14].

However, polymers are subject to degradation as a result of long-term cyclic use or environmental

factors (such as humidity and temperature), and the viscoelastic behaviour of some polymers can lead

to hysteretic behaviour. The choice of polymer will affect the susceptibility to these negative effects,

the performance parameters discussed previously, and the ease of fabricating strain sensors.

There is no standardisation when it comes to processing polymers for strain sensor fabrication, and

the amount of detail provided in the literature is variable. Whether the polymer is used as a matrix (the

conductive material is dispersed) or as a substrate (the conductive material is deposited on the surface)

is an important distinction as the fabrication methods used will be different. However, in matrix and

substrate applications, several authors have used curing, often a high temperature process that needs to

be precisely controlled or it can affect mechanical properties [145, 146, 154]. For example, over curing

can lead to a tougher material that is harder to stretch over a large strain range. Methods containing

mixing also require precision – the conditions for this and the filler properties have influence over the

electrical properties of the final strain sensor [191], such as ease of forming conductive networks.

A simple method has been demonstrated by Boland et al. (2014): a swollen rubber band was

placed in a dispersion of exfoliated graphene, enabling a solvent exchange process to take place, and
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promoting graphene infusion into the band [153]. Low temperature and uncomplicated methods such

as these could help preserve the mechanical properties of the polymer matrix or substrate and enable

the fabrication process to be more easily repeated.

3.3.1.2 Conductive Fillers

Like matrices and substrates, there are a number of options when it comes to conductive fillers or thin

films which can be separated into three groups: carbon-based, metallic based and conductive polymers.

Examples of carbon-based fillers include graphene, carbon black (CB) and CNTs; for metallic materials

there are nanowires, nanoparticles and nanosheets made from silver (Ag), gold (Au), copper (Cu) and

zinc oxide (ZnO); while conductive polymers include poly(3,4-ethylenedioxythiophene) polystyrene

sulfonate (PEDOT:PSS), polyaniline (PANI) and polypyrrole (PPy) [14, 192].

One must not only consider the contribution of these materials to overall strain sensor performance,

but their intrinsic properties such as conductivity, as well as the cost of fabrication or obtaining higher

purity forms of these materials; and their abundancy. There are advantages that span across the

different groups: high-aspect ratio materials (nanotubes and nanowires) form conductive pathways

through sensors more easily.

When assessing the benefits and downfalls of conductive fillers, fillers in the same group do not

necessarily have the same advantages. For example, the properties of carbon-based fillers are affected

by their aspect ratio and ease of processing. For metallic fillers, the abundancy of each one will impact

those chosen for use in sensors. As with the strain sensor substrates and matrices, conductive polymer

fillers will have different degrees of stiffness that will impact the overall sensor properties. Table 3.2

provides more detail into the advantages and disadvantages of the different conductive filler material

prospects.

A possible solution is to use hybrid materials that can overcome the disadvantage of individual

materials. An example is combining with CNTs and graphene [14], or silver nanowires (AgNWs) and

CNTs where the former provided high conductivity and the latter provided high stretchability within

a composite material [197]. However, a hybrid approach could drive up costs in terms of sourcing

materials and the fabrication process, which may also become more complex as a result and less

repeatable unless the configuration of the conductive elements is precisely controlled.

For human joint monitoring, strain sensors can be subject to high amounts of cyclic strain and in

a case of sports, be exposed to different temperatures, levels of humidity and moisture in the case of

sweat. Carbon-based fillers have been extensively studied and have demonstrated superior performance

compared to other filler types. AgNWs are the most promising out of the metallic based fillers and have

numerous advantages, but their cost and low abundancy make them less suitable compared to carbon

based fillers. High conductivity is important for sensor performance, which is not guaranteed with

conductive polymers. For these reasons, the conductive mechanisms and structures of carbon-based
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Table 3.2: Advantages and disadvantages of different conductive materials used as fillers in strain sensors.

Conductive Material Advantages Disadvantages
Carbon-based CB – cheap and good health and

safety performance [14]
CB – difficult to achieve a good dis-
persion; poor electrical conductiv-
ity; low sensitivity [14]

MWCNTs – high purity; large work-
ing range, can improve sensitivity
and linearity [14]

CNT based sensors – experience
hysteresis under cyclic loading;
health concerns [14]

Graphene – non-toxic, good electri-
cal and mechanical properties; high
GF, high stretchability and trans-
parency [14]

Graphene – signal may not be re-
peatable; difficult to achieve high
quality in bulk [14]

Metallic-based Nanowires and nanoparticles have a
very high conductivity [14]

Strain range may be limited by
irreversible crack formation for
nanoparticles [14]

Nanowires – excellent mechanical
compliance [14]
AgNW – have high resistance to
oxidation and corrosion [14], high
transparency [193]

AgNW – expensive, nonabundant
[14], weak adhesion on polymer sub-
strates that are flexible [193])

CuNWs – inexpensive, abundant
[14]

CuNWs - poor resistance to oxida-
tion [14]

AuNWs – biocompatible, chemi-
cally inert, NW thin films have high
sensitivity

AuNWs – difficult to produce, poor
mechanical/electrical properties

Conductive Polymer Low cost, large-scale fabrication
[194]

Poor environmental stability (sensi-
tive to moisture and temperature)
[14]

PEDOT:PSS – high flexibility, pro-
cessability and conductivity [14,
180]

PPy – concerns surrounding rigidity
[195]

PANI – low cost and easy process-
ing, high conductivity and chemical
stability [196]

Fibres produced through electro-
spinning have poor conductivity

CB – carbon black, MWCNT- multi wall carbon nanotube, AgNW – Ag (silver) nanowire, CuNW – Cu (cop-
per) nanowire, AuNW – Au (gold) nanowire, PEDOT:PSS - poly(3,4-ethylenedioxythiophene): poly(styrene
sulfonate), PANI - polyaniline, PPy – polypyrrole
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fillers will be explored further.

3.3.1.3 Carbon-based Fillers

Carbon-based fillers used in strain sensors include: carbon black (CB), carbon nanotubes (CNTs) and

graphene. Nanomaterials can be classed by their architecture dimensions and in the case of these fillers

we have 0D, 1D and 2D respectively. In order to understand the importance of the different dimensional

architectures, one must investigate the structure of the conductive networks that are formed and the

charge transport mechanisms that take place in these networks.

3.3.1.3.1 Charge Transport Mechanisms

In addition to the geometrical changes and material piezoresistivity highlighted in Section 3.2.2.1

that contribute to overall changes in sensor resistance, there are other mechanisms that come into play

which are affected by the choice of conductive fillers: the disconnection mechanism, crack propagation

and the tunnelling effect.

The disconnection mechanism refers to the contact between nanomaterials: there needs to be

overlap of these particles at rest and with the application of strain, as this area of overlap reduces,

the electrical connection reduces, increasing the electrical resistance. On a microstructural level, the

driving force behind this mechanism is the weak interfacial binding between the nanomaterial filler

and the polymer matrix, as well as the large stiffness mismatch. Under strain, there will be slippage

of the nanomaterials within the matrix, causing disconnection [140].

Crack propagation is a mechanism associated with brittle thin films on polymer substrates and

less so with conductive fillers in a polymer matrix. When strain is applied, cracks are generated in

the thin film in order to release the stress that has been accommodated in concentrated areas. The

electrical resistance is increased as cracks are formed but can be recovered when the source of strain is

removed. However, these cracks can be irreversible in some cases where a high amount of strain has

been applied.

Finally, the tunnelling effect refers to “the crossing of electrons through a nonconductive barrier”

[140]). This means that electrons can tunnel through a polymeric matrix between nanomaterials

that are separated by a small distance. As the distance between nanomaterials increases so does the

tunnelling resistance as it is more difficult for electrons to cross the nonconductive barrier. This can

be approximated by Simmon’s theory [140], given by the following equation:

Rtunnel =
V

AJ
=

h2d

Ae2
√
2mλ

exp(
4πd

h

√
2mλ) (3.14)

Where V is the electrical potential difference, A is tunnelling junction cross-sectional area, J is the

current density for tunnelling, h is Plank’s constant, d is the separation distance between adjacent
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nanomaterials, e is the charge of a single electron, m is the mass of an electron and λ gives the height

of the energy barrier for polymers [140]. The type of polymer used for the matrix will affect tunnelling

resistance as well as the dimensional architecture of the conductive filler – the cut-off distance for

tunnelling is found to be higher for graphene sheets than for CNTs [140]. The tunnelling effect has

been found to be the dominant charge transport mechanism in CPC strain sensors [140].

As the crack propagation mechanism is mostly irreversible and will change the resistance range

with each use of a sensor, it is more useful to maximise the resistance changes as a result of the

disconnection mechanism and tunnelling effect. This allows the same sensor to be used multiple times to

measure joint range of motion, and reducing the frequency for changing resistors to optimise the circuit

containing the strain sensor. The various charge transport mechanisms informed the composition of

the sensors developed in this work, opting for a matrix and filler-based sensor, instead of a thin-film

based technology.

3.3.1.3.2 Optimal Carbon-based Filler

Although carbon-based fillers are superior to other filler types, they are not all made equal, with the

dimensional architecture impacting strength, stretchability and the aforementioned charge transport

mechanisms. In some cases, there can be a trade-off between these properties. Several authors have

demonstrated the effect of different carbon fillers on the stretchability of strain sensors and the change

of resistance over this strain range, including Sau et al. (1998) [191], Das et al. (2002) [198], Wichmann

et al. (2009) [190] and Zhao et al. (2013) [199].

The properties of different polymer matrices filled with short carbon fibres (SCF) or carbon black

(CB) were compared by Das et al. (2002) [198]. The resulting mechanical properties are largely due to

how the fillers interact with the matrix on a micro-level. CB creates chemical bonds with the chains of

rubber within the matrix, providing mechanical reinforcement, while SCF mainly creates weak physical

bonds with the rubber chains. For CB composites, Das et al. (2002) found that the behaviour was

similar to that of vulcanized rubber reinforced with CB, and they were able to undergo strains of up to

120% with no tendency to yield [198]. Contrary to this, SCF composites had a much higher tendency

to yield, with the irreversible deformation occurring as a result of “total failure of the fibre-rubber

interface” [198].

In addition to mechanical reinforcement, CB composites have better sensitivity to mechanical

deformation [190]. As strain is applied, the separation distance between CB particles will increase,

thus there is less contact between particles and it is more difficult for electron tunnelling to take

place, which increases the overall resistance. Nanotubes composites will have a lower sensitivity: as

strain increases, because of the random orientation and overlap between the high aspect ratio fillers,

interparticle separation may actually decrease. This is exaggerated at higher amounts of CNT-loading
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as the two competing processes, network formation and network destruction, are more balanced and

mean that conductivity change takes place at a slower rate [198].

For joint monitoring applications where a large strain range is required, CB composites will not

do well as once the particles separate with strain, they will not reconnect with each other. Nanotubes

are preferable as the conductive network is more stable and resistance changes can be detected over

a larger range. Furthermore, CB composites have an exponential resistance vs strain response which

can make sensor calibration more difficult, while the response is more linear for nanotube composites

[190].

Graphene fillers are a further option, their hexagonally bonded carbon-structured nanosheets can

be produced via liquid exfoliation in large quantities. Boland et al. (2014) demonstrated a simple

technique using graphene to fabricate strain sensors in this way [153]. The high resulting flexibility

is useful for strain sensing applications where conforming to the human body is a requirement. They

have high sensitivity like CB, as well as optical transparency compared to CNTs [5, 200, 201].

Despite this, having a lower aspect ratio compared to CNTs means that graphene-based sensors will

have a lower stretchability since the percolation networks will not be as easily maintained [140]. This

can be overcome using a wrinkled or crumpled graphene nanostructure that becomes less wrinkled with

the application of strain, allowing the network to still be maintained at high levels of strain. Moreover,

non-linearity is a problem for resistive strain sensors in general, but thin films made from graphene

flakes or nanoparticles are more susceptible to it as a result of the generation and propagation of cracks

in these films [140].

Even within the resistive-based sensor classification and looking specifically at carbon fillers, the

trade-off between certain performance parameters – linearity, sensitivity and stretchability – must still

be considered. Non-linearity will affect carbon black, nanotubes and graphene sheets, but nanotubes

will be less susceptible. For monitoring human joint range of motion, such as the knee or the elbow,

sensor stretchability is more important than sensitivity as the output must be stable over a large

strain range, which again favours the use nanotubes for this application. The choice of filler is clearly

application dependent and there is no blanket approach when it comes to the development of strain

sensors.

3.3.2 Summary

Depending on the application of the strain sensor produced, it is acceptable for there to be some

compromises when it comes to some of the sensor performance parameters discussed in Section 3.2.3.

When considering the requirements for human joint measurements where sensors are subject to a

large strain range, the linearity of sensor output and stretchability are more important metrics than

sensitivity (or gaguge factor) and therefore material combinations should be determined based on this.

Carbon nanotube-rubber composite piezoresistive sensors were chosen to be developed in this
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project for human joint monitoring in sports. Stretchability has been favoured over sensitivity and

the relatively simple construction and fabrication methods that are also low-cost have been deemed

suitable for this application.

3.4 Materials, Methods and Results

3.4.1 Preparation of Carbon Nanotube Dispersion

Multi-walled carbon nanotubes (MWCNTs) were obtained from Sigma-Aldrich (>90% carbon basis,

D × L 110-170 nm × 5-9 µm; Sigma-Aldrich Corporation, St Louis, Missouri, United States) and used

to prepare a dispersion in distilled water at a concentration of 5 mg/mL.

A 250 ml media bottle was used to make up the dispersion. Approximately 1 gram of MWCNTs

were weighed out and transferred to the bottle with 200ml of distilled water. 1ml of Triton X-100,

a surfactant (Laboratory Grade; Sigma-Aldrich Corporation, St Louis, Missouri, United States), was

measured out using a syringe and added to the mixture to help exfoliate the MWCNTs.

An ultrasonic homogeniser (Hielscher Ultrasonic GmbH UP200S, Hielscher Ultrasonics, Teltow,

Germany) was used to disperse the MWCNTs in the distilled water. The probe was placed in the

middle of the mixture and a water bath was used to regulate its temperature as displayed in Figure

3.9. This was run for 90 minutes (probe settings: 0.6 cycles, 65% amplitude).

Figure 3.9: Dispersion (A) pre-homogenisation and (B) post-homogenisation.

A centrifuge (Eppendorf Centrifuge 5804 Eppendorf, Hamburg, Germany) was used to separate

the resulting dispersion from non-exfoliated MWCNTs (settings: 30 minutes at 2000 rpm). A pipette

was then used to transfer the dispersion to another media bottle, taking care not to transfer any of

the sedimentation deposited at the bottom of the centrifuge vials, as shown in Figure 3.10. This was

then refrigerated for later use.
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Figure 3.10: (A) dispersion in centrifuge vial (B) sedimentation remaining after centrifugation (C) final
dispersion.

3.4.2 Expansion of Rubber Bands

Rubber bands, based on natural rubber, were obtained from Office Depot Inc. (Boca Raton, Florida,

United States) with given dimensions 180 mm x 12 mm (length x width). The thickness was measured

to be 1 mm. Lengths of 110 mm were cut from the rubber bands, ensuring that they would be able to

stretch over the anterior aspect of the knee.

An aromatic solvent, toluene (≥99.5%, AnalaR NORMAPUR R© ACS, Reag. Ph. Eur. analytical

reagent; VWR International Limited, Leicestershire, England) was used to expand the pores of the

rubber band, causing them to swell to approximately one and a half times their original size. This was

done in preparation for the solvent exchange process which would form the final composite. Prepared

rubber bands were placed in a sealed media bottle of toluene, ensuring that they were completely

covered by the solvent, and left submerged for three hours before being removed.

3.4.3 Solvent Exchange Process

Each swollen rubber band was placed in 100 ml of the MWCNT dispersion in 250 ml media bottles.

The size of the bottle was chosen so that the rubber band did not come into contact with itself in the

dispersion; this would have prevented the MWCNT from entering the rubber matrix in these areas.

The sealed bottles were placed in an ultrasonic cleaner (VWR Ultrasonic Cleaner USC -TH, VWR

International, Radnor, Pennsylvania, United States) for two hours. This was done to aid the solvent

exchange process with vigorous mixing as toluene and water are not miscible. After two hours, a

cloudy grey solution was produced indicating successful exchange between the toluene in the pores of

the rubber band and the MWCNT dispersion in the bottle.

The rubber band was then removed from the bottle in its swollen state, but black in appearance

due to the uptake of MWCNTs, then left to air dry for 48 hours. This allowed the band to return to

its original dimensions through evaporation of the residual toluene over time.
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Table 3.3: Conductive filler and solvent combinations for the different dispersions prepared.

Dispersion Conductive Filler Solvent
1 Graphene NMP
2 MWCNT NMP
3 MWCNT Water

3.5 Exploration of Different Materials and Methods

The above methods describe the optimal fabrication method used to develop CNT- rubber composite

strain sensors. However, different conductive fillers and solvents were trialled before settling on the

dispersion of carbon nanotubes in water. The concentration of this dispersion was also considered.

Steps in the fabrication process of these composites were also evaluated and modified in order to

improve and save time within the entire process.

3.5.1 Conductive Material and Solvent Choice

Three combinations of solvent and conductive material were prepared for use in the strain sensor

using the following forms of carbon: graphene and MWCNT; and the following solvents: 1-Methyl-2-

pyrrolidinone (NMP; ACS reagent, ≥ 99.0%, Sigma Aldrich Corporation, St Louis, Missouri, United

States) and water. The combinations are displayed in Table 3.3. Equal concentrations of each disper-

sion were made (1 mg/mL), and a rubber band expanded in toluene was placed in a media bottle with

100 ml of each prepared dispersion.

Each bottle was placed in an ultrasonic cleaner for approximately 30 minutes to encourage the

solvent exchange process to take place. The rubber bands were then left to sit in each solution for five

days. The bands were removed and left to air dry for approximately 15 minutes while held by a clamp

(Figure 3.11), before being transferred to a paper towel to continue drying and to allow them to return

to their original size (Figure 3.12).

From visual inspection of the rubber band surfaces as shown in Figure 3.12, the dispersion of

MWCNT in water resulted in the best uptake of nanotubes into the rubber band matrix. Almost

complete coverage was achieved from the CNT dispersion in water, identified by the black material

on the surface. The band placed in the graphene/NMP dispersion had a very similar appearance to a

normal rubber band, while the CNT/NMP dispersion resulted in a sensor between the two extremes.

As graphene was less promising than CNT when paired with NMP, the decision was made to not

explore the combination of graphene with water. The uptake of CNTs by the rubber band using a

dispersion in water was later confirmed using Scanning Electron Microscopy.
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Figure 3.11: Sensor drying made from dispersion of CNT in water.

Figure 3.12: Side by side comparison of dispersions (L-R) MWCNT in water (x2), graphene in NMP (x1),
MWCNT in NMP (x2) at different stages of drying.
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3.5.1.1 Imaging

A scanning electron microscope (SEM, LEO Gemini 1525 FEGSEM) was used to image a CNT-rubber

composite strain sensor fabricated using a water solvent. Approximately 5 mm was cut off one end of

the sensor and coated in 5 µm of chromium in order to ensure that the entire sample was conductive.

This sample was fixed onto a holder and placed in the SEM. Several images were taken including a

cross-section of the bulk. An accelerating voltage of 2kV was used to produce the image in Figure 3.13.

Figure 3.13: A cross-sectional image of the fabricated sensor using a FEGSEM. The featureless region at
the top of the image represents the amorphous rubber band. The conductive networks formed by the carbon
nanotubes can be seen in the lower two thirds of the image, indicating the uptake of nanotubes into the pores
of the rubber band. This image was false-coloured using ImageJ.

The top third of the image is amorphous in nature, consistent with the amorphous structure of

the rubber band matrix. A percolating structure can be seen in the lower portion of the image. This

structure shows the conductive pathways formed in the sensor by the carbon nanotubes. From this,

it can be calculated that the nanotubes have entered the rubber band matrix by a depth of at least 2

µm, which can be assumed to be the same at the opposite end of the sensor cross section, which has

a thickness of 100 µm.

3.5.2 CNT Concentration

After determining the optimum dispersion combination, different concentrations of MWCNT (1, 5 and

10 mg/mL) were trialled to observe the effect on MWCNT uptake and overall resistance of the sensor.
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Six rubber bands pieces, each cut to a length of 110 mm, were expanded in toluene (left to soak for

48 hours) and then each was placed in a media bottle containing 100 ml of a dispersion (2 bottles for

each concentration). The bottles were placed in an ultrasonic cleaner for 30 minutes and then removed,

with the rubber bands being left in the solutions for a further 48 hours.

From observing the rubber bands while still in the bottles of each dispersion, there were many

aggregates in the high concentration dispersion of 10 mg/mL, compared to the lower concentrations.

Liquid in the bottles containing the lowest concentration dispersion had a cloudy grey appearance after

removal from the ultrasonic cleaner, indicating most of the MWCNT had entered the rubber band and

the remaining solution had been destabilised by the toluene as demonstrated in Figure 3.14. After the

48-hour period, the rubber bands were removed and left to dry. A side-by-side comparison can be seen

in Figure 3.15.

Figure 3.14: CNT dispersion destabilised by toluene.

A multimeter (Edison DM383 digital Multimeter, Edison, Wigston, England) was used to measure

resistance over a length of 8 cm on the surface of each rubber band. The resistance was lowest for

the 5 mg/mL samples, followed by the 1 mg/mL, with the 10 mg/mL samples recording the highest

resistance as listed in Table 3.4. The lower resistance indicates a higher number of conductive pathways

present in the sensor that make it easier for charge to flow, and to also detect changes in strain when

the sensor is stretched. These results, combined with the observations during fabrication, led to the

use of the 5 mg/mL concentration for producing further sensors from rubber bands and MWCNTs.
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Figure 3.15: Side by side comparison of sensors made with different dispersion concentrations - (L-R) 1mg/mL
(x2), 5mg/mL (x2), and 10mg/mL (x2). The highest uptake of CNTs was as a result of a 5mg/mL dispersion
concentration, indicated by the mostly black appearance of the sensor. A concentration of 10mg/mL resulted
in the lowest uptake of CNTs as the rubber band surface is still approximately 50% visible. A concentration of
1mg/mL provided results between these two.

Table 3.4: Mean resistance value (over three readings) over 8 cm for strain sensors fabricated with each
dispersion concentration.

CNT dispersion concentration (mg/mL) Resistance value (×103Ω)
1 1.746
5 0.792
10 447.6

3.5.3 Fabrication Steps

Modifications were made to the fabrication process in order to improve time efficiency during sensor

production after noting that the turnaround time to produce sensors was approximately one week.

Initially rubber bands were left to soak in toluene for 48 hours in preparation for the solvent exchange

process. After some experimentation it was discovered that the bands could be left for as little as three

hours to achieve the desired effects with regards to pore expansion. This greatly reduced the length of

the fabrication process.

When carrying out the steps for the solvent exchange, initially the rubber band in the MWCNT

dispersion was placed in the ultrasonic cleaner for 30 minutes and then removed to allow the exchange

process to take place without any outside stimulus over a few days. However, after five days it was

found that the exchange had not taken place, with the rubber bands appearing as they did before

being placed in the dispersion and only a minimal uptake of nanotubes observed visually. This was
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rectified by increasing the sonication duration to two hours, without the need for further immersion of

the rubber bands in the MWCNT dispersion afterwards.

3.6 Discussion

The aim of this section of the project was to develop a composite strain sensor and optimise the fabri-

cation process, both in terms of sensor quality and time taken to make the sensors. Carbon nanotubes

in water was determined to be the optimal dispersion, prepared using sonication and centrifugation

techniques. Toluene was used as a swelling agent to expand the pores in a rubber band. The swollen

band was then placed in the nanotube dispersion, with an ultrasonic cleaner used to aid a solvent

exchange process.

The solvent exchange process that allows the nanotubes to enter the pores of the rubber band can

be better described as liquid-liquid extraction, the transfer of a solute (in this case carbon nanotubes)

from one solvent to another. The solvents are immiscible or partially miscible with each other, and

typically water is used in conjunction with a non-polar organic liquid [202].

The Hansen solubility parameters can be used to determine the types of interactions that can

take place - similar solubility parameters lead to an interaction between substances. The components

(which each correspond to a part of total cohesive energy) that make up these parameters are: δD, δP

and δH where δD is the dispersion cohesion (solubility) parameter, δP is the polar cohesion (solubility)

parameter and δH is the hydrogen bonding cohesion (solubility) parameter (Hansen, 2012). The total

solubility parameter, δT is given by:

δ2T = δ2D + δ2P + δ2H (3.15)

A list of solubility parameters for the different substances used is given in Table 3.5. This indi-

cates that toluene is not miscible with water due to the differing values and therefore satisfying the

requirement for liquid-liquid extraction. Toluene does have similar Hansen solubility parameters to

natural rubber, meaning that the two can effectively interact with each other, and it is this which

allows toluene to open up the pores in the rubber bands.

Considering the solubility parameters for MWCNTs, graphene, NMP and water listed in Table 3.5,

one can understand combinations that are energetically favourable for conductive fillers to enter the

rubber band. Graphene and MWCNTs have similar Hansen solubility parameters to NMP, making it

less energetically favourable for the conductive elements to be surrounded by rubber. However, the

use of water as a solvent for the dispersion makes it more energetically favourable for the MWCNTs

to enter the pores of the rubber band, because of the differing values. This is clearly demonstrated in

Table 3.5.

The dispersions of MWCNTs were considered in two solvents, water and NMP, with a clear im-
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Table 3.5: Hansen solubility parameters for substances used.

Substance δD(MPa1/2) δP (MPa1/2) δH(MPa1/2)

Water [203] 15.5 16 42
NMP [204] 18 12.3 7.2
Toluene [204] 18 1.4 2
Natural Rubber
[205]

14.4 3.1 4.1

Graphene [206] 18 9.3 7.7
MWCNT [207] 21.3 6.8 3.2

provement of nanotube uptake into the rubber band matrix when water was used. Graphene, however,

was only dispersed in NMP. By comparing the solubility parameters in Table 3.5, it would have been

more favourable to disperse graphene in water in order to increase the proportion of graphene in the

rubber band. In fact, Boland et al. (2014) [153] determined that a mixture of NMP and water (20:80)

as a solvent provided the best conditions for graphene to enter a rubber band matrix. For the pur-

poses of this research and with the different combinations of solvent and conductive material tested, a

suitable outcome was achieved using MWCNTs dispersed in water as seen in Figure 3.12.

Changing the concentration of MWCNTs in the dispersion directly impacted the filler content in

the resulting sensor. A higher concentration dispersion means more available MWCNTs to enter the

rubber band, which should result in a higher filler content. As well as visually comparing the sensors

fabricated from the different dispersions (see Figure 3.15), the resistance measurements also gave an

indication of nanotube uptake. Resistance measurements taken at rest for each of the sensors reported

a lower resistance for those made from the 1 mg/mL and 5 mg/mL dispersions and the highest for the

10 mg/mL dispersion.

The formation of aggregates in the 10 mg/mL dispersion hindered the uptake of MWCNTs into the

rubber bands, leading to the patchy appearance seen in Figure 3.15. The higher resistance reading can

be explained by this: the visual appearance of the sensor indicates fewer conductive pathways, making

it difficult for charge to flow through the sensor. If all the nanotubes from this dispersion had entered

the rubber matrix it would have become oversaturated, having a negative effect on the sensor output

under strain. At rest the resistance would have been lower due to the increased number of conductive

pathways, however the sensitivity of the output would have been reduced. With the application of

strain, the competing processes of the breakdown and formation of these pathways would balance each

other out, leading to a minimal change in resistance output.

There was a drop in recorded resistance from the 1 mg/mL to 5 mg/mL sensors, indicating an

increase in conductive pathways through the sensor as a result of more conductive elements in the

rubber matrix. The higher filler content also contributes to the tunnelling effect as the nanotubes

are likely to be in closer proximity (within the tunnelling cut-off distance), allowing electrons to flow

through the sensor via this mechanism as well as through nanotube contact. Similar to the 10 mg/mL
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sensors, the patches in the 1 mg/mL sensors indicate fewer conductive pathways in the sensor which

increases the resistance and also reduces the working range of the sensor.

The 5 mg/mL dispersion provided a combination of low resistance and high filler content, optimising

the electrical and mechanical properties of the sensor. It is expected that the fabricated strain sensor

should have a large working range suitable to measuring knee range of motion and high stretchability,

but will be affected by hysteresis as a result of the piezoresistive construction.

The SEM image produced in Figure 3.13 provides a visual confirmation of the nanotubes being

integrated within the rubber matrix, entering its pores during the solvent exchange process. They have

not just been deposited on the surface. As an uncoated sensor is subject to the conductive material

rubbing off the surface during handling, having the conductive material within the bulk of the sensor

provides increased stability when it undergoes repetitive strain cycles. With the nanotubes being

incorporated into the rubber band matrix, the failure of the sensor is dependent on the matrix fatigue

properties.

Modifications to sensor fabrication led to a more time efficient process, with the amount of time

rubber bands were soaked in toluene from a 48-hour period to just three hours. As well as saving

time, this also provides a benefit when it comes to retaining the elastic properties of the rubber band.

Prolonged soaking of rubber bands in toluene (i.e. periods of more than 48 hours) can lead to material

loss and a decrease in hardness [208]. This would have a negative impact on the durability and use of

the sensor under cyclic strain over its lifetime.

3.6.1 Limitations

Despite the fabrication being simple and low cost, there are some limitations to the process. The dif-

ferent steps leading to the final nanotube dispersion result in material loss: transferring the nanotubes

from a weighing boat to bottle, then the sedimentation left behind after centrifugation lead to a lower

concentration of nanotubes and also volume of surfactant. However, this does not seem to hinder the

uptake of nanotubes into the rubber band. The final concentration used could be quantified using

ultraviolet-visible light (UV-Vis) spectroscopy.

There is a little control over the solvent exchange process, besides the time the rubber bands spend

soaking in the dispersion and immersed in water in an ultrasonic cleaner. This leads to each sensor

having its own unique electrical properties that impact sensor calibration.

In Figure 3.15 , it is clear to see that the coverage of the rubber bands is uneven. This is due to the

orientation of the rubber bands in the dispersion – any part of the rubber band that is not contained

within the carbon nanotube dispersion, is pressed against the side of the bottle or is touching another

part of the rubber band, is not able to uptake the carbon nanotubes. Therefore, care needs to be

taken in placing the rubber bands in each dispersion bottle before this is put in the ultrasonic cleaner.

This can be overcome by changing the orientation of the band in the bottle throughout the solvent
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exchange process; using a different shaped vessel which allows the rubber band to lay flat; or in the

case of mass-production, using a larger vat to hold the dispersion and multiple rubber band pieces.

3.7 Conclusion

Piezoresistive sensors were determined to be the preferred technology for developing strain sensors that

can be used in a sporting context to measure joint range of motion due to their simple configuration,

low-cost fabrication and high stretchability. Between multi-walled carbon nanotubes and graphene,

the former was able to infiltrate a rubber matrix more easily, which is significant as the uptake of filler

will directly impact the flow of conductive elements within a sensor. An optimal nanotube dispersion

concentration of 5 mg/mL was achieved, producing a sensor that had a low resistance and visible filler

uptake indicating numerous conductive pathways for charge transfer. This low-cost and repeatable

method can be used to produce sensors for a biomechanical application.
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Chapter 4

Sensor Characterisation

Using mechanical testing to understand the strain sensor response at different strain rates

4.1 Introduction

The use of strain sensors for human movement monitoring requires a system that provides repeatable

and accurate measurements, whilst also being durable. When strain sensors are placed on a joint they

are unlikely to fail as a result of reaching their maximum strain value, instead, they may fail as a result

of numerous cycles at a lower strain value. Therefore, it is important to measure how long it takes for

such fatigue to occur: structural failure of the sensor itself and deterioration of its electrical response.

In sports, joints may move through a range of motion more quickly than in a clinical context: for

example, a strain sensor placed on the knee will be subject to a higher strain rate during the running

motion of a football player on a pitch compared to someone performing a gait study and walking across

a laboratory. This means it is important to consider the effect of strain rate on sensor performance as

well as the number of cycles – does the fatigue life of the sensor change because of the different strain

rates; does it affect the electrical response; or is there a lag between the application of strain and the

sensor response?

This chapter reviews carbon nanotube-polymer composite strain sensors that use a resistive-based

sensing method and the testing protocols used to assess their mechanical and electrical properties. It

then details the development of a mechanical testing protocol to replicate the conditions of rowing or

cycling sessions of different lengths and intensities; and determine the durability and robustness of the

strain sensor under different strain rate conditions. This testing protocol was carried out on the carbon

nanotube-rubber composite sensors developed earlier in this project.
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4.2 Literature Review

In the development of conductive polymer composite (CPC) strain sensors, many filler and matrix

materials have been considered as the different applications desire certain properties over others. The

literature reviewed within this chapter focuses on those sensors with a carbon nanotube (CNT) filler

to permit comparisons between the sensors developed in this body of work. As discussed in Chapter 3,

there is a distinction between the performance of different carbon fillers – the aspect ratio will influence

the sensing mechanisms and properties of a strain sensor under strain. This review aims to address the

following questions, which will help inform the characterisation and usability of the nanotube-rubber

strain sensors that have been developed:

• How is sensor performance defined – through output stability or structural integrity?

• What level of variability in the sensor output is acceptable from cycle to cycle?

• What are the different testing protocols that have been used (e.g. no. cycles, strain rates), and

have they been justified?

• How applicable are these protocols to the real-life use of the sensor? (e.g. clinical, rehabilitation

and sporting environments)

• Are there any common testing elements across the literature?

• What are the limitations of the reported methods?

4.2.1 Mechanical and electrical characterisation of strain sensors

The consideration of the mechanical and electrical properties of strain sensors is important as users

need to understand whether it is appropriate for their desired application. They will take into account

how easy the sensor is to calibrate (aided by the linearity of the signal), and how long it will last before

either the sensor output deteriorates too much from its original value or there is structural failure.

Furthermore, the use of polymer matrices means that the effects of viscoelasticity should be quan-

tified as this can result in hysteresis or creep behaviour. Zhao et al. (2013) noted that the strain rate

applied to a sensor can impact maximum strength and elongation at failure: elongation is high and

strength is low when the strain rate is low as polymer chain segments can relax, while the opposite

is seen at higher strain rates [199]. The rate at which strain is applied is equally as important as the

number of strain cycles and the degree of strain.

Seventeen articles featuring carbon-based piezoresistive strain sensors were reviewed, considering

only those that included cyclic testing in the form of stretching and not bending [141, 146, 182, 188, 199,

209–221]. This distinction is important as bending may only consider the impact of a microstructural
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change at a localised point of the strain sensor, whereas stretch testing takes into account changes

across the sensor as a whole.

4.2.1.1 Testing equipment

Across the articles considered, a wide range of testing rigs have been used to perform cyclical strain and

simple tensile tests on strain sensors. Universal testing machines from Instron (Buckinghamshire, UK)

[141, 212, 220] and Suns (Shenzhen Suns Technology Stock Co.Ltd., China) [182, 199] have proved to

be popular, as well as the Future Science Motion Controller [188, 210], whilst other systems have been

developed in-house [146, 218]. Limitations can arise particularly with in-house systems as the choice

of instrument will affect the maximum strain or loading rate that can be applied, the maximum load

or strain, the sampling frequency of data that is collected and the protocols that can be programmed.

Furthermore, if loading values and ultimately stress are important variables, then so is the choice of

load cell: too large a load cell can result in data being lost in the noise range, while too small a load

cell may not be able to subject the strain sensor to the desired stress level. Only Lee et al. (2017)

indicated the choice of the load cell (4.89N), suggesting they had considered the effects on their results

[215].

Electrical measurements have been recorded using various types of equipment: multimeters [182,

211, 214, 215, 219, 221], potentiometers [188, 210], source meters [212], picoammeters [217], induc-

tance capacitance resistance (LCR) meters [218], high resistivity meters [199, 216] and data acquisi-

tion (DAQ) boards [141]. None of the authors justified their choice for monitoring electrical output,

but factors to consider include: the cost of the set-up, whether the electrical measurement tool can

negatively influence the strain measurements, and of course the desired electrical response. This can

be current, voltage, resistance or in some cases, capacitance. If considering a wearable system in the

future, then a measurement tool that can accommodate this should also be taken into consideration.

A more precise measurement system may not be appropriate if it is large and bulky.

To measure the electrical response, electrodes are required to be attached to the sensor. Depending

on how this is done, this can create a point of localised failure. To overcome this, Yamada et al. (2011)

used a combination of a conductive rubber paste made of single-walled carbon nanotubes (SWCNTs)

and a polydimethylsiloxane (PDMS) rubber glue to fabricate stretchable electrodes [146].

4.2.1.2 Testing Protocols

There is no standardisation when it comes to developing strain sensor testing protocols; as a result,

the amount of detail provided in the literature on the content and results of each protocol can vary.

In an extreme case, two articles did not provide any detail on their protocols, besides what could be

determined from the illustrative figures presented [213, 216].

In the reviewed literature, the primary variables that have been considered include strain rate,
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amount of strain, and the number of strain cycles. The combination of these variables can help to

ascertain the viscoelastic behaviour, durability and sensor response stability, useful for determining

any future applications. Not all protocols featured cyclic strain, with some using a step increase in

strain instead [182]. Another feature added to some protocols was a holding period at constant strain

to determine drift, overshoot behaviour and response time [188, 210].

Strain sensors were subjected to maximum strain values as high as 1380% [210], and cyclic strain

values up to 500% [188, 210], but in the case of Amjadi et al. (2015) this was only over the course of 10

cycles [210]. It was more common that strain cycles were applied under 100% strain [141, 211, 212, 218]

and the importance here is choosing a degree of strain that is relevant to its use in joint monitoring

for example.

Different strain rates were also trialled across the literature, however, the different units (%/s,

mm/s and mm/min) make it difficult to compare results between papers. As previously mentioned,

the viscoelastic behaviour of the polymer matrices will be influenced by the chosen strain rate, therefore

considering a few different rates is of importance, especially when the final environment for use cannot

be controlled. Zhao et al. (2013) utilised three different strain speeds to test their strain sensor

to failure [199], while Ogasawara et al. (2011) utilised four different loading rates to compare the

stress-strain response of their sensors containing different proportions of CNT (and a sample of the

unimpregnated polymer matrix) for one load-unload cycle [220]. Fu et al. (2019) also used four strain

rates to compare their strain sensors over one loading cycle [211]. Only Guo et al. (2016) chose

to compare the response of their strain sensor over more than one cycle (but less than 10) and at

different strain rates, noting that the change in resistance (∆R/R0) was not affected by stretching

speed [212]. Since resistive-based CPC strain sensors are more susceptible to hysteresis [152], different

strain conditions should be considered over many cycles, rather than just one.

Finally, considering the number of strain cycles performed: tests of only 1, 5 or 10 strain cycles were

common [199, 210, 215, 220], whilst at the other extreme, some tests consisted of over 10,000 cycles

[141, 182, 214, 218]. In four studies, sensors were tested between 1000 to 2000 cycles of strain [182, 210–

212]. Testing a sensor for over 10,000 cycles without a sign of failure demonstrates excellent durability

and reliability for long-term monitoring. However, shorter tests up to 2000 cycles are still able to

convey this, perhaps better relating to the end-use of the sensor, for example, a cyclist completing a

20-minute threshold test with a cadence of 90 rpm (1800 cycles), or a rower completing a 7-minute

race at a stroke rate of 34 spm (238 cycles). Furthermore, the electrical response of a sensor is more

likely to deteriorate over a prolonged test of 10,000 cycles, potentially increasing the complexity of

calibration. Protocols must be relevant to the activity to be measured.

Protocols containing fewer than 10 strain cycles are not suitable for observing the change in re-

sistance over a prolonged period, as observed by some authors. For example, Lipomi et al. (2011)

observed that the resistance of the strain sensor decreased by 22% over the course of 1500 cycles [218],
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which will otherwise not be observed in a short period of cycles. Different sensor structures will lead

to different sensor responses, however, the choice of so few strain cycles needs to be justified, especially

when the application in healthcare or sport will consist of repeated movements.

4.2.1.3 Key Metrics Reported

In considering the key metrics reported in the literature, the focus was narrowed down to the papers

that tested their CPC strain sensors over at least 100 strain cycles. Metrics that were considered

include the gauge factor (GF, the sensitivity of the senor response as defined in Equation 3.8), the

ultimate tensile stress (UTS) or maximum strain, the sensor response over several cycles (such as

stability and hysteresis), and the repeatability of the sensor output. A summary of this can be found

in Table 4.1.

Only three studies reported the maximum strain withstood by the sensors [141, 210, 221], with

the yield strain and UTS reported in another [214]. Instead, the most commonly reported metric in

the studies in Table 4.1 was the GF which ranged from 0.54 to 64 [141]. These two extremes were

measured on the same sensor, between different strain values, emphasising the importance of providing

a strain range along with a GF value. For MWCNT/PDMS composites Fu et al. (2019) noted that the

GF decreased with increasing weight percentage of MWCNT [211], while Wang et al. (2018) observed

an increase in GF as the number of printing cycles also increased [221]. It was also noted by Fu et

al. (2019) that even though a higher carbon content reduced the GF, it did improve the stability and

linearity.

Four studies reported on the linearity of their sensor response with respect to the applied strain.

The response observed by Fu et al. (2019) was not linear, especially above 25% strain [211]. Guo et

al. (2016) observed linearity in the response up to 11% strain [212], while Amjadi et al. (2015) and

Wang et al. (2018) went further to quantify the linearity of the responses, with R2 > 0.98 [210, 221]. A

linear sensor response will make the calibration process and deriving a relationship between the sensor

response and joint angles much easier.

With regards to hysteresis, three studies reported minimal or negligible hysteresis [210, 214, 221],

and one went further to quantify this with a hysteresis error index ranging between 9.3-30.4% over

strain values up to 40% [211]. Although the 30.4% error at 20% strain is high, this was deemed

comparable to results previously reported in the literature, where sensors made from a carbon black-

PDMS composite and a silver nanowire-elastomer composite have errors of approximately 25% and

30% respectively at 10% strain [211].

Mechanical sensor failure was not discussed in any of the selected papers, however, the stability of

the sensor response was, with this being another way of considering the lifetime of a strain sensor. In

testing sensors for 1000 cycles, observations included an initial drop in resistance and then a further

decrease over the course of cycling [211], while another showed good reliability over the same number
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of cycles with little variation in the relative change in resistance, however this was not quantified

[212]. A third reported an increase in resistance change after 650 cycles, with a 20% upwards drift in

resistance change over 1000 cycles which is considered as “good durability for practical applications”

[221]. A similar response was noted by Lipomi et al. (2011): over the course of 12500 strain cycles,

the resistance decreased by 22% to a minimum value after 1500 cycles, before increasing linearly [218].

This response was observed across three similar experiments [218], however, it is unclear whether these

were performed on the same sensor or different sensors. Variation is expected in the response of these

strain sensors as a result of the materials used, this may make calibration more complex but it can be

accounted for.

4.2.2 Effects of Temperature and Humidity (Environmental Considerations)

In addition to the mechanical and electrical performance under strain, one must consider or be aware

of the effects of temperature and humidity when dealing with strain sensors. Laboratory environments

are controlled, whilst other environments are not. This means that sensors can be subject to a range

of temperatures; and humidity levels; and are susceptible to gas doping, where different compounds

can be adsorbed within the structure. Applied to a sporting context, this can present as extreme

temperature (e.g. snow sports); indirect contact with liquids (splashing in water sports); and sweat

coming into contact with the sensor.

In terms of sensor performance, this will mainly impact the resistance of the sensor. When exposed

to different temperature conditions, strain sensors may experience shrinkage or expansion that will be

detected as a strain [146]. The relationship may or may not be linear and can be accounted for during

sensor calibration. Furthermore, carbon nanotubes can be doped by gases on exposure, impacting

their conductivity [146]. Of the selected references, only six, plus another that does not perform strain

testing, consider temperature effects on sensor output [146, 209, 210, 214, 216, 219, 221]. These are

detailed in Table 4.2.

The temperature coefficient of resistance (TCR) is a measure of the relative change in resistance

per degree of temperature, represented mathematically as:

TCR =
∆R

R0

1

∆T
(4.1)

Where ∆R is the change in resistance, R0 is the initial resistance and ∆T is the change in tem-

perature. Depending on the combination of materials, a temperature rise can lead to an increase in

collisions between charge carriers and therefore an increase in resistance. On the other hand, in differ-

ent materials the same rise in temperature can lead to the release of more charge carriers and reduce

the overall resistance, a situation often found in semiconductors.

Of the studies listed in Table 4.2, there is an even split between sensors in which a positive TCR

87



Table 4.1: Summary of key metrics from cyclic strain sensor testing that has been reported in the literature.

Reference Materials Repeatability
and Durability

Hysteresis and
Linearity

Gauge Factor Time
properties

Max
stress and
strain

Amjadi et
al. (2015)
(Ultra)
[210]

MWCNT/
Ecoflex

2000 cycles
over 0-300%
strain at rate
20%/s

R2 > 0.98 for
strain up to
100%

1.75 90% time
constant
332 ms

Max
strain
1380%

Fu et al.
(2019)
[211]

MWCNT/
PDMS (5,
7 and
9wt%
MWCNT)

1000 cycles at
10% strain at
1mm/s

Hysteresis
error index
– 30.4% at
20%, 16.8% at
10% strain and
9.3% at 40%
strain

15 (5wt%
MWCNT),
5-9 (7wt%
MWCNT),
1 (9wt%
MWCNT)

- -

Guo et
al. (2016)
[212]

CNT
mesh
(CNTM)/
PDMS

1000 cycles at
20% strain rate
2%/s

- 4 - -

Kim et
al. (2018)
[214]

CNT/PDMS
(1-12wt%
CNT)

Cycling testing
over 10,000 cy-
cles – 4, 8 and
12wt% samples

- - - UTS 7.89
± 2.33
MPa and
yield
strain
81.84 ±
20.55%
at 1wt%
CNT

Lipomi et
al. (2011)
[218]

CNT/PDMS12500 cycles at
25% strain

- - - -

Ryu et
al. (2015)
[141]

CNT
fibres/
Ecoflex

10000 cycles - Normal
Ecoflex:
0.56 (0-
200% strain),
47 (200-
400% strain)
Pre-strained
Ecoflex: 0.54
(0-400%
strain), 64
(400-960%
strain)

Delay –
10 ms
(load-
ing), 12
ms (un-
loading),
Recovery
time – 12
ms

Max
strain
960%
(pre-
strained
Ecoflex)

Wang et
al. (2018)
[221]

MWCNT/
PDMS
(10-50
CNT
printing
cycles)

45% strain over
1000 cycles –
electrical

R2 > 0.98 for
all sensors

35.75 (50 print-
ing cycles), 8
(10 printing cy-
cles)

5s re-
sponse
time

Max
strain –
45%
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has been observed [209, 219, 221] and those where the TCR is negative [210, 214, 216], with the

final study not specifying the direction of the resistance change [146]. Even for the same material

combination (MWCNTs in a PDMS matrix), there was a difference in the sign attached to the TCR,

suggesting that the microstructure of the sensor can also influence this value in addition to the material

choice [216, 219]. This is confirmed by Kim et al. (2018) where it is stated that the shrinkage of the

PDMS matrix brings the CNTs closer together [214]. Given this, it is important to understand the

temperature-related properties of strain sensors being developed, one cannot rely on previously reported

results in the literature. A useful indicator alongside the TCR is the relative change in resistance or

change in absolute resistance of the strain sensor. A TCR value that leads to a small variation in

resistance may not greatly impact sensor calibration when determining joint angles.

Studying the information provided in Table 4.2 further, as well as the difference in reported TCR

values, there is also a variation in testing protocols with no standard method being used. Kim et

al. (2018) used a hot plate to observe the change in resistance (but did not go on to state a TCR

value) [214], while three studies reported the use of an oven or temperature chamber [209, 210, 219]. A

concealed chamber is ideal, as it ensures that the sensor is heated to the required temperature and heat

is not escaping as it would in an open environment on a hot plate. However, this may be more difficult

and expensive to obtain; a hot plate in conjunction with a temperature gauge that directly measures

the temperature of the strain sensor can be a cheaper alternative and means that investigators do not

need to rely on the temperature reading of the hot plate alone.

The detail provided in the literature is minimal, in most cases, temperature testing was in addition

to mechanical testing that formed the main part of a study. For example, the variation in heating

ranges, when reported, ranged from 24-42 ◦C [214] to 33-373 K [209], with the latter range being

chosen as this is where MWCNTs show thermal expansion. Any testing range should cover at least

the working range of the strain sensor if the equipment can allow it. Prolonged exposure to high

temperatures is also a useful indicator of the structural integrity of the sensor.

A consistent element across these studies is a lack of measuring the temperature response of a sensor

under strain, however, it is understood that there is some difficulty here in terms of equipment set up to

carry this out. This type of testing could indicate whether the linearity of the sensor response changes

with temperature and if the range of the measured resistance also changes as a result of temperature.

This is certainly a limitation of these studies and a factor that should be considered in the future.

Temperature is not the only environmental factor that is cause for consideration, as highlighted

by Yamada et al. (2011) who observe that gases have the ability to dope CNTs and change their

conductivity as a result [146]. In this paper, the authors considered the effect of exhaled breath on the

resistance of the sensor, reporting a change of approximately 0.6% which in this case was equivalent

to 2% strain [146]. Furthermore, Lee et al. (2013) considered the effects of soaking a strain sensor in

1X phosphate-buffered saline (PBS) where a reduction of resistance was observed, due to conductive
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Table 4.2: Details of temperature and humidity testing performed on different carbon nanotube/polymer
composite strain sensors.

Reference Sensor compo-
sition

Equipment Temperature
testing range

TCR Resistance ob-
servations

Alamusi
et al.
(2013)
[209]

MWCNT/
epoxy (1, 3
and 5wt%
MWCNT)

Temperature
chamber and
LCR meter

33-373K at
1K/min

0.021/K
(5wt%
MWCNT
sensor)

Non-linear
increase with
temperature.
Values stable
with slow heat
cycling at
1K/min

Amjadi et
al. (2015)
(Ultra)
[210]

MWCNT/
Ecoflex

Convection
oven

35-80◦C 0.33%/K Decreases lin-
early with tem-
perature (R2 =
1)

Kim et
al. (2018)
[214]

CNT/PDMS
(1 – 12wt%
CNT)

Hot plate 24-42◦C ther-
mal cycles

N/A Decreases with
temperature
and subsequent
heat cycles

Lee et
al. (2013)
[216]

MWCNT/
PDMS

- 30-80◦C (10◦C
intervals), con-
stant current
(10 µA)

-0.014/◦C
(5wt%
MWCNT)
to -
0.012/◦C
(12.5wt%
MWCNT)

-

Lu et al.
(2007)
[219]

MWCNT/
PDMS
(4-25wt%
MWCNT)

Convection
oven, sensor

RT to 80◦C
(10◦C inter-
vals)

<
0.005/◦C

-

Wang et
al. (2018)
[221]

MWCNT/
PDMS (10-50
CNT printing
cycles)

- - - Sharply in-
creases from
room tem-
perature to
50◦C, mini-
mal change
at higher
temperatures

Yamada
et al.
(2011)
[146]

SWCNT/PDMS - RT to 50◦C - Relative
change in
resistance of
6%f
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ions entering the sensor [216].

A coating can be a way to overcome the effects of gases or solvents on the strain sensors and CNTs

in particular, but not necessarily the effects of temperature. If a coating is employed, the mechanical

and temperature responses of the combined system must be considered.

4.2.3 Summary

From reviewing the literature around the characterisation of resistive carbon nanotube-polymer com-

posite strain sensors, it is understood that there is not a standard protocol that is used. This does

suggest that protocols should be developed based on the intended use of a sensor, however, past authors

did not justify their choice of strain rate, strain range or number of strain cycles (which ranged from

just one strain cycle to over 10,000).

Across the literature, sensor performance is defined with respect to the sensor response and not

its structural integrity, with key metrics reported including the gauge factor, hysteresis and linearity.

These are especially relevant as resistive-based strain sensors are more subject to hysteretic behaviour.

The quantification of these metrics can aid with comparing the properties of different strain sensors

available and with their calibration, however, it is important to understand the conditions under which

they were obtained. The lack of quantified metrics or protocol standards makes it difficult to compare

results within the literature.

Aside from the choice of testing equipment that may have introduced some limitations, a significant

limitation of the reported methods is the lack of repeated testing of the strain sensors developed. In this

project, repeated testing on the same strain sensor has been at the centre of the protocols developed

to determine its suitability for multiple uses.

4.3 Mechanical Testing

4.3.1 Intoduction

To assess the mechanical and electrical properties of all strain sensors, a mechanical testing system was

used to programme and run different cyclic testing protocols. The strain rate and the number of strain

cycles were varied to recreate to an extent the varying session lengths and stroke rates or cadences

completed by rowers and cyclists respectively. The total number of strain cycles would be equal to the

number of completed rowing strokes or pedal revolutions as given by the following equations:

number of strokes = stroke rate (strokes per min)× session duration (min) (4.2)
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number of pedal revolutions = cadence (revolutions per min)× session duration (min) (4.3)

For example, in rowing a steady state session lasting 60 minutes at a stroke rate of 18 s/m, the

total number of strokes is 1080, while a higher-intensity interval that is 10 minutes long at a stroke

rate of 28 s/m consists of 280 strokes. On the bike, a threshold test lasting for 30 minutes at a cadence

of 90 rpm consists of 2700 pedal revolutions.

Two protocols were devised: the first, a longer protocol of fifteen tests where both strain rate and

the number of cycles were varied and the second, a shorter protocol of nine tests where only strain

rate was varied. Both protocols used the same Instron set-up, data processing and statistical analysis

steps. Strain sensors were labelled numerically with the prefix S: S1, S2 and so on.

4.3.2 Materials and Methods

4.3.2.1 Equipment Set-Up

An Instron 5866 testing system (Instron, Norwood, Massachusetts, USA) was used to carry out cycling

testing, in conjunction with the Bluehill testing software (Instron, Norwood, Massachusetts, USA). Due

to the period of time between carrying out tests and the equipment available, the Instron was initially

set up with a 50 N load cell (S1-S5) and then a 10 kN load cell (S6 onwards). The Bluehill software was

also updated within this time, moving from Bluehill 3 (S1-5) to Bluehill Universal (S6 onwards). Each

sensor tested measured 110 mm x 12 mm x 1 mm. Electrodes were placed at a separation distance

of 70 mm and the gauge length (distance between Instron grips) was set to 80 mm. The electrodes

allowed the electrical resistance of the sensor to be measured as a voltage output using an external

circuit.

The maximum extension applied during mechanical testing was identified experimentally by mea-

suring the displacement of the sensor during maximum knee flexion for one test subject. A fabricated

strain sensor was placed across the anterior aspect of the knee at full extension in the longitudinal axis.

With both ends of the sensor secured, the knee was fully flexed. The original and extended lengths of

the sensor were both measured and from this, the strain was calculated to be 16%. A 16% increase in

strain (from the gauge length of 80 mm) was calculated as a displacement of 12.8 mm.

At the start of each testing session, the load cell was calibrated and the distance between the grips

was set to 80 mm, before zeroing the load and extension values. Physical limits were set on the machine

along the scale to protect the machine (preventing the grips from coming into contact with each other).

The sensor was then placed between the grips. The Instron set-up and electrode positioning are shown

in Figure 4.1.
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Figure 4.1: A) Set up of Instron testing, with the sensor placed between grips and connected to an external
instrumentation circuit and B) close-up of the sensor with connective attachments.

4.3.2.2 Data Collection

Extension and load data were collected at a sampling frequency of 100 Hz and were exported from

the Bluehill testing software in comma separated variable (CSV) format. In conjunction with the

extension and load measured by the Instron machine, the electrical output of the sensor was measured.

An external instrumentation circuit (voltage divider set up on an Arduino microcontroller, 10-bit ADC,

+3.3 V supply pins, programmed using Arduino IDE 1.8.5, with resistors on the breadboard, 0.6 mA

current) was used to measure the voltage output of the sensor (the circuit also had a sampling frequency

of 100 Hz, later increased to 200 Hz for sensors S6 and onwards, and contained a 1 kΩ resistor). The

output was recorded using Realterm: Serial Capture Program (2.0.0.70, Baud rate: 115200) on a

laptop.

4.3.2.3 Testing Protocols

Each test followed the same structure: a 10-second hold period at rest, followed by a pre-determined

number of tensile extension cycles (100, 200, 500 and 1000) up to 12.8 mm displacement at a pre-

determined rate (50 mm/min, 100 mm/min and 350 mm/min) to replicate different speeds in a sporting

environment, followed by a ramp to the maximum extension used during the cyclic testing portion,

where the sensor was held for 5 minutes before being returned to its original length (of 80 mm) by the

testing machine. A schematic of the testing profile is shown in Figure 4.2.

The first protocol developed consisted of 15 cyclic tests, from 100 to 1000 cycles, all performed on

the same sensor in order of decreasing strain rate listed in Table 4.3. All tests for the second protocol
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Figure 4.2: Schematic of the testing profile, the sensor is held at rest for 10 seconds, followed by 100 cycles be-
tween 0-12.8mm displacement at a strain rate of 350 mm/min, ending with a hold at the maximum displacement
for a period before being allowed to rest.

developed were of 100 strain cycles, with three tests carried out at each of the three strain rates in a

randomised order. An example of this is listed in Table 4.4.

Table 4.3: Testing order for Protocol 1, indicating the number of cycles and strain rates for each test carried
out.

Test number Number of cycles Strain rate (mm/min)
1-5 100 350
6 200 350
7 500 350
8 1000 350
9 100 100
10 200 100
11 500 100
12 1000 100
13 100 100
14 200 100
15 500 100

For each test, the Instron protocol was started alongside a stopwatch. When the stopwatch reached

ten seconds, the Realterm software was also started to record the voltage output. At least five minutes

were allowed between each test being carried out. For Protocol 1, tests on each sensor were carried

out over multiple days, while for Protocol 2 this all took place on one day. All tests were carried out

at room temperature.
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Table 4.4: Example of randomised testing order for Protocol 2.

Test number Number of cycles Strain rate (mm/min)
1 100 350
2 100 50
3 100 350
4 100 100
5 100 100
6 100 50
7 100 350
8 100 100
9 100 50

4.3.3 Data Processing

The resistance of the sensor can be calculated using the following relationship for voltage dividers:

Vout = Vin(
Rpd

Rs +Rpd
) (4.4)

Where Rs is the resistance of the sensor, Rpd is the value of the pull-down resistor in the circuit,

Vin is the voltage supply to the sensor, and Vout is the measured voltage.

From this, the resistance of the circuit, Rpd, can be optimised for the available voltage range using

the following equation:

Rpd =
√

(Rmax
s Rmin

s ) (4.5)

What Equation 4.4 tells us is that when Vout is at its maximum, the resistance of the sensor, Rs is at

a minimum, so there is an inverse relationship between the voltage being measured and the resistance

of the sensor. Rearranging the equation allows us to calculate Rs:

Rs =
Rpd(1− Vout

Vin
)

Vout

Vin

(4.6)

In MATLAB (Mathworks, Natick, Massachusetts), the voltage data collected from the sensor was

initially filtered using a Hampel filter to remove any outliers (sharp spikes in the signal), before using a

4th-order zero-lag Butterworth Filter to smooth the voltage signal. A discrete-time Fourier transform

(DTFT) was performed on three tests covering the different strain rates from four sensors (a total of 12

tests). Single-sided amplitude spectra were produced (see Figures 4.3 and 4.4), split by the sampling

frequency.

Both spectra suggest a high cut-off frequency of 20 Hz due to the high strain rate tests, however in

practice, a lower cut-off frequency produced a better signal without losing features from the original

signal, as observed in Figures 4.5 and 4.6. A cut-off frequency of 10 Hz was therefore used with the

Butterworth filter.
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Figure 4.3: Noise extraction for raw sensor data from sensors S2 and S3, sampling frequency of 100 Hz.

Figure 4.4: Noise extraction for raw sensor data from sensors S8 and S9, sampling frequency of 200 Hz.
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Figure 4.5: Raw and filtered sensor response for sensor S2 with different cut-off frequencies (5, 10 and 20 Hz).

Figure 4.6: Raw and filtered sensor response for sensor S8 with different cut-off frequencies (5, 10 and 20 Hz).
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Following filtering, data extraction was performed. Equation 4.6 was used to calculate the sensor

resistance from the voltage output collected during testing. A custom MATLAB script was then used

to extract the maximum and minimum values from each strain cycle and calculate the resistance range.

Data sets collected from each test contained many values, therefore the decision was taken to extract

data from five cycles in every 20 cycles as a representation, up until the holding point in the strain

test. The range of the voltage output was calculated for each of the extracted strain cycles, reducing

each data set to the lengths seen in Table 4.5. Custom MATLAB scripts were used to perform this

extraction and calculate each cycle range. Some incomplete data sets arose from errors in the testing

procedure. Custom MATLAB scripts were also used to extract the sensor response during the hold

portion of each test.

Table 4.5: Number of values extracted from raw datasets.

Test length (no. cycles) Extracted data (number of values)
100 6 × 5 cycles (30)
200 11 × 5 cycles (55)
500 26 × 5 cycles (130)
1000 51 × 5 cycles (255)

4.3.4 Statistical Analysis

Statistical analysis was carried out using SPSS (IBM SPSS Statistics Version 25; IBM Corporation,

Armonk, New York, United States).

4.3.4.1 Intra-test variability

To determine the consistency of the sensor signal during one cyclical strain test, each set of 5-cycle

extracts were compared to each other – six sets for 100 cycle tests, 11 sets for 200 cycle tests and so

on (see Table 4.5).

Data normality was verified with the Shapiro-Wilk Test (due to small sample sizes). Repeated

Measures ANOVA (a test for repeated measures on the same sample for parametric data) was used

to compare the means across the 5-cycle extracts within the same test (significance level = 0.05).

Post-hoc analysis was conducted using the Bonferroni Test if significant differences were found.

4.3.4.2 Inter-test variability

Tests of the same cycle length carried out on the same sensor were compared (again using the 5-cycle

extracts) to determine inter-test variability. Data normality was again verified with the Shapiro-Wilk

Test. The Friedman test (a test repeated measures test on the same sample for non-parametric data)

was used if the majority of the variables were not normal, followed by the Wilcoxon signed-rank test

for post hoc analysis.
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4.4 Protocol 1

Data were collected from ten sensors (labelled S1-S10) which were subject to a series of cyclic strain

tests, following the protocol displayed in Table 4.3. The cyclical protocol allowed the determination of

several performance parameters. The primary focus of the testing was to determine the repeatability

and durability of the sensors, but other parameters determined include sensitivity (measured by the

gauge factor), hysteresis, linearity and drift.

4.4.1 Repeatability and Durability

Above all, the repeatability of sensor output and its durability are important considerations in a

sporting application, where the sensor is subject to numerous strain cycles. Not only should the

output of a sensor be consistent within a test, but ideally it should also be consistent across tests to

make calibration easier.

4.4.1.1 Results

Tests were carried out on strain sensors at three different strain rates: 350 mm/min, 100 mm/min

and 50 mm/min. Plots of the sensor output in response to these different rates over 100 cycles are

displayed in Figure 4.7.

Figure 4.7: Sensor response for 100-cycle tests on the same sensor (S10) carried out at different strain rates
a) 350 mm/min, b) 100 mm/min c) 50 mm/min.

At the lowest strain rate of 50 mm/min, the sensor undergoes preconditioning with the maximum

and minimum resistance values decreasing together significantly over the first 20 minutes of testing,

with a smaller decrease over the next 10 minutes. Visually the range looks to remain steady throughout

the cyclic portion of testing. The sensor output at 100 mm/min is the most consistent with the
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maximum and minimum values remaining unchanged, while the output at 350 mm/min is much more

variable and less predictable than the lower strain rates. At the highest strain rate also, the sensor

resistance during the hold period is much more comparable to the minimum values during the cyclic

testing when the sensor does not have any load applied to it. For loading at the slower strain rates, the

sensor resistance during the hold period is closer to the maximum resistance during the cyclic testing.

4.4.1.1.1 Intra-test variability

Intra-test variability was explored to compare the range of each sensor’s resistance response, over-

coming the fact that the absolute values change with each subsequent test. The 5-cycle extracted data

are used to compare the change in resistance range over the course of one test.

Figure 4.8: Change in output range over the course of a 100-cycle test repeats at 350 mm/min strain rate on
the same sensor (S10).

Figure 4.8 compares five tests of 100 cycles at 350 mm/min carried out on the same sensor. T4 is

the most variable in its resistance range (almost 800 Ω), however, the average cycle range of the other

tests falls between 500 Ω to 1000 Ω. The resistance range does not trend positively or negatively for

any of the short, high-speed tests on this sensor.

Figure 4.9 provides a visual representation of the average resistance range of five strain cycles at

regular intervals throughout all the tests carried out on sensor S10. Observations can be made on

the change in resistance range over one test and comparisons can be made between tests of the same

number of cycles but at different speeds. For tests at all cycle lengths, the high-speed tests at a

strain rate of 350 mm/min are the most erratic in terms of the resistance range calculated, with values
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Figure 4.9: Change in output range as a function of strain rate over differing cycle-length tests on sensor S10
at a) 100 cycles, b) 200 cycles, c) 500 cycles and d) 1000 cycles.

between 500-1000 Ω. Tests conducted at 100 mm/min and 50 mm/min are much more consistent at

all test lengths with regards to sensor resistance range – similarity is seen both between the two strain

rates and the different numbers of cycles applied, with the range just below 500 Ω.

The previous figures summarised results from one sensor (S10). The following statistical results

give an overview of the performance of all sensors tested. Intra-test variability, the variability of the

range of the sensor resistance during a cyclic test, was determined using statistical tests and based on

the 5-cycle extracted data (significance level, α = 0.05). The p-values are detailed in Table 4.6.

Table 4.6: Greenhouse-Geisser p-values associated with sensor intra-test variability. Significant values have been
highlighted in red.

Test S1 Test S2 S3 S4 S5 S6 S7 S8 S9 S10
100c_350_1 0.01 100c_ 350_1 0.003 0.214 0.026 0.433 0.355 0.294 0.144 0.236 0.147
200c_350 0 100c_350_2 0 0.299 0.019 0 0.44 0.176 0.47 0.526 0.569
500c_350 0.002 100c_350_3 0.482 0.557 0.31 0.051 0.116 0.221 0.117 0.213 0.141
100c_50 0.008 100c_350_4 0.012 0.096 0.162 0.268 0.345 0.506 0.359 0.404 0.481
100c_100 0.367 100c_350_5 0.405 0.035 0.255 0.003 0.047 0.18 0.032 0.712 0.057

100c_350_2 0.478 200c_350 0.037 0.015 0.07 0 0.467 0.387 0.327 0.323 0.481
100c_350_3 0.072 500c_350 0.13 0.128 0 0 0.629 0.132 0.056 0.33 0.3

200c_50 0 1000c_350 0.168 0.002 0 0 0.186 0.085 0.166 0.242 0.206
1000c_350 0.006 100c_100 0.268 0.207 0.349 0.05 0.43 0.035 0.158 0.35 0.303
200c_100 0 200c_100 0.266 0.001 0 0.201 0.289 0.218 0.096 0.24 0.443
1000c_100 0 500c_100 0.002 0 0.002 N/A 0.027 0.088 0.042 0.088 0.066

100c_350_4 0 1000c_100 0.204 0 0 N/A N/A 0.026 0.004 0.017 0.018
500c_100 0.006 100c_50 0 0.047 N/A N/A 0.157 0.344 0.354 0.255 0.265

100c_350_5 0.236 200c_50 0.001 0.024 N/A N/A 0.129 0.401 0.232 0.443 0.292
500c_50 0 0 N/A N/A 0.032 0.142 0.003 0 0.014

Notation for tests: 100c_350_1 where 100c = 100 cycles, 350 = strain rate of 350 mm/min, 1 = test 1

Over 60% of tests (88 out of 140) reported non-significant p-values, suggesting that the resistance

range was consistent over the course of a test. The majority of significant p-values occur for sensors
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S1-S5 (39 out of 52) compared to sensors S6-S10 (13 out of 52) which were fabricated from a new

batch of rubber bands. The sensors performed best over short cycles (100 and 200) but each sensor

responded differently to testing. Sensor S2 showed a consistent response at both 1000-cycle tests at

50 mm/min and 100 mm/min strain rates. Due to the early failure of sensors S4 and S5, statistical

analysis could not be carried out for all tests.

4.4.1.1.2 Inter-test variability

Sensor resistance ranges between tests on the same sensor were also compared, calculating the

mean and standard deviation for each test. The percent deviation provided another measure of the

variation of the resistance across a test. These values are listed in Table 4.7 for sensor S10. The percent

deviation is highest for tests conducted at 350 mm/min (22.42% for a 100-cycle test) and lowest for

tests at the slower strain rates (2.72-6.98% for tests at 50 mm/min).

Table 4.7: Mean of the sensor resistance range, standard deviation and percent deviation for sensor S10.

Resistance Range (Ω)
Test Mean Standard deviation Percent deviation (%)

100 cycles at 350 mm/min, test 1 763.26 105.53 13.83
100 cycles at 350 mm/min, test 2 669.39 96.30 14.39
100 cycles at 350 mm/min, test 3 603.05 95.56 15.85
100 cycles at 350 mm/min, test 4 871.58 195.39 22.42
100 cycles at 350 mm/min, test 5 773.24 140.21 18.13

200 cycles at 350 mm/min 775.25 155.45 20.05
500 cycles at 350 mm/min 799.57 144.16 18.03
1000 cycles at 350 mm/min 780.61 129.64 16.61
100c cycles at 100 mm/min 304.30 13.98 4.59
200c cycles at 100 mm/min 323.31 21.06 6.51
500 cycles at 100 mm/min 353.38 16.12 4.56
1000 cycles at 100 mm/min 333.51 8.50 2.55
100 cycles at 50 mm/min 346.42 24.18 6.98
200 cycles at 50 mm/min 339.63 9.24 2.72
500 cycles at 50 mm/min 394.71 12.00 3.04

The values in Table 4.7 were used to plot Figures 4.10 and 4.11, with the former taking into account

the sensor resistance range at differing strain rates and number of cycles, whilst the latter focuses on

only the tests over 100 cycles. These figures formed the basis of the inter-test statistics that were then

performed. Tests are grouped by cycle length in Figure 4.10 which does not take the testing order into

account. The test of 200 cycles at 350 mm/min appears to be an outlier, with other grouped tests

having mean resistance ranges within 100 Ω of each other. In Figure 4.11 the mean resistance ranges

of Tests 2-4 at 350 mm/min differ the most from the other 100-cycle tests.

Table 4.8 details the results of the inter-test variability statistics and post-hoc analysis. The

signficance level (α = 0.05) was adjusted based on the Bonferroni correction for each set of tests

(divided by the number of comparisons). Tests were grouped by the number of cycles and no similarity
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Figure 4.10: Mean sensor output range at different strain rates, grouped by the number of testing cycles.

Figure 4.11: Mean sensor output range of tests over 100 cycles at different strain rates.
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was seen at a group level on the overall mean resistance range of a sensor. Post-hoc analysis indicated

similarity in the overall mean resistance range for tests over 100 cycles at 350 mm/min. Inter-test

variability statistics for sensors S1-S9 are listed in Appendix B.

Table 4.8: Inter-test variability results from comparisons between tests of the same cycle length on sensor S10
(including post-hoc analysis). Significant values have been highlighted in red. The test number within Protocol
1 has been used to distinguish between comparisons.

100 cycles 200 cycles 500 cycles 1000 cycles
No. tests 7 3 3 2

No. comparisons 21 3 3 1
Stats test Friedman Friedman Friedman Wilcoxon
p-value 0 0 0 0
Post-hoc Wilcoxon Wilcoxon Wilcoxon -

Adjusted α 0.002 0.017 0.017 -
p-value (1,4)=0.041,

(1,5)=0.688,
(2,3)=0.004,
(2,5)=0.008,
(4,5)=0.063

- - -

(1,2)=0.001,
rest=0

All compar-
isons =0

All compar-
isons =0

-

4.4.1.2 Discussion

The cyclic testing on the fabricated stain sensors was used to determine the repeatability of the sensor

response, by using three different strain rates and four test durations, aiming to replicate conditions

during use in a sporting environment.

First considering the behaviour of a strain sensor over 100 cycles at different strain rates, it is

clear from Figure 4.7 that the strain rate has an influence on the measured resistance - it becomes

more variable as the strain rate increases. This time-dependent strain response is a feature that can

be attributed to the viscoelastic behaviour of the rubber matrix. This is also confirmed in Figure 4.9,

where the same behaviour is seen as the number of strain cycles increases from 100 to 1000, and in

Table 4.7 where the percent deviation is higher for tests conducted at 350 mm/min (13.83-22.42%)

compared to tests at 100 mm/min (2.55-6.51% deviation) and 50 mm/min (2.72-6.98% deviation). At

the higher strain rates, the CNTs that are responsible for transferring electrical charge are constantly

in motion – there is no time for the sensor to relax when the strain is removed and then applied again,

leading to this erratic response. Continuing to explore what is happening at a microscopic level, as

strain is repeatedly applied to the sensor, the orientation of the CNTs is such that they become more

aligned. This leads to increased contact points and makes it easier for a charge to be transferred,

leading to a lower resistance and the absolute values decreasing over time as shown at a strain rate

of 50 mm/min. Considering the practical application of these sensors, the percent deviation in the

resistance range is in line with what is considered as suitable durability by Wang et al. (2018), where
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the sensor resistance drifted by 20% over 1000 cycles [221].

It can be observed that the sensor resistance range, maximum and minimum values are not the

same for the three strain rates tested and presented in Figure 4.7, with these numbers decreasing as the

strain rate reduces from 350 mm/min to 100 mm/min, but then increasing as the strain rate is reduced

further to 50 mm/min. This behaviour is not due to the strain rate, but due to the testing protocol

and the change in the sensor properties over time, with the three tests not carried out back-to-back

(see Table 4.3 for testing order). The lower resistance observed at 100 mm/min can be explained

by the microstructural changes discussed earlier. However, the resistance increasing again cannot be

explained by this phenomenon. The sensors tested did not have a coating, and so over time there

would have been a loss of CNTs certainly from the surface due to handling. Although the CNTs in the

sensor bulk would have been mostly responsible for the charge transfer, any loss of CNTs will reduce

the number of conductive pathways and therefore increase the resistance, as has happened for the test

at 50 mm/min. Having a coating on the sensor would resolve this, but the elastic properties need to

be considered and match up with the matrix to prevent sensor failure.

With a total of 15 tests carried out on the same sensor and each being of a different duration, this

testing protocol was carried out over multiple days. As discussed before, the handling of the sensor

on each day of testing could affect the measured resistance, while the placement of the sensor in the

Instron grips also comes into play, as this could not be replicated exactly each time. Any change

in pre-strain as a result of sensor placement would lead to resistance changes throughout the testing

process. Not being able to control this at this moment suggests that it is preferential to use the

resistance range and normalise it to aid with calibration when integrated into a wearable technology

system. This argument is backed up by the data presented in Figure 4.8 where the resistance range

is between 600-1000 Ω. It is expected that the electrical properties of the sensor will change between

tests because of the nature of its structure, but visually there is similarity across the test repeats and

normalising the output would help aid comparisons between the tests.

It is important to consider the intra-test variability of the strain sensors: how the sensor resistance

range changes from cycle to cycle. A minimal variation would aid the calibration process and suggest

its suitability for translation in measuring knee flexion-extension angles. Visually, consistency can be

seen in the sensor resistance range from cycle to cycle in Figure 4.9, especially in the longer duration

tests at the lower strain rates of 50 mm/min and 100 mm/min where tests were in the region of four

hours at the two strain rates for 500 strain cycles and 1000 strain cycles respectively. This indicates

suitability for use over longer periods for a rowing or cycling session that could last for this amount of

time.

Statistical analysis confirms these visual observations, with p-values presented in Table 4.6, partic-

ularly for sensors S6-S10 compared to S1-S5. The difference between these two groups of five sensors

can partly be explained by the fabrication process, with the purchase of new rubber bands to be used
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as the matrix. Rubber bands will degrade over time, with molecular bonds breaking and reducing

the elasticity of the material. Reduced elasticity will mean that after strain is removed, the rubber

band will not return to its original dimensions, also impacting the reformation of the CNT conductive

pathways.

For all sensors, but especially focusing on sensors S6-S10, the significant p-values referring to a

lack of consistency within the cyclical testing are generally amongst the tests towards the end of the

testing protocol: 500 cycle and 1000 cycles at 100 mm/min, and 500 cycles at 50 mm/min. Due to

the design of the protocol, it cannot be assumed that this is due to testing speed. Sensor degradation

is taking place, no matter how minimal, and this can be contributing to the behaviour – a testing

protocol randomising the testing speed order could help to rule out this variable.

Good inter-test variability is dependent on the parameter being measured and the context of this

use, but indicates the ability to obtain similar or the same results when a measurement is repeated. In

the case of using these strain sensors to detect knee range of motion, good inter-test variability should be

less than 5% variation between measurements, enabling comparisons between repeated measurements

of a person’s range of motion. Statistical analysis was carried out on the mean resistance range for

each test, grouped by the number of strain cycles as represented visually in Figure 4.10. At a group

level, no similarity was seen between tests of the same cycle length conducted at different strain rates.

Post-hoc analysis suggested similarity between all tests of 100 cycles at a strain rate of 350 mm/min

– these tests were conducted back-to-back without the strain sensor being removed from the Instron

grips. These results emphasise the need for a different protocol to rule out testing speed as an influence

in the significant statistical results.

4.4.2 Drift

The second part of each test consisted of a 5-minute hold period at constant strain to determine

how much variation there was in the sensor output during this period. This strain was equal to the

maximum cyclical strain of 16%. Figure 4.7 shows visually how this hold period compares to the cyclic

portion of each test.

4.4.2.1 Results

As the sensor is stretched to the maximum value used in the cyclic portion of the test, it is suggested

that the mean output value in the hold should be similar to the mean of the max output in the cyclic

portion of the test. The values for each test carried out on sensor S10 are displayed in Table 4.9. The

mean resistance during the hold period typically falls between the mean and max resistance values

during the strain cycles, with the first test of 100 cycles at 350 mm/min being the exception and the

mean hold resistance of 881.01 Ω falling below the minimum resistance during cyclic testing of 1058.40

Ω. The standard deviation for the mean hold resistance is low, with the maximum value being 11.48
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Table 4.9: Mean hold compared to cyclic max and min resistance (S10).

Test
Mean Resistance (Ω)

cyclic max hold cyclic min
mean std mean std mean std

100c_350_1 1821.70 181.09 881.01 6.74 1058.40 150.66
100c_350_2 1476.30 93.39 861.21 7.79 806.90 40.51
100c_350_3 1391.20 93.58 858.41 6.50 788.18 31.62
100c_350_4 1863.60 193.21 1073.79 7.59 991.98 69.04
100c_350_5 1784.40 156.41 1127.12 9.29 1011.10 59.18
200c_350 1741.30 150.32 1121.47 8.35 966.02 22.74
500c_350 1733.70 148.29 1119.09 6.72 934.15 40.86
1000c_350 1683.20 129.73 1092.93 7.72 902.54 27.51
100c_100 1132.80 6.71 1060.19 9.26 828.46 11.64
200c_100 1221.70 40.33 1113.72 10.18 898.35 36.24
500c_100 1358.00 52.01 1238.08 9.71 1004.60 43.18
1000c_100 1277.20 15.34 1183.44 9.34 943.68 12.23
100c_50 1314.30 43.22 1212.77 11.48 967.87 33.15
200c_50 1262.10 10.16 856.67 4.71 922.45 7.83
500c_50 1438.50 61.44 1320.59 11.39 1043.80 55.54

Notation for tests: 100c_350_1 where 100c = 100 cycles, 350 = strain rate
of 350 mm/min, 1 = test 1

Ω, compared to the maximum and minimum mean cyclic resistance values which are as high as 193.21

Ω and 150.66 Ω respectively.

4.4.2.2 Discussion

The hold period within this testing protocol was used to understand the strain sensor drift behaviour

if it was held under constant tension for an extended period of time, the translation of this being

that if an athlete holds a static position then any measurements of joint angles taken during this time

should be the same. The low standard deviation of the sensor resistance during the 5-min hold period

(calculated and displayed in Table 4.9) suggests the strain sensor’s ability to meet this requirement.

The plotted data in Figure 4.7 adds an extra layer of detail to the observations of drift that the

numerical data does not. At the start of the hold, there is a reduction in the sensor resistance which

can be attributed to stress relaxation. This response is well explained by Amjadi et al. (2014), where

the tensile stress in the rubber band matrix is reduced over time as a result of the stress relaxation

effect, which leads to a partial restoration in the orientation of the CNTs within the matrix [193].

Conductive networks are reformed and the electrical resistance decreases slightly as a result. This

behaviour also explains why the mean resistance during this hold period does not correspond with the

mean maximum cyclic resistance. This behaviour is an inherent property of the matrix material and

cannot be changed, so needs to be accounted for when taking any constant strain measurements.
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4.4.3 Hysteresis, Linearity and Sensitivity

Resistive-based strain sensors can be prone to hysteresis which means the response of the sensor when

strain is applied and then released will not follow the same trajectory, impacting sensor calibration.

This also links to the linearity of the sensor response with a more linear response simplifying the

calibration process, as well as the sensitivity of the sensor and how the electrical resistance changes

with strain.

4.4.3.1 Results

For each test, all cycles were averaged to determine the average load-unload cycle. From this, a

hysteresis loop was plotted, which forms the basis of the results in this section. Plotting an average

strain cycle revealed spikes in the data at maximum and minimum strain (as also seen in the raw data)

for the high strain rate tests, which is seen in Figure 4.12a. This has the potential to skew any further

calculations for hysteresis, linearity (using the coefficient of determination, R2) and the gauge factor

(GF). The decision was therefore made to crop the data at each end to account for these data spikes

(as displayed in Figure 4.12b) and produce adjusted values for each of the metrics mentioned, which

are presented in Table 4.10.

The loading and unloading curves in Figure 4.12 are close together, with an overlap between signals

at some points. Visually it can be seen that the maximum separation between the two signals does

not fall at 8% strain which is the midway point.

Table 4.10: Average hysteresis, corresponding Gauge Factor and Coefficient of determination for each test type. Original
and adjusted values are reported for each metric.

Test Hysteresis
(%)

Gauge Factor
(-)

Coefficient of deter-
mination - Adjusted
R2 load (-)

Coefficient of deter-
mination - Adjusted
R2 unload (-)

Original Adjusted Original Adjusted Original Adjusted Original Adjusted
100c_350_1 99.60 11.51 11.87 3.14 0.488 0.933 -0.002 0.909
100c_350_2 99.73 30.70 17.65 3.48 0.541 0.933 0.036 0.806
100c_350_3 99.56 14.54 10.44 3.05 0.681 0.953 0.011 0.927
100c_350_4 75.07 49.84 5.22 2.95 0.787 0.940 0.410 0.720
100c_350_5 31.72 26.27 4.38 2.50 0.833 0.954 0.854 0.929
100c_100 18.74 19.03 2.28 2.24 0.978 0.982 0.945 0.948
100c_50 14.89 15.10 2.17 2.13 0.995 0.996 0.980 0.981
200c_350 99.47 22.96 8.21 2.86 0.810 0.957 0.081 0.930
200c_100 14.53 14.74 2.18 2.14 0.990 0.992 0.979 0.980
200c_50 15.31 15.48 2.24 2.21 0.995 0.996 0.979 0.979
500c_350 72.89 17.40 5.28 3.31 0.851 0.975 0.606 0.948
500c_100 15.93 16.23 2.15 2.09 0.959 0.963 0.920 0.921
500c_50 15.16 15.34 2.34 2.30 0.983 0.985 0.965 0.966
1000c_350 42.66 13.25 5.46 3.87 0.899 0.980 0.806 0.940
1000c_100 17.46 17.73 2.18 2.14 0.943 0.949 0.902 0.905
Notation for tests: 100c_350_1 where 100c = 100 cycles, 350 = strain rate of 350 mm/min, 1 = test 1
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Figure 4.12: Hysteresis loops plotted for a strain cycle test carried out on S10 for 100 cycles at 350 mm/min.
a) original plot featuring spikes in the sensor response at minimum and maximum extension b) adjusted plot,
accounting for the data spikes.

Hysteresis values in Table 4.10 were calculated using the following equation:

Hysteresis(%) =
|Rload −Runload|

RmaxRmin
× 100% (4.7)

Where |Rload − Runload| corresponds to the greatest difference between the loading and unload-

ing responses, and Rmax and Rmin are the resistance values at the maximum and minimum strain

respectively.

Adjusted hysteresis values at the highest strain rate of 350 mm/min are much lower than the original

values, in one instance falling from 99.56% to 14.54% (test T3_100c_350). A similar observation can

be made for the GF, falling from 10.44 to 3.05 for the same test. Accounting for the data spikes at

minimum and maximum extension, a difference can also be seen in the coefficient of determination, with

the adjusted R2 values increasing for both the loading and unloading responses. Original and adjusted

values for all metrics remain similar for tests conducted at the lower strain rates (100 mm/min and 50

mm/min). Adjusted hysteresis values are below 20% for eleven out of fifteen tests on this particular

sensor, the lowest being 11.51%. Adjusted GF values range between 2.09-3.87 and R2 is as high as

0.996 and 0.981 for loading and unloading respectively, which both suggest a good linear relationship

between strain applied to the strain sensor and the electrical resistance response.
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4.4.3.2 Discussion

The cyclic portion of the testing protocol was used to determine the linearity and sensitivity of the

strain sensor response, as well as understand any irreversible changes or energy losses due to the

material properties of the composite.

From the average strain cycle loop plotted in Figure 4.12, it can be seen that the resistance of

the sensor follows a similar pattern when strain is applied and then released, however, the loading

and unloading curves do not overlay exactly. This suggests that the sensor is exhibiting hysteretic

behaviour. The loading and unloading curves however are close together, indicating that little energy

is dissipated as heat during the testing process.

Within the literature, there are different ideas as to what constitutes low (and therefore acceptable)

hysteresis. A composite made from poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) and car-

bon black (CB) was reported to have a low hysteresis below 7% [222] at up to 80% strain, while 30.4%

hysteresis at 20% strain was considered tolerable by Fu et al. (2019) for a strain sensor fabricated from

MWCNTs and PDMS [211]. The original hysteresis values calculated for tests at strain rates of 100

mm/min and 50 mm/min fall within this range, the highest being 18.74% for a test over 100 cycles at

100 mm/min. Adjusted hysteresis values for the highest strain rate also fall within this range, except

for two tests. The results for this particular strain sensor are comparable to those reported in the

literature that have been fabricated using more complex and costly techniques involving the curing

and layering of polymers [211].

The GF indicates the sensitivity of the strain sensor, reporting the “ratio of the relative change of

the output signal to the applied strain” [152]. For this developed strain sensor, the adjusted values

range from 2.14 – 3.48 for up 16% strain. Although high GF have been reported such as 1.13 x 105

for a MWCNT-SEBS composite [223], strain sensors have also been fabricated with GF as low as 1.55

from a PDMS-MWCNT composite [224]. This PDMS-MWCNT has been used to detect small hand

movements in stroke patients, as well as hand and arm movements in badminton [224]. The GF of the

sensor developed in this project is therefore suitable for detecting knee range of motion in rowing and

cycling, however, the resolution of the measurement may not be as good as a sensor with a higher GF

that is more sensitive.

The linearity of the sensor response is also an important feature, with a more linear response aiding

the calibration and data processing [152]. Within this strain range of 0-16%, the adjusted R2 is high,

with all values associated with loading above 0.9 and all but two above 0.9 for unloading, indicating

that the sensor response has good linearity within this strain range. The R2 values are lower for

the unloading curve – this mismatch is due to the hysteretic behaviour as a result of the viscoelastic

properties of the rubber matrix. It is therefore necessary to consider the load and unload sections of

the strain cycle separately during any further calibration of the strain sensor.
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4.4.4 Further Discussion and Limitations

Outside of the earlier key metrics discussed, there are other elements from the sensor testing process

that are important to highlight. There are some gaps in the dataset due to sensor failure. Two sensors

(S4 and S5) were found to have failed structurally whilst in storage. Failure was at the point of contact

with the electrodes. These sensors were tested and stored during a period of a heatwave that may

have contributed to their demise. The electrodes have teeth that clamp onto the elastic matrix of the

sensor, increasing stress localisation and the potential for failure after numerous cycles. However, the

eight other sensors were tested for over 4500 cycles and did not show any signs of failure.

With the same resistor combination in the external circuit being used for each sensor, and each

sensor having different electrical properties, the instrumentation circuit was not optimised for each

sensor. This led to different output ranges for each sensor, limiting comparisons between them. Outputs

may be optimised in the future by changing the resistor combination for each sensor based on Equation

4.5.

It became apparent during testing that the protocol did not allow the properties of the sensor to

be fully exploited and linked to each other. The lengthy protocol meant that all tests on one sensor

could not be carried out on the same day. Each sensor was removed from the Instron grips and then

replaced on a different day to continue testing. Ensuring the consistent placement of the sensors was

difficult and will have impacted the amount of pre-strain and ultimately, the resistance values. A

shorter protocol that does not require the sensor to be removed from the Instron grips would provide

a better indication of the effect of strain rate and accumulated fatigue on the sensors’ properties.

The measurements from the instrumentation circuit and Instron testing machine were not able to

be synced and so a manual process was instead used. This made it unsuitable to compare the resistance

and load outputs or determine whether the resistance lagged in relation to the strain applied. It also

prevented the calculation of time-dependent variables such as response time, recovery and overshoot

behaviour. Having a synchronised start of the data collection would have allowed any inherent phase

shift to have been observed.

The intended use of this strain sensor is in rowing and cycling where the conditions can be very

changeable in an outdoor environment. For this reason, exploring different testing conditions such as

temperature and humidity (whether of the environment or sensor itself) would have been beneficial to

determine the effect on sensor properties. However, it was observed that a higher storage temperature

did decrease the lifetime of the sensor.

4.5 Protocol 2

The original sensor testing protocol gave insight into certain properties, including the durability, re-

peatability and hysteresis of the carbon-based strain sensors. However, with this protocol being carried
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out over multiple days, it made it difficult to make comparisons between each test, specifically tests of

the same cycle length, yet different strain rates.

To eliminate the variable of pre-strain and to allow comparisons to be made between tests of

different strain rates, a new protocol was devised: sensors underwent 100 strain cycles at loading rates

of 50, 100 and 350 mm/min, with three repetitions at each strain rate. These were all carried out

on the same day without removing the sensor from the Instron grips. The order of these tests was

randomised to ensure that sensor fatigue was not affecting results. Five samples were tested using this

new protocol.

4.5.1 Testing Protocols

A random sequence generator was used to determine the testing order for four of the five sensors

(labelled S12-S16) used for this new testing protocol. The testing for S12 was developed based on the

original protocol order, with the strain rates grouped together for comparison. The testing orders are

listed in Table 4.11.

Table 4.11: Testing order for each strain sensor.

Test\Sensor S12 S13 S14 S15 S16
1 T1_350 T1_50 T1_50 T1_100 T1_100
2 T2_350 T1_100 T1_100 T1_350 T1_350
3 T3_350 T2_100 T2_50 T2_100 T2_350
4 T1_100 T1_350 T1_350 T1_50 T1_50
5 T2_100 T2_350 T2_350 T3_100 T2_100
6 T3_100 T3_100 T3_50 T2_50 T2_50
7 T1_50 T2_50 T2_100 T3_50 T3_350
8 T2_50 T3_50 T3_100 T2_350 T3_50
9 T3_50 T3_350 T3_350 T3_350 T3_100

Notation for tests: T1_350 where T1 = test number, 350 = strain rate

4.5.2 Repeatability

The decision was made to focus only on the repeatability of the sensor output for this testing protocol

as it was a limitation of Protocol 1, while the other considered metrics were able to be determined.

4.5.2.1 Results

Figure 4.13 contains plots of the mean sensor resistance range for all the tests carried out on each

sensor. As for Protocol 1, the resistance range differs from sensor to sensor, meaning comparisons

cannot be made between each sensor. For sensors S14-S16 the resistance range for tests at a strain

rate of 350 mm/min is much higher than for tests conducted at a lower strain rate.

Statistical analysis was performed to determine inter-test variability for each sensor using the same

mean resistance range used for the plots in Figure 4.13. Friedman tests were performed, grouping
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Figure 4.13: Mean sensor resistance range for each test carried out on sensors a) S12, b) S13, c) S14, d) S15
and e) S16.

the protocol tests by strain rate. At a group level, the results showed that there was no similarity

between the tests. Post-hoc analysis was performed across all nine tests, with some correlation found

as detailed in Table 4.12. The α value was adjusted based on the number of comparisons in each group

to be 0.025.
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Table 4.12: P-values from the inter-test variability statistics carried out at a significance level of 0.025.
Significant values have been highlighted in red.

S12 S13 S14 S15 S16
350 mm/min 1,2,3 4,5,9 4,5,9 2,8,9 2,3,7
100 mm/min 4,5,6 2,3,6 2,7,8 1,3,5 1,5,9
50 mm/min 7,8,9 1,7,8 1,3,6 4,6,7 4,6,8
Non-significant
p-values

(1,2)=0.453,
(1,3)=0.926,
(1,6)=0.6,
(1,7)=0.877,
(1,8)=0.116,
(2,3)=0.504,
(2,6)=0.033,
(2,7)=0.254,
(2,8)=0.688,
(2,9)=0.159,
(3,6)=0.09,
(3,7)=0.572,
(3,8)=0.141,

(5,4)=0.213,
(4,7)=0.845,
(4,8)=0.943,
(5,7)=0.125,

(4,5)=0.079 (1,6)=0.072,
(3,4)=0.136,
(3,6)=0.229,
(4,6)=0.405,
(5,7)=0.593,
(8,9)=0.405

(5,4)=0.943,
(4,6)=0.992,
(4,8)=0.063,
(5,6)=0.066,
(5,6)=0.992,
(5,8)=0.06,
(6,8)=0.045,
(8,9)=0.704

Significant
p-values

(1,9)=0.007,
(3,9)=0.002,
all other com-
parisons

(7,8)=0.002,
all other com-
parisons

(1,7)=0.004,
all other com-
parisons

all other com-
parisons

(3,7)=0.023,
(5,9)=0.001,
(6,9)=0.01, all
other compar-
isons

4.5.2.2 Discussion

Protocol 2 was developed to overcome some of the limitations that arose during Protocol 1, namely

the impact of removing strain sensors from the Instron grips (resulting in material loss and different

amounts of pre-strain) and the inability to determine the impact of strain rate on sensor behaviour.

By randomising the testing order, it is clear visually from Figure 4.13 that the sensor resistance

range does have some dependency on strain rate – with the sensor resistance range generally being

higher at a strain rate of 350 mm/min. Sensor S12 is an exception to this. This is reflected in the

statistics, with seven out of nine tests on S12 bearing some relationship with each other. Post-hoc

analysis for all sensors did not reveal a relationship between tests conducted at different strain rates

and also tests conducted at the same strain rate. On a practical level, this suggests that it may be

difficult to compare data from one testing session to another unless the sensor resistance is normalised.

4.5.3 Limitations

The randomised testing order in this protocol showed that there is a strain rate dependency on the

sensor output, but the response from each sensor was not cohesive with the others tested under this new

protocol. Imaging sensors could aid the understanding of how sensors may perform or have performed.

Increasing the number of sensors tested under this protocol would also have helped solidify the strain

rate dependency observation.
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All tests were short, lasting 100 cycles, meaning that the strain sensors were subject to a total

of 900 cycles which cannot be used to determine the role of fatigue on the sensor response. Either

increasing the testing length (200 cycles would still fit the requirement to do all testing back to back)

or adding in more 100-cycle tests would help improve the statistical analysis also.

4.6 Conclusions

The strain sensors developed in this doctoral project were characterised using an Instron machine to

understand the key properties required for application in wearable technology. Each sensor displayed

different resistance responses, indicating that individual calibration is required for each one. Eight

sensors showed good durability when tested over 4800 strain cycles, and good intra-test variability was

also observed in relation to the sensor resistance response during a cyclical test, with resistance range

deviating by no more than 10% when the strain rate was 100 mm/min or lower and approximately 20%

at 350 mm/min. The inter-test variability was poor as the resistance response range varied between

tests on the same sensor, but this can be overcome by normalising the resistance response of the sensor.

Adjusted hysteresis values below 20%, gauge factor of 2-3 and R2 above 0.9 are comparable with

other strain sensors that have been developed, and suggest the suitability of this particular sensor for

measuring knee range of motion in sports.
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Chapter 5

Wearables Development

Integrating the strain sensors into wearable equipment that can be used to monitor knee

flexion of athletes

5.1 Introduction

The purpose of developing and characterising carbon nanotube (CNT)-rubber composite strain sen-

sors in this project was to integrate the sensors into clothing or a wearable accessory to measure knee

kinematics during sporting activities. This wearable sensor system (WSS) has to meet certain require-

ments including being comfortable and easy to wear; compatible with other sportswear; easy to modify;

secure and unobtrusive. Findings from the systematic review of the literature conducted in Chapter

2 and the previously published review by the author of this thesis [7] were used to establish some of

these requirements. Discussions between the author (who has experience as a coach and athlete in

both rowing and cycling), their supervisor and other athletes and coaches were used to inform the

design and development of the WSS. As the developed sensors do not have a coating, they cannot

be washed and so sensor removal from the WSS must be considered. A coating was not used due to

the time-frame available to complete this project, as well as disruptions as a result of Covid-19, that

prevented a suitable coating from being developed and characterised. Coating development would have

delayed the conduction of the cohort study and the collection of data from a real-life scenario.

Athletes have different physiques, especially in rowing and cycling where lightweight rowers and

endurance road cyclists are much slighter than their heavyweight rower and track sprint cyclist coun-

terparts. This means that the WSS needs to accommodate different thigh and calf circumferences or

be available in different sizes.

Strain sensors have been integrated into different pieces of clothing, using a variety of fixation

approaches. Papi et al. (2018) attached their carbon black/polyurethane (CB/PU) sensor to a pair of

commercially available leggings using super glue, which was positioned over the anterior aspect of the

knee [225], while the strain sensor developed by Nakamoto et al. (2015) from the same materials, was
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attached directly to the skin using tape [12, 226]. Integrating a strain sensor into leggings can allow the

placement of the sensor across the knee to be replicated over different testing sessions, but attaching

it with super glue makes removing and replacing the sensor problematic if the leggings need to be

washed or the sensor fails. Furthermore, the lycra material used to make the leggings will stretch but

only to a certain extent, meaning that multiple sizes are needed to accommodate different participants.

Whilst attaching a strain sensor directly to the skin overcomes the issue of any fabric bunching up and

interfering with the signal, it is difficult to replicate the sensor positioning unless done by a trained

professional using anatomical landmarks, limiting subsequent translation.

An alternative approach was taken by Munro et al. (2008): they attached their polypyrrole-coated

nylon-lycra sensor to a fabric sleeve with press studs, that could be positioned over the anterior aspect

of the knee [227]. The press studs allow for easy removal and replacement of the strain sensors, however,

the positioning of the fabric sleeve over the knee can change with each wear. Helmer et al. (2013) also

used press fasteners to attach their electronic textile strain sensors to compression leggings, which had

been purchased in various sizes to accommodate their testing cohort [228].

With regard to sensor configuration, placing a single strain sensor across the anterior aspect of the

knee to measure flexion and extension is a common approach [12, 225, 227, 229–231]. Other sensor

placements and configurations have been explored, such as placing the strain sensor on the side of the

knee to minimise contact with other objects and to reduce displacement artefacts [232]. Hermann et

al. (2020) chose to use two sensors positioned over the patella in parallel, using the sensor with the

greatest change in resistance to calculate knee angles [233]. It was acknowledged by Hermann et al.

(2020) that to measure rotation, adduction and abduction, multiple sensors are required. However,

this increases the complexity of calibration and any algorithms that are to be used [233], impacting

useability and translation.

Placing a strain sensor on the anterior aspect of the knee is the most direct way of measuring

flexion and extension, however, its integration into clothing can vary depending on the requirements

of the researchers.

5.2 Knee Sleeve Design

Taking into account the approaches to wearable systems integrating strain sensors considered in pre-

vious literature, as well as the requirements stated in the introduction, knee sleeves were chosen as

the basis for integrating the developed strain sensor into a wearable device for use in the next phase

of this project. It permitted participants to wear clothing that they were familiar with during testing,

they were easy to wear and remove, and it allowed multiple sizes to be purchased at a low cost to

accommodate a range of participants.

Full leggings were not chosen as different leg lengths as well as femur and tibia proportions, could
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mean that the strain sensor does not sit well over the knee joint, being too high or low. Preliminary

testing indicated that the knee sleeve permitted easier adjustment and positioning. An iterative ap-

proach was used to improve the design of the system, considering different materials and knee sleeve

lengths, as well as the attachment of a printed circuit board (PCB) assembly that was used to obtain

the strain sensor signal. Section C.1.1 of Appendix C provides details of the different iterations trialled

in this project, with Figure C.1 showing a side-by-side comparison.

Throughout this iterative process, the design of the strain sensor and PCB assembly remained

unchanged. The PCB was developed and used to measure sensors lined in a socket worn by people with

an amputated lower limb [234]. The PCB assembly consisted of a main PCB (containing processing

components) and a connector PCB (which was altered for this project). The connector PCB allowed

different resistor combinations to be used and facilitated the connection between the assembly and

strain sensor.

The assembly was powered by a 3.7 V mAh lithium-ion battery, limited to a supply voltage of

3.3 V. A DSPIC33EP512GM306 microcontroller unit (MCU) was used to capture and process sensor

data. The MCU included an analogue-to-digital converter (ADC) with a 10-bit ADC resolution, set

to a sampling rate of 200 Hz [234]. A total of four channels were sampled via the connector PCB. A

voltage divider circuit was used as the instrumentation circuit for each channel.

Other features of this assembly include an SD-card and inertial measurement capabilities, a micro-

USB port for charging and a switch so that the device could be turned off when not in use. The

IMU (LSM9DS0, iNEMO inertial module, STMicroelectronics, Geneva, Switzerland) comprised 3-axis

accelerometer (± 2g), 3-axis magnetometer (± 2 gauss) and 3-axis gyroscope (± 500 ◦/s). Data were

recorded from the IMU but they were not analysed as it was outside the scope of this project.

Figure 5.1 shows these different features of the PCB assembly. Data was transmitted from the sam-

pling hardware within the PCB assembly to a receiving device (laptop) via Bluetooth communication

(PAN1322-SPP module), in a packeted binary format.

Clincher board connectors were used as electrodes and were clamped at each end of the strain

sensor. Snap fasteners were used to attach the strain sensor to the knee sleeve, with the male end

secured to the clincher board connectors with superglue and electrical tape. This can be seen in Figure

5.2. These allowed for sensors to be easily removed and replaced during the data collection process.

Jumper wires were used to connect the strain sensor to the PCB assembly.

5.3 Sensor Configuration

This project focused solely on measuring knee flexion/extension and not movement in any of the other

planes of motion. As discussed earlier in this chapter, placing the strain sensor on the anterior aspect

of the knee can accurately track the movement of the joint below. However, it was considered whether
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(a) Side view (b) Top-down view 1 (c) Top-down view 2

Figure 5.1: PCB assembly used during the cohort study with a ruler for scale: a) side on view showing the
on/off switch, b) top-down view of the connector PCB with resistors and connecting ports for the jumper wires
and c) additional top-down view showing length of PCB assembly.

Figure 5.2: Strain sensor as incorporated into the WSS, with clincher connector boards clamped around the
strain sensor at each end and the male snap fastener end secured to these with superglue and electrical tape.
The top sensor is the longer sensor used on larger knee warmers, the bottom sensor is the regular length sensor
used on smaller knee warmers. A ruler is shown at the bottom for scale.
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additional sensors and different configurations could help improve the signal obtained from one sensor

alone, leading to more accurate and reliable measures of knee angles.

Two configurations using two sensors were explored, with details in Section C.2 of Appendix C,

with sensors attached to the knee warmer such that there was always some pre-strain.

5.4 Final Design

Taking into account the various knee sleeve iterations and sensor configurations, a final design was

settled on, striking a balance between development costs, being able to attach and remove the sensor

easily, capturing data consistently through the sensor being attached securely and a connection being

maintained between the sensor, electrodes and circuit. This is shown in Figure 5.3, with a cycling knee

warmer used as the basis and only one sensor attached to the anterior of the clothing.

Figure 5.3: Final WSS design used for cohort testing.
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This was deemed to be the best solution, with just one strain sensor used to track knee motion as

tested in previous literature. Using a simpler configuration for proof of concept reduced the number

of variables and therefore increased the amount of control over what was happening during testing.

Having just one sensor (which was more visible by being on the anterior of the knee joint) made it easier

to make replacements and spot if there were any issues during testing. As previously discussed, the use

of knee warmers allowed different sizes to be purchased, accommodating a wider range of participants.
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Chapter 6

Cohort Study

Testing and assessing the translational use of the wearable sensor system in rowing and

cycling studies alongside a motion capture system

6.1 Introduction

To test the strain sensors developed in this project when integrated into the wearable sensor system

(WSS) discussed in Chapter 5, two cohort studies were developed and approved by the Imperial Col-

lege Research Ethics Committee (ICREC Reference number: 17IC4173) and the Science Engineering

Technology Research Ethics Committee (SETREC number: 21IC6651).

These studies were exploratory in nature, conducted to build on the characterisation work carried

out in Chapter 4 and gauge the strain sensor’s ability to respond to dynamic testing in real-life scenarios.

These scenarios were rowing and cycling, two sports highlighted in Chapter 2 for their limited use of

wearable technology to measure knee kinematics, despite the knee being a common site of injury.

Participants were recruited from the local community for the rowing and cycling studies, with

informed written consent obtained from all. The cohorts included participants over the age of 18 with

previous experience of the sport (a minimum of one year), to make sure they met the fitness and

technical requirements required for the relevant study. No further restriction on experience was made

to allow for data to be collected from a wide range of experience levels, from recreational to elite. The

inclusion of a range of experience allowed the evaluation of the technology to be able to distinguish

between technical abilities and identify optimal and suboptimal technique. Rowing and cycling are

sports that have members of all ages and abilities; one of the recognised successes of wearable technology

uptake is reaching a large audience instead of targeting a small minority. However, depending on age

and/or experience level, people may have different ideas as to how they want the technology to benefit

them in their sport.

The two protocols were designed to consider the response of the strain sensors at different rates

of knee flexion, using cadence in cycling and stroke rate in rowing. The rowing protocol was adapted
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from a previous study by Buckeridge et al. (2016) [235], with participants completing four 3-minute

efforts at increasing stroke rates and intensities. The cycling protocol adapted a pre-existing warm

up [236], ramping cadences up from 80 rpm and building towards a maximal effort. Data from the

strain sensor were collected simultaneously with the Vicon motion capture system (Oxford Metrics,

Oxford, UK). Repeated visits allowed data to be compared between different testing sessions, and a

follow-up questionnaire was used to allow experience with the wearable sensor system to be captured

in a qualitative manner.

The desired outcomes of these studies were to:

• Test the use of the strain sensor when integrated into the wearable sensor system

• Observe the response of the strain sensor to high-rate cyclic strain as a result of the knee flexion

motion

• Compare the strain sensor response to an established motion capture tool (Vicon motion capture

system)

• Consider how the strain sensor could be calibrated and the sensors graded based on the quality

of its response

• Explore the interpretation of the signals from both the strain sensor and the Vicon motion capture

system, in relation to the knee kinematics of the rowing and cycling movements

• Understand the motions that occur during rowing and cycling and their relevance to the devel-

opment of a tool to measure knee kinematics

• Consider any post-processing needs to facilitate signal interpretation

6.2 Methods

6.2.1 Study Populations

For both studies, participants were recruited through word of mouth and the university rowing and

cycling clubs. Information sheets were shared and written informed consent was obtained from all

participants. All data collected throughout the study was anonymised. Ethical documentation can be

found in Appendix D.

6.2.1.1 Rowing Study

Ten rowers were recruited for this study, consisting of six male athletes (age: 24.0 ± 3.8 years; height:

184.7 ± 6.3 cm; mass: 86.5 ± 7.8 kg) and four female athletes (age: 33.3 ± 18.0 years; height: 168.5

± 3.9 cm; mass: 65.2 ± 6.8 kg).
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Within the cohort, information on main discipline, experience level and number of years in the

sport was collected from seven athletes. An amendment to the ethical documentation allowed for this

information to be collected but only after two athletes had already completed the study. One athlete

did not fill out this information on the online questionnaire. Five athletes listed their main discipline

as sweep rowing and two listed their main discipline as sculling. Six athletes listed their experience

level as competitive, one as recreational and no answer was recorded for the remaining three athletes.

Number of years rowing ranged from 1-15 years, with the mean being 7.3 ± 4.6 years.

6.2.1.2 Cycling Study

Ten cyclists were recruited for this study, consisting of six male athletes (age: 27.0 ± 5.8 years; height:

183.7 ± 8.2 cm; mass: 77.8 ± 6.9 kg) and four female athletes (age: 24.3 ± 3.0 years; height: 165.3 ±
1.5 cm; mass: 60.3 ± 8.9 kg).

Out of the ten athletes, seven stated road cycling as their main discipline, two stated track cycling

and one stated spinning. Six athletes described themselves as recreational and the other four described

themselves as competitive. The mean number of training hours across the cohort (including cross

training) was 7.7 ± 3.1 hours per week. Number of years cycling ranged from 1.5-34 years, with the

mean being 10.1 ± 9.6 years.

6.2.2 Equipment

Data were recorded simultaneously from the printed circuit board (PCB) assembly connected to the

strain sensor and from Vicon’s Nexus programme. Details of the PCB assembly used are described in

Chapter 5.

Data from the PCB assembly were transmitted via Bluetooth (BT900, Laird Technologies, Inc.,

Chesterfield, Missouri, USA) to a receiving laptop and processed via a C# graphical user interface

(GUI). These data were synchronised with that from Nexus, using Nexus’ automatic capture system,

sending a UDP signal (internet type signal) across to the GUI via an Ethernet cable, signifying when

capture in Nexus started and stopped.

6.2.2.1 Wearable Sensor System (WSS)

For both studies, participants wore a modified cycling knee warmer that will be referred to as the

wearable sensor system (WSS). The knee warmer was modified such that strain sensors could be

attached using snap fasteners to the posterior or anterior aspect of the joint. Hook and loop tape was

also used to attach the PCB assembly laterally along the thigh. The PCB assembly was placed on

the thigh to ensure that it did not interfere with the rowing stroke through potential contact with the

ergometer handle.
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Electrodes at the end of each strain sensor allowed them to be connected to the PCB assembly

using jumper wires. Bluetooth technology was used to collect data from the PCB assembly through a

laptop, with a sampling rate of 200 Hz.

6.2.2.2 Motion Capture System

Data were also acquired from the Vicon motion capture system, with a 28-camera set-up used to

detect the reflective markers placed on the participant. The marker set consisted of 3 cluster sets and

11 individual markers, placed around the pelvis and right leg, as detailed in Table 6.1 and Figure 6.1.

Markers were attached to the participant’s skin or clothing with double-sided tape.

Table 6.1: Vicon marker locations.

Segment Cluster location Individual marker location
Pelvis Posterior (3 markers) Right anterior superior iliac spine (RASIS)

Left anterior superior iliac spine (LASIS)
Right posterior superior iliac spine (RPSIS)
Left posterior superior iliac spine (LPSIS)

Right thigh Distal lateral side (4 markers) Femur laterial epicondyle (RLEPI)
Femur medial epicondyle (RMEPI)

Right shin Distal lateral side (4 markers) Lateral malleolus (RLMAL)
Medial malleolus (RMMAL)

Foot N/A First metatarsal (RMET1)
Fifth metatarsal (RMET5)

Calcaneus (RHEEL)

(a) (b) (c)

Figure 6.1: Location of Vicon markers and clusters on participant.
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6.2.3 Testing Protocol

Upon arrival, participants were instructed to set up the Concept 2 (Morrisville, Morristown, Vermont,

United States) rowing ergometer (footplate height and drag factor) or Wattbike Pro (Nottingham,

United Kingdom) indoor bike trainer (saddle and handlebar height and fore/aft positioning, and re-

sistance) as required. They were then fitted with the WSS and reflective marker set.

All participants wore suitable sports clothing for the protocols (e.g. rowing all in one, padded

cycling shorts) and footwear varied from barefoot (rowing) to cycling shoes with cleats. The Wattbike

was fitted with different pedals to allow participants to clip in, or wear trainers and use toe straps.

Two static calibration trials were collected (participants stood in a neutral position), and one dy-

namic trial of ten bodyweight squats, before completing the appropriate testing protocol. Participants

were guided through the protocol by the researcher.

After completing the protocol, participants were sent a link an online questionnaire, to gather their

experiences on the WSS and thoughts on wearable technology in general.

6.2.3.1 Rowing Study

Participants performed a step-test protocol described in Table 6.2, with each step lasting for three

minutes. The stroke rate was increased, correlating to an increase in intensity. For each step, the

distance rowed, average 500m pace and stroke rate were recorded by the ergometer and noted by the

researcher. Participants were allowed to recover for as long they needed between each step.

Table 6.2: Testing protocol for the rowing cohort study.

Step Duration Stroke rate (spm)
1 3 mins 18
2 3 mins 24
3 3 mins 28
4 3 mins Free rate

6.2.3.2 Cycling Study

Participants performed a 20-minute warm-up (modified from the British Cycling procedure [236] and

described in Table 6.3), that consisted of a cadence ramp and then three maximal sprint efforts. No

rest was permitted between any of the different steps. Four out of the ten participants were familiar

with the British Cycling warm-up prior to completing this testing.

6.2.4 Data Processing and Analysis

Vicon Nexus 2.12.1 software (Oxford Metrics, Oxford, UK). was used to reconstruct the motion data

files, label and gap-fill marker trajectories. Custom MATLAB (Mathworks, Natick, Massachusetts)

scripts were used to generate the desired Model Outputs from Nexus, these being the right knee Euler
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Table 6.3: Testing protocol for the cycling cohort study.

Duration Cadence (rpm)
5 mins 80
2 mins 85
2 mins 90
2 mins 95

1 min 30 secs 100
2 mins 80
6 secs Max
1 min 80
6 secs Max
1 min 80
6 secs Max

2 mins 42 secs 80

angles. Data were then exported to MATLAB for further processing, alongside the data collected from

the strain sensor. Only sagittal plane knee angles were considered for analysis.

Data from Vicon and the strain sensor were filtered with a zero-phase 4th order low-pass Butter-

worth filter, with cut-off frequencies of 3 Hz and 5 Hz respectively. Cut-off frequencies were determined

using a discrete-time Fourier transform (DTFT). Custom MATLAB scripts were also used to process

the sensor data (using the voltage divider relationship), determine offset between the two signals and

produce time-normalised plots to compare them.

Preliminary plots were used to assess the quality of the collected data and calculate the mean

temporal offset between the Vicon and strain sensor signals from the plots where the sensor response

signal was aligned with the Vicon output (such as Figure 6.5). This mean offset value was calculated

to be 63 data points and calculated from eight sets of participant data (each having four pairs of Vicon

and strain sensor signals).

6.3 Rowing Cohort Study

Due to the cohort size and exploratory nature of this study, generalisations on the knee kinematics of

the members of this cohort and their related sub-groups in the wider sport cannot be made. Therefore,

a few examples of the sensor performance are presented, highlighting testing where the sensor signal

profile is in line with the Vicon signal, in addition to areas where improvements are required in relation

to sensor design and performance.

6.3.1 Study Population

The data of five participants are presented to highlight differences in technique that can be observed

from the Vicon motion capture system from monitoring sagittal knee angles. It also demonstrates

the relationship between the strain sensor signal and the Vicon output. The details of these five
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participants are presented in Table 6.4, listing anthropometric details, rowing experience and details

of the strain sensor used during testing.

Table 6.4: Participant and sensor details for rowing cohort study.

Participant details Sensor details
ID Sex Age

(years)
Height
(cm)

Body
mass
(kg)

Rowing
expe-
rience
(years)

Preferred
discipline

Participation Sensor
num-
ber

Sensor
use

34943 Female 28 166 70.8 6 Sculling Recreational 3 1/8
77344 Male 22 194 77 9 Sweep Competitive 3 2/8
48896 Female 21 168 60 1 Sweep Competitive 3 6/8
69340* Male 29 178 102 - - - 1 1/3
22341 Male 19 189 86 3 Sculling Competitive 4 2/2
*Data missing as before ethics amendment including questionnaire was approved

6.3.2 Results

The results are divided into two sections, the first focusing on the strain sensor response and how it

compares to the Vicon output, and the second focusing solely on the kinematics extracted from the

Vicon output. Over the four rowing steps, the stroke rate was increased from 18 strokes per minute,

to 24, then to 28 and the final step was at free rate at the choice of each participant. Data have

been extracted from each step to determine if the increase in stroke rate and rowing intensity has an

influence on knee kinematics.

6.3.2.1 Analysis of Strain Sensor Response

In this section, data for each participant has been summarised into two sets of plots, focusing on the

middle minute of each 3-minute step. The first set of plots includes the strain sensor signal which

has been normalised by its own range. The original intention was to use the squatting dynamic trial

to calibrate and normalise the sensor response, however the range of the sensor signals during the

squatting and rowing motions were not aligned. Examples of the sensor signal in the rowing trials

normalised by the range of the signal in the squatting step is presented in Appendix E. Despite a

similar knee range of motion being covered by participant 34943 in both motions, the normalised range

signal was found to have a range greater than 1 for some of the rowing steps. This can be attributed to

the overshoot behaviour of the strain sensor at a higher strain rate while rowing. The inconsistencies

between participants in how the sensor signal was transformed after being normalised by the squat

signal range meant that it was therefore better to consider each rowing trial in isolation and normalise

it by its own range.

The second set of plots compares the Vicon and strain sensor signals, with each cycle being time-

normalised and overlaid on top of each other. The catch position, corresponding to maximal knee

128



flexion, was chosen as the start and end of each cycle.

6.3.2.1.1 Participant 34943 - visit 1/1

The range-normalised strain sensor response for participant 34943 is displayed in Figure 6.2. Higher

frequency spikes at the top end of the range in the signal for Step 1 are representative of overshoot

behaviour; these spikes are less prominent in the subsequent steps conducted. There is some variation

in peak height, especially in Step 1 due to the spikes, but without the spikes the peaks are of similar

amplitude. Double peaks can also be observed in the signal, which are more prominent in Steps 3 and

4 as the rowing stroke rate increases. In each step, the sensor was able to detect the following number

of strokes: 19, 23, 27 and 29 strokes in the middle minute extracted.

From the time-normalised plots in Figure 6.3, it can be seen that the profile of the sensor response

follows that of the Vicon output. The higher frequency spikes in the strain sensor signal carry across

to the time-normalised plots, with more variation between strokes seen in the upper range of the strain

sensor plots. The Vicon plots show that the rower is able to achieve close to or full extension at the

end of the drive phase of the rowing stroke, however as the stroke rate increases, the period for which

the rower holds their knees in full extension starts to decrease.

Figure 6.2: Normalised sensor response for the middle minute of each step during the rowing trials performed
by participant 34943.
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Figure 6.3: Overlaid time-normalised response for each rowing stroke in the middle minute of each step in the
protocol. Knee angles from Vicon on the left and strain sensor response on the right for participant 34943.

6.3.2.1.2 Participant 77344 - visit 1/2

Double peaks are present in all rowing steps, however there is less overshoot behaviour observed

in the range-normalised strain sensor response in Figure 6.4 for participant 77344. This is suggested

by the double peaks being of similar amplitude in each strain cycle. Apart from the first three strokes

in Step 1, there is a good consistency in peak height throughout the middle minute of rowing in each

step with approximately 10% variation. From the extracted signal, the number of strokes taken were

18, 24.5, 28 and 31 for Steps 1-4 respectively.

From the time-normalised plots in Figure 6.5, it can be seen once again that the profile of the

sensor response is similar to the Vicon output, with less variation between strokes at maximum knee

flexion due to the minimised overshoot behaviour. The Vicon output shows that the rower does not

achieve full knee extension at any point during the rowing stroke.
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Figure 6.4: Normalised sensor response for the middle minute of each step during the rowing trials performed
by participant 77344.

Figure 6.5: Overlaid time-normalised response for each rowing stroke in the middle minute of each step in the
protocol. Knee angles from Vicon on the left and strain sensor response on the right for participant 77344.
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6.3.2.1.3 Participant 48896 - visit 2/2

The normalised sensor signal for participant 48896 in Figure 6.6 features the double peaks that have

been observed in the previous participants, however, they only become prominent in Step 4. There is

consistency in peak height for each of the steps, and the number of strokes as determined by the signal

are 18, 24, 27 and 32 strokes within the middle minute of each step.

The profile of the signal extracted from Vicon differs in Step 1 compared to the later, higher stroke

rate steps, as displayed in Figure 6.7. The bottom of the curve between 25-60% in Step 1 is much

flatter, indicating that knee angle (in extension) is remaining constant around the back end of the

rowing stroke. However, from Step 2 onwards, less time is spent with the knees maximally extended

for this participant, suggesting that knee flexion is occurring as the arms are stretched out away from

the trunk and the trunk rotates anteriorly. In this instance, although the strain sensor signal values in

the second half of the stroke cycle increase earlier with subsequent rowing steps as in the Vicon signal,

it is not able to detect that gradual change in knee flexion between about 30-55% of the stroke cycle.

Figure 6.6: Normalised sensor response for the middle minute of each step during the rowing trials performed
by participant 48896.
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Figure 6.7: Overlaid time-normalised response for each rowing stroke in the middle minute of each step in the
protocol. Knee angles from Vicon on the left and strain sensor response on the right for participant 48896.

6.3.2.1.4 Participant 69340 - visit 1/2

In the data presented, that from participant 69340 is the first example of a smoother strain sensor

signal without any double peaks, as seen in Figure 6.8. In all four steps, particularly in Step 1, there

is less consistency from stroke to stroke when looking at the height of each peak, suggesting that the

participant does not always achieve the same amount of knee flexion and therefore the stroke length is

quite variable. The number of strokes detected by the strain sensor in each of the steps were 18, 24.5,

27 and 30 during the middle minute.

The time-normalised Vicon plots in Figure 6.9 agree with what is seen in the raw sensor signal, in

that there is variation in each stroke taken, including when looking at the higher angle values which

indicate maximum flexion for this participant. Another observation that can be made is that this

participant initially achieves maximum extension at around 25% of the stroke cycle in Step 1, however

in the subsequent steps this becomes much later, at around 50% of the stroke cycle, meaning less time

proportionally is dedicated to the end of the drive phase and the entire recovery phase of the rowing

stroke as the intensity and stroke rate increases.

The curves representing the strain sensor signal in Figure 6.9 have a very flat bottom, which is not

representative of the knee kinematics taking place in this protocol as displayed by the Vicon signal.

This participant indicated experiencing discomfort with the knee warmer, and the poor fit led to
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bunching: the strain sensor would, therefore, not have been under strain for a significant portion of

the rowing stroke, leading to this particular signal profile.

Figure 6.8: Normalised sensor response for the middle minute of each step during the rowing trials performed
by participant 69340.
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Figure 6.9: Overlaid time-normalised response for each rowing stroke in the middle minute of each step in the
protocol. Knee angles from Vicon on the left and strain sensor response on the right for participant 69340.

6.3.2.1.5 Participant 22341 - visit 1/1

The strain sensor data presented for participant 22341 is an example of a poor signal, which has

been distorted by noise and does not align with the Vicon profile, and the subsequent implications of

this on data extraction. Each sensor plot in Figure 6.10 features a signal of two parts: lower amplitude

waves (peaking at 0.4 in Step 1, at 0.25 in Step 2 and 0.2 in Steps 3 and 4), and higher frequency spikes

(typically around 0.8-1). There is noise that has been introduced into the signal, but it is not clear

which part relates to the noise and which part is the main signal to be analysed. This noise could have

been generated from a loose connection between the stain sensor and PCB assembly, via the jumper

cables, or by the knee warmer bunching up during the rowing stroke.

In each step, for each smaller wave in the signal there is also one spike of larger amplitude. The

number of rowing strokes taken can still be calculated, either using the smaller waves or the larger

spikes. In Steps 1-4, the number of strokes were calculated as 18, 23, 27 and 34 respectively using the

larger spikes. In Steps 2-4, there are double peaks in the signal produced by the larger spikes, with the

first peak spiking up much higher than the second, leading to variation in peak heights during each

step.

Looking at the time-normalised Vicon signal in Figure 6.11, the profiles of Steps 1 and 2 are similar,

with the knees of this participant in maximum extension for a sustained period (25-55% in Step 1 and
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35-55% in Step 2). Steps 3 and 4 follow a similar profile to participant 48896, where maximum knee

extension is held for a minimal amount of time before the knee begins to flex again. The strain sensor

signal is distorted by the noise that was visible in Figure 6.10 and cannot be compared to that from

Vicon.

Figure 6.10: Normalised sensor response for the middle minute of each step during the rowing trials performed
by participant 22341.
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Figure 6.11: Overlaid time-normalised response for each rowing stroke in the middle minute of each step in
the protocol. Knee angles from Vicon on the left and strain sensor response on the right for participant 22341.

6.3.2.2 Kinematics Analysis of Vicon Signal

In this section, the mean maximum and knee flexion angles for each participant in the middle minute

of each step have been extracted from the Vicon signal (see Table 6.5). This allows comparisons to be

made between the knee flexion angles with increasing stroke rate and from participant to participant.

The overall knee flexion range has also been calculated for each step (see Table 6.6).

Table 6.5: Mean maximum and minimum knee flexion angles for each participant during each rowing step.

Partici
-pant
ID

Mean knee flexion angle (degrees)
Step 1 Step 2 Step 3 Step 4

Max Min Max Min Max Min Max Min
34943 120.96

± 0.93
-3.55 ±
0.83

127.95
± 0.65

0.87 ±
0.92

133.52
± 0.75

3.50 ±
1.00

135.66
± 0.57

5.06 ±
1.33

77344 141.29
± 0.30

12.10 ±
0.65

142.45
± 0.25

14.18 ±
0.88

140.09
± 0.33

15.37 ±
0.37

136.03
± 0.69

17.76 ±
0.56

48896 129.16
± 0.45

-0.17 ±
1.19

127.51
± 0.55

3.55 ±
1.43

129.07
± 0.66

2.48 ±
0.96

129.60
± 0.62

3.46 ±
1.52

69340 123.40
± 0.60

18.09 ±
0.75

121.25
± 0.70

16.53 ±
0.44

123.52
± 0.53

17.89 ±
0.94

123.18
± 0.98

19.99 ±
0.88

22341 137.28
± 0.74

10.26 ±
0.82

137. 93
± 0.49

14.98 ±
0.58

136.03
± 0.72

17.03 ±
0.41

126.09
± 1.49

19.37 ±
0.70
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Table 6.6: Mean knee flexion angle range for each participant during each rowing step.

Mean knee flexion angle range (degrees)

ID Step 1 Step 2 Step 3 Step 4

34943 124.51 127.09 130.02 130.60

77344 129.19 128.27 124.72 118.28

48896 129.33 123.96 126.58 126.14

69340 105.31 104.72 105.63 103.19

22341 127.03 122.95 119.01 106.72

Hyperextension is exhibited by two participants in Step 1 as indicated by the mean minimum knee

flexion angle (-3.55 ± 0.83◦ for participant 34943 and -0.17 ± 1.19◦ for participant 48896). For all

participants, the mean minimum knee flexion angle increases from Step 1 to Step 4, suggesting that

the ability to achieve full knee extension is linked to stroke rate and intensity.

The changes in mean maximum knee flexion angle with increasing stroke rate differ from participant

to participant. It increases for participant 34943 (from 120.96 ± 0.93◦ to 135.66 ± 0.57◦) while for

participants 77344 and 22341 it decreases (from 141.29 ± 0.30◦ to 136.03 ± 0.69◦, and from 137.28 ±
0.74◦ to 126.09 ± 1.49◦ respectively). For the final two participants (48896 and 69340) there is minimal

change in knee angle between Steps 1 and 4 (from 129.16 ± 0.45◦ to 129.60 ± 0.62◦, and from 123.40

± 0.60 ◦ to 123.18 ± 0.98◦ respectively).

When looking at the overall knee flexion angle range and the change between Steps 1 and 4, this

decreases for participants 77344, 48896, 69340 and 22341 by 10.91◦, 3.19◦, 2.12◦ and 20.31◦ respectively.

For participant 34943, the knee flexion range increases between Steps 1 and 4 by 6.09◦.

6.3.3 Discussion

The purpose of this rowing protocol was to establish the response of the strain sensor in a real-life

setting and compare it to the Vicon motion capture system as a reference. This cohort study gave

an opportunity to comprehend the suitability of the strain sensors developed and characterised in

Chapters 3 and 4, as the settings of the Instron testing machine used for characterisation were limited

and not able to fully exploit the capabilities of the strain sensors. In all examples presented, the three

strain sensors used were able to detect each rowing stroke, indicating as a minimum that the WSS can

be used to count strokes.

Comparing the signals obtained from the strain sensor and Vicon, the profile of the strain sensor

signal follows that of Vicon: from the catch position as the knee joint is extended, the strain sensor

is under less tension, decreasing the resistance measured and the normalised response presented in

the figures. This is best represented in Figure 6.5 where not only the profile is similar, but visually

the amount of variation between stroke cycles is similar for both Vicon and the strain sensor. More
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variation can be seen at the upper end of the sensor response (between 0.7-1) which is at the front end

of the rowing stroke where the knee is flexed and the sensor is under the most strain. This could lead to

less accuracy in determining the maximal amount of knee flexion when correlating the sensor response

to Vicon, compared to the knee flexion at other points during the rowing stroke, as the overshoot

behaviour leads to multiple values in the sensor signal corresponding to the same knee angle. Despite

this, the data from each of the participants shows that the strain sensor is able to track the motion of

the knee during the rowing stroke.

Overshoot behaviour can explain some of the variation in the strain sensor signal at maximal knee

flexion. This is particularly noticeable for participant 34943 (see Figure 6.2) in Step 1, where the

first peak within the double peak is much higher than the second. At the catch position, a change in

direction of the rower is taking place, and so the strain applied to the strain sensor is reversed, leading

to stress-relaxation which causes this overshoot behaviour [140, 152]. This helps to explain why strain

sensor signal is much more variable, in comparison to that from Vicon, from cycle to cycle at the upper

end of the normalised sensor response. However, this does lead to difficulty in determining whether

there has been a change in stroke length throughout the protocol as the stroke rate and intensity

increase.

This type of behaviour is more pronounced in resistive-based strain sensors, which is the category

this developed sensor falls into, and is affected by the viscoelasticity of the rubber matrix, the gauge

factor (GF) of the strain sensor, and the strain rate that is applied to it [140, 152]. The intended

application of this strain sensor means that there is little control over the applied strain rate, however

there are modifications that can be made to the fabrication of the strain sensor which can help address

the other factors. The movement of polymeric molecules within the strain sensor will lead to the

movement of the carbon nanotubes (CNTs) responsible for charge transfer. Reducing the movement

of the polymeric molecules would reduce the impact they have on overshoot behaviour, however this

would negatively impact the elastic properties of the strain sensor. An alternative solution would be to

improve the GF (currently 2-3), leading to a more sensitive strain sensor, by lowering the concentration

of the CNT dispersion from 5 mg/mL, while also increasing the length of the strain sensor so that it

experiences less overall strain during the knee flexion process [152].

The knee angles calculated from the Vicon output show that there is a change in knee range of

motion between rowing steps, the most significant being for participant 22341 where there is a difference

of 20.31◦ between the mean range of motion for Step 1 (127.03◦) and Step 4 (106.72◦). Murphy (2009)

discusses the compensations made to technique to maintain stroke length when knee range of motion

is reduced at higher rowing intensities, such as increased spinal flexion – this is a sign of technique

deterioration that not only has an impact on performance but can also be a precursor to injury [15].

Observations regarding knee kinematics have also been made by Buckeridge et al. (2012) who noted

that rowers become less effective at flexing their knees and hips at the catch and extending their knees
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at the finish of the rowing stroke when work rate is increased, with anterior rotation of the pelvis on

the recovery being linked to effective knee extension at the finish [237].

These previous findings and the results of this study indicate the benefits that can arise from

monitoring knee range of motion in rowing. For participant 34943, this range of motion increased

(from 124.51◦ to 130.60◦) as the intensity increased with more knee flexion at the catch (from 120.96◦

to 135.66◦), termed over-compression in rowing, which could be a result of this athlete having some level

of hypermobility and less control of their movements. Over-compression can place additional stress on

the knee joint and cause injury and so being able to monitor this is important. On the other hand, for

participant 77344, knee flexion decreases from 141.29◦ to 136.03◦ and knee extension increases from

12.10◦ to 17.76◦ The range of motion is shortened at both ends, which will have a negative impact on

the kinematics of the pelvis and trunk. As previously mentioned, currently the squat calibration does

not allow for comparisons to be made between each of the rowing steps with regards to how knee range

of motion is altered, as they have all been normalised individually. Altering the initial calibration step

by conducting knee flexion at a higher speed, would enable the WSS to make relative comparisons of

knee ROM as a function of rowing intensity that can already be ascertained from the Vicon output.

As discussed earlier, less knee extension at the finish of the rowing stroke can hinder anterior

rotation of the pelvis [237]. This then impacts the sequence of movements on the recovery of the

stroke. Looking at Step 1 for participant 48896 in Figure 6.7, between 25-60% of the stroke cycle the

knee flexion angle remains approximately constant, which is accounted for by the movement of the

trunk and the arms before and after the finish of the stroke. As the intensity increases, most noticeably

in Steps 3 and 4, alongside there being less knee extension the amount of time spent with the knees

extended is significantly reduced, accounting for about 5% of the stroke cycle. This suggests that this

particular rower is flexing their knees while their upper body is still moving into a rocked over position.

This improper sequencing of movements can make it more difficult for rowers to achieve higher stroke

rates and also lead to the body mass of the rower crashing into the stern of the boat when on the

water, negatively impacting boat speed. Although this is something that can be observed visually by

coaches, being able to back up what they are saying with data from another source such as the WSS,

can have more of an impact in creating change in the technique of some athletes.

With the knee warmer being the basis of the WSS, it is important that it fits well, otherwise it can

distort the response of the strain sensor as seen for participant 69340 where the ill-fitting knee warmer

led to bunching and the sensor not always being under tension. Data for participant 22341 may have

been impacted by the knee warmer, with potentially some buckling of the strain sensor leading to

noise in the signal, although nothing was observed by the participant or researcher. Different sized

knee warmers were purchased in order to accommodate different leg sizes, however in future more time

needs to be taken to ensure that the participant is comfortable with what they are wearing and not

finding it restrictive in any way.
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6.3.4 Summary

In this particular cohort study observing the rowing motion, the strain sensors used were able to detect

all rowing strokes in all of the 25 of the steps presented here. With a well-fitting knee warmer as part of

the wearable sensor system, the profile of the strain sensor is similar to that of Vicon and able to track

knee flexion during the rowing stroke, but poor-fitting knee warmers can distort the results meaning

they do not reflect the actual motion taking place.

A change in overall knee range of motion was observed from analysing the Vicon output, de-

creasing for several of the participants as the intensity increased, which can negatively impact rowing

performance and also lead to injury. It is important to be able to monitor these changes outside of a

laboratory environment with a system such as the one developed in this project, however small changes

are needed to the design and fabrication to help facilitate this.

6.4 Cycling Cohort Study

As with the data presented in Section 6.3, the data related to the cycling study will include a few

examples collected from the cohort of where the strain sensor response aligned with that of the motion

capture system, as well as areas for improvement.

6.4.1 Study Population

The data of five participants are presented in this section, with repeat testing sessions for two partici-

pants, leading to a total of seven data sets. The details of each of these participants are listed in Table

6.7, including anthropometric details, cycling experience and the strain sensor used during testing. All

participants used clipless foot retention (cycling specific shoes with cleats that clipped into pedals).

An example of this is shown in Figure 6.12.

6.4.2 Results

Data were extracted from both the Vicon and sensor signals at different points to compare the response

at the lowest cadence of 80 rpm, and at the higher cadences of 90 and 100 rpm. The points at which

these sections of data were extracted within the testing protocol are listed in Table 6.8. Three sections

of data capture at 80 rpm were also extracted to allow the signals to be compared at different points

in the testing protocol: at the start of the protocol when the strain sensor has been subject to little

strain; after the cadence ramp and approximately halfway through the protocol; after the maximal

sprints towards the end of the protocol.

These results are split into two sections: the first visually compares the signals from the strain

sensor and Vicon, while the second details the mean maximum and minimum knee flexion angles as

obtained from the Vicon signal.
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(a) (b)

Figure 6.12: Example of clipless foot retention used in cycling a) pedal attached to bike, b) cycling shoes with
the left hand shoe showing the cleat on the underside that clips into the pedal.

Table 6.7: Participant and sensor details for cycling cohort study.

Participant details Sensor details
Partici
-pant
ID

Test
ses-
sion

Sex Age
(years)

Height
(cm)

Body
mass
(kg)

Cycling
expe-
rience
(years)

Preferred
disci-
pline

Participation Training
(hours)

Sensor
num-
ber

Sensor
use

50560 1 Male 29 175 75 14 Road Leisure
Rider

12 1 1

39683 2 Female 26 163 48 4 Road Leisure
Rider

9 1 4

69013 1 Male 26 196 69 20 Road Leisure
Rider

10 1 9

60435 1 Male 38 180 79 34 Road Leisure
Rider

7 3 4

60435 2 - - - - - - - - 3 5
59445 1 Female 28 166 71.6 5 Track Competitive

(racer)
7 3 6

59445 2 - - - - - - - - 3 7
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The start of the pedal stroke cycle was taken to be when the right knee (instrumented with markers

and the WSS) was most flexed and the foot was in the 12 o’clock position. One full revolution of the

pedal and foot was equal to one pedal stroke cycle. The notation used for the sensors in this results

section is S1-004, where S1 = the sensor number and 004 is the use number of the sensor.

Table 6.8: Sections of data extraction for analysis, showing the average cadence for that section and the time
period this corresponds to within the testing protocol.

Average cadence (rpm) Time period in protocol (min)
80 rpm (1) 2:00 - 3:00

90 rpm 7:30 - 8:30
100 rpm 11:15 - 12:15

80 rpm (2) 13:30 - 14:30
80 rpm (3) 18:03 - 19:03

6.4.2.1 Analysis of Strain Sensor Response

This section compares the signals from the strain sensor and the Vicon motion capture system. For

each participant (and testing visit) there are four sets of plots, with two plots showing only the strain

sensor signal and the remaining two showing the overlaid time-normalised response from both Vicon

and the strain sensor. Within each plot type, comparisons are made between the sensor response at

each cadence (80 rpm - first extract, 90 rpm and 100 rpm), as well as the three 80 rpm data extracts.

6.4.2.1.1 Participant 50560 - visit 1/2

Looking at the normalised sensor response as the cadence increases from 80 rpm to 100 rpm in

Figure 6.13, double peaks can be observed in the signal. The cycle for each pedal stoke is distinguishable

at the lowest and highest cadences, however at 90 rpm the drop in sensor response between the double

peak is so low that it is difficult to establish where each cycle starts and ends. As the cadence increases,

the signal range decreases from approximately 0.7 to 0.4.

The double peaks become less prominent as the protocol continues, as seen in the second and third

80 rpm data extracts in Figure 6.15. The overall signal range is still low in the second 80 rpm extract,

but has increased slightly to approximately 0.5 in the third data extract.

Comparing the time-normalised strain signal to Vicon in Figures 6.14 and 6.16, it can be seen that

there is much more variation between pedal strokes for the strain sensor, especially at the upper end

of the response values which corresponds to the knee being most flexed. In Figure 6.16 for the final

80 rpm extract, even at the bottom of the pedal stroke where knee is extended and the strain sensor

values are low, there is significantly more variation in the sensor signal.
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Figure 6.13: Normalised sensor response for 3 × 1-min segments at 80, 90 and 100 rpm during the cycling
protocol, performed by participant 50560.

Figure 6.14: Overlaid time-normalised response for each pedal revolution for 3 × 1-min segments at 80, 90
and 100 rpm during the cycling protocol. Knee angles from Vicon on the left and strain sensor response on the
right for participant 50560.
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Figure 6.15: Normalised sensor response for for 3 × 1-min segments each at 80 rpm during the cycling protocol,
performed by participant 50560.

Figure 6.16: Overlaid time-normalised response for each each pedal revolution for 3 × 1-min segments each
at 80 rpm during the cycling protocol. Knee angles from Vicon on the left and strain sensor response on the
right for participant 50560.
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6.4.2.1.2 Participant 39683 - visit 2/2

The same strain sensor used for participant 50560 (S1-001) was also used for participant 39683

(S1-004), with this being the fourth use of this particular sensor. Double peaks are still present in

the sensor signal and their range is significant (more than half of the overall signal range), as seen in

Figure 6.17, however it is clear where the start and end of each cycle is for all three cadences. The

time-normalised plots in Figure 6.18 emphasise just how prominent these double peaks are in the sensor

signal – for the one cycle seen in the Vicon plots, there seems to be two cycles in the strain sensor

plots with the signal more varied in the second cycle.

For this particular participant, it can be seen that the there is less consistency in the knee angle

measured by Vicon at the bottom of the pedal stroke when the knee is extended compared to the top

of the pedal stroke, especially at 80 rpm in Figure 6.18. This is not a feature that is noticeable in the

strain sensor signal.

Returning to the normalised strain sensor signal, the response range is similar across the three

plots in Figure 6.17 and also during the second 80 rpm extract in Figure 6.19. It is then almost halved

in the plot for the third 80 rpm extract from approximately 0.8 to 0.4. This reduced range is more

noticeable when comparing the time-normalised plots in Figure 6.20 – the curve for the third 80 rpm

extract is almost flattened compared to the other 80 rpm extracts. Again in the Vicon signal for all

three 80 rpm extracts, there is more dissimilarity in the knee angles measured at the bottom of the

pedal stroke when the knee is extended.
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Figure 6.17: Normalised sensor response for 3 × 1-min segments at 80, 90 and 100 rpm during the cycling
protocol, performed by participant 39683.

Figure 6.18: Overlaid time-normalised response for each pedal revolution for 3 × 1-min segments at 80, 90
and 100 rpm during the cycling protocol. Knee angles from Vicon on the left and strain sensor response on the
right for participant 39683.

147



Figure 6.19: Normalised sensor response for for 3 × 1-min segments each at 80 rpm during the cycling protocol,
performed by participant 39683.

Figure 6.20: Overlaid time-normalised response for each each pedal revolution for 3 × 1-min segments each
at 80 rpm during the cycling protocol. Knee angles from Vicon on the left and strain sensor response on the
right for participant 39683.
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6.4.2.1.3 Participant 69013 - visit 1/2

The same strain sensor was used for participant 69013 as for the previous two participants already

presented, with this being the ninth use of the sensor (S1-009). The double peaks in each cycle of the

normalised sensor response in Figure 6.21 are less prominent, even as the overall signal range decreases

slightly with increasing cadence. This carries across to the time-normalised plots in Figure 6.22 where

one wave can be seen in the sensor signal, but still the presence of the double peak means that the

profile does not match that of Vicon which is a much smoother sinusoidal wave. Although the profiles

from the two signals do not match, the signal from the strain sensor is less varied compared to the

previous two participants presented. The knee angles measured by Vicon in each of the plots in Figure

6.22 remain consistent throughout the pedal strokes and across the different cadences also.

Comparing the 80 rpm repeats and the signal plots in Figure 6.23, the sensor response range

decreases slightly from the first to second 80 rpm repeat (approximately 0.5 to 0.4) and the entire

signal is also shifted down (with the minimum values lowering from approximately 0.3 to 0.1). The

range decreases again between the second and third repeats by approximately 0.05. This is represented

in the time-normalised plots in Figure 6.24 with a flatter curve in plots two and three compared to the

first plot.

For this participant, there is more disparity in the measured knee angle at the bottom of the pedal

stroke when it is extended within the second and third 80 rpm extracts compared to the first 80 rpm

extract. For the third 80 rpm extract, there appears to be more disparity throughout the entire pedal

stroke and not just at the bottom of it.
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Figure 6.21: Normalised sensor response for 3 × 1-min segments at 80, 90 and 100 rpm during the cycling
protocol, performed by participant 69013.

Figure 6.22: Overlaid time-normalised response for each pedal revolution for 3 × 1-min segments at 80, 90
and 100 rpm during the cycling protocol. Knee angles from Vicon on the left and strain sensor response on the
right for participant 69013.
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Figure 6.23: Normalised sensor response for for 3 × 1-min segments each at 80 rpm during the cycling protocol,
performed by participant 69013.

Figure 6.24: Overlaid time-normalised response for each each pedal revolution for 3 × 1-min segments each
at 80 rpm during the cycling protocol. Knee angles from Vicon on the left and strain sensor response on the
right for participant 69013.
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6.4.2.1.4 Participant 60435 - visit 1/2

A different sensor was used for participant 60435, with this being the fourth use of this particular

strain sensor (S3-004). The signal range remains consistent across the three different cadence extracts

presented in Figure 6.25. There are double peaks, as featured in all previous signals, however these

are much smaller and the second peak is slightly higher in amplitude than the first.

In Figure 6.26 the time-normalised strain sensor signal plots have the most similar profile to the

corresponding Vicon plots out of all those presented so far (with the top of the curve being extended

due to the double peaks). The overlaid pedal stroke cycles in these plots are also more similar to each

other compared to previous plots, such as Figure 6.23 for participant 69013. The Vicon plots also have

little difference throughout the pedal stroke at each of the three cadences.

Comparing the 80 rpm extracts in Figure 6.27, the double peaks continue to be less prominent

as the testing protocol continues. By the final plot, the response range is almost halved to 0.4 in

comparison to the first plot, producing the flattened time-normalised plot seen in Figure 6.28. The

knee angles remain consistent throughout the pedal strokes at each of the repeats in Figure 6.28, but

one outlier can be seen in the third 80 rpm repeat. This can also be spotted in the equivalent strain

sensor plot.

Figure 6.25: Normalised sensor response for 3 × 1-min segments at 80, 90 and 100 rpm during the cycling
protocol, performed by participant 60435, visit 1/2.
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Figure 6.26: Overlaid time-normalised response for each pedal revolution for 3 × 1-min segments at 80, 90
and 100 rpm during the cycling protocol. Knee angles from Vicon on the left and strain sensor response on the
right for participant 60435, visit 1/2.

Figure 6.27: Normalised sensor response for for 3 × 1-min segments each at 80 rpm during the cycling protocol,
performed by participant 60435, visit 1/2.
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Figure 6.28: Overlaid time-normalised response for each each pedal revolution for 3 × 1-min segments each
at 80 rpm during the cycling protocol. Knee angles from Vicon on the left and strain sensor response on the
right for participant 60435, visit 1/2.

6.4.2.1.5 Participant 60435 - visit 2/2

The same strain sensor was used for this participant’s second visit to complete the cycling protocol

(S3-005). The normalised signal for the strain sensor response in Figure 6.29 is very similar to the first

visit, with small double peaks present in each strain cycle. The overall range reduces between the 80

rpm and 90 rpm extracts (by approximately 0.1) and then remains constant between the 90 rpm and

100 rpm extracts. Similarities can also be seen in the time-normalised plots in Figure 6.30 for this visit

and Figure 6.26 for the first visit with the overlaid cycles in the sensor signals being closer together

and there being little change in knee angles at each cadence also.

During the testing protocol, the strain sensor response range in Figure 6.31 decreases from the

first to second 80 rpm repeat by approximately 0.2, making it slightly lower than the 100 rpm extract

in Figure 6.30 and following a similar pattern to the first visit. Again, this is reflected in the time-

normalised plots in Figure 6.32.
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Figure 6.29: Normalised sensor response for 3 × 1-min segments at 80, 90 and 100 rpm during the cycling
protocol, performed by participant 60435, visit 2/2.

Figure 6.30: Overlaid time-normalised response for each pedal revolution for 3 × 1-min segments at 80, 90
and 100 rpm during the cycling protocol. Knee angles from Vicon on the left and strain sensor response on the
right for participant 60435, visit 2/2.
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Figure 6.31: Normalised sensor response for for 3 × 1-min segments each at 80 rpm during the cycling protocol,
performed by participant 60435, visit 2/2.

Figure 6.32: Overlaid time-normalised response for each each pedal revolution for 3 × 1-min segments each
at 80 rpm during the cycling protocol. Knee angles from Vicon on the left and strain sensor response on the
right for participant 60435, visit 2/2.
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6.4.2.1.6 Participant 59445 - visit 1/2

The strain sensor used for this participant (59445) was the same as that used for the previous

participant (60435) and this was the sixth use (S3-006). The features in Figure 6.33 are similar as

those seen the normalised sensor response plots for participant 60435 (Figure 6.25 and Figure 6.29).

The double peaks are small, with the second being slightly larger in amplitude. The signal range

reduces from 0.8 at 80 rpm to 0.55 at 90 rpm.

There is more discrepancy in the second half of the pedal stroke cycle in the time-normalised plot at

80 rpm in Figure 6.34, corresponding to the upward phase of the pedal stroke. There is less discrepancy

as the cadence increases to 90 rpm and the knee angles appear consistent throughout the pedal stroke

as the cadence is further increased to 100 rpm. The strain sensor response appears to follow a similar

pattern, with more variation between cycles at 80 rpm, that decreases as the cadence increases, but it

should be noted that is occurs more when the knee is flexed and the sensor is being stretched at the

top of the pedal stroke.

The double peaks are still present in the strain sensor when comparing the 80 rpm data extracts

in Figure 6.35. In the second extract, the overall range steps up around 4000 data points in, from just

below to just above 0.6. The Vicon time-normalised plot for the second extract in Figure 6.36 shows

the most difference in knee angle throughout the pedal stroke for any of the participants presented so

far, with one cycle an outlier when compared to the rest. By contrast, the final extract shows almost

no variation in knee angle throughout the pedal stroke. Again, these patterns appear to be reflected

in the sensor signal.
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Figure 6.33: Normalised sensor response for 3 × 1-min segments at 80, 90 and 100 rpm during the cycling
protocol, performed by participant 59445, visit 1/2.

Figure 6.34: Overlaid time-normalised response for each pedal revolution for 3 × 1-min segments at 80, 90
and 100 rpm during the cycling protocol. Knee angles from Vicon on the left and strain sensor response on the
right for participant 59445, visit 1/2.
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Figure 6.35: Normalised sensor response for for 3 × 1-min segments each at 80 rpm during the cycling protocol,
performed by participant 59445, visit 1/2.

Figure 6.36: Overlaid time-normalised response for each each pedal revolution for 3 × 1-min segments each
at 80 rpm during the cycling protocol. Knee angles from Vicon on the left and strain sensor response on the
right for participant 59445, visit 1/2.
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6.4.2.1.7 Participant 59445 - visit 2/2

The second visit for participant 59445 used the same strain sensor as the first and this was the

seventh use (S3-007). There are small double peaks in each cycle across the three cadences presented

in Figure 6.37, with the second peak being higher than the first. Looking at the time-normalised plots

in Figure 6.38, the knee angles measured by Vicon are very similar at each of three cadence extracts.

The strain sensor profile is similar to that in Figure 6.34, but the signal variation is similar across the

different cadences in Figure 6.38.

The overall strain sensor signal range is slightly reduced from the first to second 80 rpm repeat in

Figure 6.39 by approximately 0.1, and the first peak within the double peak in each cycle becomes

less visible in the second and third repeats compared to the first. The second visit for this participant

differs to the first when comparing the time-normalised Vicon plots in Figure 6.40 and Figure 6.36

respectively. In Figure 6.40 there is little difference in knee angles throughout the pedal stroke and

this is observed across all of the 80 rpm repeats. The strain sensor curves are also similar with regards

to profile and variation.

Figure 6.37: Normalised sensor response for 3 × 1-min segments at 80, 90 and 100 rpm during the cycling
protocol, performed by participant 59445, visit 2/2.
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Figure 6.38: Overlaid time-normalised response for each pedal revolution for 3 × 1-min segments at 80, 90
and 100 rpm during the cycling protocol. Knee angles from Vicon on the left and strain sensor response on the
right for participant 59445, visit 2/2.

Figure 6.39: Normalised sensor response for for 3 × 1-min segments each at 80 rpm during the cycling protocol,
performed by participant 59445, visit 2/2.
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Figure 6.40: Overlaid time-normalised response for each each pedal revolution for 3 × 1-min segments each
at 80 rpm during the cycling protocol. Knee angles from Vicon on the left and strain sensor response on the
right for participant 59445, visit 2/2.

6.4.2.2 Kinematics Analysis of Vicon Signal

For each step and for each section of data extracted from the testing protocol, the mean maximum

and minimum knee flexion angles were calculated for each participant, as well as the corresponding

range of motion. These are displayed in Table 6.9 and Table 6.10 respectively. Standard deviation was

generally higher at the bottom of the pedal stroke where the knee was minimally flexed (highest at

24.87 ± 2.40◦ for participant 59445 and 25.82 ± 1.85◦ for participant 69013) compared to the top of

the pedal stroke where the knee was under the most flexion (highest at 95.06 ± 1.64◦ for participant

59445).

The maximum and minimum knee angles measured vary across the cohort, with the highest mean

maximum and minimum knee flexion angles determined as 115.38 ± 0.42◦ for participant 39683 and

45.03 ± 0.58◦ for participant 60435 respectively. Meanwhile, the lowest mean maximum and minimum

knee flexion angles were 93.73 ± 0.41◦ and 23.59 ± 0.90◦ respectively, both for participant 69013. De-

spite this, overall knee range of motion across the cohort was between 64.98 – 71.55◦ for all participants

except for participant 39683 whose range of motion fell between 81.96 – 84.06◦.
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Table 6.9: Mean maximum and minimum knee flexion angles for each participant during each 1-min extract
of cycling data.

Partici
-pant
ID

Test
sess
-ion

Mean knee flexion angle (degrees)
80 rpm (1) 90 rpm 100 rpm 80 rpm (2) 80 rpm (3)

Max Min Max Min Max Min Max Min Max Min
50560 1 106.86

±
0.24

38.59
±
0.41

107.65
±
0.20

40.88
±
0.44

107.61
±
0.21

42.03
±
0.46

108.24
±
0.28

40.87
±
0.49

109.89
±
0.39

42.08
±
0.45

39683 2 112.77
±
0.32

28.70
±
1.20

113.89
±
0.30

31.39
±
0.80

115.05
±
0.46

32.36
±
0.85

114.32
±
0.44

32.36
±
1.05

115.38
±
0.42

32.00
±
1.13

69013 1 93.79
±
0.22

24.08
±0.44

93.92
±0.38

25.05
±
0.53

94.02
±
0.24

24.98
±
0.54

93.73
±
0.41

23.59
±
0.90

94.04
±
1.00

25.82
±
1.85

60435 1 108.52
±
0.10

43.11
±
0.51

109.06
±
0.11

43.57
±
0.50

109.53
±
0.13

44.06
±
0.38

109.40
±
0.11

44.04
±
0.51

110.01
±
0.14

45.03
±
0.58

60435 2 103.13
±
0.13

36.14
±
0.61

103.69
±
0.14

36.50
±
0.63

104.41
±
0.18

37.23
±
0.41

103.77
±
0.25

37.00
±
0.43

102.97
±
0.22

36.07
±
0.72

59445 1 96.11
±
0.54

27.07
±
1.10

97.09
±
0.34

28.50
±
0.70

96.75
±0.34

28.19
±
0.38

95.06
±
1.64

24.87
±
2.40

94.94
±
0.41

25.35
±
0.48

59445 2 96.96
±
0.26

25.53
±
0.46

95.40
±
0.57

25.12
±
0.55

97.50
±
0.35

28.83
±
0.46

95.82
±
0.43

24.41
±
0.36

96.80
±
0.43

25.25
±
0.43

Table 6.10: Mean knee flexion angle range for each participant during each 1-min extract of cycling data.

Mean knee flexion angle range (degrees)
ID 80 rpm (1) 90 rpm 100 rpm 80 rpm (2) 80 rpm (3)
50560 1 68.27 66.77 65.57 67.36 67.80
39683 2 84.06 82.50 82.69 81.96 83.38
69013 1 69.71 68.86 69.04 70.15 68.21
60435 1 65.41 65.50 65.47 65.37 64.98
60435 2 66.99 67.19 67.17 66.78 66.89
59445 1 69.04 68.59 68.56 70.19 69.59
59445 2 71.42 70.28 68.67 71.41 71.55
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6.4.3 Discussion

The cycling protocol served to extend the knowledge about the strain sensors developed in this project

and subject it to higher strain rates over longer periods of time (compared to the rowing protocol) with

a different participant cohort. The continuous nature of the 20-minute warm up used in the cycling

protocol enabled the entire strain sensor signal to be normalised by its range before extracting data at

different cadences. This made it easier to interpret any signal variation throughout the test. As with

the rowing study, the squats performed as a calibration step were not used to normalise the strain

sensor signal due to the difference in strain rates and therefore sensor response.

Something that can be observed in the time-normalised plots for all participants is the shift in strain

sensor signal in comparison to the one from Vicon. For example, in Figure 6.32 the knee is extended at

the bottom of the pedal stroke at 50% of the stroke cycle. Looking at the corresponding sensor plots,

the sensor response is at a minimum at 37.5%, 30% and then 25% for the first, second and third 80

rpm data extracts respectively. The viscoelastic behaviour of the sensors can explain this out-of-phase

response, as it causes hysteresis, which leads to irreversible changes to the sensing performance over

time with loading [140]. This is only enhanced by the already high strain rates associated with the

cycling movement, further increased as the cadence is ramped up throughout the protocol. As observed

in Chapter 4, when the strain sensor is constantly in motion, so are the CNTs that transfer charge

and there is the possibility of a more erratic, out-of-phase response as the sensor does not have time

to relax. If data is being analysed after the fact, then this delay is not problematic. However, when

providing live feedback, then this delay must be considered alongside signal processing so that users

can receive feedback within a suitable time frame to make any changes to their movements.

A feature observed in the range-normalised sensor plots was the double peaks present in every strain

cycle. This is a known behaviour associated with CNT-based strain sensors during cyclic loading and

is explained by the competing mechanisms that reform and deform conductive networks [238]. Even

though this an inherent property of CNT-based strain sensors, the ideal scenario is to have the double

peaks minimally distort the overall signal, unlike in Figure 6.13 for the 90 rpm plot where the double

peaks have effectively split the strain cycle into two. If using this particular sensor to determine

cadence, then it would double the value and it would also make it difficult to determine the position

of the knee within the pedal stroke. For other tests using this particular sensor (S1), double peaks

were highly prominent in each of the signals. However for the other sensor used (S3), the size of

the double peaks were much smaller in amplitude and distorted the overall signal less, as seen in the

time-normalised plot for participant 60435 in Figure 6.26. This suggests a difference in microstructure

of these two sensors that has affected the quality of the response, with sensor S3 providing a much

higher quality signal than sensor S1.

This difference in signal quality can be noticed in other aspects such as the range of the strain
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sensor signal decreasing throughout the course of the 20-minute cycling protocol. This reduction in

range was observed when originally characterising the strain sensors in Chapter 4, and happens as a

result of the CNTs being reoriented when strain is repeatedly applied. The CNTs become more aligned

and contact points (for charge transfer) are increased, leading to a lower resistance being measured.

For sensor S1, in Figure 6.19 the overall range is almost halved from 0.8 to 0.4 from the first to third

80 rpm extract. This is compared to sensor S3 where the biggest reduction in range is seen in Figure

6.33 from approximately 0.8 to 0.55 as the cadence increases from 80 rpm to 90 rpm. Similar patterns

can be seen for other tests using both of these sensors, with the signal range on the whole, being more

stable for sensor S3, proposing again that there is a microstructural difference that makes sensor S3

more suitable for detecting knee range of motion due to its response stability. A screening method is

therefore needed as part of the sensor fabrication process to ensure that only strain sensors meeting a

minimum CNT uptake and providing a reliable signal that aligns with a known standard (in this case

Vicon) are used for this application.

In one instance, the sensor response range increases over the course of testing after the initial

decrease as for participant 50560 in Figure 6.15, and in another the minimum values of the sensor

response increase over time as in Figure 6.17 for participant 39683. This can be attributed to the

resistance of the sensor increasing over time as the conductive network is destroyed, likely due to

material loss from the outer surfaces of the sensor. A coating that encompassed the strain sensor

would prevent this material loss, while helping to stabilise the sensor response.

Focusing more on the response of sensor S3 and participant 60435 who completed the cycling

protocol on two occasions, when looking at the knee motion as recorded by Vicon, there is minimal

variation in its range across the different cadences as noted in Table 6.10 . For their first visit, the

amount of knee flexion ranged between 64.89 – 65.50◦ and between 66.78 – 67.19◦ for the second visit,

in both cases varying by less than 1◦. Although there is more variation in the time—normalised sensor

signal compared to Vicon, when comparing the sensor plots across the different cadences and the two

visits they are consistent in Figures 6.26 and 6.30, indicating the response is repeatable between sessions

for this particular sensor. This continues for participant 59445 who also completed the protocol using

sensor S3, where the strain sensor is able to visually reflect the larger variation in knee angle range

during the first visit in Figure 6.36, with the knee range varying between 68.56 – 70.19◦. During the

second visit, where the knee flexion range for the 80 rpm repeats is much smaller (between 71.41 –

71.55◦), a difference can be seen in the time-normalised plots in Figure 6.40.

Although the mean knee flexion angle ranges vary by no more than 3◦ for each participant, at

the bottom of the pedal stroke the standard deviation for the minimum knee flexion angle is higher

than for the top of the pedal stroke and the maximum knee flexion angle, as highlighted in Table 9.

Previous studies have shown that knee joint movement is related to movement occurring at the ankle

joint: if the cycling shoes are attached to clipless pedals and the pelvis is stable on the saddle, then
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plantar flexion must be responsible for changes in knee angle, with more variability for novice cyclists

[137]. Decreased plantar flexion and increased knee extension have been reported as a result of higher

cycling intensities, however these higher intensities have been achieved through increasing resistance

[239, 240] and not necessarily increasing cadence as in this study.

For all participants presented in this chapter, the amount of knee extension decreased as the cadence

was increased from 80 rpm to 100 rpm (see Table 6.9). Although a relationship cannot be determined

between knee extension and cadence based on this small sample of data, it is an area to be considered,

as well as the amount of variation in knee angles at different cadences. At this stage, a sensor such as

sensor S3 has the ability to recognise variation in knee angles (see Figure 6.36) and so the WSS has

potential to help determine an acceptable amount of variation in knee movement and act as a tool for

monitoring improvement.

These improvements in pedalling technique would not only minimise injury risk, but help improve

power application and ultimately cycling performance. Monitoring knee angle variation could sup-

plement information provided by other sources, such as the polar view on the Wattbike that provides

visual feedback on force applied through the pedal stroke. For individual users also, it has the potential

to help them understand their own movements when riding in different environments or on different

bikes that may require setting up in a particular way.

6.4.4 Summary

In this cohort study that observed the cycling movement, the strain sensors used in the wearable sensor

system were subject to a much higher strain rate than in the rowing protocol, leading to the appearance

of double peaks within each strain cycle. For the higher quality sensor used, these double peaks had a

negligible effect on the overall signal and the profile had some similar features to the signal produced

from Vicon.

For some participants, variations in the knee flexion angle throughout the pedal stroke and espe-

cially at the bottom of the pedal stroke cycle were observed, and this was recognised visually in the

time-normalised sensor response at the different cadences extracted. Being able to understand and

minimise this variation can aid in preventing injury from occurring at the knee joint.

6.5 Further Discussion

The rowing and cycling cohort studies provided different insights into the use of the strain sensors

developed in this project. One common theme that was established was the quality of sensors used

during testing and the difference that arose in the sensor response. To ensure that all data obtained

from the strain sensors is representative of the knee joint movement and comparable to Vicon, a quality

control step needs to be introduced in the fabrication process. Imaging a few sensors before and after
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testing could provide a reference of what an ideal sensor structure is like for when future strain sensors

are prepared. In addition to this, including a pre-conditioning step in the manufacturing process can

help to overcome the orientation change of the CNT conductive filler (that can lower the resistance of

the strain sensor over time).

Another common feature was the presence of double peaks within the sensor signal. The time taken

for a strain cycle in each of the protocols can be calculated as follows:

time = 60 seconds÷ stroke rate (6.1)

For rowing, and:

time = 60 seconds÷ cadence (6.2)

For cycling. At the lowest stroke rate and cadence, the time taken for a strain cycle using the

above equations were 3.3 seconds for rowing (at 18 spm) and 0.75 seconds for cycling (at 80 rpm). The

strain cycle duration within the rowing stroke is over 4-times that in the cycling pedal stroke, however

the double peaks are just as, if not more prominent. During characterisation of the strain sensor (see

Chapter 4, the strain cycle at the highest strain rate of 350 mm/min took 4.4 seconds but double peaks

were not present in the signal (see Figure 4.7. This indicates that for these piezoresistive CNT strain

sensors, there is a threshold in strain cycle duration (or strain rate) that introduces these double peaks

into the signal. As discussed earlier, some sensors provided a reliable response in line with Vicon and

did not distort the signal when it came to be analysed, while others did not. The shortest strain cycle

presented in this section was 0.6 seconds (at a cadence of 100 rpm in cycling) and this suggests that

these sensors could be used in other applications where one strain cycle takes at least 0.6 seconds. For

example in running, where the average step rate is 172.6 steps per minute (for both feet) at a speed of

10.8 km/h [241], the strain cycle duration for the WSS placed on one knee would be 0.7 seconds (at

86.3 steps per minute for one foot).

This exploratory phase of testing the strain sensors and WSS has shown what the current capability

of this system is, with the main advantage being that the strain sensor is able to track the motion

of the knee in both sporting movements. The profile of the sensor response can be used as the

basis for movement recognition and the use of machine learning. Machine learning has been used in

combination with inertial measurement units (IMUs) in tennis to classify tennis strokes [242] and to

identify the experience level of different tennis players [93]. In this instance, machine learning could

be used to classify different sports and differentiate between the rowing and cycling movements. In

rowing where observations were made with regards to how early knee flexion occurred in the recovery

phase of the rowing stroke (see Vicon time-normalised plots in Figure 6.7), machine learning could be

used to build up a database to identify what constitutes "good and poor rowing technique" based on
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this kinematic information and aligning with previous research on rowing technique [130, 243], aiding

technical improvement within the sport.

Different forms of strain sensors for measuring human motion and physiological signals are continu-

ing to be developed, with textiles and woven conductive elements being investigated over polymer-based

composites. One such example is a graphene-based thermoplastic polyurethane (TPU)/textile com-

posite that has been developed and characterised [244]. Characterisation included testing such as

washability and durability. Durability investigations subjected the sensor to 10,000 cycles with the

highest frequency testing (1 Hz = 1 strain cycle per second) taking place under 5% cyclical strain with

the resistance being recorded at a sampling frequency of 25 Hz [244]. This is an impressive number of

strain cycles with an 8% change in resistance over this duration, however in the sports investigated in

this project the range of motion of the knee joint will subject any strain sensor to strains higher than

5% and with a low sampling frequency, there is the potential that certain features of the signal are

being omitted during this cyclical testing process.

Laboratory and bench testing can give some indication of sensor performance but does not provide

the full picture, as the work done in this project has shown. The strain sensors developed and tested

in this project have been combined with electronics that accurately convey the signal produced with

its high sampling frequency (of 200 Hz) and have been integrated into a real-life study. Although the

low gauge factor means that this sensor currently cannot be used to determine absolute knee joint

angles, it can be used to assess variation in knee joint movement over a period of time. Future work

could include changing the saddle height in cycling or stroke length in rowing (both which will impact

the overall knee flexion range), combined with improving the sensor sensitivity during fabrication, to

determine the ability of the strain sensors to detect these larger changes in knee range of motion.

6.5.1 Limitations

There were some limitations that arose while conducting this study, the primary one being the size of

the cohort and the number of repeat visits made by participants. Only ten participants were recruited

for each study, which did not allow for sub-groups to be identified (whether by experience level or sex)

and for generalisations to be made about the knee kinematics profile for each one. For the rowing

study, only four out of the ten participants returned for a second visit, while in contrast this number

was much higher for the cycling study at nine out of ten. This prevented comparisons being made

between testing visits about the performance of the participant and the strain sensor.

Without a quality assessment of each strain sensor that was used, there was not a way of knowing

how it would perform during the real-life testing process. This then had an impact on the data

collected, as there was not consistency in the response of the different sensors used.

Each participant performed a series of squats before completing the cycling or rowing protocol, with

the intention of using the squats to calibrate the subsequent data collected. However, while the squats
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were being performed it became apparent that participants had differing amounts of mobility and not

all were able to achieve their full knee range of motion while performing a squat that they would be

able to achieve on a stationary bike or rowing machine. This, in conjunction with the fact that the

speed of the squatting motion did not reflect the speed of the rowing and cycling motions, meant

that in fact the range of the sensor response was larger during rowing and cycling (due to overshoot

behaviour) and so the squats were not an appropriate calibration method. The best calibration would

probably involve the actual sporting movement, and would serve as a baseline for the participant’s

knee range of motion.

6.6 Conclusion

The two cohort studies conducted showed that the carbon nanotube-rubber strain sensors that have

been developed in this project and integrated into a wearable sensor system are able track knee range

of motion in rowing and cycling. There was a difference in the quality of sensors used, but the better

quality sensors were able to track the movement of the knee in line with the output produced by the

Vicon motion capture system.

In both sports, a change in kinematics was observed as a result of increasing cadence or stroke

rate: in cycling the standard deviation of the knee angle at the bottom of the pedal stroke decreased,

while in rowing the amount of knee extension during the rowing stroke decreased. Having a method

of monitoring these kinematics that cannot be observed by the naked eye is important as they can

influence coaching that can help prevent injury or enhance performance. This is something that with

further development, such as increased sensitivity and an improved calibration process, the wearable

sensor system can help monitor.
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Chapter 7

Cohort Study - Questionnaire Responses

Understanding the user experience of study participants and their interaction with the

wearable sensor system

7.1 Introduction

The uptake of wearable technology relies not only on the information it can provide to the user but

also on the experience of the user, particularly with respect to comfort and ease of set-up of the system.

Literature regarding user preferences with respect to wearable devices for rehabilitation are limited.

Papi et al. (2015) conducted focus groups with people with osteoarthritis to understand their needs

and requirements for a knee monitoring device [245]. They noted differences in how long people would

wear a device for (from a few hours to all day), but there was agreement that the device should be

discreet, easy to use, compact and comfortable [245]. It was postulated that access to data could

also help some participants adhere to and engage in rehabilitation protocols [245]. The findings of

this worked highlighted the importance of liaising with end users to increase the uptake of a system.

Bergmann et al. (2015) tested the feasibility of an attachable clothing sensing system to measure joint

stability. Participants were also questioned about comfort while wearing the sensing system, as well

as whether they would wear the sensing system to help with diagnostics, treatment, injury prevention

and feedback [246]. The findings from this work suggested their sensing system was a suitable method

to measure joint instability, with participants giving positive feedback about their interaction with it

[246].

There are fewer references available in a sporting context that provide information about how study

participants across different sports interacted with sensor systems and their thoughts on the use of such

devices. A study by Makhni et al. (2018) requested users to complete an exit survey after testing a

device to measure elbow torque in baseball [41]. The survey contained only close-ended questions and

as such the richness of responses was limited and it was unclear why respondents replied the way they

did. This was important as their exit survey indicated, “pitchers are unlikely to adopt the use of the
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sleeve during real, in-game competition.” [41]. However, it is unclear why it was not useable as this

could be down to several reasons including design elements, obtrusion and comfort. This means that

potentially a device was abandoned when issues with it could be overcome.

Therefore, a questionnaire was designed and incorporated into the testing protocol, which included

both close-ended and open-ended questions that were analysed using descriptive statistics and a the-

matic analysis respectively.

Further motivation behind the development of this questionnaire and gathering information from

participants included:

• Athletes being key stakeholders in this field, with their feedback being an important part of the

development process of any new technology

• Engaging study participants in the development process to help them build a relationship with

the wearable sensor system (WSS)

• Understanding how the needs of the study participants could be fulfilled

• Understanding the views already held by the study participants on wearable technology that is

currently available

• Gathering perspectives from study participants on how they could use the WSS developed in

this project

7.2 Methods

As part of the cohort study conducted, participants were invited to complete a questionnaire after

their testing session, to gather information about their experience with the WSS and their opinions

on wearable technology. The questionnaires were approved by the Imperial College Research Ethics

Committee (ICREC Reference number: 17IC4173) and the Science Engineering Technology Research

Ethics Committee (SETREC number: 21IC6651), copies of which are in Appendix D.

Participants were provided with a URL to access the relevant questionnaire comprising open- and

closed-ended questions that had been set up in Qualtrics (Utah, United States), an online survey

platform. Feedback was gained from participants about whether they noticed the WSS during testing

and if they thought it had a negative impact on their performance. They were also asked if they

would use it in training or in competition and if they would adjust their technique (rowing or cycling)

based on feedback from the device. Questions were developed based on previous studies by Bergmann

et al. (2012 and 2015), which sought to understand the user experience with and perceptions of

wearable technology [246, 247]. Questionnaires were completed following data collection after each
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testing session in the laboratory to determine whether there was a change in how the participants felt

about the technology.

Table 7.1 shows a breakdown of the number of questionnaire responses received over both testing

cohorts and for each session completed.

Table 7.1: Breakdown of questionnaire responses vs. total number of partici-
pants.

Rowing Cycling
Session 1 Session 2 Session 1 Session 2

Number of participants 10 4 10 9
Responses received 8* 2* 10 9

*Questionnaire introduced through ethics ammendement after two participants
had already completed the study

7.2.1 Data Analysis

The first part of the questionnaire comprised closed-ended questions, with the aim of encouraging

the participants to start consider different factors related to wearable technology. These were analysed

separately for the rowing and cycling cohorts, using descriptive statistics in Matlab to determine which

factors about wearable technology participants felt were the most important to consider and to compare

responses across cohorts.

Responses from the open-ended questions were collated across both participant cohorts and a

thematic analysis was conducted using the framework outlined by Braun and Clarke (2006): famil-

iarisation, initial coding, theme searching, theme reviews, defining and naming themes, and reporting

[248].

7.3 Results

7.3.1 Descriptive Statistics

7.3.1.1 Wearable Sensor System

Within the online questionnaire, participants were asked to rate their experience with the WSS after

both testing sessions using a 10-point Likert scale, where 1 = very much and 10 = not at all. The

distribution of scores across each cohort after each testing session are presented in Figures 7.1 and 7.2.

When asked if the WSS had a negative impact on their performance, the median score for cyclists

and rowers were 9/10 and 10/10 respectively. The lowest score recorded for a cyclist was 6/10 and for

a rower was 5/10. The maximum score across both cohorts was 10/10. Participants were also asked if

they noticed the WSS while wearing it. Median scores were lower across both cohorts: this was 8/10

for cyclists and 6/10 for rowers. The range of scores was wider, with cyclists scoring as low as 3/10 for
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noticing the WSS and rowers scoring as low as 4/10. Again, the maximum score across both cohorts

was 10/10. These results are listed in Table 7.2.

Table 7.2: Overview of user experiences with the WSS. Outcomes for the 10-point Likert scale are given by
the median and range.

Cycling Rowing

Question Median score Score range Median score Score range

Do you think that the WSS nega-

tively impacted your cycling perfor-

mance? (Very much [1] – not at all

[10])

9 6-10 10 5-10

Did you notice the WSS while wear-

ing it? (Very much [1] – not at all

[10])

8 3-10 6 4-10

Figure 7.1: Participant experiences with WSS in a) cycling study and b) rowing study. The distribution of
scores on the 10-point Likert scale are shown in each bar chart (very much [1] – not at all [10]).
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Figure 7.2: Box plots representing the distribution of scores from both cohorts - the red line represents the
median, the top and bottom edges of the box are the 75th and 25th percentiles respectively. The whiskers
extend to the extreme, non-outlier points. Outliers are represented by the + symbol.

Participants were asked to reflect on whether they would use the WSS in training or competition,

and if they would adjust their technique based on any feedback provided by the system. For each

question, responses were given on a 3-point Likert scale (“Yes”, “No”, and “Maybe”) with an additional

option of “I don’t know”. Results are displayed in Figure 7.3.

In both sports, the number of “Yes” responses increased for all questions when filling out the

questionnaire for the second time, meaning that participants were more likely to use the WSS in

training, competition and to adjust feedback after further exposure to the system. In both sports after

the first session, participants were less sure about using the WSS in competition compared to training

with the percentage of “Yes” responses decreasing from 60% to 13% in cycling and from 75% to 25% in

rowing. Similar trends were observed after the second testing session with “Yes” responses decreasing

from 67% to 14% among cyclists and from 100% to 50% among rowers. In all cases, rowers were more

likely than cyclists to use the WSS in different environments.

The consideration to use the WSS to adjust technique was high in both cohorts with 78% of cyclists

and 86% of rowers responding “Yes” after the first session. This increased to 100% for both rowers and

cyclists after the second testing session.
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(a)

(b)

Figure 7.3: Results of participants using the WSS in a) cycling and b) rowing i) in training, ii) in competition
and iii) to adjust their technique after the first testing session and iv-vi) after the second testing session.

7.3.1.2 Wearable Technology in General

Within the questionnaire after the first testing session, participants were asked to consider 13 factors

on wearable technology in general, covering metrics, design, and interface with the user. These results

are displayed in Figure 7.4 and Table 7.3 for both studies. Each factor was scored using a 10-point

Likert scale, with a score of 10 stating that it was most important to the respondent.

Factors that achieved the highest median scores in both cohorts (participants gave a score of 10/10)

were that wearable technology should “be comfortable”, “not affect normal movements” and “not detach

from the user unless needed”. Factors where the median score differed by greater than one point were

that wearable technology should “be recyclable” and “be discreet”, with cyclists considering both factors

more important than their rowing counterparts. The median score for cyclists on the importance of

technology being recyclable and discreet were 8/10 and 7/10 respectively, while for rowing the scores

were 5/10 and 4/10 respectively.
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Table 7.3: Overview of participants’ responses on wearable technology in general. . Outcomes for the 10-point
Likert scale are given by the median and range.

Cycling Rowing

Wearable technology in sport

should. . . (Least important [1] –

most important [10])

Median score Score range Median score Score range

...be comfortable 10 9-10 10 7-10

...be compact (light and small) 9 8-10 8 7-10

...be discreet 7 3-9 4 2-10

...be easy to attach to the body 9 6-10 9 8-10

...be recyclable 8 5-10 5 3-8

...be reliable 9 8-10 10 8-10

...be simple to operate (and main-

tain)

9 7-10 9 4-10

...give instant feedback 8 5-10 7 4-10

...have clear and readable instruc-

tions

8 5-10 9 5-10

...not affect normal movements 10 10-10 10 9-10

...not detach from user unless

needed

10 4-10 10 9-10

...provide clear and useful results 9 8-10 9 8-10

...work alongside any coaching in-

put, instead of replacing it

9 5-10 8 5-10

Three further questions, which were asked after the first testing session, considered participants’

views on whether they were happy for their data to be stored in a database; if they would use a

device that they had to put on themselves; and if they would spend time learning to use a new device.

Responses were given on a 3-point Likert scale (“Yes”, “No”, and “Maybe”) with an additional option

of “I don’t know”. 100% of rowers responded “Yes” to all three questions. 100% of cyclists responded

“Yes” to applying a device themselves without assistance, but only 90% would consider their data being

stored in a database or learn to use a new device. A summary of these results is displayed in Figure

7.5.
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Figure 7.4: Box plots representing the distribution of scores from both cohorts - the red line represents the
median, the top and bottom edges of the box are the 75th and 25th percentiles respectively. The whiskers
extend to the extreme, non-outlier points. Outliers are represented by the + symbol.

Figure 7.5: Participants’ views on a) data storage, b) using a device without assistance and c) learning to use
a new device.
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7.3.1.3 Summary

There was a positive response from both study cohorts about the wearable sensor system – this included

their interaction with the system and using it in different environments (training and/or competition).

Both cohorts agreed that wearable technology in general should be comfortable but not obtrusive,

while cyclists were more concerned about a device being recyclable and discreet than their rowing

counterparts.

7.3.2 Thematic Analysis

Responses to the open-ended questions were collated from both sets of questionnaires, with a total

of 18 participants (10 cyclists and 8 rowers). From analysing the responses, two overarching themes

were identified: Translational Factors and Monitoring. Though there is a crossover within these main

themes, several sub-themes were identified and considered essential to the discussion on the use of

wearable technology in sports. Figure 7.6 displays the thematic map with main themes and sub-

themes.

Figure 7.6: Thematic map showing the two main themes and linked sub-themes identified from the question-
naire responses.

Since the scope of this project focuses on developing strain sensors to monitor joint kinematics,

both themes are discussed in detail. Where quotes are reported, they are extracted from the text

responses, the type of athlete (rower or cyclist) is stated, along with their participation level (recre-

ational or competitive) and their sex (male or female). Athletes were numbered to distinguish between

respondents whilst maintaining confidentiality.

Overall, athletes expressed positive views about the WSS, offering opinions on how this specific

system and wearable technology could help them in their chosen sport. The importance of the devel-

opment process in this field was expressed by one rower:

"I feel like a lot of technology comes from companies just trying to make money so it’s
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nice / better to see a proof of concept coming from research rather than profit companies"

(Rower 9 – Competitive, Female)

Another was excited by the prospect of wearable technology being able to aid the performance aspect

of their sport:

“Look forward to future innovations to support and enhance performance in rowing on ergs

and training on the water” (Rower 6 – Competitive, Female)

7.3.2.1 Translational Factors

During the experimental process, participants were able to interact with the WSS and observe the

set-up and data collection process. As a result of this, they were able to state factors that they felt

were important to future designs and iterations of the system when in use outside of a laboratory

environment. These were grouped together as Translational Factors.

The quotes included in the following text highlight the importance of considering user feedback

during the research and design process to allow the wearable technology to have the best transfer to

real-world use. Sub-themes identified were: Device design and user interaction, Environment and Cost.

7.3.2.1.1 Device Design and User Interface

Participants (predominantly from the cycling study) offered up different experiences on their in-

teractions with the WSS, particularly around the printed circuit board (PCB) assembly component of

the system. Some participants refer to the entirity of this assembly as an inertial measurement unit

(IMU). Its size, placement and fixation to the knee warmer all gave rise to many comments. However,

none of the athletes stated that this component affected their movements in any way:

“The sensors themselves weren’t noticeable during wearing. The only noticeable thing was

them [PCB assembly] falling off which is due to them being prototypes and fixed on in a

temporary manner rather than being aware of the actual sensor itself.” (Cyclist 2 – Leisure,

Female)

“I could feel the weight of the IMU a little bit pulling down on the knee warmer, but besides

that it was fine and didn’t get in the way of anything.” (Cyclist 10 – Competitive, Female)

The prototype nature of the WSS prompted design suggestions from two athletes. Improving the user

experience and developing something that is not obtrusive is a key point that was made, alongside

having a more discreet system. It was expressed by one athlete that the current design is holding the

system back from making that transition from research to general use:
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“I noticed the wearable device brush against my arm when rowing, so it being relatively thin

would be ideal” (Rower 1 – Competitive, Male)

“Considering the WSS is in a development phase it was not disturbing to the cycling. How-

ever I would still be unsure whether to use it in a training environment. I would suggest

creating a more compact sensor case (without long wires) and maybe placing the IMU in a

strap that revolves around the moving leg. Overall it seemed an amazing device, with very

interesting biomechanical data!” (Cyclist 4 – Competitive, Male)

The comfort of the knee warmer component of the WSS during the two testing sessions was also

commented on by one cyclist. A preference was stated for having sensors integrated into kit that they

were more accustomed to wearing if measurements were being made over longer durations of time than

20 minutes:

“Over a 20 minute period, wearing a knee warmer was okay, but over a longer period,

especially cycling hard, it might get a bit uncomfortably warm.” (Cyclist 5 – Leisure, Male)

“I think the majority of the discomfort was caused by the knee warmer. I’m personally not

a fan of these as they tend to need to be quite tight to prevent them sliding down the leg,

and the tightness leads to them folding together at the back of the knee, and I find that this

feels like it’s restricting blood flow. Perhaps if this system were built into some bib tights I

wouldn’t notice.” (Cyclist 5 – Leisure, Male)

Finally, another key factor highlighted within the responses was the set-up time for the WSS, which

involves putting on the knee warmer and sensor calibration. During data collection, this set-up time

also included attaching markers used by the Vicon motion capture system and the calibration of this

system, which took a number of minutes:

“As long as they are secure, no issues at all with them apart from time to fit for day to day

training.” (Cyclist 1 – Leisure, Male)

7.3.2.1.2 Environment

It is clear that device design and user interaction play an important part in whether athletes

will use wearable technologies, with comfort and unobtrusiveness being important factors within this.

For wearable technologies to have the most impact, athletes, and potentially coaches, should feel

comfortable and confident in using them in a training environment and in competition if the sport

allows.

With regards to this specific device, views fell on both sides of the argument for use outside of a

research capacity, with the metrics available also coming into play:
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“Didn’t notice it all. Would use it in a training or racing environment if it provided feedback

that improved my pedal stroke.” (Cyclist 9 – Recreational, Male)

“Considering the WSS is in a development phase it was not disturbing to the cycling. How-

ever I would still be unsure whether to use it in a training environment. I would suggest

creating a more compact sensor case (without long wires) and maybe placing the IMU in a

strap that revolves around the moving leg. Overall it seemed an amazing device, with very

interesting biomechanical data!” (Cyclist 4 – Competitive, Male)

7.3.2.1.3 Cost/investment

The high cost of wearable technology, particularly those that track biomechanical outcomes, can

make it more difficult for the general public to access, becoming a barrier for potential users. One

participant expressed that in general, wearable technology was not aimed at them. It is clear that cost

is an important factor, with a subscription model being a solution to overcome this barrier:

“Usually aimed at higher level performance and can be expensive. For ones that do metrics

such as mechanics it would be good to be able to ’rent’ for a while to see performance but

not necessarily invest in for wearing day-to-day.” (Cyclist 2 - Leisure, Female)

“Affordability would be key to me” (Cyclist 6 – Competitive, Male)

7.3.2.2 Monitoring

The second major theme established in this analysis is Monitoring, encompassing several different

factors about when, why and how athletes would use their devices. Monitoring was mentioned by

participants in both sports, with the following sub-themes determined: Injury prevention, Technique

improvement, Metrics and Communication, with enhancing performance underlying these different

sub-themes. These sub-themes align with monitoring uses discussed in previous literature surrounding

wearable technology [7, 249, 250].

7.3.2.2.1 Injury Prevention

Injury prevention was a key factor highlighted by rowers when asked how they would use information

from the WSS developed in this project. There is an underlying awareness that avoiding injury is

important for continuation in sport, but none of the participants were able to link this awareness to a

common site of injury in their sport, particularly the knee:

“For injury prevention and to find areas for technical improvement” (Rower 1 – Competitive,

Male)
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“In its current form, for the measurement of power output, but I imagine it could be used to

measure movements in different dimensions. This might highlight unnecessary movement

in a different plane that wastes energy or that could potentially cause an injury” (Rower 5

– Competitive, Male)

7.3.2.2.2 Technique Improvement

Another factor highlighted, this time by both rowers and cyclists, was the use of the WSS for

technical improvement in relation to other outcomes such as preventing injury, which was introduced

above:

“Monitoring technique to prevent injury” (Rower 3 – Competitive, Male)

“Technical critique and improvement” (Rower 4 – Competitive, Female)

Participants had more confidence in specifying areas that they would like to see improvement in their

own technique and movement patterns, and would therefore want the WSS to address. How the user

receives this information is linked to how data is communicated from the WSS itself:

“Changing technique as required to maximise stroke efficiency” (Rower 7 – Competitive,

Female)

“If the sensor implies something wrong about my rowing, eg rowing too long/too short I’d try

to make adjustments to the stroke in order to reach a good length” (Rower 8 – Competitive,

Male)

“Would use it in a training or racing environment if it provided feedback that improved my

pedal stroke” (Cyclist 9 – Recreational, Male)

7.3.2.2.3 Communication

It is clear that participants want to be able to get something from a wearable device (including

this one) and be able to interact with it so that they can adjust how they move:

“Didn’t notice it at all. Would use it if provides useful feedback to improve my pedal stroke.”

(Cyclist 9 – Leisure, Male)

Wearable technology has the ability to facilitate conversations between athletes and coaches by sup-

plementing, not replacing, any subjective feedback:

“Would share with coach for parallel input” (Rower 6 – Competitive, Female)

182



Care needs to be taken as to how data from a device is presented to the end user so that they are

engaged with the outputs and understand the information that is being given to them:

"More data on different aspects of performance is good, but to be really useful it should be

easily understood and be presentable in a manner such that it informs the wearer on how

to improve." (Rower 5 – Competitive, Male)

7.3.2.2.4 Metrics

This final sub-theme covers the outputs that participants would want from this particular system

and from wearable technology in general. Users want to be able to have devices that provide data

specific to their sport and it needs to be clear how this data is going to help them make improvements.

This means for metrics to be appropriate, they need to be measuring something useful:

“More cycling specific stuff would be great” (Cyclist 6 – Competitive, Male)

“I’m not sure what insights the sensor would be able to give. If it could help me train, I

might wear one.” (Cyclist 5 – Recreational, Male)

7.3.2.2.5 Desired Outputs

A sub-sub-theme was identified, relating to desired outputs that were specific to the two sports

rowing and cycling) tested in this project. Users want a better awareness of what their body is doing,

whether that is in the form of a power measurement or understanding the kinematics of their motion:

“In its current form, for the measurement of power output, but I imagine it could be used to

measure movements in different dimensions. This might highlight unnecessary movement

in a different plane that wastes energy or that could potentially cause an injury” (Rower 5

– Competitive, Male)

7.3.2.3 Summary

The open-ended questions offered a mix of responses that were positive and negative, but all contributed

to furthering the understanding of consumer needs around wearable technology. In general, there was

excitement around the potential of the system developed in this project, and the questionnaire allowed

insight to be gained into design changes and how people would like to use this particular system.

7.4 Discussion

This questionnaire aimed to gain insight into the participants’ views on wearable technology in general

and to understand their experiences with the strain sensor and WSS developed in this project. This
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information can inform the future development of this system and how it can aid people as they carry

out their chosen sport. Similar themes arose from the descriptive statistics and thematic analysis,

leading to a combined discussion centred around this particular system as well as the wider field of

general wearable technology for sports.

A strong outcome from the thematic analysis is that research-backed technology can increase con-

sumer trust: it gives the consumer the view that the technology they purchase will accurately measure

any metrics it claims to. However, it is important to involve those that are within the sport, be it

athletes, coaches or support staff, so that researchers can appreciate the metrics that are important

to athletes. Involvement also allows those within the sport to understand how an objective input

(from technology) can help them train and compete. This collaborative effort means that a product is

developed that people will want to use and have confidence in.

7.4.1 System Design and Impact on Performance

Collecting responses from participants indicated how big a role the overall comfort and feel of wearable

technology will play in its uptake. It is important that the participants did not feel like the WSS had

a negative impact on their performance, increasing the likelihood that it will be used in the future.

Wearable technology should be there to enhance performance and not take away from it. The views

concerning this aspect of the WSS are positive, with a median score of 9/10 from cyclists and 10/10

from rowers, as presented in Table 7.2. The lower end of each score range is 6/10 for cyclists and 5/10

for rowers, however the low cycling score was deemed to be an outlier as displayed in Figure 7.2.

Common performance metrics in rowing and cycling are pacing (500-metre split time – time taken

per 500 metres rowed) and power respectively. Comparing these metrics with and without the WSS

would have a given objective feedback as to whether the WSS had an impact on the performance of the

participants. However, the subjective feedback from the participants is still valid, as they would have

had an idea as to where they expected their performance to be with regards to the common metrics.

The high scoring in both testing cohorts suggests the potential for the WSS to be used in the two

sports. The fact that participants felt that the WSS did not affect their performance aligns with the

response from both cohorts that wearable technology should not affect normal movements, as shown

in Table 7.3 and Figure 7.4.

Another considered factor was whether participants noticed the sensor system, Figure 7.1 suggests

that rowing participants found the WSS more noticeable than their cycling counterparts. The difference

between cohorts and the fact that cyclists also found the WSS somewhat noticeable could be for a

number of reasons. For both cohorts, having a knee warmer on just one leg will create a different feeling

compared to the other leg that does not have anything on it. This compounded with the participants

knowing that they were there to test the WSS could have meant they were constantly thinking about

it and trying not to disrupt any of the technology.
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As indicated in Chapter 5, the basis for the WSS is a knee warmer, a piece of clothing that is

typically used by cyclists. The unfamiliarity of this clothing with the rowers can explain why they

noticed the system more. The knee warmer typically integrates better with cycling kit than rowing

kit, with the grippers inside the bottom of the bib shorts worn in cycling helping to hold the knee

warmer in place. Using a pair of knee warmers instead of just one could help alleviate this problem.

Additionally, the current system allows for the strain sensor and PCB assembly to be easily removed

– different base clothing could be used depending on the sport, without the assembly or strain sensor

needing to be changed.

The open-ended questions offer more insight into where the design of the WSS could be improved as

it is important for users. This WSS was used as a proof of concept, however, there are certain features

that could be considered in future developments of the system. For example, the PCB assembly

was particularly bulky relative to the developed strain sensor, but the advancements in thin film

technologies could help reduce the profile of this component, leading to something lighter, thinner and

more discreet. Discreetness was a more valued factor for cyclists than rowers as presented in Table 7.3,

with aesthetics and aerodynamics leading cyclists to spend a lot of money on equipment and clothing

to enhance speed and performance.

The jumper wires used to connect the sensor to the PCB assembly caused some difficulty during

testing – 3M Transpore surgical tape was used to secure them to the knee warmer so that they were less

disruptive but there was still a chance of them getting caught, particularly during the rowing motion.

In addition, the connection to the electrodes was not always secure, leading to some loss of data.

Custom-length jumper wires with loops built into the knee warmer to hold it in place could reduce

the obtrusiveness of the system. Being able to reduce data loss is significant as wearable technology

must be reliable, so being able to develop more secure connections is important. Rowers felt more so

than cyclists that devices should not detach from the user unnecessarily (see Table 7.3) which relates

to this, if a device does detach from the user then it stops being able to measure what it set out to.

The improved design is likely to promote uptake, but it is important to remember that development

is an iterative process and requires this type of feedback from users in order to progress appropriately.

It is also important to take into account the positives of the current design despite its prototype nature.

Using knee warmers made the WSS easy to put on and take off, with the set-up time taking only a

couple of minutes, compared to Vicon which took at least ten minutes with camera calibration and

marker placement. With devices like power meters on bikes taking a matter of seconds to calibrate,

keeping any set-up time low is key.

The knee warmers also allowed different sizes to be purchased, fitting a wide range of body propor-

tions. Only one participant raised concern over the use of the knee warmer, with it being tight on the

leg and the potential for it to get warm, suggesting that in general, this was not a problematic piece

of clothing. The concerns raised are valid, however, in this proof-of-concept study, the use of a knee
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warmer made it easier to transfer the system between users compared to integrating it into leggings or

cycling bib tights.

7.4.2 Use Environment

The design of the WSS and its impact on user performance as discussed in the previous section will

influence the environments that people are willing to use the system in, be it in training or competition.

All participants were asked if they would use the WSS in training, in competition and to adjust their

technique, with results presented in Figure 7.3. There were only two responses from rowers after the

second testing session, so it is not appropriate to make comparisons between results from the first and

second testing sessions. However, the shift in opinions for the cycling cohort, with people more likely

to consider using the WSS in all scenarios, could suggest that some sort of adjustment time is needed

for users to become more familiar with new technology. Fewer participants would use the WSS in

competition compared to training – the fact that some only took part in their sport leisurely should

be taken into account, but also athletes can be more particular about the equipment and clothing

they compete with, not wanting to have any distractions. However, the majority of participants would

consider using the WSS to adjust their technique (responding with “maybe” or “yes”), indicating that

technical improvement is not just limited to those taking part in competitions and that wearable

technology should not just be targeted at those at the highest level of their sport. For those taking

part in sports recreationally, they are more likely to be doing so for the mental or physical health

advantages [251] and so when it comes to how the WSS is used, the injury prevention aspect is more

important than performance enhancement. Reducing the likelihood of injury results in longevity in

the sport to reap the social, psychological, health and physical benefits [251].

Although some participants indicated that they would use the WSS in competition, rules and

regulations in certain sports have limits on devices and data collection. In rowing, no data can be

transmitted to or from the boat during racing, except using devices from World Rowing. Within the

crew, there is “allowable data” that can be accessed: time, stroke rate, boat velocity/acceleration and

heart rate [252]. No other data can be measured or recorded. A similar situation can be found in

cycling, where the Union Cycliste Internationale (UCI – world governing body for cycling) regulations

state that devices can capture and transmit the following types of data: positioning, image, mechanical

information from the bike or its components, and some physiological data (heart rate, body temper-

ature and sweat rate) [253]. Placing limits on where wearable technology can be used has quite big

implications for the advancements in the field of sports biomechanics, with users, coaches and other

support staff unable to make direct comparisons between training and competition. It can also give an

insight into athlete mindset – is technique or power output changing under the pressure of competition?

Regardless of whether people would use the WSS in competition or not, it is important that they would

feel comfortable using it during training as observed in the thematic analysis. Taking someone out of a
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laboratory environment and allowing them to do their sport somewhere that is more familiar to them

means that they are more likely to perform their standard movement. Research and observation put

people into a slightly different mindset and measuring conditions are not always realistic. The WSS

has the potential to overcome this.

7.4.3 Cost, Investment and Accessibility

Questionnaire responses highlighted a perception that some people think that wearable technology,

particularly those providing biomechanical outputs, is not for them and is instead aimed at higher-

level performance. However, there is an interest from those that participate in sports leisurely and

they should be able to get input from technology into how they perform. This perception likely derives

from marketing and accessibility. Certain devices, including smartwatches and bike computers, that

measure metrics such as physical activity, speed, distance and sometimes power, can be purchased

quite easily and are stocked by different sports goods outlets in stores and online. However, wearable

technology that can provide insight into kinetics and kinematics are less readily available and typically

requires someone (like a biomechanist) to know what they want to measure and where to look for an

appropriate device.

The cost of any wearable technology will also be an important factor in how it translates from re-

search to commercial use, with one participant stating that affordability would be key to them. Another

indicated that being able to rent the WSS would be a more viable option. The renting/subscription

model is already seen with many goods such as cars, housing, phones and bikes. It can be popular for

several reasons: people do not want to commit to something long-term and put lots of money in; it

allows people to keep up-to-date with the newest version of a device/product, with some companies

offering a trade-in service; this model gives the option for people to back out of a purchase, although

sometimes at a cost. This model can potentially be more costly for consumers in the long-term but

gives them a number of options to purchase a device.

This model is making its way into the sports and fitness industry, with companies like WHOOP

(Boston, Massachusetts) offering a membership where the device is free and the monthly or annual

membership fee allows access to the mobile app and analytics. This fitness tracker strap is popular

with people in and outside of sports. It is clear then that newly developed wearable technology must

appeal to consumers not only in aesthetics but also in cost. The prototype WSS was developed at a

low cost and it would need to be ensured that any further developments took care to keep additional

costs to a minimum.

7.4.4 Metrics and Communicaiton

Another area where consumer appeal is necessary is in the metrics offered by wearable technology and

how data is communicated. The questionnaire revealed that some participants were not quite clear on
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the potential outputs available from the WSS, therefore metrics related to each sport need to be clearly

stated so that they can understand how it will benefit them. However, it is clear that participants are

data-hungry but not quite sure what they want and how to use it. They do know that they want data

to be reliable, alongside having clear and useful results as presented in Table 7.3.

The WSS has the ability to track knee movement in the sagittal plane, but additional strain sensors

and utilising the data from the IMU within the PCB assembly could provide more than one-dimensional

monitoring and estimate forces. For this project, knee flexion/extension was chosen as it is a parameter

that has been reported in previous literature and has connections to performance in rowing in particular

(Murphy, 2009). It is easy to choose a “new” metric to make a device stand out from those already on

the market, but this can limit comparisons to other systems or any analysis in previous literature.

It was highlighted by one athlete that they would share information from the WSS with their coach,

aligning with results from the descriptive statistics where study participants thought that wearable

technology should not replace coaching input. Objective feedback provides a framework for athletes to

understand how they are progressing, while for coaches it can be used to reign in or push an athlete,

supplementing any subjective feedback they may give.

The WSS currently does not employ live feedback, but this is something that would be considered

in any future development as it allows users to adjust their motion in real-time. Instant feedback was

not rated as one of the most important factors in Table 7.3 (median score of 8/10 for cyclists and

7/10 for rowers) – having the data to interpret at any point is more important than doing it straight

away. The output of the system is delivered post-testing but is still able to achieve the criteria of

being easily understood as stated by one participant, by presenting knee kinematic data in a graphical

format, which does not require much background knowledge. As discussed earlier, some consumers

can be data hungry and to accommodate this then different user interfaces within a digital application

could be considered depending on the type of user and how much insight they wanted.

7.4.4.1 Using WSS Outputs

Study participants were asked about how they would use outputs from the WSS, which included

monitoring for injury prevention and technique improvement, both of which are linked to performance.

Wearable technology provides a significant advantage over laboratory-based equipment as it can enable

long-term monitoring, allowing trends and progress to be determined over time.

Participants were aware of injuries but not necessarily what causes them. For athletes working

with coaches or physiotherapists who have that knowledge about movement patterns that can lead to

injury (such as hyperflexion or hyperextension of the knee joint in rowing, or improper bike fit and/or

cleat positioning in cycling that can lead to the knee tracking outside the sagittal plane), the use of

WSS could empower them to take some responsibility for their own monitoring. It could also assist

with rehabilitation, setting range of motion boundaries for an athlete to work within. Some education
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alongside the WSS outputs could help users understand why certain movements are not ideal and how

to avoid them. A similar argument could be made about technique improvement, with participants

having an idea about what they would like to improve (pedal stroke in cycling or stroke length in

rowing) but were not able to link this to kinetic or kinematic variables. Again, education would be

needed to create that link between things like stroke length in rowing and knee range of motion in

biomechanics. Having an understanding that a knee kinematics output can give you an indication of

rowing too long or too short, will help the uptake of the WSS.

7.4.5 Further Perspectives on Wearable Technology

Some close-ended questions were able to provide further insight into some other factors that contribute

to the uptake of wearable technology, with the responses presented in Figure 7.5. None of the par-

ticipants in either cohort were against the idea of their data being analysed or stored in a database.

This big data set can be beneficial in helping predict biomechanical patterns for different population

groups, construct models of ideal movement patterns for different sports as discussed by Ae (2020)

[6] and generally inform future research and development areas. However, it is important to respect

people’s privacy and assure them that their data will be protected – they are less likely to give it up

if they can be identified from it.

Participants in both cohorts unanimously said that they would use a wearable device that they

would have to apply themselves without assistance. This increases the environments that it can be

used in as an expert is not needed to place it on the user, but the device needs to be developed in

such a way that positioning by a non-expert will not have a drastic effect on its output and reduce the

accuracy. Related to this, the majority of participants said that they would spend some time learning

how to use a new wearable device. The fact they are willing to engage in this process means that it is

unlikely to be a barrier to the uptake of the technology. In both cases though, the time taken to learn

about a device and apply it must be short, in the order of minutes (to acquire a basic knowledge at

least) or it will put users off wanting to purchase it or recommend it to others.

Thinking about wearable technology in the wider context of the use of instrumentation in sports,

as discussed in Chapter 2, the majority of technology in rowing and cycling is placed on the boat or

bike. There are disadvantages to this in both sports: in rowing, unless a crew is set and has use of

a particular boat, there is the need to move equipment around to monitor the same person, which

adds to the set-up time. In cycling, although bikes are more individual, a similar issue arises when

the same person is moving between disciplines and therefore different bikes. Across both sports, there

are compatibility issues between boats and bikes designed by different manufacturers and for different

disciplines – oarlocks are different sizes for sculling and sweep rowing, while drop and flat handlebars

are used across the cycling disciplines.

Therefore, the advantage in using a system like the WSS, is that by instrumenting a person means
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that they can move between different boats or bikes without having to change how the system is set

up. The same parameter, in this case knee kinematics, can be measured in the same way in different

settings, whether that be indoor or outdoor. Smartwatches are a type of technology that allow this

kind of continuous monitoring, acting as an external motivator or training companion [254]. The WSS,

alongside the right feedback display, can empower users in the same way, to take more of an interest

in their performance and injury prevention, in a way that instrumented equipment cannot.

7.4.6 Limitations

A limitation of the questionnaire distributed was not including the option of a follow-up interview

to gain a deeper understanding of participants’ thoughts. The use of a questionnaire which requires

respondents to type text responses can lead to limited or no answers for some questions. A face-to-

face or over-the-phone discussion scheduled for a certain duration would have perhaps given study

participants an opportunity to go into more detail without feeling like they were in a rush to give

feedback.

7.5 Conclusion

Valuable insights were gained from study participants through the distribution of a questionnaire.

Participants were able to see the potential of the wearable sensor system, but some design changes

and an overall low-cost system are needed in order for it to be more translatable to the real-world and

not just a laboratory environment. It needs to be clearer to users what the wearable system can offer

in terms of performance and injury prevention metrics, but continuing to involve them in the research

and development process will ensure this device is appropriate for use in sports.

190



Chapter 8

Conclusions and Future Work

8.1 Introduction

The overarching aim of the work presented in this thesis was to develop and prototype a low-cost

wearable technology system that could be used to measure knee range of motion in rowing and cy-

cling. This was motivated by the current wearable technology landscape, where access to technology

to measure biomechanics is largely prohibited by cost and the expertise required to interpret some

performance-related metrics.

The use of wearable technology is becoming more prominent as it allows monitoring to take place

outside of a laboratory environment. Sporting movements can be captured during training or compe-

tition, and these objective data can be fed back to athletes and coaches to enhance performance or

prevent injury. The strain sensors developed in this project set out to address some of the limitations

of systems such as inertial measurement units (IMUs) that are high-cost and require complex process-

ing. These strain sensors were fabricated and characterised using mechanical testing machines, before

assessing their potential translation to rowing and cycling.

This chapter will summarise the elements of work conducted as part of this project to achieve this

aim, evaluating it in the context of sporting impact. It will also consider the avenues for future work,

based on the limitations that arose throughout the project.

8.2 Summary of Work

8.2.1 Review of the Literature

In order to develop the strain sensors and the wearable sensor system (WSS), it was important to

understand the current state of play with regards to the use of wearable technology in sport to measure

biomechanics, particularly in relation to performance, the types of sensors used and the performance

parameters that have been assessed. Systematic reviews were carried out, indicating that wearable

technology had several uses in sports, including: assessing skill level, characterising movement and
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acting as an injury prevention tool, all of which underpin performance enhancement.

Technology predominantly centred on IMUs, suggesting a gap in the market for a low-cost technol-

ogy that needs to be addressed. Other requirements included being unobtrusive, and the ability to be

used across multiple sports. Reviewing the literature also indicated the lack of wearable technologies

in rowing and cycling, providing a focus for the development of a new system.

Different sensor classifications and material combinations were initially assessed, leading to pursuing

a conductive polymer composite strain sensor based on piezoresistive technologies for this project.

This technology was chosen because of the potential for low-cost fabrication, combined with its high

stretchability which makes it suitable for measuring joint angles, particularly the knee.

The main findings of the systematic review around wearables in sport and the review on strain

sensing technologies were that:

• The use of wearable technology in sport is becoming more prominent, with running and track

athletics receiving the most focus

• More studies are being conducted outside of a laboratory environment, allowing a more realistic

measurement of sporting movements

• IMUs are still the main type of technology used, with a number of commercially available systems

that can be used across sports (e.g. MyoMOTION), as well as those that are sport-specific (e.g.

Lumo Run and RunScribe)

• Alternate systems include pressure insoles, accelerometers and nanocomposite piezoresistive foam

sensors, however the use of a flex sensor has only been reported once (included in the original

systematic review)

• Technology is widely used in rowing and cycling, but these focus on performance metrics such as

boat speed, power and stroke rate or cadence. There is little in the way of wearable technology

for monitoring kinematics

• Strain sensors are being considered for healthcare monitoring and human motion detection as

they can conform well to the shape of the human body, but there is limited evidence to show

their use in sport

• Important performance parameters for strain sensors include: sensitivity, linearity, hysteresis,

response and recovery time, and overshoot behaviour

• Piezoresistive-based strain sensors provide a suitable balance of these performance parameters,

particularly when a carbon-based filler is used
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8.2.2 Sensor Development and Characterisation

Composite strain sensors containing multi-walled carbon nanotubes (MWCNTs) and natural rubber

were fabricated using a multi-stage method which included: preparation of the MWCNT dispersion,

expansion of the rubber band matrix, and solvent exchange by which the MWCNTs entered the pores

of the matrix. Scanning electron microscopy confirmed that the MWCNTs had entered the bulk of the

rubber band, enhancing the sensing capabilities of the produced sensor by increasing the number of

conductive pathways.

Steps within this fabrication were optimised such that it reduced the total time taken to produce

sensors from over a week, to 2-3 days. In addition to this, a dispersion of concentration of 5 mg/mL

provided the best uptake of MWCNTs into the rubber band matrix. This procedure was repeatable,

however the random nature of the solvent exchange process meant that each strain sensor had its own

unique microstructure.

This was confirmed during characterisation of fifteen strain sensors across two testing protocols, to

determine the mechanical and electrical properties under cyclic strain. Through the first protocol in

which ten sensors were tested over four test durations up to 1000 cycles and strain rates of up to 350

mm/min at 16% strain, it was determined that they had good durability with respect to structural

integrity and sensor response when tested over 4800 cycles, except when stored in high temperature

conditions. This testing protocol also exploited the properties of the strain sensor with the combination

of strain rates and testing durations in a way that has not been previously attempted by others in the

literature.

The adjusted gauge factor was calculated to be between 2-4; adjusted hysteresis was below 20% for

eleven out of fifteen tests on one sensor; while coefficient of determination (R2) values were above 0.9 in

all but two tests on the same sensor. These results are comparable with other strain sensors reported

in the literature, indicating their suitability to be used in real-life scenarios. However the hysteresis

values and difference in R2 between the loading and unloading phases of the strain cycle highlighted

the complexity that would be introduced during sensor calibration.

The second protocol indicated that the strain sensor response does have some dependency on the

strain rate that is applied, suggesting that normalising this response would provide a better method of

comparing the strain sensor response between different tests. Both protocols enabled a comprehensive

understanding of the strain sensor properties within a laboratory environment, before undergoing a

cohort study to establish proof of concept.

To summarise the fabrication and characterisation processes:

• The manufacture of a flexible strain sensor from MWCNTs was optimised by considering different

concentrations of the MWCNTs within the rubber band matrix and reducing the time of soaking

in toluene, to retain the elastic properties of the rubber band
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• The optimal concentration of the MWCNT dispersion used to fabricate the strain sensors was

determined to be 5 mg/mL based on low resistance measurements of the strain sensor (when

compared to those fabricated with 1 mg/mL and 10 mg/mL dispersions)

• Strain sensors were tested and found to be durable and able to withstand 4800 strain cycles, but

hysteretic behaviour was observed in the resistance response

• This hysteretic behaviour during the mechanical testing and the strain-dependent response indi-

cated the need for a sensor calibration procedure

• Future developments of this strain sensor are required to help increase the sensitivity and stability

of the sensor response. The development of a protective coating will help aid the latter (minimis-

ing material loss), as well as preventing users from coming into contact with the nanomaterial

filler. This was however beyond the scope of this thesis.

8.2.3 Wearable Technology Development and Cohort Testing

In order to use the strain sensor developed in this project to measure knee range of motion, it required

integration into clothing or an accessory that the participants could wear. The sensor, alongside a

printed circuit board (PCB) assembly (containing an IMU and data logger), was integrated into a

knee warmer that is a common accessory used in cycling. This was deemed to be a low-cost solution,

with different sized knee warmers being able to accommodate a wide range of participants. The easy

removal of the strain sensor allowed it to be transferred between these different knee warmers, as well

as reducing the amount of time it would take to replace a sensor if it failed. This combination of these

elements was called the wearable sensor system (WSS).

The prototype nature of the WSS meant that there were some issues that arose during cohort

testing predominately with respect to comfort and security of the sensing elements. However, this

provided an opportunity for feedback to be gained from participants about how the WSS could be

improved. The preliminary testing on rowing and cycling cohorts (both containing ten participants)

indicated that the strain sensors were able to track knee range of motion in both sports (including

counting the number of strokes or pedal revolutions), as well as variation in this range as stroke rate

or cadence were increased. Data obtained from some participants were more comparable to the data

collected from the Vicon motion capture system than others. With the same protocols and equipment

used, it is likely that the quality of the sensor response was influenced by its microstructure and the

concentration and orientation of the MWCNTs that form the conductive network. Future work should

therefore focus on ensuring continuity of sensor fabrication.

The use of a questionnaire also provided insight into how participants perceived wearable technology

and this particular system, an element of research and development that is often omitted but can be

highly valuable and can optimise future translation and device use. Participants in both cohorts agreed
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that wearable technology should be unobtrusive and provide useful metrics, but not cost prohibitive.

The feedback surrounding the WSS was largely positive, with views shared on how the system could

be improved with respect to comfort. There are limitations in rowing and cycling on data that can be

collected during competition due to sporting rules, however the WSS can be used as a training tool to

help athletes and coaches understand how they are moving, making technical changes that can prevent

them from becoming injured and to enhance their performance. Given the increasing narrow margins

to success in elite support this is an important area and one that has received limited attention in

many sports. There is also the potential for such measures to support athlete health and wellbeing

through injury prevention.

8.3 Future Work

Limitations have already been discussed in detail in earlier chapters of this thesis, including the stability

of the sensor response due the lack of a coating, as well as the quality of each sensor that was fabricated

and used in a small testing cohort. The suggested future work therefore sets out to address some of these

limitations. Considering that development of wearable technology is a multi-disciplinary challenge,

there are various projects that can run alongside each other to help move this wearable sensor system

forward.

8.3.1 Sensor Coating

The need for the strain sensor used in this project to be coated was recognised, however it was not

within the scope of this project to fully explore potential coatings before the cohort testing because of

disruption due to Covid-19 and the time frames available. Preliminary coating investigations indicated

that polyvinyl alcohol (PVA) and polyvinylpyrrolidine (PVP) were not suitable with the former not

matching the elastic properties of the strain sensor and delaminating under strain, and the latter not

curing well. Polydimethylsiloxane has been used in previously literature as a sensor matrix and also as

a coating, and has impressive elastic properties. The drop casting technique or a mould could be used

to apply the coating, with curing taking place at a low temperature so as not to degrade the natural

rubber matrix of the strain sensor.

The presence of a coating would encapsulate the composite strain sensor and prevent the loss of any

MWNCTs, which could help stabilise the sensor response over multiple uses. Any resistance changes

would be as a result of the change in orientation of MWCNTs within the sensor matrix, not as a result

of MWCNTs being lost from the surface due to contact with other materials (which would increase the

overall resistance. However, if the coating cannot meet the elastic properties of the strain sensor (as

with PVA and PVP) then this can cause early failure of the sensor and reduce its lifetime. Another

advantage to the presence of the coating is protecting any users from the nanomaterials embedded

195



within the strain sensor. Exposure to nanomaterials is not without its health risks, and so the coating

would help reduce this and also aid the commercial viability of the WSS.

8.3.2 Further Sensor Characterisation

The presence of a coating would require additional mechanical and electrical characterisation to take

place, to understand whether the sensor response is altered by the coating. Considering the temperature

response of the strain sensor, as well as how it interacts with sweat, would help improve how the sensor

is calibrated and the design of the wearable sensor system. The current design of the WSS allows

the removal of the strain sensor from the knee warmer, meaning that the knee warmer can be washed

independently between uses. As such, the resilience of the combined strain sensor and coating to

washing do not need to be investigated for this reason. However, rowing and cycling are outdoor

sports and can be practised in wet conditions, so understanding the waterproof nature of the coated

strain sensor would be important.

More imaging using scanning electron microscopy would be employed, before and after mechanical

testing, to observe whether there have been changes in the microstructure and how this may have

influenced sensor performance. The cohort testing highlighted the need to for a quality control step

to make sure that the sensors used will respond in line with the movements carried out. The imaging,

alongside resistance measurements, could form part of this step.

8.3.3 Wider Cohort Testing

Refinements can be made to the WSS, such as the profile and placement of the PCB assembly, as well

as the attachment of the strain sensor to knee warmers, or other items of clothing as considered in

the qualitative analysis of the questionnaire responses from participants. Miniaturisation of the PCB

assembly would make it less obtrusive and users would be less aware of its presence. In order to make

the WSS translatable for real-life use, an interactive tool should be developed and tested that can

provide feedback to users. Live feedback is desirable an can come in the form of visual, auditory or

haptic feedback – this can be tested to determine which method users respond to best when considering

their knee range of motion. The Bluetooth module within the PCB assembly means that the WSS

already has the capabilities to transmit live data and so the focus would be on the appropriate format

of this data.

In this project, the IMU data was not analysed as this was beyond the scope of this thesis, but

the information collected from that can be considered in relation to the strain sensor response. With

the help of machine learning, the orientation of the IMU could be used to distinguish between the

rowing and cycling movements. As determined in the mechanical characterisation of the strain sensor,

the response is strain rate dependent – the accelerations and angular velocities as measured by the

IMU could help overcome this factor during sensor characterisation, aiding its ability to measure knee
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angles at different speeds of movement.

Ultimately, the advantage of wearable technology is that it can be used outside of a laboratory

environment, and so testing should be conducted in-field by rowers and cyclists to understand the ease

of system set-up and data collection, as well as whether the views expressed are altered, positively

or negatively, by these different surroundings. Increasing the cohort size would help understanding

of distinctions in technique that can be made between different experience levels using the WSS and

gather more data to assess the practicality of its use.

The WSS has shown application in two sports, but other sports where motion of the knee is

significant to movement can be considered. An example of this is weightlifting, where knee extension

is important when performing the Olympic lifts, but also knee flexion can be monitored to determine

range of motion in supplementary lifts such as the back squat. Whichever sport is considered, it is

important to be aware of the metrics that relate to performance that the WSS can measure, and that

the users have a good understanding of being able to use the WSS in this way.

8.4 Research Contributions

To summarise, this thesis has evaluated the use of wearable technology in sports to measure biome-

chanics, and has developed and characterised a conductive polymer composite strain sensor that can

be used as a lower cost alternative to currently available technologies to measure knee range of motion.

A prototype sensor system was created and tested on rowing and cycling cohorts, with data collected

able to inform future development of the system. The main scientific contributions are:

• Assessment of how wearable technology is used in sports biomechanics and the requirements for

new technology that is being developed

• Development and characterisation of a carbon nanotube-natural rubber composite strain sensor

• Integration of the strain sensor into a wearable sensor system for measuring knee range of motion

in rowing and cycling

• Evaluation of the capabilities of the wearable sensor system to monitor knee range of motion,

when compared to a motion capture system

• Consideration of the perspectives held by participants surrounding wearable technology and their

experiences with the developed sensor system used in this project
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Appendix B

Inter-test variability results for all strain

sensors

B.1 Sensor S1

Table B.1: Mean of the sensor resistance range, standard deviation and percent deviation for sensor S1

Test Mean (Ohms) Standard deviation (Ohms) Percent deviation (%)

100 cycles at 350mm/min, test 1 396.95 4.67 1.18

200 cycles at 350mm/min 394.18 2.67 0.68

500 cycles at 350mm/min 389.27 2.44 0.63

100 cycles at 50mm/min 370.82 4.04 1.09

100c cycles at 100mm/min 376.04 0.38 0.10

100 cycles at 350mm/min, test 2 392.70 2.00 0.51

100 cycles at 350mm/min, test 3 392.74 2.25 0.57

200 cycles at 50mm/min 450.92 5.98 1.33

1000 cycles at 350mm/min 474.69 2.62 0.55

200c cycles at 100mm/min 531.22 13.03 2.45

1000 cycles at 100mm/min 515.46 3.11 0.60

100 cycles at 350mm/min, test 4 841.81 18.00 2.14

500 cycles at 100mm/min 805.87 8.33 1.03

100 cycles at 350mm/min, test 5 838.72 8.05 0.96
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Table B.2: Inter-test variability results from comparisons between tests of the same cycle length on sensor
S1 (including post-hoc analysis). Significant values have been highlighted in red and non-significant values in
green. The test number within Protocol 1 has been used to distinguish between comparisons.

100 cycles 200 cycles 500 cycles 1000 cycles

No. tests 7 3 2 2

No. comparisons 21 3 1 1

Stats test Friedman Friedman Wilcoxon Wilcoxon

p-value 0 0 0 0

Post-hoc Wilcoxon Wilcoxon

Adjusted α 0.002 0.017

p-value (12,14)=0.797

rest=0 All compar-

isons =0

B.2 Sensor S2

Table B.3: Mean of the sensor resistance range, standard deviation and percent deviation for sensor S2

Test Mean (Ohms) Standard deviation (Ohms) Percent deviation (%)

100 cycles at 350mm/min, test 1 125.66 7.13 5.67

100 cycles at 350mm/min, test 2 137.18 1.54 1.12

100 cycles at 350mm/min, test 3 143.29 2.38 1.66

100 cycles at 350mm/min, test 4 144.93 2.90 2.00

100 cycles at 350mm/min, test 5 146.70 2.31 1.57

200 cycles at 350mm/min 268.45 21.74 8.10

500 cycles at 350mm/min 288.49 17.26 5.98

1000 cycles at 350mm/min 283.70 19.81 6.98

100c cycles at 100mm/min 151.84 5.67 3.74

200c cycles at 100mm/min 149.78 3.22 2.15

500 cycles at 100mm/min 323.48 4.44 1.37

1000 cycles at 100mm/min 462.71 19.98 4.32

100 cycles at 50mm/min 1302.89 48.60 3.73

200 cycles at 50mm/min 1283.22 69.64 5.43

500 cycles at 50mm/min 987.65 127.93 12.95
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Table B.4: Inter-test variability results from comparisons between tests of the same cycle length on sensor
S2 (including post-hoc analysis). Significant values have been highlighted in red and non-significant values in
green. The test number within Protocol 1 has been used to distinguish between comparisons.

100 cycles 200 cycles 500 cycles 1000 cycles

No. tests 7 3 3 2

No. comparisons 21 3 3 1

Stats test Friedman Friedman Friedman Wilcoxon

p-value 0 0 0 0

Post-hoc Wilcoxon Wilcoxon Wilcoxon

Adjusted α 0.002 0.017 0.017

p-value

(3,4)=0.001,

(4,5)=0.002, rest=0

All compar-

isons =0

All compar-

isons =0

B.3 Sensor S3

Table B.5: Mean of the sensor resistance range, standard deviation and percent deviation for sensor S3

Test Mean (Ohms) Standard deviation (Ohms) Percent deviation (%)

100 cycles at 350mm/min, test 1 796.73 206.29 25.89

100 cycles at 350mm/min, test 2 798.96 194.37 24.33

100 cycles at 350mm/min, test 3 694.15 195.20 28.12

100 cycles at 350mm/min, test 4 721.09 179.74 24.93

100 cycles at 350mm/min, test 5 711.68 201.76 28.35

200 cycles at 350mm/min 658.00 236.09 35.88

500 cycles at 350mm/min 582.00 154.37 26.52

1000 cycles at 350mm/min 1681.26 52.33 3.11

100c cycles at 100mm/min 1476.51 48.23 3.27

200c cycles at 100mm/min 1357.57 45.79 3.37

500 cycles at 100mm/min 1411.68 105.89 7.50

1000 cycles at 100mm/min 2012.01 212.70 10.57

100 cycles at 50mm/min 1671.45 72.55 4.34

200 cycles at 50mm/min 2351.65 160.00 6.80

500 cycles at 50mm/min 1930.40 143.62 7.44
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Table B.6: Inter-test variability results from comparisons between tests of the same cycle length on sensor
S3 (including post-hoc analysis). Significant values have been highlighted in red and non-significant values in
green. The test number within Protocol 1 has been used to distinguish between comparisons.

100 cycles 200 cycles 500 cycles 1000 cycles

No. tests 7 3 3 2

No. comparisons 21 3 3 1

Stats test Friedman Friedman Friedman Wilcoxon

p-value 0 0 0 0

Post-hoc Wilcoxon Wilcoxon Wilcoxon

Adjusted α 0.002 0.017 0.017

p-value (1,2)=0.877,

(1,3)=0.057,

(1,4)=0.125,

(1,5)=0.12,

(2,3)=0.027,

(2,4)=0.221,

(2,5)=0.063,

(3,4)=0.558,

(3,5)=0.688,

(4,5)=0.781

rest=0 All compar-

isons =0

All compar-

isons =0
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B.4 Sensor S4

Table B.7: Mean of the sensor resistance range, standard deviation and percent deviation for sensor S4

Test Mean (Ohms) Standard deviation (Ohms) Percent deviation (%)

100 cycles at 350mm/min, test 1 597.06 36.28 6.08

100 cycles at 350mm/min, test 2 796.50 78.37 9.84

100 cycles at 350mm/min, test 3 862.62 87.29 10.12

100 cycles at 350mm/min, test 4 874.62 86.24 9.86

100 cycles at 350mm/min, test 5 853.70 85.56 10.02

200 cycles at 350mm/min 823.16 97.62 11.86

500 cycles at 350mm/min 1067.62 121.43 11.37

1000 cycles at 350mm/min 1004.58 89.03 8.86

100c cycles at 100mm/min 1187.27 80.88 6.81

200c cycles at 100mm/min 1078.05 398.92 37.00

500 cycles at 100mm/min 1611.57 92.88 5.76

1000 cycles at 100mm/min 4575.80 743.73 16.25

100 cycles at 50mm/min N/A N/A N/A

200 cycles at 50mm/min N/A N/A N/A

500 cycles at 50mm/min N/A N/A N/A

Table B.8: Inter-test variability results from comparisons between tests of the same cycle length on sensor
S4 (including post-hoc analysis). Significant values have been highlighted in red and non-significant values in
green. The test number within Protocol 1 has been used to distinguish between comparisons.

100 cycles 200 cycles 500 cycles 1000 cycles

No. tests 6 2 2 2

No. comparisons 15 3 3 1

Stats test Friedman Wilcoxon Wilcoxon Wilcoxon

p-value 0 0.003 0 0

Post-hoc Wilcoxon

Adjusted α 0.003

p-value (3,4)=0.861,

(3,5)=0.975,

(4,5)=0.959

rest=0
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B.5 Sensor S5

Table B.9: Mean of the sensor resistance range, standard deviation and percent deviation for sensor S5

Test Mean (Ohms) Standard deviation (Ohms) Percent deviation (%)

100 cycles at 350mm/min, test 1 2424.79 133.00 5.49

100 cycles at 350mm/min, test 2 2583.47 160.46 6.21

100 cycles at 350mm/min, test 3 2521.88 69.14 2.74

100 cycles at 350mm/min, test 4 3981.72 221.75 5.57

100 cycles at 350mm/min, test 5 6109.69 345.50 5.65

200 cycles at 350mm/min 6049.63 272.72 4.51

500 cycles at 350mm/min 34212.99 10140.09 29.64

1000 cycles at 350mm/min 77530.81 33067.85 42.65

100c cycles at 100mm/min 5249.67 396.92 7.56

200c cycles at 100mm/min 6189.42 448.58 7.25

500 cycles at 100mm/min N/A N/A N/A

1000 cycles at 100mm/min N/A N/A N/A

100 cycles at 50mm/min N/A N/A N/A

200 cycles at 50mm/min N/A N/A N/A

500 cycles at 50mm/min N/A N/A N/A

Table B.10: Inter-test variability results from comparisons between tests of the same cycle length on sensor
S5 (including post-hoc analysis). Significant values have been highlighted in red and non-significant values in
green. The test number within Protocol 1 has been used to distinguish between comparisons.

100 cycles 200 cycles 500 cycles 1000 cycles

No. tests 6 2 2 1

No. comparisons 15 1 1 0

Stats test Friedman Wilcoxon Wilcoxon

p-value 0 0.119 0

Post-hoc Wilcoxon

Adjusted α 0.003

p-value (2,3)=0.04

(1,2)=0.001,

(1,3)=0.001, rest=0
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B.6 Sensor S6

Table B.11: Mean of the sensor resistance range, standard deviation and percent deviation for sensor S6

Test Mean (Ohms) Standard deviation (Ohms) Percent deviation (%)

100 cycles at 350mm/min, test 1 1184.78 364.30 30.75

100 cycles at 350mm/min, test 2 1124.66 252.24 22.43

100 cycles at 350mm/min, test 3 1163.98 196.32 16.87

100 cycles at 350mm/min, test 4 963.50 150.40 15.61

100 cycles at 350mm/min, test 5 1026.92 138.78 13.51

200 cycles at 350mm/min 932.20 124.19 13.32

500 cycles at 350mm/min 936.76 118.50 12.65

1000 cycles at 350mm/min 916.67 111.55 12.17

100c cycles at 100mm/min 724.74 43.67 6.03

200c cycles at 100mm/min 729.81 32.41 4.44

500 cycles at 100mm/min 762.09 29.62 3.89

1000 cycles at 100mm/min N/A N/A N/A

100 cycles at 50mm/min 753.51 193.38 25.66

200 cycles at 50mm/min 1017.13 46.69 4.59

500 cycles at 50mm/min 1108.49 33.84 3.05
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Table B.12: Inter-test variability results from comparisons between tests of the same cycle length on sensor
S6 (including post-hoc analysis). Significant values have been highlighted in red and non-significant values in
green. The test number within Protocol 1 has been used to distinguish between comparisons.

100 cycles 200 cycles 500 cycles 1000 cycles

No. tests 7 3 3 1

No. comparisons 21 3 3 0

Stats test Friedman Friedman Friedman

p-value 0 0 0

Post-hoc Wilcoxon Wilcoxon Wilcoxon

Adjusted α 0.002 0.017 0.017

p-value (1,2)=0.221,

(1,3)=0.992,

(1,5)=0.009,

(2,3)=0.318,

(2,5)=0.039,

(4,5)=0.153,

(9,13)=0.015

(1,4)=0.001,

(2,4)=0.002,

(3,5)=0.001, rest=0

All compar-

isons =0
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B.7 Sensor S7

Table B.13: Mean of the sensor resistance range, standard deviation and percent deviation for sensor S7

Test Mean (Ohms) Standard deviation (Ohms) Percent deviation (%)

100 cycles at 350mm/min, test 1 1090.33 269.86 24.75

100 cycles at 350mm/min, test 2 1053.23 176.28 16.74

100 cycles at 350mm/min, test 3 1058.56 127.93 12.09

100 cycles at 350mm/min, test 4 1048.16 84.00 8.01

100 cycles at 350mm/min, test 5 1050.77 150.99 14.37

200 cycles at 350mm/min 1021.21 137.72 13.49

500 cycles at 350mm/min 1133.32 209.22 18.46

1000 cycles at 350mm/min 1222.45 224.87 18.40

100c cycles at 100mm/min 648.30 42.46 6.55

200c cycles at 100mm/min 678.40 25.35 3.74

500 cycles at 100mm/min 645.17 19.27 2.99

1000 cycles at 100mm/min 632.54 19.15 3.03

100 cycles at 50mm/min 900.55 27.37 3.04

200 cycles at 50mm/min 888.08 34.11 3.84

500 cycles at 50mm/min 851.34 83.13 9.76
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Table B.14: Inter-test variability results from comparisons between tests of the same cycle length on sensor
S7 (including post-hoc analysis). Significant values have been highlighted in red and non-significant values in
green. The test number within Protocol 1 has been used to distinguish between comparisons.

100 cycles 200 cycles 500 cycles 1000 cycles

No. tests 7 3 3 2

No. comparisons 21 3 3 1

Stats test Friedman Friedman Friedman Wilcoxon

p-value 0 0 0 0

Post-hoc Wilcoxon Wilcoxon Wilcoxon

Adjusted α 0.002 0.017 0.017

p-value (1,4)=0.012,

(1,5)=0.098,

(2,3)=0.53,

(2,4)=0.125,

(2,5)=0.028,

(3,4)=0.023,

(3,5)=0.01,

(4,5)=0.382

(1,2)=0.001, rest=0 All compar-

isons =0

All compar-

isons =0
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B.8 Sensor S8

Table B.15: Mean of the sensor resistance range, standard deviation and percent deviation for sensor S8

Test Mean (Ohms) Standard deviation (Ohms) Percent deviation (%)

100 cycles at 350mm/min, test 1 1640.74 179.97 10.97

100 cycles at 350mm/min, test 2 1459.07 189.25 12.97

100 cycles at 350mm/min, test 3 1466.52 183.63 12.52

100 cycles at 350mm/min, test 4 1539.34 130.40 8.47

100 cycles at 350mm/min, test 5 1576.99 165.79 10.51

200 cycles at 350mm/min 1473.31 173.51 11.78

500 cycles at 350mm/min 1648.10 270.53 16.41

1000 cycles at 350mm/min 1425.62 182.49 12.80

100c cycles at 100mm/min 762.93 43.80 5.74

200c cycles at 100mm/min 738.31 19.80 2.68

500 cycles at 100mm/min 727.96 24.95 3.43

1000 cycles at 100mm/min 878.54 25.79 2.94

100 cycles at 50mm/min 837.24 46.97 5.61

200 cycles at 50mm/min 844.38 24.86 2.94

500 cycles at 50mm/min 1473.30 80.94 5.49
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Table B.16: Inter-test variability results from comparisons between tests of the same cycle length on sensor
S8 (including post-hoc analysis). Significant values have been highlighted in red and non-significant values in
green. The test number within Protocol 1 has been used to distinguish between comparisons.

100 cycles 200 cycles 500 cycles 1000 cycles

No. tests 7 3 3 2

No. comparisons 21 3 3 1

Stats test Friedman Friedman Friedman Wilcoxon

p-value 0 0 0 0

Post-hoc Wilcoxon Wilcoxon Wilcoxon

Adjusted α 0.002 0.017 0.017

p-value (1,4)=0.012,

(1,5)=0.098,

(2,3)=0.53,

(2,4)=0.125,

(2,5)=0.028,

(3,4)=0.023,

(3,5)=0.01,

(4,5)=0.382

(1,2)=0.001, rest=0 All compar-

isons =0

All compar-

isons =0
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B.9 Sensor S9

Table B.17: Mean of the sensor resistance range, standard deviation and percent deviation for sensor S9

Test Mean (Ohms) Standard deviation (Ohms) Percent deviation (%)

100 cycles at 350mm/min, test 1 873.40 203.80 23.33

100 cycles at 350mm/min, test 2 1034.13 303.21 29.32

100 cycles at 350mm/min, test 3 834.75 131.80 15.79

100 cycles at 350mm/min, test 4 826.99 178.77 21.62

100 cycles at 350mm/min, test 5 830.41 157.48 18.96

200 cycles at 350mm/min 826.97 237.24 28.69

500 cycles at 350mm/min 802.11 167.65 20.90

1000 cycles at 350mm/min 777.41 145.73 18.75

100c cycles at 100mm/min 302.14 15.53 5.14

200c cycles at 100mm/min 380.81 12.64 3.32

500 cycles at 100mm/min 393.57 10.39 2.64

1000 cycles at 100mm/min 401.53 9.61 2.39

100 cycles at 50mm/min 404.83 11.11 2.74

200 cycles at 50mm/min 488.85 13.14 2.69

500 cycles at 50mm/min 501.56 100.16 19.97
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Table B.18: Inter-test variability results from comparisons between tests of the same cycle length on sensor
S9 (including post-hoc analysis). Significant values have been highlighted in red and non-significant values in
green. The test number within Protocol 1 has been used to distinguish between comparisons.

100 cycles 200 cycles 500 cycles 1000 cycles

No. tests 7 3 3 2

No. comparisons 21 3 3 1

Stats test Friedman Friedman Friedman Wilcoxon

p-value 0 0 0 0

Post-hoc Wilcoxon Wilcoxon Wilcoxon

Adjusted α 0.002 0.017 0.017

p-value (1,2)=0.006,

(1,3)=0.544,(1,4)=0.393,

(1,5)=0.28,

(2,3)=0.003,

(2,5)=0.002,

(3,4)=0.719,

(3,5)=0.797.

(4,5)=0.658

(2,4)=0.002, rest=0 All compar-

isons =0

All compar-

isons =0
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Appendix C

Wearable Sensor System Design Iterations

C.1 Knee Sleeve Design

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure C.1: Different designs trialled for the WSS a) iteration 1, b) iteration 2 and c) iteration 3.

C.1.1 Iteration 1

Table C.1: Summary of main features of design iteration 1.

Feature Details

Base knee sleeve Neoprene knee support sleeve

IMU attachment Pocket sewn to outer side of support

Strain sensor attachment One snap fastener attached to each elec-

trode

Sensor protection Thin cotton cover
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Table C.2: Summary of the positive and negative factors of design iteration 1.

Positives Negatives

Covering over sensor IMU pocket not secure

Snap fasteners allow easy modification Not enough purchase with snap fasteners

Not much stretch from knee sleeve

Lack of grippers on knee sleeve causes

bunching

C.1.2 Iteration 2

Table C.3: Summary of main features of design iteration 2.

Feature Details

Base knee sleeve Compression sleeve (material composi-

tion: 75% nylon, 15% spandex and 10%

all-natural rubber)

IMU attachment Hook and loop tape

Strain sensor attachment Two snap fasteners attached to each elec-

trode, along with microporous tape

Sensor protection Thin cotton cover

Table C.4: Summary of the positive and negative factors of design iteration 2.

Positives Negatives

Knee sleeve more flexible and conformed

better to knee

Still bunching of knee sleeve

Grippers mean knee sleeve is more likely

to stay in place

Better purchase with two snap fasteners

IMU attached with hook and loop tape,

better fixation and consistency with ori-

entation
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C.1.3 Iteration 3

Table C.5: Summary of main features of design iteration 3.

Feature Details

Base knee sleeve Cycling knee warmer

IMU attachment Hook and loop tape

Strain sensor attachment Two snap fasteners attached to each elec-

trode, along with microporous tape

Sensor protection Theraband

Table C.6: Summary of the positive and negative factors of design iteration 3.

Positives Negatives

Multiple sizes purchased Theraband does not wash well

Longer length means shorts can also hold

knee warmer in place

Theraband cover stretches with knee

warmer and strain sensor

C.2 Sensor Configuration

Figure C.2: Schematic of the two sensor configurations tested on the knee warmer a) one sensor was placed
on the anterior and the second on the posterior b) both sensors were placed side-by-side on the anterior.
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C.2.1 Configuration 1

Table C.7: Summary of the positive and negative factors of sensor configuration 1.

Positives Negatives

Two sensors to obtain a signal from Signals produced were out of phase

Sensors positioned in middle of knee joint

for most amount of stretch

Calibration more complex with out of

phase signals

Posterior sensor would buckle, despite

covering, prodcing a noisy signal

C.2.2 Configuration 2

Table C.8: Summary of the positive and negative factors of sensor configuration 2.

Positives Negatives

Two sensors to obtain a signal from Reduced amount of sensor stretching and

increased amount of buckling with knee

flexion

Both sensor signals in phase

Potential to detect medial and lateral

movement of the knee joint
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Appendix D

Ethics Documents

D.1 Cycling Documents

D.1.1 Approval Letter
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D.1.2 Participant Information Sheet
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D.1.3 Feedback Questions
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D.2 Rowing Documents

D.2.1 Approval Letter
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D.2.2 Participant Information Sheet
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D.2.3 Feedback Questions
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Appendix E

Squat Calibration

E.1 Participant 34943, visit 1

Table E.1: Mean max and min knee flexion angles during squatting and rowing trials (Participant 34943)

Mean knee flexion angle (degrees)

Max Min

Squats 132.20 ± 0.74 6.35 ± 1.71

Rowing step 1 120.96 ± 0.93 -3.55 ± 0.83

Rowing step 2 127.95 ± 0.65 0.87 ± 0.92

Rowing step 3 133.52 ± 0.75 3.50 ± 1.00

Rowing step 4 135.66 ± 0.57 5.06 ± 1.33

Figure E.1: Example of sensor response normalised by the sensor signal range in dynamic squat trial performed
at the beginning of the testing protocol (Participant 34943)
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E.2 Participant 77344, visit 1

Table E.2: Mean max and min knee flexion angles during squatting and rowing trials (Participant 77344)

Mean knee flexion angle (degrees)

Max Min

Squats 137.07 ± 0.70 6.35 ± 0.65

Rowing step 1 141.29 ± 0.30 -3.55 ± 0.65

Rowing step 2 142.45 ± 0.25 0.87 ± 0.88

Rowing step 3 140.09 ± 0.33 3.50 ± 0.37

Rowing step 4 136.03 ± 0.69 5.06 ± 0.56

Figure E.2: Example of sensor response normalised by the sensor signal range in dynamic squat trial performed
at the beginning of the testing protocol (Participant 77344)
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E.3 Participant 48896, visit 2

Table E.3: Mean max and min knee flexion angles during squatting and rowing trials (Participant 48896)

Mean knee flexion angle (degrees)

Max Min

Squats 100.92 ± 2.8 -7.92 ± 0.80

Rowing step 1 129.16 ± 0.45 -0.17 ± 1.19

Rowing step 2 127.51 ± 0.55 3.55 ± 1.43

Rowing step 3 129.07 ± 0.66 2.48 ± 0.96

Rowing step 4 129.06 ± 0.62 3.46 ± 1.52

Figure E.3: Example of sensor response normalised by the sensor signal range in dynamic squat trial performed
at the beginning of the testing protocol (Participant 48896)
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