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ABSTRACT 
 

During the design of sports equipment, the main focus is usually on physical 

performance attributes, neglecting key subjective factors such as feel and comfort. The 

personal protective equipment worn in sport is a typical example, where injury 

prevention has taken precedence over user comfort, but it is anticipated that with a new 

approach to the design process, comfort can be improved without sacrificing protection. 

Using cricket leg guards and taekwondo chest guards as an example, this study aimed to 

develop a systematic method for assessing user perceptions and incorporating them into 

the design process. Players’ perceptions of the factors that influence the comfort of 

cricket leg guards and taekwondo chest guards were elicited through the use of co-

discovery sessions, focus groups and individual interviews, and analysed through an 

inductive process to produce a comfort model. The relative importance of each different 

comfort dimension was identified through the use of an online questionnaire utilising 

the analytical hierarchy process method. Through the combination of these methods, six 

general dimensions were identified with a weighting regarding the amount to which 

each one determines a user’s perceived comfort. For both cricket and taekwondo, the 

majority of players ranked ‘Fit’ as the most important factor affecting comfort. 

 

Experimental procedures were developed to objectively test the ‘Fit’ of cricket leg guards, 

with regards to batting kinematics, running performance and contact pressure. These 

methods were combined with subjective assessments of leg guard performance, to 

determine if there was a relationship between users’ perceived comfort and objective test 

results. It was found that shot ROM and performance were not significantly affected by 

cricket leg guards, despite perceptions of increased restriction whilst wearing certain 

pads.  

 

Wearing cricket leg guards was found to significantly decrease running performance 

when compared to running without pads (p<0.05). In addition, it was found that the 

degree of impedance depended on pad design and could not solely be attributed to 

additional mass. These results correlated with the subjective assessment of three 

different leg guards, with respondents identifying the pad which had the largest 
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influence on their running biomechanics and impeded their performance the most, as 

the most restrictive pad.  

Contact pressure under the pad and straps was also measured for four different leg 

guards whilst running. The results found that the top strap applied the greatest amount 

of pressure to the leg, especially at the point of maximum knee flexion. The peak 

pressure under the top strap was found to reach up to three times that of any other area 

of the pad. These results were reflected in the subjective assessment of the leg guards, 

with all nine subjects identifying the top strap as an area of discomfort for certain pads. 

The results also suggested there was a preference for pads with a larger more consistent 

contact area, as pad movement was perceived to increase when contact area variation 

was greater.  

 

Finally the results from this research were used to develop a product design specification 

(PDS) for a cricket leg guard, specifying size, mass, contact pressure and shape. The PDS 

was used to develop a concept design which would maximise comfort, whilst 

maintaining protection.   
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Chapter 1 
 

1 Introduction 

 
 
Over the past two decades, there has been significant growth within the sports industry, 

resulting in an increased demand for sporting equipment. This increase in demand has 

resulted in the formation of several conglomerates within the industry, including multi-

billion pound organisations such as Nike, Adidas, Puma and Brunswick Corporation 

(Lipsey, 2006), all of which are vying to be the largest sporting goods manufacturer in 

the world. Because of this increased competition within the sports equipment and 

apparel market, manufacturers are constantly trying to improve the performance and 

comfort of athletes through the development of new products. To date, the majority of 

research has focused on increasing performance through enhanced power, speed, or 

accuracy, with less emphasis placed on evaluating perceptions of comfort, even though 

the user’s subjective assessment ultimately determines their satisfaction with a product 

and their perception of the brand. Customer satisfaction is a phenomenon that typically 

occurs when the perceived performance and benefits of a product exceed the 

expectations of the customer (Peter and Olsan, 2005) and it is widely accepted that 

customer satisfaction levels and long-term brand loyalty are influenced by emotions 

during and after the use of a product (Barsky and Nash, 2002). Comfort has been 

identified as having a major influence on these emotions, as it is influenced by the state 

of mind that the individual is in (Vink, 2005) and could be a key determinant when 

selecting a sports product.  

 

One area within the sports equipment market which has been subject to significantly 

less research regarding comfort and end-user satisfaction is protective clothing, despite 

several sports with large numbers of participants, such as cricket, martial arts, American 

football, baseball and ice hockey, depending on it. The lack of research within this area 

is surprising given the high level of interaction between the participants and their 

personal protective equipment (PPE). In many cases, PPE covers large areas of the body 
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and incorporates multiple articulating joints, which are vital in performing necessary 

motions within the sport. PPE, therefore, could have a significant affect on both 

perceived comfort and sporting performance. Despite this, the majority of research into 

the comfort of PPE has been based within industry, military settings and the services 

(police and fire-fighters), with sports garments having been researched with significantly 

less frequency.  

 

Historically in industry, PPE has been designed to maximise protection of the wearer, 

with comfort considered to be of secondary importance (Stull 2000, Zimmerli 1996, 

1998). This has resulted in bulky, cumbersome and ill-fitting PPE, which has been found 

to degrade performance as a result (Cox et al., 1981; Draper and Lombardi, 1986; 

Johnson, 1991). This degradation of performance could ultimately result in PPE being 

discarded, increasing potential risk of injury. Dissatisfaction with PPE can result from 

thermophysiolgical discomfort, reduced work efficiency or impeded movement (Shanley 

et al., 1993). The degree of dissatisfaction with PPE was investigated by Akbar-

Khanzadeh et al. (1995), using respiratory masks as an example. Akbar-Khanzadeh et al 

(1995) found that only 8% of users described their PPE as being comfortable, with 92% 

of respondents found to be dissatisfied with the equipment.  

 

As research has advanced, it has been shown that comfort and fit are not just luxuries 

for PPE but key safety features (Stull, 2000; Zimmerli 1996, 1998), as a high level of 

discomfort can result in equipment being discarded. Despite this, sports PPE research 

has followed the same trend as industrial research, focusing on maximising protection 

and athletic performance, with comfort being of secondary importance. Various studies 

have been conducted investigating different performance measures such as protection 

levels, running speed and agility (Blair et al. 2008; Green et al. 2000, Loock et al. 2006). 

The performance of different baseball chest protectors has been assessed in terms of 

protective properties and rebound characteristics (Blair et al. 2008). The results 

identified that there were no significant differences in protective performance between 

different chest protectors; however, transmitted force and rebound speed did vary 

depending on impact location. Green et al. (2000) also measured the effect of sports PPE 
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on performance by focusing on speed and agility. This paper revealed that knee braces 

affect running speed and turning manoeuvres that are typically associated with 

American football. Loock et al. (2006) also measured the effect of PPE on running and 

turning performance but in cricket. Their results suggested that running and turning 

times were not significantly affected by different leg guards despite a difference in mass. 

Although these papers focus on evaluating existing products in terms of performance, 

they do not consider perceived comfort or end-user satisfaction. The lack of research 

regarding the comfort of PPE was particularly apparent when considering the design of 

Australian football protective head gear (Braham et al. 2004). Braham et al. (2004) 

identified that the use of protective headgear will significantly reduce head injuries such 

as lacerations and could reduce the susceptibility of players to concussion. Only 2.1% of 

players however, wear protective headgear, with 45% of footballers stating that they 

would not wear it as it was “too uncomfortable”.  These results suggest that further 

consideration of end-user comfort and satisfaction is required when developing PPE.     

 

Numerous definitions of comfort exist, although all definitions convey a similar message 

to that outlined by Slater (1985, p.4), who defined comfort as “a pleasant state of 

physiological, psychological and physical harmony between a human being and the 

environment”. When considering clothing comfort, previous research has maintained 

the idea that the interaction between the individual and the environment having a 

significant affect on comfort. This suggests that the overall state of satisfaction is a result 

of a balance between physical, social psychological and physiological factors, whilst 

identifying the significant affect of the clothing system (Branson and Sweeney, 1991).   

 

1.1 Comfort Models 

Early research suggested that there are three main components of comfort: the 

individual, the environment and clothing, and that their interaction influences the 

feeling of comfort (Fourt and Hollies, 1970). Within this model, variables were 

presented for each of these components with different measurement methods and units 

being developed for each variable. When considering the individual, the key variants 



P a g e  | 4 
 

 

given were metabolism, evaporation, surface temperature, rectal temperature, tympanic 

temperature, DuBois surface area and heart rate. Clothing variables were thermal 

insulation, resistance to evaporation, wind resistance, thickness, weight and surface area. 

Finally, the environmental variables included temperature, relative humidity, air 

movement and radiant heat (Fourt and Hollies, 1970). This delineation of the variables 

within each component was seen as the greatest contribution to the understanding of 

comfort. It did, however, focus on the protective and functional aspects of comfort, 

omitting both general and social-psychological aspects. 

 

The Fourt and Hollies (1970) comfort model was then refined through three further 

developmental stages. The first developmental stage was entitled “Comfort’s Gestalt” by 

Pontrelli (1977), where the term “Gestalt” was deemed appropriate for the complex 

construct of comfort, due to its inherent meaning of "a configuration of physical, 

biological, or psychological phenomena so integrated as to constitute a functional unit 

with properties not derivable from its parts in summation" (Merriam-Webster, 2002, 

pp.160). Pontrelli’s model included the concept of a comfort triad developed by Fourt 

and Hollies (1970), but also introduced a psycho-physiological variable which included 

additional factors such as tactile, aesthetics, state of being and fit (Figure 1.1). Another 

key development within Pontrelli’s model was the inclusion of stored modifiers, which 

were included as a filter, conceptually allowing the physical and psycho-physiological 

variables to be combined to ultimately determine the user’s comfort level. The so called 

stored modifiers consisted of an individual’s past experiences, pre-conceptions, and 

prejudices which allowed the subjective responses to be validated.  

 

The comfort model was further developed by Sontag’s (1986) “Human ecological 

approach” which maintained Fourt and Hollies’ comfort triad and Pontrelli’s stored 

modifiers. Sontag’s model developed Pontrelli’s work by moving away from a segmented 

model with a clear separation between the physical and psychological aspects of comfort, 

to a more interactive and combined model as depicted in Figure 1.2. The model 

demonstrates the individual component of the comfort triad being encapsulated by the 
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clothing attribute, which is in turn encapsulated within the environmental component. 

Each of the dimensions includes an expanded list of variables based on the previous 

work of Fourt and Hollies (1970) and Pontrelli (1977), with the stored modifiers being 

included within the person variables, due to them being based on an individual’s past 

experiences. Finally, a double ended arrow was used to represent the interactive nature 

of the three components in determining perceived comfort. The major contribution of 

Sontag’s work was the concept that each component of comfort is separate but inter-

related, and the idea that there are physical, social and psychological aspects within each 

component of the comfort triad.  

 

The final developmental stage to date was proposed by Branson and Sweeney (1991), 

further building on the work previously discussed, maintaining the comfort triad, stored 

modifiers and the idea that there are both physical and social-psychological factors 

affecting comfort. The model by Branson and Sweeney, illustrated in Figure 1.3, shifted 

focus away from the triad being the main categorization mechanism, stating that each 

component has a physical and a social-psychological dimension. These two dimensions 

are used as the organisational structures for the three components of the triad; Table 1.1 

lists the physical and social-psychological factors included for each component of the 

comfort triad. The idea of a Gestalt proposed by Pontrelli (1977) has been maintained 

within this model by the use of broken lines, representing the influences of each 

subcomponent on each other, highlighting the importance of the interaction between 

different aspects of comfort. Although the Branson and Sweeney model (1991) is a 

general comfort model, it can be applied to PPE, as the majority of physical, clothing 

and environmental attributes are relevant. For example, an individual’s mass/ size, body 

image and the fit of a garment will significantly affect their perceived comfort when 

considering the majority of garments.  
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Person Attributes Clothing attributes Environment Attributed 

Physical Dimension Social psychological 
dimension 

Physical Dimension Social psychological 
dimension 

Physical Dimension Social psychological 
dimension 

Sex 

Age 

Race 

Weight 

Height 

Physical condition 

Activity 

Exposed surface area 

 

State of being 

Self concept 

Personality 

Body image/cathexis 

Values 

Attitudes  

Interests 

Awareness 

Religious beliefs 

Political beliefs 

Fabric Characteristics: 

   Fibre Content 

   Yarn 

   Fabric structure 

   Finishes 

   Colour 

   Fabric/clothing system 

Heat transfer properties: 

   Moisture/vapour transfer   
‘’’properties 

   Air permeability 

Clothing system: 

   Fit 

   Design 

Fabric/ clothing system 

     Aesthetics 

     Style 

     Fashionability 

     Appropriateness 

     Design 

     Colour 

     Texture 

Body emphasis/ de-  
emphasis 

Air temperature 

Radiant temperature 

Wind velocity 

Ambient vapour pressure 

Occasion/ situation of 
wear 

Significant other 

Reference group 

Social norms 

Cultural patterns  

Historical precedence 

Geographic locale 

 
Table 1. 1: Physical and social-psychological dimensions of clothing (Branson and Sweeney, 1991) 
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The Branson and Sweeney model acknowledges that comfort is not just physical but 

psychological, and this is supported within the literature (Rutherford-Black and Khan, 

1995). Li and Wang (2006) stated that comfort is a multi-dimensional, complex 

construct which has a number of both physiological and psychological areas to consider.  

From the original conceptual models, four main aspects have been identified in 

influencing perceived comfort (Akbar-Khanzadeh et al., 1995, Fan and Chen 2002, Li 

and Wang, 2006): 

1. Thermal comfort (thermophysiolgical comfort) 

2. Sensorial comfort (tactile comfort) 

3. Body movement comfort (fit and freedom of movement) 

4. Aesthetic appeal  

These aspects were also identified by Schutz et al. (2005), who identified garment factors 

contributing to overall satisfaction, through the use of focus groups, listing fit (body 

movement comfort), thermal comfort, appearance (aesthetic appeal) and feel (sensorial 

comfort) as the major characteristics needing to be considered. Through these facilitated 

discussions, a list of factors important to comfort were generated and refined. 

Abrasiveness, softness, and coarseness, were all found to be aspects of sensorial comfort. 

Thermal factors included absorbency and breathability, whereas thickness, weight, 

stiffness, and clinginess of the material fell under body movement comfort. Within the 

studies conducted, these four aspects affecting comfort have consistently appeared, but 

the influence of each one and whether these influences are present within every 

situation, have not been investigated.  

 

There are many physiological and psychological interactions that affect aesthetic appeal, 

thermal, sensorial and body movement comfort, with the overall feeling of comfort 

being generated due to these. The physical considerations of comfort include thermal 

comfort, taking into account the transport of both heat and moisture (Li 2005, Plante et 

al., 1995), mechanical interactions between clothing and body, and neurophysiologic 

response mechanisms. The psychological aspects are concerned with the processes by 
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which perceptions are formed from sensory responses to physical stimuli. Li (2001) 

produced a flow chart to represent the different interactions of each aspect concerned 

(Figure 1.4). The flow chart represents the process through which overall perceptions of 

comfort are formulated and modified. This is based around the ‘Comfort’s Gestalt’ 

model (Pontrelli,1977) focusing on the three variables identified as physical variables of 

the environment and clothing; psycho-physiological parameters of the wearer; and 

psychological filters of the brain. The physical processes stimulate the sensory organs 

within the human body, which respond by generating neurophysiologic signals, these are 

sent to the brain, which processes the information and reacts accordingly, for example 

adjusting sweat rate. The brain will then process the sensory signals formulating 

subjective perceptions of the individual sensations, and in turn contrast these against 

experiences/ desires, leading to an overall perceived comfort. This model demonstrates 

how the perception of comfort is generated, however, it does not convey the weighting 

each aspect has on comfort, and therefore more information is required to increase 

understanding of the construct. 

 

1.2 End-user satisfaction 

In the wider field of product development, numerous approaches have been advocated 

for incorporating the ‘voice of the consumer’ (VOC) into the design process, such as 

quality function deployment (QFD) and Kansei engineering. Ulrich and Eppinger 

(1995) discussed the methodological requirements for identifying customer needs and 

proposed the following aims for a successful method: 

 

(a) to ensure that the product is focused on customer needs; 

(b) to identify latent or hidden needs as well as explicit needs; 

(c) to provide a fact base to justify product specifications; 

(d) to create an archival record of the needs activity of the development process; 

(e) to ensure that no critical customer need is missed or forgotten; 

(f) to develop a common understanding of customer needs among members of the 

development team. 
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Through the adoption of these methodological considerations it is possible for a 

channel of information between the target consumer and product developers to be 

established, allowing interaction between them to aid in the development of a more 

suitable product. Several methods have been used within product development to help 

bridge this gap between the end-user and the design team.  

 

Kansei engineering involves the identification of product features that influence 

consumer satisfaction through the use of product semantics, i.e. words or expressions 

describing product attributes that are collected from interviews, articles, web pages, 

advertisements, etc. (Alcantra et al., 2005). Underlying patterns in the semantic space 

can then be obtained by analysing subjects’ product ratings obtained from semantic 

difference scales formed from the identified words (Van Lottum et al., 2006). Although 

this process highlights product attributes that influence consumer perception, little 

detailed information on the individual attributes is obtained and limited understanding 

is derived regarding complex consumer needs.  

 

The aim of QFD is to deploy the VOC throughout the design process by relating 

product features to consumer needs (Barrass et al, 2008). QFD is aimed at improving 

three product metrics: development cost, time to market, and the customer’s perception 

of the product’s quality (King 1987). QFD is more of a development tool that builds on 

consumer needs that have to be identified in advance. Although QFD does provide a 

basic framework for concurrent design activities, it gives the designer little guidance as to 

which customer requirements are most important, whilst simplifying relationships 

between design features to positive or negative interactions. Therefore, a more in-depth 

user-driven approach is required, to develop an understanding of key design features and 

the way that they interact to determine perceived comfort.  

 

1.3 Research objectives and proposed approach 

Throughout the four developmental stages of the comfort model there have been 

significant advances in knowledge, with Branson and Sweeney (1991) combining the 

three previous models into a more organised and structured model. This general model 
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provides information on possible factors which are likely to affect perceived comfort, 

however, when considering the design of individual items of clothing or PPE there is a 

need for a more detailed specific comfort model.  

The development of specific models is particularly important when considering sports 

PPE due to the inherent differences of each sport, such as duration, intensity and 

clothing. Therefore, the first aim of this thesis was to develop a specific comfort model 

for individual items of PPE, determining specific design features and individual variables 

affecting perceived comfort, their interaction and their relative importance. The second 

aim was to develop appropriate objective tests which can be used to measure the affect 

of specific design features on perceived comfort, and in turn use this data to develop a 

product design specification for cricket leg guards aimed at optimising the comfort and 

satisfaction of the end-user. This will be done through eliciting and analysing subjective 

perceptions, allowing for a greater understanding of players’ needs and expectations. 

This understanding will allow for the development of objective tests, which can be used 

to assess the comfort of PPE, leading to the development of concept designs aimed at 

maximising both comfort and protection. For this thesis the items of PPE analysed were 

cricket leg guards and taekwondo chest guards (Hogu). These two items of PPE were 

selected as they are used within very different sports, varying in intensity, duration, 

environment and type of impacts that they protect against.  

Within this new approach there will be opportunity for key design features to be 

identified, which are perceived to affect the comfort of specific items of PPE, in 

particular cricket leg guards and taekwondo chest guards, with the relative importance of 

each factor to be assessed to aid in the development of new products, which aim to 

maximise comfort. In order to determine the relationship between end-user perceptions 

and physical design parameters a series of objective tests will be developed to help 

quantify perceptions of comfort through physical determinants. Therefore, the 

objectives of this thesis are to: 

• Review and develop techniques for eliciting and analysing player’s perceptions of 

PPE 

• Identify important characteristics of the equipment 
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• Develop objective and subjective test methods to assess comfort  

• Provide a detailed set of design criteria for a product design specification 

• Develop a concept design that maximises comfort and end-user satisfaction. 

 

1.3.1 Thesis outline 

This thesis is comprised of seven subsequent chapters, documenting the methods, 

results and conclusions of five main studies and the development of a concept leg guard 

design for cricket. Within each chapter, relevant literature is discussed regarding each 

specific study in terms of methodology and previous findings in the related field.  The 

outline of the thesis is as follows: 

 

Chapter 2 details the results of the subjective analysis performed on cricket leg guards 

and taekwondo chest guards. End-user responses are structured into a comprehensive 

comfort model, allowing the dimensions which are perceived to affect comfort, and 

possible links between dimensions to be identified.  

 

Chapter 3 focuses on the further development of the comfort model, presenting the 

results of an analytical hierarchy process (AHP) that determined the relative importance 

of each comfort dimension. Comparisons between cricket leg guard and taekwondo 

chest guard models are performed to determine if individualised models are required for 

different items of PPE or whether one model can be representative of all equipment.   

 

Chapters 4 and 5 describe the development of appropriate test methods for assessing the 

effect of cricket leg guards on range of motion. Chapter 4 focuses on the development of 

an appropriate methodology aimed at assessing the effect of leg guards on shot 

performance, whereas Chapter 5 assesses running performance. 
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Chapter 6 details the final set of objective tests performed on the cricket leg guards 

assessing the interaction between the pad and leg. Measurements of skin contact 

pressure under the pad whilst running are analysed in terms of contact area, peak and 

average pressures under different areas of the pad. 

  

Chapter 7 combines the objective and subjective data into a product design specification 

(PDS) from which the development of a concept design for a cricket leg guard is 

presented. 

  

Chapter 8 discusses the conclusions which can be drawn from this work and possibilities 

for further work.  
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Chapter 2 
 

2 Development of a specific comfort model 

 
 

2.1 Introduction 

The first stage of the project was to determine the product characteristics and design 

parameters that are critical in determining the perceived comfort of the end-user. To 

achieve this, suitable research techniques were required for eliciting and analysing 

product characteristics, allowing the target market to be included in the early stages of 

the design process. Several techniques have been developed within the design industry 

to incorporate the end-user and focus product development on factors that are key to 

increasing user satisfaction. A common limitation with these methods, such as Quality 

Function Deployment (QFD), Kansei engineering and Repertory grids, is the manner in 

which user perceptions are collected and analysed, as discussed in section 1.2. Although 

these methods are deemed suitable for assessing user satisfaction, the construct of 

comfort is so complex and inter-related a more detailed analysis of users’ perceptions is 

required.   

 

The majority of comfort literature focuses on subjective responses collected using 

questionnaires containing categorical and continuous scales (Akbar-khanzadeh et al. 

1995, Kujit-evers et al 2004). Other psychological tools allow much more rich, detailed 

and descriptive data to be collected, which is more appropriate for understanding 

perceived comfort. Within sports psychology, a method has been developed for 

investigating players/ user perceptions and has been implemented in a wide range of 

studies. This methodology was developed by Scanlan et al (1989a, 1989b) allowing 

information rich qualitative data to be acquired through interviews utilising open ended 

questions. The data was analysed through a technique known as inductive analysis, 

structuring the data into significant components through a method known as clustering. 

The process of clustering was used to condense the raw data through the uniting of 

quotes with similar meaning into representative base themes. This process was then 
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repeated with the emergent themes grouped together to produce higher level themes 

until no further grouping could occur. The highest level was referred to as a ‘General 

Dimension’. Within this clustering process, the themes identified at each level should be 

inclusive, in that they are representative and adequately capture the information 

represented by their lower order themes and incorporated quotes. This method was 

developed by Scanlan et al in 1989 and demonstrated using an investigation into the 

sources of enjoyment and stress for elite figure skaters. Similar methods to the one 

outlined by Scanlan et al. (1989) have been utilised within both sports psychology and 

sports technology. Within sports psychology inductive analysis has been used to assess 

the underlying properties of stress in sport (Thatcher and Day, 2008), stressors and 

coping strategies employed by premier league academy footballers (Reeves et al. 2009) 

and to collect information on the acquisition of high-level performance (Côte et al. 

2005). Within sports technology research, similar methods have also been used to aid 

product development, including studies looking at the assessment of golf clubs (Roberts, 

2002), hockey pitches (Young et al. 2005) and tennis balls (Davies et al. 2003).   

 

Although this methodology is seen as an appropriate way to build and develop 

knowledge regarding player perceptions, a key limitation was identified by Roberts 

(2002) due to a lack of interactivity between the dimensions. As a result, Roberts (2002) 

developed an additional analytical stage, known as Structured Relationship Modelling, 

which facilitated the exploration of possible interactivity and links between different 

general dimensions and lower order themes.  The addition of this stage allowed a more 

representative model to be developed, identifying perceived interaction between 

different dimensions. Since the development of this method, the process of structured 

relationship modelling has been used to assess players’ perceptions of tennis balls 

(Davies et al, 2003), tennis grips and handles (Barrass et al, 2005) and hockey pitches 

(Young et al, 2005). 

 

This analytical procedure was deemed suitable for developing an accurate and 

appropriate comfort model representing the end-users’ perception because it enables 

subjects to analyse the product whilst using it, eliciting responses regarding 
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characteristics they like as well as dislike. Another advantage of this method is that it is 

extremely flexible, as it is led by the subject, minimising constraint. Also it enables inter-

dimension relationships to be identified, highlighting possible affects and consequences 

of altering specific design features.  

 

This study aimed to develop a specific comfort model for cricket leg guards and 

taekwondo chest guards, enabling the identification of features which are perceived to 

be key in determining perceived comfort, and compare the two models to determine 

whether a comfort model specific to individual pieces of PPE was needed or whether 

one model could represent all protective garments.  

 

2.2 Study Design and Test Methodology 

A modified version of the study design process used by Roberts et al (2001) (illustrated 

in Figure 2.1) was used to provide a logical and structured approach to the study. The 

design process was modified to include methodological triangulation.    

2.2.1 Triangulation 

Within qualitative research a key issue which has consistently been identified is the 

trustworthiness of the data, and how to assess this. According to Schwandt (1996) the 

criteria for qualitative enquiry are standards, benchmarks and regulative ideals which 

can be used to guide judgements about the quality of the inquiry processes and the 

findings reported. However, the rise of different methods of inquiry and areas of 

research has led to two distinct views on the criteria which should be used to assess the 

‘quality’ of the data presented. These two persuasions focus on the micro level of 

interaction, where ‘immanent-essentials’ are considered and used to inform the research 

review process. The first persuasion is criteriology, where qualitative research is 

identified as an alternative paradigm to quantitative or post-positivistic research, 

therefore, requires a set of its own pre-set, unique, permanent and universal criteria to 

assess its quality (Sparkes, 1998). Lincoln and Guba (1985) outlined a strong set of 

criteria for assessing work within the paradigm of naturalistic enquiry, advocating 

prolonged engagement, persistent observation, triangulation, peer debriefing, negative 
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case analysis, referential adequacy and member checks, with a combination of these 

methods ensuring the quality of the research. Sparkes (1998) identified several 

limitations within the criteria identified by Lincoln and Guba (1985), stating that the 

use of multiple methods alone can not ensure trustworthiness.  

 

Relativism has been identified as a parallel perspective, however, as with criteriology it 

does identify the need to use criteria to judge qualitative research, but it states that this 

criteria should not be pre-defined or universal (Sparkes, 2009). The relativism 

persuasions states that judgements about qualitative research are time and place 

dependent, unlike quantitave measurements which are deemed to be independent of 

both time and place. Smith and Deemer (2000) also identified that any list of criteria is 

always open-ended and can be modified depending on the context and purpose. Within 

this research fundamentals from both perspectives were utilised to maximise the impact 

and trustworthiness of the data. Within the data collection triangulation was used as 

discussed within the criteriology paradigm to help maximise the validity and reliability of 

the results through the combination of different methods, however, the list of criteria to 

assess the data was open ended allowing for further criteria to be added if deemed 

necessary when determining the accuracy and validity of the data in accordance with 

relativism.     

 
The primary reason for the inclusion of triangulation within the experimental design is 

the recognition of the inherent strengths and weaknesses of every research method. The 

notion of triangulation, is that the greater number of methododologies, investigators, 

data sets, or environments used, the greater the confidence in the results, as the 

deficiencies of each approach are compensated for (Blaikie, 1991; Oppermann 2000). If 

the same conclusion can be drawn from the different methods, locations, investigators, 

environments and data, then the results can be deemed reliable and valid (Guion 2002). 

Alternatively if the results contradict each other, the validity of the results and methods 

used needs to be questioned. The integration of different methods produces a more 

realistic and fuller picture of the area of interest.  
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As well as methodological triangulation, investigators have used data triangulation 

where different types of data are collected to give a broader, more in-depth 

understanding and knowledge base. Alternatively investigator triangulation benefits 

from different investigators conducting the same methods, theory triangulation involves 

the use of multiple professional perspectives to interpret a single set of data, and finally, 

environmental triangulation uses a variety of locations to conduct the testing (Guion, 

2002). A combination of all forms of triangulation within testing provides the most 

reliable and valid results due to its compensation for all possible weaknesses within the 

data collection and analysis process. Therefore, within this study a combination of 

methodological, environmental and investigator triangulation were used. 

2.2.2 Participant selection 

The selection of participants for a study has a direct bearing on the quality of data 

collected and is therefore an important consideration (Patton, 1990). For this study, the 

technique of purposeful sampling was used, as it has been shown to be a powerful tool 

due to the manner in which information rich cases are selected for in-depth analysis 

increasing the quality and depth of response. Information rich cases are those from 

whom a great deal can be learned about issues of central importance to the research 

question (Patton, 1990).  

Elite level cricketers were deemed the most suitable for this study because of the amount 

of time spent wearing cricket leg guards during training and match play.  They also 

generally represent what are known as ‘lead users’ and are considered to be more 

effective at identifying key features, product needs, and inadequacies of equipment (von 

Hippel, 1988). 

Sample size is another key consideration, as a small sample size can result in data that is 

not representative of the population, whilst a large sample size will increase test time and 

labour costs incurred. In qualitative research, the experts’ views on sample size are often 

ambiguous, and conflicting. Studies of a similar nature to this discovered that data 

saturation occurred between fifteen and twenty interviewees’ (Barrass, 2008; Davies et al, 

2003; Hanton and Jones, 1999; Harwood, 1997; Roberts et al, 2001). This is consistent 

with the views of Griffin and Hauser (1993) who considered ten participants too few 

and fifty too many. Based on this, twenty cricketers with a mean age of 19.9 years (±1.7 
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years) participated in this investigation, sixteen within the initial testing and four in the 

validation process. All participants played at either County 1st or 2nd team level, or an 

equivalent standard, and were top order batsmen.  

 

2.2.3 Data Collection 

A variety of data collection techniques have been utilised across a broad range of 

subjects in qualitative enquires, and all have different strengths and weaknesses (Table 

2.1). This study, therefore, incorporated the techniques of methodological triangulation 

to compensate for known limitations of different data collection techniques, and 

increase the validity and reliability of the results. Jordan (2000) reported that the most 

common data collection methods within qualitative studies are private camera 

conversations, co-discovery, focus groups, think aloud protocols, reaction checklists, 

questionnaires, interviews, and participative creation. After consideration of each 

method’s strengths and weaknesses, as summarised in Table 2.1, the three methods 

selected for use within this study were co-discovery, focus groups and interviews. These 

three methods were selected as they include group and individual interviews, where the 

investigator is both present (focus group and individual interviews) and absent (co-

discovery) from the room whilst data is collected.   

 

The test procedure began with a co-discovery session involving a group of five or six 

players with no investigator present. The players were asked to evaluate six pairs of pads, 

which were chosen as a representative sample of the market (Figure 2.2), and discuss the 

positive and negative attributes of the pads, and the features they would change to 

increase comfort. The co-discovery sessions lasted approximately twenty minutes and the 

discussions were recorded for further analysis. This method was used as the initial 

method for data collection as it allowed participants to express their thoughts and 

feelings without being influenced by the investigator. Co-discovery also provided 

freedom with which participants could talk, resulting in discussions covering much 

wider aspects of the product compared to other methods (Vries et al, 1996). Conversely, 

the lack of investigator input can cause the data collected to be irrelevant and limit the 

usefulness of the findings, increasing cost and time.  Variations between different 
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sessions will also be large using this method as there is no set structure causing analysis 

to be extremely complex and more susceptible to error (Jordan, 2000).  

 

Following the co-discovery session, each participant was required to use two different 

types of pad (allocated at random) for 5-10 minutes, facing a minimum of 10 balls in 

each pad during a typical net session. The players were encouraged to run between the 

wickets when they felt they had hit a scoring shot. They were also asked to pad several 

balls away allowing for a complete assessment of each pads performance. No control 

pads were used to reduce kinaesthetic after-effects preventing fixations on certain stimuli 

and augmentation/ reduction of sensations (Ashdown and DeLong 1995). Once each 

player had completed the practical testing they participated in a focus group. 

 

Focus groups followed practical testing of the pads as previous research has 

demonstrated the effectiveness of combining a practical element within the interview 

process to stimulate more responses from participants, rather than merely relying on 

retrospective analysis of products (Roberts et al., 2001). Focus groups were deemed to be 

a suitable secondary data collection method due to the flexible structure typically 

employed, as participants are allowed to explore different areas of importance to them. 

Also the dynamics and interactions between group members can be used to help 

stimulate ideas, further developing the productivity of the participants; which has 

become known as the “group effect” (Morgan 1993). The purpose of using a focus group 

was to “learn through discussion about conscious, semiconscious and unconscious 

psychological and sociocultural characteristics and processes” (Berg 2001). This method 

reduced expense and time because fewer interviews need to be conducted, whilst an 

increased confidence in results was gained through the emergence of patterns (Patton 

2001). It has been suggested that focus groups are more efficient than individual 

interviews as the findings from a focus group outweigh the sum of the findings from 

individual interviews due to the conversations stimulated between participants, the way 

interactions can be observed, and the strength of agreement that can be analyzed 

(Morgan and Krueger, 1993, Patton, 2001). Ferns (1982) suggested that two eight-person 

focus groups would produce as many ideas as 10 individual interviews, highlighting the 
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efficiency and effectiveness of focus groups. Krueger (1994) indicated that, although the 

use of focus groups can be beneficial in the identification of common themes, they are 

less useful in micro-analysis of subtle differences and therefore, would be more 

beneficial in providing an overview of a construct or product rather than in depth 

analysis. Unlike co-discovery, the interviewer directs the discussion which increases the 

relevance of the findings, but has the potential to influence the participants’ responses; 

this influence is not confined to focus group testing.  
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Table 2. 1: Comparison of qualitative data collection methods. 

 Private 
camera 

Focus group Co-discovery Think aloud 
protocols 

Questionnaires Interviews Participative 
Creation 

Reaction 
checklists 

Flexibility to vary content, 

sequence and wording of 

questions 

Limited  Extensive  Limited  Extensive Limited Extensive Extensive Limited 

Opportunities for probing None Extensive  None Extensive Limited Extensive Extensive Limited 

Number of respondents’ Average Average Limited Limited Extensive Limited Limited  Extensive 

Emphasis on writing skills Limited Limited Limited Limited Extensive Limited Limited Limited 

Rate of return Average Extensive  Extensive Extensive Limited  Extensive Extensive Limited  

Cost  (time/ resources) Extensive Average Extensive Extensive Limited  Extensive Extensive Limited 

Influence of investigator  Limited Extensive Limited Extensive Extensive Extensive Extensive Average 

Freedom of participant  Extensive  Average Extensive Average Extensive Limited  Limited Extensive 
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For the focus groups, a naturalistic approach was used, due to this research being of an 

explorative nature. Naturalistic inquiry was deemed suitable due to theory being 

posteriori rather than priori. This is considered beneficial in exploratory research 

(Erlandson et al. 1993) as it minimises investigator bias and restraint on subjects’ 

responses, allowing for a more detailed and representative reflection of subjects’ 

perceptions. A framework for the focus group session was developed in the form of an 

interview guide, which outlined a list of possible questions. Although some questions 

were set, the direction of the discussion was determined by the participants’ responses. 

Open ended questions were used because of the greater understanding gained through 

them (Takemura et al. 2005), allowing the researcher to gain a more insightful reflection 

of the participants perceptions, whilst capturing their view point without predetermined 

biases influencing the results (Patton 2001). The interview guide is discussed in detail in 

the next session. 

 

2.2.4 Interview Guide 

The focus group sessions were semi-structured using an interview guide (included in 

Appendix 1), to provide a basic outline for the interviewer to follow (Thelwell et al. 

2008). The guide consisted of nine questions that were used to initiate conversation 

when the discussion was appearing to come to an end or a topic had become exhausted. 

These questions were worded to be non directive to prevent participants from being led 

into answers or discussions, an example of specific questions used to help encourage 

player responses include: 

Was there any noticeable difference between the pads used today  

regarding comfort? If so what? 

 

After the initial question had been asked the interviewer had complete freedom and 

flexibility to explore and probe the participants’ responses. Topics were only discussed if 

they had been introduced by the participant, to limit investigator bias.  
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All testing was conducted at the facilities where the players regularly trained placing 

them in a familiar and relaxed environment. The pads utilised within the practical test 

were displayed to aid discussion between different participants and to allow players to 

demonstrate what they were trying to purvey, providing the investigator with a greater 

understanding. The investigator was permitted to probe statements made by the 

respondent, to seek clarification and to promote further discussion of topics of interest.  

For this investigation, a pilot study was conducted in order to assess the suitability of the 

data collection method; from the pilot test a number of modifications were made to 

help the focus groups flow. All methods used within this study were approved by the 

Loughborough University ethics committee prior to testing.  

2.2.5 Data analysis 

There are two main approaches commonly used when organising raw qualitative data 

into structured meaningful themes, these are deductive and inductive analysis. 

Deductive analysis, also known as top-down processing, begins with a hypothesis which 

is then tested, by filtering data into an existing theory or model. Whereas, inductive 

analysis allows the model or theory to develop directly from the data, and is usually 

utilised within interpretive and exploratory research (Hesse and Leavy, 2006).  

 

Deductive analysis has been used within approaches such as post-positivism, where the 

investigator aims to build evidence to support a pre-existing theory. This method relies 

on deductive logic to provide evidence to confirm or refute theory, although not in 

absolute terms. Inductive analysis has also been utilised within several different 

approaches, including the well-known grounded theory, where theory is built from the 

raw data in a bottom up process. There are three main purposes for using inductive 

analysis: - 

• Condense extensive and varied raw data into brief summary format 

• Establish clear links between the research objectives and the summary of findings 

• To develop a model or theory about the underlying structure, which are evident 

in the underlying data 
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(Thomas, 2006) 

The primary purpose of inductive analysis is to allow findings to emerge from the 

frequent dominant themes inherent in the raw data, without key themes being 

obscured, misinterpreted, or left invisible due to preconceptions of the data caused by a 

preconceived theory.  

 

The inductive analysis technique has been used in a variety of sports psychology studies 

(Hanton and Jones, 1999; Harwood, 1997; Scanlan et al, 1989a, 1989b), and has 

previously been employed to investigate players’ perceptions of sports equipment 

(Barrass et al, 2008; Davies et al, 2003; Roberts et al, 2001), therefore this method was 

used in this investigation. 

 

The first stage in the analysis procedure was to transcribe verbatim the recorded sessions 

and to become familiar with the content. Once familiarity with the data was gained, it 

was organised into structured meaningful themes by comparing and contrasting each 

quote with all other quotes; these were then clustered around underlying uniformities 

(Glazer and Strauss, 1967; Patton, 1990) and became the emergent base themes. This 

process was conducted using the software package NVIVO 7, which assists in grouping 

together similar quotes, allowing different categories to be formed and linked together, 

producing base themes. The base themes that shared a common subject were then 

grouped together to form lower order sub-themes. Within this process, alternative 

classification schemes of the same base themes were created; all possible classifications 

were formed and refined by removing redundant ones. A classification was considered 

to be redundant if all base themes could be re-coded into another alternative dimension 

(Roberts et al. 2001). As in previous studies the final structure was tested for 

completeness using a number of checks, leaving as few unassignable themes as possible. 

Any remaining quotes were disregarded if indistinguishable or retained if important 

(Scanlan et al, 1989b), this process was then repeated until it was not possible to further 

group the different categories together. According to Guba (1978) the final structure 

should be inclusive of the data and information that exists, therefore if the structure 

does not appear to sufficiently cover the facets of the problem it is probably incomplete 
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(Guba, 1978). The results were validated through investigator triangulation to ensure 

the correct grouping of quotes and base themes, reducing possible bias and increasing 

validity (Scanlan et al, 1989b). 

 

2.2.6 Validation process 

Further validation of the results was conducted through four individual interviews 

which completed the methodological triangulation. Individual interviews were chosen as 

the third method due to the interactivity between the participant and interviewer 

allowing for a greater understanding to be gained, and to compensate for any possible 

group affects within the co-discovery and focus group data collections. The interviews 

were conducted whilst participants used the pads in a similar manner to the practical 

test for the focus groups. The cricketers faced between 10 and 15 balls per pad, running 

a minimum of 6 runs, and padding different deliveries away to allow for a full 

assessment of the PPE. A bowling machine (Bola) was used to deliver the ball at 50mph 

representing an average spin delivery. Four different pads (P1, P2, P4, and P5, illustrated 

in Figure 2.2) were used by each participant, covering the range of pads available on the 

market. Prior to testing each pad, the participants were asked for their initial assessment 

of the equipment. Throughout the use of the pad, feedback was recorded using lapel 

microphones, and a final evaluation was gathered post use. This method was then 

repeated for all pads. The data collected was transcribed and analysed through a 

deductive process, where quotes were grouped into the themes that emerged from the 

inductive analysis of the focus group data. By utilising a deductive approach, the 

applicability of the model developed through the inductive analysis process previously 

outlined was assessed. If no new themes emerged and all quotes could be coded into the 

previously developed structure, then a data saturation point was deemed to have been 

reached.  

 

2.2.7 Structured Relationship Modelling  

The data collected was then analysed through the use of a technique called structured 

relationship modelling, developed by Roberts et al (2001). Quotes highlighting the 

interaction of different factors influencing the users’ perceived comfort were used to link 
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different themes and dimensions, allowing for further understanding of how different 

aspects of the pad design interact to determine perceived comfort.  

 

2.3 The general dimensions of comfort for cricket leg guards 

The aim of this first stage of testing was to identify the components influencing players’ 

perceptions of comfort of PPE within cricket. From the initial assessment and analysis of 

the data collected, six main themes emerged: -  

1. Aesthetics 

2. Fit 

3. Protection 

4. Sensorial Comfort 

5. Thermal Comfort 

6. Weight 

The tree structures produced from the raw data are illustrated in Figure 2.3 to Figure 

2.13; with Figure 2.3 illustrating the general dimensions and higher order sub-themes, 

and Figures 2.4 to 2.13 demonstrating the formulation of each sub-theme from original 

quotes obtained in the left column to higher-order sub-themes and general dimensions 

on the right. The emergent themes are discussed in more detail in the following 

sections, demonstrating the inductive analysis process used to develop the model (black) 

and quotes from the interviews fitted to the model through the deductive process used 

to validate the results (red). 

2.3.1 Aesthetics 

The ‘Aesthetics’ dimension (Figure 2.4) emerged from the three sub-themes of ‘Look of 

the pad’, ‘Self image’ and ‘Shape’. A player’s initial impressions of a pad are largely 

determined by the appearance and this can influence their preferences. 
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“They could be the best pad on the table, but I would sooner go for the better 
looking pad” 

 

“[I’d rank] these 4th just purely because they don’t look like a cricket pad.” 

 

The appearance of a pad was found to influence comfort in a psychological manner due 

to the stereotypes and traditions of the sport. This was encompassed by the base-theme 

‘Style of the pad’ and, generally, players described a preference for a more traditional 

looking pad. 

“More traditional [design] than futuristic, that’s the way I like pads.” 

 

“These rank lower because of looks. They are a good pad…they are light, but 
the looks for me, they just don’t look like a cricket pad.” 

 

“I like the idea of these and they are a good pad but again, personal 
preference, I like the old school looking pads which a lot of players do, the 
traditional type.” 

 
Although these examples show that the majority of players prefer a traditional looking 

pad there is also the suggestion that as technology becomes increasingly important, 

change is imminent and, over time, objections to the look of modern pads could be 

overcome. 

“’Does it look good?’ will die out when people realise that, to increase 
performance you have to go with modern looking pads.” 

 

“In the end futuristic pads will become more popular… but at the moment 
people want to stick to what they are used to” 

 

“Because of how light they are and how well they hug your leg and how good 
they feel when you are running…you will have to compromise [on looks] a bit I 
suppose.”  

 
These more positive comments suggest that modern designs will become more popular, 

but it will be a gradual change.  Currently, for a pad to be deemed acceptable, a balance 

between technological advancement and traditional appearance needs to be maintained.  
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The appearance of a pad can determine a cricketer’s willingness to use the pad and 

influence how comfortable they will feel. Due to peer pressure, pad appearance can 

affect self-consciousness and consequently the user’s comfort. Therefore ‘Self-Image’ is 

the final sub-theme of ‘Aesthetics’.  

“They are quite comfortable though you just look like you have fat legs in 
them” 

 

“You would get absolutely ripped for them as look at them; I definitely 
wouldn’t wear these at club level” 

 

“If you turn up on a Saturday wearing them you would just get annihilated, it 
wouldn’t be worth it, which is probably why most of the county players haven’t 
taken this style of pads on.” 

 

2.3.2  Weight 

The dimension ‘Weight’, illustrated in Figure 2.5, includes the users’ perceptions of 

weight of different cricket pads and its influence on comfort. It incorporates two sub-

themes –‘Heavy’ and ‘Light’. Increased weight was found to cause feelings of clumsiness 

and made the pads feel cumbersome to wear. 

“They seem heavier and awkward.” 

 

“Looks wise these look good, [but] they are a bit heavy for me” 

 

“They aren’t as comfortable as these, as they are quite a lot heavier” 

 

Feelings of a positive nature emerged when the pads felt light and this was seen to be 

beneficial to the perceived comfort. 

“Because they were so light it felt good,” 

 

“Just because they were so light, it feels like you haven’t really got anything on 
your legs” 
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“The weight is the key issue; these have got it about right, as they have a good 
light weight and balance.” 

 

2.3.3 Fit 

‘Fit’ emerged as the dimension with the most sub-themes contributing to it (Figure 2.6 

to 2.10). It incorporated ‘Awareness’, ‘Customisation’, ‘Flexibility’, ‘Movement’, ‘Shape 

to the body’, ‘Size’, and ‘Strap design’. The cricketers reported becoming increasingly 

aware of the presence of the pads if they moved whilst running, which is clearly 

undesirable. 

“When I was running, they turned right to the side, maybe I had them too 
loose, but I felt the straps would cut in” 

 

“When I was running, they went completely round the side, and when I was 
batting… I had to keep adjusting them” 

 

“If I am aware of my pads, it’s a discomfort…and with any sport you have to 
be 100% comfortable with your equipment … as all you should be thinking 
about is hitting the ball nothing else” 

 

Although players commented on their dislike of the pads moving, they appeared to 

derive confidence from the feel of wearing pads. 

“When you are batting you like to feel something there, it’s good for your 
confidence… Also that’s what you [have] felt all your life” 

 

“I am not confident in them at all because you feel like you are going for the 
ball with just your bare leg” 

 

The players highlighted a need for the pads to be adjustable and for there to be an 

opportunity to personalise the pads to their needs. These themes were grouped together 

within ‘Customisation’. 

“I am a fan of the movable knee cushion…so if you have Velcro, where you 
can actually push the knee pad up, then you can actually get the padding on 
the knee cap where you need it” 
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“Players of different shape can break them in more, so if I am a bit taller I can 
wear them higher, if I am smaller I would break them in at the bottom, 
whereas with these if you were taller you would be in trouble,” 

 

“Its just little tinkering that [can] make a big difference. You like to adjust 
these things individually. “ 

 

Flexibility was also found to be an important aspect affecting perceived comfort, due to 

the players dislike for stiff pads, which do not flex around the knee when moving. 

“My only issue with those is they are absolutely rigid” 

 

“They have one fault; they don’t bend at the knee” 

 

“There was more flexibility around the knees, meaning you could run and turn 
properly” 

 

“Very rigid, almost dig into you round the side, on the inner calf and more so 
on the inside of ankle, which is where I’ve got the biggest issue.” 

 

As well as flexibility, the influence of the pad on movement can be severely detrimental 

to comfort as well as performance. Influences on movement include effects on motion 

and technique. 

“I’ve not tried these but they are both straight, whereas some of the others bend 
to your leg a bit more, and that means they can get in the way so you have to 
play round it.” 

 

“Well the width of them will be a problem, in terms of being able to bring your 
bat through” 

 

“You want good coverage of the pad, but you don’t want to feel you can not 
move properly” 

 

“These are good, nothings getting in your way on the knee roll or top flap, felt 
good,” 
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The way in which the pads shape to the body, in terms of wrapping around the leg and 

moulding to the individual, both before and after breaking the pads in, is seen to 

influence the perceived comfort of the pads. 

“They felt like a proper pad, they went round my leg, very comfortable… you 
can break them in, so they contour to your leg,” 

 

“I like the way these are, they look like they are going to just wrap around like 
a cocoon which is the way forward” 

 

“I prefer pads that are shaped round my leg whereas these stick out quite a lot” 

 

“It’s rare you get a pad that wraps 180 degrees around the leg… that’s a plus 
point” 

 

Players of different sizes tend to use the same pads, resulting in pads which can be too 

wide for the individual, too short for them or just generally perceived as too small. 

“These pads only just come over my knee, I would want these to come much 
higher up the leg.” 

 

“These pads are just too short for me.” 

 

“I just feel I would need a bigger size than this, do they do an XL?” 
 
The final sub-theme of ‘Fit’ was strap design and included quotes regarding the length 

and width of straps, adjustability, number of straps, the way in which they are fastened, 

the padding on the straps and the way they dig into the skin. 

“Players strap pads differently, some do them tighter than others” 

 

“These days we get wider padded straps whereas on the old ones there are just 
3 of these thinner ones, so they cut in.” 

 

“They had buckles that went round the legs. We had to strap them up and 
buckle them in. Obviously Velcro is easier to put on and feels comfortable as 
well.” 
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“I don’t like it when they make the straps too long, so you have to fold them 
over a little bit; I don’t know why they make them that long,” 

 

“I have had problems with straps behind my knee with certain pads,” 

 
 

2.3.4 Protection 

The level of protection was found to influence a player’s willingness to use the pads, 

their confidence and overall satisfaction, which ultimately influences their perceived 

comfort (Figure 2.11). The ‘Amount of Padding’ and ‘Weaknesses’ within the pad are 

sub-themes contributing to the general theme of ‘Protection’. Within these sub-themes 

the pad’s thickness, amount that the leg is exposed to the ball, weaknesses within the 

knee roll and perceived level of protection are some of the contributing base themes. 

“I am not going to use those; they look like they could break your leg, that is 
thin” 

 

“When I used these pads [I] thought there was a lot of padding in them, so if 
you get hit it won’t hurt,” 

 

“They were a bit over padded, stopping you being able to move properly” 

 

“Compared to my pads they look a bit flimsy… if I got hit on the leg I wouldn’t 
be 100% confident” 

 

2.3.5 Sensorial 

‘Sensorial’ comfort, illustrated in Figure 2.12, includes the sub-themes of ‘Material 

tactile feel’, ‘Smell’, and ‘Sound’, and can be seen to influence the sensations of the 

wearer as well as umpiring decisions, and pleasantness of using the equipment. 

“Sweating in the pads is fine, until they get old and start stinking” 

 

“The material for these is quite hard, so if the ball was to skim off it would 
sound like an inside edge or something” 
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“I like the feel of leather pads,” 

 

2.3.6 Thermal 

The two sub-themes incorporated within the ‘Thermal’ theme, illustrated within Figure 

2.13, are ‘Sweat’, with a base theme of ‘Pad Rash’ and ‘Breathability’. These sub-themes 

illustrate the user’s dislike for increased sweat rates and the discomfort caused by pads 

prior to batting. 

“Netting material helps, as there is a space between it [the pad] and the cotton 
of the trousers, which is what causes you to sweat.” 

 

“Pad rash, that’s when you are waiting to bat for ages, because you are not 
moving around you sweat, if you keep moving round you are ok,” 

 

“I think it could be to do with the breathability of the pad” 

 

2.4 Structured relationship model results 

Relationship modelling was used to identify links between different themes through 

analysis of the data collected. There were 13 links identified within the data as shown in 

Figure 2.14. These links represent the participants’ perceived influence of one theme on 

another and the relationship between them. For example, the sub-theme ‘Amount of 

padding’ was found to be associated with three other themes through various quotes:  

Movement – Amount of padding 

“Sometimes they can be too bulky and difficult to run in.” 

 

“They were a bit over padded stopping you being able to move properly” 

 

“Others can be over padded and you are not able to move in them.” 

 
Size – Amount of padding  

“A lot of padding so it’s really comfortable, but they look quite big, they look 
bulky” 
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Flexibility – Amount of padding 

“Flexibility is key, but you’ve got to have the padding as well.” 

 

“One thing I always want is flexibility, but with the padding,” 

 

These examples demonstrate how the perceived increase in the amount of padding can 

affect the players’ perceptions of size and flexibility of the pad as well as their ability to 

move whilst using the equipment, which will ultimately influence their comfort and 

performance.  

These relationships highlight the users’ perception of each category and its relationship 

with other sub-components, but it does not show the relative importance of each 

characteristic. Further knowledge is needed to be able to fully understand the 

relationships between dimensions and the resultant effect each theme has on overall 

comfort, allowing designers to focus on factors that will be most beneficial in terms of 

user comfort and satisfaction.  

 

2.5 Comparison of two sports 

The second stage of this study was to assess the appropriateness of having one comfort 

model representing different items of PPE, as can be found within the literature. For 

this analysis a comfort model was developed for a taekwondo hogu, for comparison with 

the cricket model previously described.  

 

2.5.1 Taekwondo Methodology 

A similar method to the one previously described for the cricket study was followed for 

taekwondo to investigate the factors influencing perceived comfort of a chest guard 

(hogu). The aim of this was to investigate whether factors perceived to be important in 

determining comfort are specific to the individual piece of equipment or if there is a 

consistent perception of factors affecting comfort across a range of protective garments 

for sport.  
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Due to the inherent differences between the two sports, the methodology had to be 

altered accordingly. Taekwondo is an individual sport, so the individual interviews were 

used as the predominant source of information rather than the co-discovery and focus 

group sessions. For the four individual interviews, the fighters wore 4 different chest 

guards which were chosen to represent the market (illustrated in Figure 2.15), for 3 two 

minute rounds each. Two rounds were deemed suitable as it reflected a competition 

bout and gave the fighters opportunity to fully evaluate the protective equipment when 

both attacking and defending. During the interview process an initial evaluation of the 

pad was collected immediately after putting the hogu on, followed by an ongoing 

evaluation between each round and finally a summary prior to changing hogu. This was 

repeated for all four hogus, which were randomly ordered to prevent any order effects. 

All interviews were recorded using a lapel microphone and stored for further evaluation.  

 

Data analysis followed the procedure previously outlined in section 2.2.5. Two focus 

groups were conducted to validate the model produced from the interview data. Each 

focus group involved six fighters and followed a similar structure as used in the cricket 

testing.  

2.5.2 Taekwondo tree structure results 

As with cricket, six general dimensions were identified; these were ‘Aesthetics’, ‘Fit’, 

‘Weight’, ‘Thermal’, ‘Protection’ and ‘Sensorial’ as shown in Figure 2.16. Within each 

of these general dimensions several contributory factors were identified as being 

influential to the users’ perceived comfort (Figure 2.16 to 2.25).  

 

The appearance of the pad was again found to influence users’ perceived comfort due to 

players likes or dislikes of the look of the hogu, leading to feelings of self awareness and 

ultimately concern over self image.   

“These are the ones most people wear….so they look pretty similar, so if you 
come in with something like the others they don’t look as good, and you would 
just look like an idiot”  
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Associated with the pads’ appearance was the brand of the hogu, as different users 

demonstrated a preference towards certain manufacturers due to brand image and 

specific design features associated with their preferred make.  

“I always go with these pads as I like the look of them, they always look better 
than other makes.” 

 

Fit was another key factor identified as affecting perceived comfort, with feelings of 

discomfort being associated with larger, bulky pads which were perceived to be less 

flexible preventing the hogu shaping to the body.  

“I would rather wear a thinner one (hogu) and [a] more comfortable one as it 
is too big and thick when you are wearing it.” 

 

Feelings of restriction caused by the hogu limiting movement were also perceived as a 

major source of discomfort. In general, awareness of the pad moving around whilst 

fighting and an inability to adjust the pad to the user’s preferred position due to non 

elastic material within the straps, were both considered undesirable.  

“With the other one you don’t notice that much that you are wearing one, 
whereas, with this its like right out there and you know you are wearing one 
when you are fighting and its just not comfortable because after every attack 
you have to re-adjust it.” 

 

“This one kept on coming loose and didn’t feel secure, that’s why I prefer the 
stringed ones to these new Velcro ones.” 

 

The hogu is designed as a piece of protective equipment and users described the level of 

protection as another factor contributing to their overall comfort. Their perception of 

protection provided by the hogu appeared to be determined by the amount of padding 

and the degree to which they felt exposed by uncovered areas.  

 

“This pad has no padding so you just don’t feel protected, and you worry about 
getting hit as you know it will hurt” 

 

“When I am kicking it moves up and if it’s up there your hips are open for a 
kick” 
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Within the comfort model, the interaction between the hogu and the five senses were 

encapsulated within the general dimension of sensorial comfort, illustrating the 

importance of sound and material tactile feel in terms of perceived comfort. A source of 

discomfort was associated with the sound the pad made when struck due to it being 

perceived as a source of information for the judge when fighting. 

 

“If someone kicks you in the back they don’t usually score it but they might do 
if it makes a noise.” 

 

Material tactile feel was associated with the interaction between the skin and material of 

the pad, with feelings of discomfort being attributed to rough and scratchy material, 

particularly around the neck. 

“The only thing I think is wrong with this pad is around the collar, as it’s a bit 
rough and scratchy so it’s uncomfortable.” 

 

The final two general dimensions were ‘Thermal’ and ‘Weight’. A preference was shown 

for pads which were perceived to allow greater heat dissipation and had increased 

breathability, as well as being light weight. 

“This pad gets really hot as no air can escape so you just get hotter and hotter” 

 

“These pads are really light which makes it much better to move in and so 
more comfortable.” 

 

 

2.5.3 Taekwondo structured relationship model 

Within the players responses were perceived links between different general dimensions 

identified, as with the cricket results. Twelve inter dimension links were identified 

within the model and these are shown in Figure 2.26. An example of these links is 

between thermal and sensorial, demonstrating that if the hogu allows less heat to be 

dissipated a greater amount of water will be collected within the garment having a 

negative affect on the material tactile feel. 



P a g e  | 38 
 

 

“Because these pads get so hot you get really itchy as you sweat loads” 

 

2.5.4 Comparison of results 

The comfort models for taekwondo and cricket are very similar particularly at the 

general dimension level. Slight differences within the higher order sub-themes can be 

seen, but after this level the differences do become more apparent due to the different 

uses of the equipment, as illustrated in Figure 2.27. One reason for these subtle 

differences within the higher order sub-themes is the use of different terminology; for 

example, taekwondo players refer to the way in which the pad can be altered to suit the 

user as adjustability, compared to cricketers who describe this as customisability. The 

differences within the lower order sub-themes appear to be due to the inherent 

differences between the sports; for example, within the taekwondo model, protection 

incorporates coverage of the hips and protection of the back which were not identified 

within the cricket comfort model due to the pads being used to protect different areas of 

the body and within different situations, therefore protecting against different risks of 

injury.  

 

2.6 Discussion  

The aim of this work was to identify factors influencing the comfort of different sports 

PPE and the way they are interrelated. Current literature has focused on symptoms of 

discomfort rather than causes, limiting the use of the findings in product development 

to optimise user comfort. Through the use of subjective methods, this study has 

identified several factors influencing the perceived comfort of PPE. It suggests that 

perceived comfort can be influenced due to the appearance and the initial interaction 

between the user and the equipment. This initial interaction can include picking the 

pad up, bending it and hitting it, as well as analysing how the pad looks. This initial 

assessment then combines with the wearer’s experience whilst using the pad to produce 

their overall perceived comfort.  

 



P a g e  | 39 
 

 

From the analysis, a great deal of similarity was found between the two sports of cricket 

and taekwondo, with the same six general dimensions emerging as influencing users’ 

perceived comfort. The attributes identified within both sports are believed to interact 

and influence one another to determine the users’ perceived comfort, as demonstrated 

by the structured relationship models. As with the tree structures, it was found that 

there is a great deal of similarity between the two sports, as the players identified very 

similar inter-dimension links, with the links of both models being either positively or 

negatively correlated. One example of a positive relationship within both models is 

between the amount of padding and weight of the pad, as it emerged that as the amount 

of padding increased so did the weight. 

 

Within the relationship models, negatively related links were also highlighted, where 

increasing one component was perceived to decrease another. An example of this is 

between material tactile feel and sweat, where increased sweat decreases tactile feel of the 

material. Therefore, if sweat production is decreased by improving thermal comfort, 

material tactile feel will improve. Another example of this is between weight and 

movement, where a decrease in weight was found to increase player movement. This was 

highlighted through quotes such as: 

“Also when I was running in them they seemed dead light, and obviously the less weight 

you are carrying when you are out there the better, as it means it is a lot easier to move” 

(cricket) 

 

“Because of the weight of the pad you can feel it on the top of your leg making it difficult 

to kick” (taekwondo) 

 

Although these results do demonstrate the interaction between dimensions, the data 

does not reveal the importance of the different dimensions nor the magnitude of their 

influence on perceived comfort. Such knowledge would be beneficial in the product 

development process as it would allow the designer to focus on the more significant 

features of PPE. Therefore the emergence of these relationships warranted further study 
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focusing on how the different factors affecting perceived comfort interact and the 

relative importance of each dimension. 
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Chapter 3 
 

3 Development of a hierarchical model and model validation 

 
 
The comfort models, developed in Chapter 2 identified specific design features that 

affect comfort and the way in which they are inter-related. The identification of these 

characteristics has furthered knowledge regarding player comfort and in turn end-user 

satisfaction. However, further information was required to direct the design process 

regarding the relative contribution of each dimension in determining perceived comfort. 

Therefore this chapter aimed to develop the comfort model documented in Chapter 2 

into a structured hierarchy, suitable for being used as a predictive tool for both cricket 

leg guard and taekwondo hogu comfort, through the use of a psychometric instrument.  

 

The Analytical Hierarchy Process (AHP) was identified as an appropriate method for 

determining the perceived importance of each general dimension. This method was 

adopted due to its ability to decompose a complex multi-criteria problem such as 

comfort, into a hierarchy (Saaty, 1980) and has the advantage of allowing participants to 

assign different magnitudes of opinion to each dimension. Saaty evolved the AHP 

method to allow decision makers to represent complex interactions of multi-factor 

constructs in a hierarchy (Chen, 2006; Hsu et al, 2008; Montaza and Behbahani, 2007). 

Another advantage of AHP is the incorporation of a consistency check, with the capacity 

to identify inconsistent responses, therefore, increasing the reliability and validity of the 

results. This method has been widely accepted across multiple disciplines, including 

business management, textiles and manufacturing (Frazelle, 1985; Golden et al,, 1989; 

Mohanty and Venkataraman, 1993; Saaty, 1979; Wabalickis, 1988). These studies have 

demonstrated its appropriateness in assessing both tangible and non-tangible factors, 

especially where the subjective judgments of different individuals constitute an 

important part of the decision process, again demonstrating its suitability for use within 

this study.  
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This chapter is split into three main sections. The first section focuses on the 

development of an online questionnaire for the cricket leg guard and assessment of the 

results. The second section compares the results for the cricket leg guard and taekwondo 

hogu and the final section assess the validity and accuracy of the two models. 

 

3.1 Questionnaire design for cricket 

An online questionnaire (Appendix 2) was deemed as the most suitable method of 

collecting data for the AHP, due to it being easily accessible to large numbers of people, 

allowing for a large sample size to be generated with minimal cost and ease of 

distribution to a variety of geographical areas. The online questionnaire was distributed 

to twenty cricket clubs, resulting in 108 completed questionnaires being submitted. The 

108 respondents had a mean age of 23.7 years; there were 80 male respondents and 28 

female, with 66 of them playing at club level and 42 playing county level or higher. The 

AHP was used to identify the perceived importance of each general dimension in 

determining comfort. The online questionnaire developed was split into two main 

sections, with the initial part aimed at developing the comfort model into a hierarchy, 

followed by a second section which was used to gather additional information on 

players’ perceptions of current PPE.   

 

3.1.1 Development of a hierarchy of importance for cricket 

The known method of Analytical Hierarchy Process (AHP) was used to calculate a 

relative importance weighting for each general dimension, from the responses given on a 

sliding scale. Pair-wise comparisons of each combination of general dimensions were 

completed in accordance with Saaty’s (1980) AHP, allowing results from the initial data 

collection and analysis process to be represented in a hierarchical structure.  

 

Participants were asked to indicate how much more important one general dimension 

was than another using a relative importance scale. The scale used to compare ‘Fit’ and 

‘Weight’ is illustrated in Figure 3.1 as an example. Using these judgements a prioritized 

rank order was developed through the composition of an n x n pair-wise comparison 

matrix for each respondent, where n is the number of general dimensions. In Equation 
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3.1, C1, C2 … Cn denote the elements (in this case the general dimensions), while aij 

represents a quantified judgment on each pair of elements Ci and Cj.  If two elements Ci 

and Cj are judged of equal importance, aij  = aji = 1. If Ci is judged to be ‘slightly more 

important’, ‘more important’ or ‘much more important’, aij takes a value of 3, 5 or 7 

respectively and aji = 1/ aij. Alternatively if  Cj is judged to have a greater importance, 

then aij takes the value of 1/3, 1/5 or 1/7, depending on the magnitude of importance, 

and again aji = 1/ aij. An example of a completed matrix is shown in Table 3.1. 
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  Weight Thermal Protection Fit Sensorial Aesthetics 
Weight 1 3 3 3 7 7 
Thermal 0.33 1 0.14 0.33 3 7 

Protection 0.33 7 1 3 3 7 
Fit 0.33 3 0.33 1 3 7 

Sensorial 0.14 0.33 0.33 0.33 1 3 
Aesthetics 0.14 0.14 0.14 0.14 0.33 1 

 
Table 3. 1: An example of a completed AHP matrix for subject 1 

 
 
After the pair-wise comparison matrices were formed for all respondents, vectors of 

weights (w) were computed on the basis of Satty’s eigenvector procedure. The weights 

were calculated through a two step process; initially the pair-wise comparison matrix was 

normalised through equation 3.2, and then the weights were calculated through 

equation 3.3. 

 

 

∑
=

= n

i
ij

ij
ij

a
aa

1

*
                  (3.2) 

 

 



P a g e  | 44 
 

 

n

a
w

n

j
ij

i

∑
=

=
1

*

                (3.3) 

 

 

The vector w, contains a weighting for each element (Ci), where the ∑ =
=

n

i
iw

1
1 , and the 

values of wi are an indication, in this case, of the relative importance of each comfort 

dimension for that particular respondent. There is a common relationship between the 

vector weights, w, and the pair-wise comparison matrix, demonstrated within equation 

3.4. 

wAw maxλ=      (3.4) 

 

Using λmax, the data can be screened through the development of a consistency ratio 

(CR) of the estimated vector. The CR can be calculated once the consistency index (CI) 

for each matrix of order n has been determined through equation 3.5.  

1
max

−
−

=
n

nCI λ
            (3.5) 

 

Then CR is calculated through equation 3.6 

RI
CICR =                       (3.6) 

 

RI is the random consistency index obtained from a randomly generated pair-wise 

comparison matrix and is a set value dependent on n, which is the number of general 

dimensions identified within the first stage of testing. An RI value of 1.24 was used in 

accordance with Saaty (1980). The CR can vary between 0 and 1 and is a measure of the 

consistency of an individual subject’s responses, with a higher number indicating a 

greater degree of inconsistency in their data. Typically, a threshold value is selected and 

the data from subjects whose CR exceeds this value are removed from the analysis. For 

this study, a maximum CR of 0.2 (20%) was utilised instead of 0.1 (10%) to make the 

results more inclusive rather than exclusive. As a result, 8 sets of responses were 

removed from the analysis.  
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The mean weighting for each dimension for the 100 accepted responses from the 108 

respondents was calculated and is shown in Figure 3.2. Within the 100 accepted 

responses, the mean inconsistency was 0.126 ± 0.034 (12.6% ± 3.4%). The results 

indicate that ‘Fit’ (30.9% ±9.8%) was perceived to be the most important factor affecting 

comfort, followed by ‘Protection’ (24.2% ±9.8%), ‘Weight’ (16.8% ±7.2%), ‘Thermal’ 

(11.97 ±6.88%), ‘Sensorial’ (8.32% ±5.1%) and then ‘Aesthetics’ (7.78% ±5.9%) (Figure 

3.2A). 

 

3.1.2 Statistical analysis of cricketers’ responses 

The AHP results have allowed a perceived weighting to be assigned to each dimension, 

however, the significance of the differences in perceived importance has not been 

determined. Therefore, three statistical methods were utilised to help interpret the 

results, and determine if these differences were significant. The three methods used 

were- Bootstrapping, t-test and Cluster analysis. The initial analysis of the combined 

AHP results from all respondents was completed to determine if there were any 

significant differences in perceived relative importance of the general dimensions. 

Within this stage of analysis it was deemed that a standard ANOVA was not suitable as 

the results were not totally independent of one another, therefore a bootstrapping 

technique was utilised to obtain a 95% BCa (biased corrected accelerated) confidence 

interval, enabling any significant differences between dimensions to be analysed. This 

technique involves resampling - with replacement – of a given sample, where sub-samples 

are withdrawn from the original data and replaced by replicating random other samples. 

For example, from a sample of 100 responses, a new sub-sample may consist of 90 of 

their scores with 10 replicated results used to produce a new sample of 100. The mean 

weighting for this new sample is calculated before the procedure is repeated 10,000 

times. From this, the 95% BCa is calculated.  

 

This method allowed a valid statistical result even though the standard statistical 

assumption of normality did not hold. Bootstrapping was regarded as more valid and 

reliable than other possible methods such as jackknife and cross validation as, rather 



P a g e  | 46 
 

 

than deleting results, bootstrapping utilises a constant resampling with replacement 

method to develop an empirical distribution for a given sample statistic that provides 

the framework for computing the averages, standard errors, and confidence intervals 

(Efron, 1979; Efron and Tibshirani, 1993). Because the sampling or resampling in the 

bootstrap method takes place, the combinations of samples are limitless and are driven 

by random number generators from Monte Carlo. Weightings were deemed significantly 

different if no overlap occurred between dimensions when the 95% confidence intervals 

were evaluated.  

 

The bootstrap results are shown in Table 3.2 and indicate a clear difference between all 

dimensions except ‘Aesthetics’ and ‘Sensorial’ whose intervals were 6.84 to 9.20% and 

7.49 to 9.49% respectively (Figure 3.3). The substantial amount of overlap between the 

two dimensions indicates that there is no significant difference in perceived importance.  

 

 
Lower 

limit  (%) 
Upper 

limit (%) 
Weight 15.5 18.3 
Thermal 10.7 13.4 

Protection 22.3 26.2 
Fit 29.0 32.8 

Sensorial 7.5 9.5 
Aesthetics 6.8  9.2 

 
Table 3. 2: 95% confidence ranges for the cricket leg guard weightings generated from the 

bootstrap analysis 
 
 

Once this analysis had been completed, a t-test was used to determine if there were any 

significant differences between the demographical groups of male/female (N= 72 and 

28) and amateur/professionals (N= 66 and 34). For this analysis, players were deemed to 

be professional if playing at County second team level or above, as during the summer 

months these players train on a full time basis, whereas the amateur sub-category 

incorporated university and local club players. The results are shown in figure 3.2b) and 

c). A t-test indicated no significant differences between the different groups of players, 

demonstrating a consistent trend between both sexes (p=0.455) and across all levels of 

performer (p=0.390).  
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Although no significant differences between these categories of players were found, the 

large standard deviation within the dimensions did suggest some differences of opinion 

between respondents. To further analyse these differences, the statistical method of 

clustering was used to determine if there were any sub-groups within the respondents 

regarding the relative importance of the different dimensions. Hierarchical clustering 

was used to study the Euclidean distance to the furthest neighbour. The aim of this 

analysis was to identify any sub-groups of respondents within the data which can not be 

identified through demographical differences. This grouping of data is accomplished 

through the maximisation of between group variance and the minimisation of within 

group variance. It was found that the respondents can be split into two distinct groups 

predominantly determined by the perceived importance of ‘Protection’ and ‘Fit’, as 

shown in Figure 3.4. Subjects in Group One (Figure 3.5) placed a higher emphasis on 

‘Protection’ (N=34), whereas those in Group Two (Figure 3.6) perceived ‘Fit’ to be of 

greater importance when determining comfort (N=56). Ten subjects did not fit into 

either group. It was not possible however to identify a demographical characteristic that 

separated the two groups.   

 

3.1.3 Additional information on cricket leg guards 

The second section of the questionnaire focused on gathering additional information 

regarding players’ preferences in terms of protection, aesthetics, strap and knee roll 

design. These areas were focused on due to the number of references made regarding 

these specific design features within the interview process described in Chapter 2, and 

were deemed to be suitable for further analysis through an online questionnaire. The 

initial question focused on perceived protection and aimed to identify where the 

cricketers would prefer the greatest amount of protection. This was done by dividing a 

pad into eight zones, as illustrated within Figure 3.7; the respondents were then asked to 

rank each area in terms of protection from 1 to 8 with 1 being where they would like the 

greatest amount of protection and 8 being the least. In the analysis of this data, 90 out 

of the 108 responses were used, as 18 respondents failed to complete this section 

correctly, therefore, their results were excluded. Figure 3.8 illustrates the rank sum for 
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each of the 8 zones for all 90 accepted responses, with a low rank sum indicating a 

greater need for protection. The results were then analysed using Friedman’s test, to 

determine whether there were any significant differences in areas of perceived 

protection. Friedman’s T statistics was calculated from the number of subjects, N, the 

number of samples, k, and the rank sums, Rj, using Equation 3.7. 
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The Friedman test statistic, T=186.8 is greater than the critical value from the chi-square 

distribution of 18.5 (at a significance level of 0.01), indicating that players perceived 

some areas of the pad to require more protection than others. Fisher’s LSDrank (least 

significant difference) was then used to identify which areas of the pads were perceived 

to need the highest levels of protection. Fishers LSDrank was calculated through the use 

of 
∞,2/αt  which is equal to 1.96 for α = 0.05, using Equation 3.8. 

6
)1(

,2/
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= ∞
kNktLSDrank α        (3.8) 

 

It was calculated that, for there to be a significant difference (p<0.05), the rank sums 

needed to differ by more than 63.3. From the results, it is apparent that the centre of 

the knee and the shin area (Zones 3 and 6) were perceived to need significantly more 

protection than the rest of the pad with rank sums of 225 and 239 respectively. After 

these two areas, players perceived the outside of the knee and lower leg (Zones 4 and 7) 

to require the most protection, with the inner area of the knee (460.5), lower leg 

(516.5), top (473.5) and bottom (500.5) of the pad needing significantly less protection 

(Zones 1, 2, 5 and 8). 

 

The next question focused on the aesthetics of the pads and required the respondents to 

evaluate four different pads (P1, P2, P4 and P5 as depicted in Figure 2.2) in terms of the 

appearance of the entire pad, the section above the knee, the knee and the shin (Figure 

3.9). The four pads illustrated within this section were chosen as a representative sample 

of the current market, varying from the more traditional pads to the modern looking 
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pads as depicted in Figure 3.9. The results were analysed by assigning a score of 2, 1, 0, -

1 and -2 to represent ‘very good’, ‘good’, ‘ok’, ‘poor’ and ‘very poor’ respectively. A one 

way ANOVA was used to determine if differences in scores were significant (p<0.05). 

The results illustrated that respondents preferred the overall shape of P1 and P4 (Figure 

3.10) with average ratings of 1.28 and 1.22 respectively, which were significantly higher 

(p<0.05) than P5 (-0.08). P2 was perceived to have the worst overall shape with an 

average score of -1. In terms of the area above the knee, P1 and P4 were again identified 

as being significantly (p<0.05) more aesthetically pleasing than P5 (Figure 3.11) with 

average scores of 1.1 and 1.3 compared to 0.2 respectively, with P2 significantly less 

appealing than pads P1, P4 and P5 with an average score of -0.7. The same trend can 

also be seen for the knee (Figure 3.12) and shin (Figure 3.13). 

 

The final two questions focused on strap design and whether players preferred pads to 

have a knee roll. The results illustrated that 93% of players prefer pads to have three 

straps rather than two (Figure 3.14), and 91% of respondents would prefer pads that 

have a knee roll (Figure 3.15).   

 

3.1.4 Discussion Cricket results 

The purpose of this study was to develop a greater understanding of end-user needs in 

terms of cricket leg guard comfort, by further developing the comfort model described 

in Chapter 2, through the addition of weightings for each general dimension reflecting 

perceived importance. In this study, 66% of players perceived fit as the most important 

factor; for the remaining 34% fit was the second most important factor behind 

protection. As well as fit, protection and weight were perceived to contribute 

significantly, with thermal, aesthetics and sensorial affecting their preference to a lesser 

extent.  

 

Through the second section of the questionnaire, specific design features have been 

identified in terms of maximising end-user satisfaction. It was apparent that the end-user 

perceived the centre of the pad to need the most protection followed by the outside 

edge. A preference towards more traditional looking pads, which conformed to the 
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standard shape that players are accustomed to, such as P1 and P4, was demonstrated 

over more modern leg guards. Typically, players also wanted pads to incorporate three 

straps and a knee roll into the design.  

 

These findings suggest that, within the design process, maximising fit and protection 

should be focused on when designing cricket leg guards, with less emphasis on 

aesthetics, sensorial and thermal properties if necessary, in order to maximise end-user 

comfort. With regards to the aesthetics of the pad, there is an apparent discrepancy 

between the interview data presented in Chapter 2 and AHP results, demonstrating the 

benefit of incorporating different processes within the method. It can be concluded that, 

as the majority of pads still maintain traditional features, their appearance does not have 

a large impact on overall comfort. It is only when players are presented with a 

completely unique modern pad without the traditional features expected that aesthetics 

begin to have a considerable influence on comfort. These pads, however, are much less 

common. The initial interview process where pads were presented to the players 

ascertained their feelings on the full range of pads presented, whereas the questionnaire 

focused more on their perceptions of a typical pad, or the pads that they currently use, 

which for most players was still a traditional-style pad. 

 

3.2 Questionnaire design for taekwondo 

To determine if there is a need for separate comfort models for different items of PPE, 

or whether one model can represent all garments, a comparison between the cricket leg 

guard and taekwondo hogu results was conducted. 

  

3.2.1 Questionnaire design taekwondo 

The data collection and analysis process for taekwondo followed the same method as 

described in section 3.2 for part one of the questionnaire, allowing specific weightings of 

importance to be calculated for each dimension. The second section of the taekwondo 

questionnaire also focused on gathering extra information regarding protection, and 

strap design as with the cricket questionnaire.  
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The online questionnaire was distributed to twelve taekwondo clubs, resulting in 48 

completed questionnaires being submitted. The 48 respondents had a mean age of 21.4 

years; there were 31 male respondents and 17 female, with 38 of them competing at club 

level and 10 competing at county level or higher 

 

3.2.2 Development of a hierarchy of importance for taekwondo 

As with the cricket results in section 3.2, a hierarchy of importance was developed for 

the hogu comfort model. The analysis of the AHP results followed the same process 

using the statistical methods of bootstrapping, t-tests and cluster analysis. Within these 

results a mean weighting was ascertained for each of the six general dimensions from the 

43 accepted respondents identifying ‘Fit’ (30.58% ±7.8%) as the most important factor 

affecting comfort, followed by ‘Weight’ (23.2% ±5.7%), ‘Thermal’ (16.14% ±8.5%), 

‘Protection’ (15.18% ±7.2%), ‘Aesthetics’ (7.88% ±3.43%), and ‘Sensorial’ (6.59% 

±3.02%) (Figure 3.16a).  The combined results were then analysed through the use of 

the bootstrapping technique (Table 3.3), which revealed ‘Fit’ to be perceived as the most 

significantly important of the six dimensions (Figure 3.17). ‘Weight’ was also perceived 

as being significantly more important than ‘Thermal’, ‘Protection’, ‘Aesthetics’ and 

‘Sensorial’, no clear difference was found between ‘Thermal’ and ‘Protection’ due to 

there being a large degree of overlap between the two 95% confidence ranges, but were 

found to be perceived as more important than ‘Aesthetics’ and ‘Sensorial’, between 

which little difference was found.   

 

 
Lower 

limit  (%) 
Upper 

limit (%) 
Weight 21.58 25.01 
Thermal 13.67 18.67 

Protection 13.2 17.46 
Fit 28.38 33.02 

Sensorial 6.93 8.93 
Aesthetics 5.77 7.57 

 
Table 3. 3: 95% confidence ranges for the taekwondo hogu weightings generated from the 

bootstrap analysis 
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These results were also divided into demographical groups of male/female and 

novice/expert, with novices denoting people fighting at club level, whereas experts were 

national, regional and county representatives (Figure 3.16 B and C). The results for 

these different groups were compared using a t-test analysis, but no significant 

differences (p>0.05) between demographical groups emerged. To complete the analysis 

of these results, a cluster analysis was performed which identified two sub-groups that 

could not be separated by demographical differences. These two groups were determined 

by the relative importance they attributed to the two dimensions of ‘Thermal’ and 

‘Protection’. Sub-group one (Figure 3.18) assigned a greater importance to ‘Thermal’ 

compared to ‘Protection’, whereas sub-group two (Figure 3.19) perceived ‘Protection’ to 

be of greater importance. Eight subjects did not fit into either sub-group.   

 
 

3.2.3 Additional information on taekwondo 

The additional information on taekwondo hogus was assessed in a similar manner to 

the cricket leg guards except, the hogu was split into 6 zones rather than eight when 

assessing protection as illustrated in Figure 3.20, and the question regarding strap design 

focused on type of fastening system, asking: 

 

Do you prefer Velcro or string fastening system? 

 

The taekwondo questionnaire did not include the question regarding aesthetics, as the 

majority of hogus’ only differ subtly in terms of their appearance. Finally, the question 

regarding knee rolls was omitted and replaced by a question asking: 

 

Does the pad rub/ dig into your neck? 

 

Within Section 2 of the taekwondo questionnaire, all 43 responses were accepted, and 

analysed in the same way as with the cricket results. It was found that the respondents 

perceived there to be a greater need for protection around the side of the body (Figure 

3.21) with rank sums of 74 and 82 for the right and left side respectively (Zones 3 and 

2). As the difference in rank sums between these two zones and the other four zones was 
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greater than the LSDrank of 34, the difference is significant (p<0.05). It was found that 

the front of the pad, which covers the chest and abdominals (Zone 4) was perceived to 

require the next greatest amount of protection, recording a rank sum of 286, followed 

by the back (Zone 2) which had a rank sum of 330.5 assigned to it. Finally, the areas at 

the top and bottom (Zones 1 and 6) of the hogu were perceived to require significantly 

less protection than the other 4 areas (p<0.05). This section of the questionnaire also 

revealed that 79% of respondents had a preference for string fastening hogus compared 

to 21% in favour of the Velcro fastening system (Figure 3.22). The final question 

revealed that 44% of respondents found that the pad rubbed and irritated the neck 

whilst fighting (Figure 3.23).  

 

3.2.4 Comparison of the AHP results for two sports. 

Within Chapter 2, it was identified that the comfort models for cricket and taekwondo 

were very similar; however, it was noticeable that there was a difference in the emphasis 

placed on each dimension between the sports. These differences were supported by the 

AHP results, with each sport attributing varying levels of importance to each general 

dimension. It was found that both sports place the highest emphasis on fit, but in 

cricket, protection is also of key importance whereas in taekwondo, weight was found to 

be more influential. In taekwondo, thermal properties of the hogu influence perceived 

comfort to a greater extent than in cricket, with it being comparable to protection in 

terms of importance. These differences could be attributed to the inherent differences 

within the two sports and the areas of the body the PPE are designed to protect. 

Taekwondo is a faster more physically demanding sport, where over-protection could 

affect the dynamics of the sport resulting in fewer knock outs. Cricket is more focused 

on minimal restriction of movement and maximal protection, preventing players having 

to retire due to injuries.  

 

3.3 Model validation  

Once the development of the hierarchical model was completed, it needed to be 

assessed in terms of suitability and accuracy. To determine if the model was 

representative of players’ perceptions of comfort, it was evaluated as a predictive tool, to 
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discover if the responses given regarding each dimension could be used to identify the 

most comfortable pad overall.  

 

To analyse the accuracy of the hierarchical comfort model for both cricket and 

taekwondo four pads (P1-P4 for both sports illustrated in Figure 2.2 and 2.15) were 

assessed in terms of ‘Fit’, ‘Weight’, ‘Protection’, ‘Thermal’, ‘Sensorial’ and ‘Aesthetics’ 

for each sport, as well as overall comfort. For cricket, ten subjects were required to wear 

each leg guard for 24 deliveries (4 overs) running 12 runs and padding away a minimum 

of 3 deliveries. After each pad had been worn, the subjects assessed the pad using a 

continuous scale with regards to each dimension (Figure 3.24) as well as for its overall 

comfort. Each pad was assessed on the same set of scales, enabling the pads to be placed 

in a rank order; a rank of one was given to the most preferred pad for each dimension 

i.e. the best fitting, lightest, most protective, best heat balance, better looking and best 

feel. Each rank was then multiplied by the appropriate weighting calculated from the 

AHP process for that dimension. For example, if a pad was ranked 3rd in terms of fit, 3 

was multiplied by 30.9% (for cricket). These scores were added together for each pad to 

give an overall score, with the lowest score representing the most comfortable pad. To 

assess the accuracy of the model, the rank order of pads produced from the comfort 

model weightings was compared to the rankings of overall comfort, with an exact match 

suggesting the model was accurate. For taekwondo, a similar method was utilised but the 

practical assessment involved the participants sparing with each pad for two rounds 

prior to assessment. 

 
 

3.3.1 Model validation results  

 
The results from the model validation testing indicated that the cricket model was 

accurate in predicting the correct order of preference in 80% of cases (8 out of 10), as 

illustrated within Table 3.4. The taekwondo model predicted the correct order of 

preference in 77.8% of cases (7 out of 9) (Table 3.5), once again suggesting that the 

model is appropriate and relatively accurate as was found with the cricket model.    
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Table 3. 4: Comparison of actual and predicted rank order of perceived comfort for the cricket leg guard 
 

 Overall Comfort Rank Predicted Rank 
Subject P1 P2 P3 P4 P1 P2 P3 P4 

1 2 1 4 3 2 1 4 3 
2 1 3 2 4 2 1 3 4 
3 3 2 1 4 3 2 1 4 
4 1 2 4 3 1 2 4 3 
5 1 3 2 4 1 2 4 3 
6 3 4 1 2 3 4 1 2 
7 2 1 4 3 2 1 4 3 
8 1 3 2 4 1 3 2 4 
9 1 3 4 2 1 3 4 2 

 
Table 3. 5: Comparison of actual and predicted rank order of perceived comfort for the taekwondo hogu

 Overall Comfort Rank Predicted Rank 
Subject P1 P2 P3 P4 P1 P2 P3 P4 

1 1 3 2 4 1 3 2 4 
2 2 4 1 3 1 4 2 3 
3 3 4 1 2 3 4 1 2 
4 3 2 1 4 3 2 1 4 
5 2 3 1 4 2 3 1 4 

6 4 2 1 3 4 2 1 3 
7 2 4 1 3 1 4 3 2 
8 1 4 2 3 1 4 2 3 
9 2 3 1 4 2 3 1 4 
10 3 2 1 4 3 2 1 4 
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3.4 Summary 

The aim of this work was to develop the comfort model documented in Chapter 2 into 

a structured hierarchy, suitable for being used as a predictive tool for both cricket leg 

guard and taekwondo hogu comfort. This was achieved through the use of the well 

documented technique of AHP, which was administered through an online 

questionnaire.  The analysis of these results identified notable differences between the 

two sports regarding the relative importance of the six general dimensions identified 

within Chapter 2. A greater emphasis was placed on fit in terms of determining 

perceived comfort for both pieces of equipment. For cricket, other key factors included 

protection and weight, whereas for taekwondo weight and thermal properties were 

perceived to be more important when determining perceived comfort. These differences 

support the argument that a specific comfort model needs to be developed for each 

piece of equipment in order to maximise end-user comfort and in turn satisfaction.   

 

The final stage was to test the accuracy and validity of the models. The models were used 

to predict the order of four different garments for both cricket and taekwondo in terms 

of perceived comfort. Both models were shown to be very accurate predicting the correct 

order in over 77% of cases for both the leg guards and hogu.  
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Chapter 4 
 

4 The effect of cricket leg guards on batting kinematics and 

shot performance. 

 

4.1 Introduction 
The purpose of developing a hierarchical comfort model was to elicit the perceptions of 

the end-user and structure them into an appropriate representative model, detailing the 

relative importance of the factors that determine the players’ comfort and in turn 

satisfaction with the end product. The next stage in the project was to develop objective 

tests that could be used to assess the subjective concept of comfort.  

 

‘Fit’ was identified as the most influential factor within the comfort model by the 

majority of players. One sub-component of ‘Fit’, which was frequently discussed, was the 

effect leg guards have on players’ movement, including both their ability to perform 

different shots and the speed or ease with which they can run. Generally, players 

perceived that pads limited their ability to perform the different movements required 

within a game of cricket depending on their design. Therefore, the following two 

chapters will detail the methods used to assess players’ movement when playing different 

cricket shots and the effect of leg guards on running performance. This chapter aimed to 

determine the affect of cricket leg guards on batting kinematics in terms of physical 

restriction and shot performance for a variety of shots.  

 

4.2 Effect of PPE on Fit and Range of Motion 
The fit of a garment has been identified as one of the most influential components of 

comfort, both directly, in terms of size and shape relative to the wearer and indirectly 

through its influence on other aspects such as heat dissipation and sensorial comfort. 

The inter-relationship between a garment (PPE), an individuals body size and shape and 

other clothing items worn determines the fit (Ashdown and DeLong, 1995), which has 

been identified as essential to the user’s satisfaction. A poor fitting garment will be 
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uncomfortable and movement could be hindered (Watkins, 1995). Also, poorly fitting 

garments can have several other detrimental effects, such as restricting cardio-vascular 

flow, causing skin abrasions, inducing skin irritations and reducing heat dissipation 

(Milenkovic et al., 1999), which will have a negative affect on perceived comfort 

 

4.2.1 Range of motion 

Various items of PPE, including gloves and knee protectors, have been found to have 

detrimental affects on the range of motion of the wearer, causing a loss of dexterity and 

mobility, thus affecting the ability to perform desired movements and tasks, such as 

gripping tools and equipment (Bellingar and Slocum, 1993; Parssons and Egerton, 

1985; Saul and Jaffe, 1955; Sheridan, 1954; Tremblay, 1989). Typically the influence of 

PPE on performance is measured through a user’s ability to conduct routine movements 

and their range of motion (ROM) or reach capacity is then compared between garments 

or to the unrestricted motion of the naked body (Huck, 1991). Range of motion can be 

measured using different methods including exercise protocols (Ruckman et al, 1999), 

studying wearers’ movements on film (Lawson and Lorentzen 1990) and observing 

garment strain in photographs (Ashdown and DeLong 1995). More commonly, 

however, joint angles are studied; these have been measured using goniometers, 

Leighton flexometers, electrogoniometers, or through more complex photographic and 

3D motion analysis techniques (Gehlsen and Albolm, 1980; Watkins 1984).  

 

Research within the area of PPE has identified the need for analysis of the effects of fit 

on users’ abilities to perform required movements (Adams and Keyserling, 1996) to 

enable the development of comfortable, well fitted PPE, without sacrificing protection 

or performance (Bellingar and Slocum, 1993; Huck et al, 1997). The fit of protective 

garments can have several detrimental affects on protective aspects, as well as comfort 

and functionality (Keeble et al 1992). For example, if the PPE is loose fitting within 

cricket, it could allow a ball to strike the batsman’s leg through gaps between pad and 

shin, reducing protection due to poor fit. Also, to encourage use of PPE, comfort and 
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function must be optimised otherwise end-users will be less likely to use the product, 

increasing the risk of injury (Bellingar and Slocum, 1993).  

Inadequacies of functional clothing have been identified in a range of activities from 

grass fire fighting (Huck et al, 1997) to ice hockey (Watkins, 1977) and golf (Wheat and 

Dickson, 1999). These inadequacies can be due to a number of reasons from fit (Wheat 

and Dickson, 1999) to inappropriate design (Huck et al, 1997).  Wheat and Dickson 

(1999) found that end-user satisfaction strongly correlated with good fit and aesthetically 

pleasing uniforms. Restricted movement was also reported to be a cause of 

dissatisfaction for cyclists (Casselman-Dickson and Damhorst, 1993) suggesting that fit 

and the garment’s influence on range of motion could be of key importance to the 

comfort of the performer.  

 

Huck et al (1997) found that altering a garment’s fit in one area can increase movement 

in one dimension, but, restrict it in another. They demonstrated that adding an 

elasticated waist at the back of protective overalls increased trunk flexion but the 

consequence was decreased knee and shoulder flexion. These results demonstrate the 

need for an understanding of the nature of the movements performed whilst wearing 

the protective equipment, allowing maximisation of mobility, without sacrificing 

movements in other areas of importance for optimum performance.  

 

Research within PPE has identified that reduced mobility is linked to material thickness, 

weight, protection level and design (Bellingar and Slocum, 1993; Huck and Kim, 1997; 

Watkins, 1995). The effect of design was demonstrated by Huck and Kim (1997) who 

maximised the flexibility of a garment through elasticated panels and ensured good fit 

through correct torso length, which increased the range of motion for a specific 

movement (for example trunk flexion) by up to 28.7%.  

 

There has been a substantial amount of research regarding the fit of a garment and its 

influence on performance. This research, however, has historically based its findings on 

simplified movements and maximal flexion/extension tests, rather than realistic actual 
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movements (Hu et al 2007; Huck and Kim, 1997; Li et al 2005).   The use of these 

generic tests for specific items of sports PPE is questionable because they do not 

necessarily represent the movements made within the sporting environment. The 

development of a specific test protocol enabling the testing of sports equipment in a 

more representative manner is, therefore, required. 

 

It can be seen from the current literature that, before improvements to the design of the 

PPE can be made, a greater understanding is required of the effect of PPE on movement 

and performance. To do this effectively, a suitable method needed to be developed to 

ascertain the degree to which movement is restricted, and the manner in which the 

performer’s motion is inhibited, whilst performing realistic movements.  The aim of this 

section is to develop a suitable methodology for assessing the effects of PPE on range of 

motion, perceived restriction and player performance.  

 

4.3 Quasi-static vs. dynamic methods 
There are several techniques which have been used to measure range of motion within 

the literature, including both quasi-static and dynamic methods. Each measurement 

technique has inherent strengths and weaknesses which make them suitable for specific 

types of measurement. Therefore, prior to determining which data collection technique 

was most suited to this study, the advantages and disadvantages of several different 

methods were evaluated. 

 

4.3.1 Exoskeletal measurement devices 
Two common measurement tools used when analysing joint angles are inclinometers 

and goniometers. Inclinometers work by measuring angles of joints with respect to 

gravity, by generating an artificial horizon, then measuring angular tilt with respect to 

that line. Digital and ferrofluidic inclinometers are now available which utilise 

‘cantilever force sensors’ and ‘magnetic force’ to measure angles respectively (Ando et al., 

2007). Goniometers, in comparison, measure the angle between two joint axes. As with 

inclinometers, digital goniometers are available which utilise an electrical potentiometer 
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to allow continuous data logging during a motion. Although inclinometers are 

inexpensive, and have a high resolution of ±0.1° (Hua-Wei et al., 2005), their suitability 

for measuring joint angles is debatable as alignment errors can occur and they are more 

suitable for measuring the ‘tilt’ or angle of one plane relative to a horizontal plane, 

rather than about a joint. Even using clinicians to align the inclinometers can give 

unreliable results (Rondinelli, 1992). Goniometers are designed to measure joint angles 

but are exoskeletal devices that cross the joint, potentially interfering with movement.  

Furthermore any shift from their original orientation leads to errors in angle estimation 

(Veltlink et al, 1996).  

4.3.2 Video analysis 

Another popular method for measuring and analysing human movement is digital 

videography, where motions are captured using one or multiple cameras, depending on 

whether a 2D or 3D analysis is needed. Once the movement has been captured, software 

packages such as Quintic and Silicon coach can be used to digitise and analyse the 

motion. The use of digital videography is relatively inexpensive compared to dedicated 

3D motion analysis systems and has the added benefits of being suitable for use both in 

a laboratory environment as well as in a game situation. A limitation of this method is 

the slow sampling rate associated with standard video cameras (typically 25Hz), which 

can result in large gaps in movement data and the possibility of key events being missed. 

Video analysis is also susceptible to errors within the digitisation phase, as blurring of 

fast moving objects can occur as a result of low shutter speeds, which can be required 

when collecting data in the field, due to insufficient lighting. Also the process of co-

ordinate digitisation requires a great deal of post processing (Bartlett, 2007).  To 

overcome some of these limitations, high speed video can be used, reducing gaps within 

the data, through increased frame rates >200 Hz. However, the use of high speed video 

increases the cost substantially and as with all imaging incurs focal issues when the 

movement is not parallel to the focal plane of the camera (Holmes, 2008).  

 

4.3.3 3D Motion analysis package 

3D motion analysis packages have been used for a wide range of measurements within 

engineering, animation and human sciences (Ohta et al, 2007; Riley et al, 2007). There 
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are two main classifications of 3D motion analysis systems - active and passive systems. 

Passive marker systems include Vicon, and Pro Reflex, which utilise multiple cameras to 

track retro-reflective markers placed on the object of interest. The advantages of these 

systems is a combination of high sampling rates, accuracy and resolution, allowing 3D 

movements to be captured and measured in terms of 3D joint positions and velocities. 

The disadvantage with these passive systems is the need for multiple cameras, resulting 

in substantial cost, to maintain line of sight between markers and camera. If marker 

occlusion occurs, data becomes intermittent and algorithms have to be used to predict 

marker trajectories which do not always produce accurate results. In addition, markers 

do not have specific identities, resulting in each marker having to be labelled 

individually by the investigator, increasing risk of error when trajectories of markers 

cross.  

 

Active systems such as CODA (Cartesian optoelectronic dynamic anthropometer) utilise 

LED’s for markers, which flash in sequence and, therefore, the identity of the marker is 

known, whereas passive systems infer marker identity from continuous observation. The 

advantages of these systems is that they can operate with only one head unit and, due to 

a wide viewing angle of approximately 80 degrees, a large capture volume can be 

measured. The problem with active systems is that each marker needs a drive box for 

power and communication purposes, potentially making them harder to attach without 

impeding movement or affecting results, and adding weight to the object being analysed. 

As with Vicon, data can be intermittent if markers are occluded from the camera, 

resulting in inaccuracies.   

 

4.3.4     Determination of measurement system 
The different measurement systems were analysed in terms of appropriateness and 

availability. After considering exoskeletal devices, video analysis and 3D motion analysis, 

it was determined that 3D motion analysis was the most suitable method for this study, 

due to its high sampling rate, accuracy, and resolution. Also the markers utilised within 

these methods impose minimal restriction on movement, allowing participants to move 

freely and as naturally as possible.  
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For this study, two 3D motion analysis packages were available, one active system, 

CODA, and one passive system, Vicon. A pilot test was conducted using both systems to 

evaluate their appropriateness for this analysis. From the pilot study, Vicon was deemed 

a more suitable system due to the greater number of head units reducing marker 

occlusion throughout the motion. Also the powerful Bodybuilder software which 

accompanies the Vicon system enables fast and automated data analysis, as well as 

allowing representative markers to be used when typical anatomical landmarks are not 

accessible or useable. 

 

4.4 Development of Measurement technique  

4.4.1 Shot selection 

The first step in developing a suitable method for assessing the effect of different cricket 

leg guards on shot kinematics and performance was to determine which movements are 

perceived to be most restricted whilst wearing cricket pads. There are twelve different 

cricket strokes typically played, which can be classified into two sub-groups of front or 

back foot strokes. Front foot strokes are traditionally aimed at fuller length deliveries, 

whereas back foot shots are normally used when playing at shorter deliveries (Morrison, 

1998). Observations of the movements about the knee and ankle joints for the different 

strokes played within a match indicated a difference in the movement requirements 

between the sub-groups, with back foot shots requiring finer rotational movements such 

as inversion and eversion at the ankle, with a greater emphasis on speed of motion 

rather than ROM, compared to front foot shots. Although there are obvious differences 

in movement patterns between shots, it is difficult to determine which are restricted 

more by leg guards, therefore a questionnaire was utilised to determine cricketers’ 

opinions and identify shots of interest for further investigation.  

 

Thirty eight UCCE (University Centre of Cricket Excellence) students completed the 

questionnaire in Appendix 3. They were asked to rank which of the following shots 

cricket leg guards restricted the most - full toss, hook, backward defensive, pull, 

backward attack, forward defensive, drive and sweep shots, with 1 representing most 
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restricted and 8 the least restricted. The results were then analysed using Friedman’s 

test, as described in Section 3.2.3, to determine whether there were any significant 

differences in perceived restriction of different shots. The Friedman test statistic, 

T=113.9 was greater than the Chi-square value of 18.5 for k=8 (significance level of 

0.01), indicating significant differences in perceived restriction between shots. Fisher’s 

LSDrank (least significant difference) was then used, to identify which of the shots 

differed significantly. The perceived restriction of a shot was considered to be 

significantly different to another, if the rank sums for the two shots differed by more 

than one LSDrank (41.9). The rank sum for each shot is shown in Figure 4.1 with a bar 

equal to the value of Fishers LSDrank evenly distributed about the rank sum. If the bars 

do not overlap then the rank sums must differ by more than the value of LSDrank and, 

therefore a significant difference was perceived between shots. It can be concluded that 

leg guards are perceived to cause more restriction when playing a sweep shot compared 

to a drive and cause significantly less restriction for all the other shots. There were no 

significant differences between the rest of the shots except the full toss which was 

perceived to be the least restricted by a significant amount.  Therefore, the three shots 

that were selected for further analysis within this study were the sweep and drive shots 

and also the pull shot as it was the most restricted back foot shot.  

 

4.4.2 Subjects  

Nine UCCE first and second team top order batsmen participated in the range of 

motion testing; the cricketers had a mean age of 19.6 years (±0.8 years). These players 

were deemed to have good technical ability and be familiar with wearing protective 

equipment whilst playing cricket.  

 

4.4.3 Test protocol 

Each of the nine participants performed five repetitions of each shot striking a 

suspended ball, which had been set at an appropriate height and position for each shot, 

such that the individual would be at maximal reach (Figure 4.2). A suspended ball was 

used to ensure any differences in movement were caused by the leg guard and not by 
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variations in delivery and to prevent any equipment from being struck. Five different 

conditions were evaluated: 

1. No pads worn (NP) 

2. Puma, Ballistic pads (P1) (Figure 2.2) 

3. Aero pads (P2) (Figure 2.2) 

4. Woodworm premier pads (P3) (Figure 2.2) 

5. 0. 9 kg ankle weights representative of the heaviest pad (weighted comparison).   

 

A weighted comparison (WC) was included to determine if any changes in movement 

were due to additional weight or restricted joint motion. Each shot was captured using a 

Vicon system, the setup is described further in section 4.5. To synchronize all trials, the 

suspended ball was marked with a piece of retro-reflective tape, so that time of impact 

could be identified.  

  

4.4.4 Measurement of performance 

To accompany the kinematic results from Vicon, impact location data was also gathered 

to identify any detrimental affects on shot performance caused by movement 

constraints.  Players were asked to set up for each shot at maximum reach without any 

pads on, ensuring they could still impact the ball on the estimated sweet spot of the bat 

provided, which was identified in accordance with Brooks et al (2006) work on sweet 

spot location in cricket bats. Once the player had found the appropriate starting 

position for each of the shots, their foot positions were marked to ensure a consistent 

start position. An impact label for the bat was constructed using a piece of plain paper 

attached to the face of the bat with a sheet of carbon paper placed over the top. The 

impact locations of each shot for all five conditions were recorded to allow comparisons 

between conditions in terms of accuracy and consistency of strike.  

 

4.4.5 Perceived Restriction 

A post use questionnaire was completed by the participants to evaluate the perceived 

restriction of each of the pads (P1, P2 and P3) (Appendix 4). Within this questionnaire 

rankings regarding perceived restriction and comfort were gathered through the use of 
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line scales, which allowed the subjects to place a mark at a point that represented how 

restrictive and uncomfortable each pad felt compared to batting without pads.  

Participants were also asked to identify any sources of perceived restriction on a 

schematic diagram of the legs. This data was collected to enable comparisons to be made 

between perceived and actual movement restrictions. 

4.5 Vicon data collection 

4.5.1 Calibration 

An eight camera Vicon system was set up to capture the 3D motion data as depicted in 

Figure 4.3. Each camera unit consists of a video camera, strobe head assembly, lens and 

an optical filter, as shown in Figure 4.4. The infrared light produced by a ring of light 

emitting diodes (LEDs), is reflected off retro-reflective markers placed on the subjects’ 

body and captured by the video camera, producing a high contrast image.   

 

Prior to data collection, a two phase calibration was completed in accordance with the 

Vicon user manual, consisting of a static and dynamic calibration, using the Ergocal 

calibration frame and wand (Figure 4.5). Once both phases had been performed, the 

system calculated the error within each camera; if this value was too high the calibration 

was deemed unacceptable, resulting in the cameras being adjusted, prior to 

recalibration.  After calibration, the system calculated a mean residual value of 0.613mm 

(±0.07mm) and was deemed acceptable in accordance with previous studies (Roosen, 

2007). The residual value is the root mean square of the distance between a ray 

projected from the centre of the strobe ring to the centroid of a retro-reflective marker 

and the location on the lens where the reflected ray from the marker hits (Roosen, 

2007). 

 

4.5.2 Marker set up 

A standard marker set up was not appropriate for this study, as markers placed on the 

standard anatomical land marks at the knee and ankle would not be visible due to being 

covered by the protective equipment. Therefore, the CAST technique was used 

(Cappozzo et al, 1997; Hobbs et al, 2006; Lloyd et al, 2000).  This method required three 
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or more markers to be placed on the relative body segment which enabled a new local 

coordinate system to be created from the marker positions that was then related to the 

global coordinate system. Once this local coordinate system had been created, the 

position of the joint centre was calculated relative to the marker cluster, through a static 

trial where markers were present on the anatomical landmarks.  For the static trial, the 

participant was captured standing in the centre of the capture volume in the anatomical 

position (feet  

Table 4. 1:  Marker set and anatomical position, with redundant markers for static capture only 
in bold 

 
apart, arms away from the body with palms facing forward ensuring no markers were 

occluded) for 10 seconds; a redundant marker set of 24 retro-reflective passive markers 

Marker Definition Position 

LASI 

RASI 

Left anterior super iliac 

Right anterior super iliac 

Bony protrusion of the anterior superior iliac. 

LPSI 

RPSI 

Left posterior super iliac 

Right posterior super iliac 

Dimples created by the posterior super iliac. 

LTHIS 

RTHIS 

Left thigh superior 

Right thigh superior  

Placed on the left and right thigh 

LTHII 

RTHII 

Left thigh inferior 

Right thigh inferior 

Placed on the thigh approximately 2 inches 

below the LTHIS or RTHIS. 

LTHIA 

RTHIA 

Left thigh anterior 

Right thigh anterior 

Placed on the thigh, 1 inch below the L/ RTHIS 

and 2 inches forward of the line between L/ 

RTHIS and L/ RTHII. 

LKNEL 

RKNEL 

Left knee Lateral 

Right knee lateral 

Along the flexion/ extension axis of rotation at 

the lateral femoral condyle. 

LKNEM 

RKNEM 

Left knee medial 

Right knee medial 

Along the flexion/ extension axis of rotation at 

the medial femoral condyle. 

LANKL 

RANKL 

Left ankle lateral 

Right ankle lateral 

Along the flexion/ extension axis of rotation at 

the lateral malleolus. 

LANKM 

RANKM 

Left ankle medial 

Right ankle medial 

Along the flexion/ extension axis of rotation at 

the medial malleolus. 

LMTPL 

RMTPL 

Left metatarsal lateral 

Right metatarsal lateral 

Dorsal aspect of the fifth metatarsal head. 

LMTPM 

RMTPM 

Left metatarsal medial 

Right metatarsal medial 

Dorsal aspect of the first metatarsal head. 

LHL Left heel Placed on the back of the foot.  
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of 14mm diameter were attached, as illustrated in Figure 4.6 (Table 4.1). For the NP 

trials, the full marker set up was also used to assess the accuracy of the cluster markers 

when compared to markers placed on anatomical land marks. Once the static and NP 

trials were complete, superfluous markers were removed; these included the medial and 

lateral knee and ankle markers for both legs (Table 4.1).  

 
 

4.5.3 Movement data collection 

Once a static trial had been captured the participant was asked to perform each of the 

three shots (pull, drive, and sweep) five times for each of the four conditions; for each 

participant the order was randomised to prevent order effects.  

4.6 Data processing  

4.6.1 Reconstruction of movement 

The 3D positions of each marker were calculated within the Vicon software, through the 

combination of the 2D information from each camera and calibration data; this process 

was conducted in software packages Workstation and Bodybuilder. To optimise the 

reconstruction process, camera settings were manually adjusted to reduce flickering and 

jumping of markers through a trial and error process.  

4.6.2 Labelling 

Once the 3D motion data had been successfully reconstructed, all the markers needed 

to be identified and labelled. A frame was chosen where all markers were in view, with 

each marker being labelled from top to bottom, left to right. This systematic approach 

was used for all trials to minimise risk of error within the labelling process. The entire 

motion file was then checked to ensure occluded markers were relabelled after 

disappearing from view. Generally gaps within marker trajectories due to occlusions can 

be filled through one of two methods, a spline-fill or by copying the trajectory of another 

marker. Both methods have their limitations, for example, a spline-fill can create 

inaccurate data where there are sudden changes in motion pattern and therefore should 

only be used to fill small gaps within the data. To prevent inaccurate data being 

collected, a maximum fill size was set at 10 frames; for any gaps in the data greater than 
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this, markers from the same segment were tracked, as this method identifies changes 

within the trajectory with a greater degree of accuracy.  

 

4.6.3 Modelling and exporting data 

The data could now be processed using the software package Bodybuilder which 

transforms marker positions into kinematic and kinetic data. For this study, a specific 

lower-body model was written defining each segment (Appendix 5). Through this code, 

the joint centre location could be calculated from the cluster markers allowing Euler 

angles (rotation sequence zyx) between segments to be calculated. Once the model had 

been executed on the motion data files, all trials were synchronised by cropping each 

time series to include 1 second before and after impact, which was deemed suitable as it 

enabled the whole action to be analysed for all trials. From the data, the left knee angle 

(LKA), right knee angle (RKA), left ankle angle (LAA) and right ankle angle (RAA) were 

calculated. Flexion/extension angles were analysed throughout the entire movement as 

well as at specific points within the batting motion (0.5 s before impact, impact and 0.5 s 

after impact). A Shapiro-Wilk test was used to establish the normality of data sets. 

Providing the data was normally distributed (p>0.05) a one-way repeated measures 

ANOVA was used to determine if there was a main effect between conditions, secondly 

a Tukey-Kramer post-hoc test was completed to determine which results were 

significantly different (p≤0.05).  

 

4.7 Results 

4.7.1 Joint angles 

The initial analysis focused on the accuracy and suitability of the marker clusters. To 

determine the accuracy of the 3D model, joint centre positions and joint angle 

(flexion/extension) at the knee and ankle when calculated using the clusters were 

compared to those obtained using the markers on the knee and ankle. Table 4.2 

outlines difference in joint centre location for all nine subjects, with a mean root mean 

square (RMS) of 1.11 mm and 1.29 mm for the knee joint centre (KJC) and ankle joint 

centre (AJC) respectively. The difference between joint angles at the knee and ankle 

when calculated using the clusters were compared to the angles obtained from the 
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markers on the knee and ankle for the NP trials. Figure 4.7 illustrates the difference in 

measurement between cluster and landmark measurements obtained from an individual 

NP trial for all three shots of Subject 5, which was a good representation of all trials. 

The results illustrate a maximum error within ±4° for all three shots. This magnitude of 

error was deemed suitable as previous studies have identified that errors of 4.7° can be 

caused by skin artefact (Reinschmidt et al, 1997). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Further analysis of the data was conducted using the following procedure. Initially, a 

qualitative analysis was performed to observe any differences in movement patterns 

between participants as well as between conditions.  All nine subjects were then analysed 

individually by assessing differences between conditions across the whole time series, 

and at three intervals 0.5 seconds before impact, impact and 0.5 seconds after impact. 

Differences in joint angle between conditions for each subject and for the entire group 

were statistically analysed. Finally, the approximate entropy for all conditions was 

calculated for all nine subjects to compare the regularity of the movement throughout 

the entire time series (Pincus, 1991). 

  

The analysis procedure resulted in a large amount of data; therefore, the following 

section presents the results for the left knee, as this is subject to the largest ROM 

throughout all three shots. Figure 4.8 illustrates the mean movement pattern of the LKA 

for the three different shots for each of the nine participants in the NP condition. The 

 KJC error 
RMS (mm) 

AJC error 
RMS (mm) 

Subject   

1 0.78 1.23 
2 1.70 1.32 

3 0.71 1.26 
4 1.23 1.36 
5 1.55 0.82 
6 0.49 1.67 
7 0.76 1.13 

8 1.65 1.42 
9 1.15 1.47 

Table 4. 2: Root mean square (RMS) difference in joint centre position at the knee joint centre 
(KJC) and ankle joint centre (AJC) when calculated using the knee and ankle landmarks and the 

cluster markers for all 9 subjects 
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angle measured is the flexion/ extension of the knee, where an angle of 180° represents 

a straight leg and 0° a fully flexed leg. Although, the movement time series for all 

subjects follows a similar sequence, for the drive and sweep, differences in the 

magnitude and timing of flexion and extension from person to person can be seen, 

highlighted by the maximal standard deviations between subjects of 15.53°, 19.08°, 

23.5° at any one point for the drive, sweep and pull, respectively. It can be seen that the 

pull shot is more dependent on individual technique as there is not a consistent 

movement pattern exhibited by all players, whereas the drive and sweep follow a more 

consistent pattern. For both the drive and sweep shots the movement pattern consists of 

a slight flexing of the knees as the players prepare to play the shot (-1 to -0.8 seconds), 

the straightening of the leg as they take one stride forward to set the front foot in the 

correct position (-0.8 to -0.4 seconds) and finally flexing the knee to get into the correct 

position as they play the shot (-0.4 to 0 seconds). 

 

Figures 4.9 to 4.11 illustrate the results for three of the subjects (3, 5, and 9) for the 

sweep; these subjects were chosen as the combination of their results was deemed to be 

representative of all the data. The greatest amount of flexion and extension occurs at the 

left knee whilst performing the sweep, and so, this angle was used to illustrate the 

findings. Parts a) to d) of Figures 4.9 to 4.11 compare each subject’s mean motion 

without pads to the other four conditions, whilst all five motions are overlaid in part e). 

Part f) illustrates the consistency of the motion regardless of condition.  The results 

demonstrate that the pads do affect individual subjects, but in different ways and to 

different degrees. In particular, Subject 3 had less flexion of the knee post-impact (t>0) 

when wearing P2 and P3 compared to the NP, P1 and the WC (Figure 4.9). The padded 

and WC conditions appeared to increase extension of the leg as the player steps forward 

to get into position (t=-0.5 to -0.2) for Subject 5 in comparison to batting bare-legged 

(Figure 4.10), whereas, Subject 9 demonstrated less flexion of the knee post impact in all 

padded and WC conditions when compared to NP (Figure 4.11).  

 

The time series were investigated in more detail at -0.5, 0 and +0.5 seconds to determine 

if there were any significant differences within the movement patterns between 

conditions. Figures 4.12 to 4.14 illustrate the mean left knee angle during the sweep at 
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each time interval for all nine participants. A Shapiro-Wilk test for establishing the 

normality of data sets was performed, identifying the data for all three time intervals was 

normally distributed (p>0.05). Therefore, to test for significance, a one-way ANOVA was 

utilised; no significant differences were found between any of the five conditions at any 

of the three time intervals (F=<3.72, p>0.241), which could be expected due to the 

majority of differences being within the bounds of the standard deviations. Analysing 

the results on an individual basis rather than as a group did reveal individual cases 

where movement appeared to be significantly restricted due to different pads but the 

findings were specific to each individual and no clear trend could be found for all of the 

subjects. 

  

Finally, an approximate entropy analysis was performed on all trials to assess the 

regularity of each movement and determine if leg guards altered the way in which the leg 

moved. The approximate entropy (ApEn) was calculated through the use of the 

MATLAB code created by Challis (2001) which represents the method developed by 

Pincus (1991). ApEn takes a value of 0 upwards with 0 representing a completely regular 

signal and the greater the ApEn value the more irregular. In this study, a run length of 2 

and filter length of 0.5 were used. Table 4.3 shows the range and average ApEn; to 

determine if there were any significant differences in ApEn between conditions an 

independent samples t-test was performed. No significant differences between 

conditions (p>0.174) were found.  

Although, the LKA results have been focused on within this section, the LAA, RKA and 

RAA were all analysed using the same process. As with the LKA, there were no 

significant differences (p>0.263) found between the five conditions at any of the time 

intervals (-0.5 s, 0 s, or +0.5 s), or in the regularity of movement (p>0.341). 

 

 N/P P1 P2 P3 Weight 

Range 0.08-0.33 0.13-0.33 0.15-0.3 0.15-0.37 0.13-0.30 

Mean 0.22 0.22 0.23 0.24 0.23 

Stdev 0.10 0.07 0.06 0.10 0.07 
 

Table 4. 3: ApEn values for all 5 conditions 
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4.7.2 Impact location 

During the testing, the impact location on the bat was recorded to determine if wearing 

cricket leg guards restricted movements and affected shot performance. Figure 4.15 

illustrates an impact label for Subject 5 performing a pull shot whilst wearing no pads; 

the impact data was analysed by measuring the distance between the approximate sweet 

spot of the bat and the centre of the recorded impact. From this, it was possible to 

determine if cricket pads have a negative affect on shot performance in terms of accuracy 

(how close the impacts are to the datum) and consistency (how well clustered the 

impacts are). Figures 4.16 to 4.18 illustrate the location of all participants’ impacts for 

each condition for the three shot types. Each ball impact was measured as an x and y 

distance from the sweet spot datum, with positive directions indicated in Figure 4.15. 

The results for the nine different players were compiled and Figures 4.19 to 4.21 show 

the mean impact location for each condition with an ellipse used to illustrate the 

standard deviation in the x and y axes. From the impact data, maximum mean 

differences between any 2 conditions of 8.9mm, 12.13mm, and 7.4mm in the x 

direction and 10.9mm, 13.95 and 8.56mm in the y direction were found for the drive, 

pull and sweep respectively. In relative terms, this is a difference of less than one fifth of 

the diameter of a cricket ball (78mm), this small difference was reflected within the 

ANOVA results, which indicated that there were no significant differences between any 

conditions across all three shots (F=0.637, p=0.619).  

 

As a measure of consistency, all shots were analysed through the use of ellipses (Figure 

4.19 to 4.21) depicting the variation in both the x and y direction about the mean for 

each of the five conditions. Differences in ellipse size, shape and position are observable, 

however, Bartlett’s test for homogeneity of variances revealed no significant differences, 

due to the homogeneity of variance equalling 3.42, 4.39, 1.98 for the drive pull and 

sweep respectively, which are all lower than the Chi-squared value of 9.49 (for k=5 at a 

significance level of 0.05). 
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4.7.3 Perceived restriction 

To determine if there is a relationship between perceived and actual restriction, players 

perceptions were collected after all shots had been played using each of the pads. All 

three pads were compared on one scale allowing a rank order to be produced, with the 

pad deemed the most restrictive given a rank of 1 through to a rank of 3 for the least 

restrictive pad. The ranks for all nine participants were then summated for each pad to 

give a rank sum to be determined and Fisher’s LSDrank, was then used to determine 

significant differences in perceived restriction between pads. The results suggest that the 

participant’s perceived P3 to be significantly more restrictive than P1 and P2 (Table 4.4), 

due to the difference in rank sums being greater than the value of LSDrank (8.32). No 

significant difference between P1 and P2 (p<0.05) was found. 

 

Restriction 
Subject P1 P2 P3 

1 2 3 1 
2 3 2 1 
3 2 3 1 
4 3 1 2 
5 1 3 2 
6 2 3 1 
7 3 2 1 
8 2 3 1 
9 2 3 1 
    

Rank sum 20 23 11 
    

LSDrank 8.3 .05sig  
 

Table 4. 4: Rankings of perceived restriction for P1, P2 and P3 
 

The participants were also required to record on an illustration of their legs the regions 

of discomfort. The results from all subjects were compiled and depicted on a schematic 

diagram of both legs from an anterior and posterior perspective. Figure 4.22 illustrates 

the results through the use of a colour scale representing the frequency of identification 

of a specific location as a source of discomfort, ranging from light yellow representing 1 

to dark red representing 6+. From the results it can be seen that P3 caused a greater 

number of sources of discomfort, with 10 locations being highlighted compared to seven 

for P2 and six for P1. A higher response frequency was also found for P3, with all 9 
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participants identifying the back of the knee on both legs as being a major source of 

discomfort, whereas on the other two pads, no area was identified more than 5 times.  

 

4.8 Discussion 

 
The influence of different leg guards on batting kinematics and shot performance in 

cricket were analysed within this study by comparing actual and perceived restriction. A 

technique involving the use of cluster markers was developed to assess leg kinematics 

whilst wearing leg guards due to appropriate anatomical land markers being covered by 

the protective equipment in question. With the use of cluster markers on the foot and 

thigh, errors were present in joint angle calculations when compared to those measured 

from the appropriate anatomical landmarks, however, these errors were <4° for all shots 

and can be attributed to skin artefact, which has been found to produce errors of up to 

4.7° when measuring flexion/extension of the knee (Reinschmidt et al, 1997). The 

results demonstrated that leg guards can influence ROM for some players, but the effect 

is individual to the specific player and no consistent trends could be found for all 

players. The impact location data also supported these findings, as leg guards were not 

found to affect shot accuracy or performance. However, seven out of the ten participants 

perceived P3 to be more restrictive than P1 and P2, whereas only three participants were 

found to be restricted by P3, of which only 2 ranked it as the most restrictive. To gain a 

greater understanding of why players perceived some pads to be more comfortable than 

others, they were asked to identify sources of discomfort. P3 was identified as having 

more areas that cause discomfort, which were identified with greater frequency than for 

the other pads. One area identified by all 9 participants was the strap located behind the 

knee of P3 and appeared to be the largest difference between the three padded 

conditions.  

 

The results within this chapter suggest that cricket leg guards do not significantly affect 

shot kinematics or performance; however, different pads do elicit varying degrees of 

perceived restriction. These findings warrant further analysis of the interaction between 

the player and the leg guard, investigating the relationship between strap design and 
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perceived restriction, as well as further analysis determining the effect of leg guards on 

running performance.   
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Chapter 5 
 

 
 

5 The effect of cricket leg guards on running performance 

 
The studies presented so far in this thesis have highlighted that sports PPE is often 

perceived to have a negative affect on performance. During interviews with cricketers, 

they revealed that leg guards can inhibit running performance and that the degree of 

this restriction varies between pads. Therefore, the aim of this chapter was to determine 

if running performance was negatively affected as a result of wearing cricket leg guards 

and, if there was a negative affect on performance determine which part of the run was 

most affected (running or turning) and the cause.   

 

The initial part of this chapter describes the method used to measure the effect of leg 

guards on running performance when compared to running without pads. The second 

part details the development of a dynamic test method for assessing running kinematics 

and ground reaction forces (GRF) to determine possible causes of decreases in 

performance, as well as to measure pad movement about the leg.  

 

The majority of literature regarding the affect of PPE on range of motion has focused on 

industries such as the armed forces, services (police etc) and chemical hazard protection, 

as discussed in Section 4.2. Over the past decade, advances in research regarding sports 

PPE have started to be made with Green et al. (2000) identifying the need to develop a 

suitable measurement technique to assess the influence of different protective knee 

braces have on American football manoeuvres. Using dynamic test methods in realistic 

environments, Green et al. demonstrated that the detrimental affects of different knee 

braces could be assessed and compared to one another to allow end-users to choose a 

product that will help them to maximise performance. The most relevant study of this 

type was conducted by Loock et al. (2006), where the effect of cricket leg guards on 

running performance was measured. Three leg guards were tested weighing 1.85 kg, 1.70 

kg and 1.30 kg per pair but were not found to significantly affect the overall time taken 

to complete three runs or the time taken to turn between each run when compared to 
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one another. Although this testing suggests wearing different leg guards does not affect 

performance, since this testing was completed new lightweight pads have been 

introduced to the market and required testing. To build on the testing completed by 

Loock et al. (2006), a comparison between running with and without pads was required 

to determine the true effect of cricket leg guards on running speed, rather than solely 

comparing different brands of pad. To achieve this, a two-stage methodology was 

adopted. The first stage focused on further developing previous work  by Loock et al. 

(2006) assessing the effect of cricket leg guards on running performance when compared 

to running without leg guards. The second stage aimed to further explain the results 

found within the first stage of testing, through the use of different biomechanical 

techniques which looked at possible causes of reduced running speed. All methods used 

within both stages of testing were approved by the Loughborough University ethics 

committee prior to subject recruitment. 

 

5.1 Stage 1: Running time analysis 

5.1.1 Method 

Ten male cricketers with a mean age of 19 years old (±0.8 years), all playing at county 

first or second team level, participated in a running time study. Each participant ran 

three consecutive runs whilst carrying a bat, this was repeated four times with 1 minutes 

rest between each three, starting with their lead foot on the crease each time. This 

sequence of four sets of three runs was repeated for five different conditions (No pads, 

Pad 1, Pad 2, Pad 3 and a weighted comparison). Running performance was evaluated 

using four smart speed light gates (Fusion Sport) (Figure 5.1) positioned at each crease 

and 5 meters from each crease, as shown in Figure 5.2, each light gate was set at 

shoulder height to minimise the chance of the bat or hand breaking the beam, 

maximising consistency. The two light gates positioned on each crease were used to 

measure “total-time” taken to complete 3 runs and the two gates positioned 5 meters 

before each crease were used to measure “turn-time”, which was represented by the time 

taken to run from 5 meters before the crease to 5 meters after. Each player was given 15 

minutes rest between conditions to minimise any effects of fatigue, and condition order 
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was randomised to prevent order effects. A no pad (NP) condition was included to 

determine an unrestricted benchmark against which the different pads could be 

compared. The three pads tested within this study were chosen as a suitable 

representation of the current market, with Pad 2 (P2) representing the more modern 

design of pads, constructed of a single piece of moulded closed cell polyethylene foam. 

Pad 3 (P3) represented the more traditional pad construction, comprising of multiple 

foams and pieces of cane for added support. Pad 1 (P1) was included as a compromise 

between the two extremes, and again had a multiple foam construction (Figure 2.2). As 

well as varying in construction the pads also varied in mass, with P1, P2 and P3 having 

an individual pad mass of 0.85 kg, 0.5 kg and 0.9 kg per pad respectively. In order to 

determine if any impedance in running performance was solely attributable to 

additional mass, a “weighted comparison” (WC) was conducted. A 0.9 kg mass was  

positioned on the shin of each leg in order to be comparable to the heaviest pad used 

(P3), but imposed minimal restriction around the knee and ankle, and had much less 

bulk (Figure 5.3).   

 

5.1.2 Statistical analysis 

The Shapiro-Wilk test was used to establish the normality of data sets. Providing the 

data was normally distributed (p>0.05), a one-way repeated measures ANOVA was used 

to determine if there was a main effect between conditions, secondly a Tukey-Kramer 

post-hoc test was completed to determine which results were significantly different 

(p≤0.05). A Gabriel comparison interval was used to illustrate where significant 

differences were identified between conditions (Gabriel, 1978). The Gabriel comparison 

was calculated by taking the standard error of the mean for a group and multiplying it by 

the studentized maximum modulus, this was then multiplied by the square root of one-

half. The Gabriel comparison is then used to illustrate the upper and lower limits for 

p=0.05, with no overlap between the groups indicating a significant difference.  

 

5.1.3 Results 

The mean “total-time” for three runs was calculated individually for every participant for 

each condition, a consistent trend was found across all participants, as illustrated in 
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Figure 5.4. It can be seen that all the cricketers produced their fastest times when not 

wearing pads or an additional mass. The one-way ANOVA results identified that there 

was a significant difference between conditions (F=10.34, p=0.000) in terms of “total-

time”. The post-hoc results revealed that the “total-time” for all three padded conditions 

and the WC were significantly slower than the NP condition (p<0.02) (Figure 5.5a). 

“Total-time” increased by up to 0.5 seconds when comparing P3 with the NP condition 

(p=0.000), which equates to approximately 3 meters when at a speed of 6m/s. 

Differences between padded conditions were also identified with P3 resulting in 

significantly slower times in comparison to P1 (p=0.011), P2 (p=0.001) and the WC 

(p=0.019). P3 was the heaviest of the three pads, however, the players were able to run 

significantly faster when wearing the same mass as P3 strapped to their shins (i.e. the 

WC). In fact, no significant differences were found between pads P1, P2 or the WC 

(p>0.821), despite considerable differences in mass, suggesting that the increase in “total-

time” is not solely attributable to additional mass.   

 

As well as “total-time”, “turn-time” was measured, the data presented is the mean time 

taken to turn, with the data for turn one and two being combined, as there was no 

significant difference found between turns within a trial (p=0.931). The same statistical 

tests were performed on this data as described for the “total-time” analysis, with no 

significant differences between conditions emerging (p>0.864) (Figure 5.5b), suggesting 

that differences in time were due to the negative effects of pads on straight line running, 

rather than on time taken to change direction.  

 

These results suggest that running performance is inhibited by cricket pads, due to a 

negative effect on straight line running speed. The resultant increase in “total-time” is 

not solely attributable to pad mass, as there were no significant differences between P1, 

P2 or the WC, despite a difference of up to 0.4 kg in mass. Also P3 was found to inhibit 

performance to a greater degree than the WC despite being of equal mass. These results 

suggest there are further causes of this decrease in performance, including possible 

effects on running kinematics, and so this was studied further in the follow-up test 

described in the next section.  
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5.2 Stage 2: Running Biomechanical Analysis 

The initial testing identified the need for further analysis of how cricket leg guards affect 

the end-user in terms of running kinematics, in order for the design of cricket leg guards 

to enable maximal performance. There has been a substantial amount of previous 

research into the biomechanics of running (Cavanagh and Lafortune, 1980; Gottschall 

and Kram, 2005; Novacheck, 1998), through which two major factors have consistently 

been related to sprinting velocity, these are ground reaction force (GRF) and joint 

angular motion (Hunter et al, 2005). GRF has been defined as a force equal in 

magnitude and opposite in direction to that applied to the ground by the foot during 

the stance phase. For the purpose of analysing running kinematics, the GRF can be 

decomposed into three orthogonal components, the anteroposterior component, the 

vertical component and the mediolateral component. Cavanagh and LaFortune (1980) 

categorised runners into three distinct classifications based on the location of their 

centre of pressure (COP) at the time of initial contact. The three classifications have 

been identified as forefoot, midfoot and rearfoot strikers. Forefoot strikers are runners 

whose COP is over the front third of the foot at initial contact, whereas a runner is 

classified as a midfoot or rearfoot striker when the COP is over the middle third or most 

posterior third of the foot at initial contact respectively.  The shape and magnitude of 

each GRF component has been found to be dependent on classification of runner.  

 

The anteroposterior forces generated during running are directly associated with the 

horizontal acceleration of the body during the support phase and have been 

characterised as being biphasic. The initial phase is termed the braking force, typically 

occurring at the beginning of the stance phase and acts in a posterior direction, 

therefore, opposing forward motion, resulting in a period of deceleration. The second 

phase is termed the propulsive force, which occurs after the braking force in an anterior 

direction (in the direction of locomotion) (Hunter et al. 2005, Munroe et al., 1987). The 

difference in magnitude between the braking and propulsive force determine the 

resultant velocity of the runner; if the resultant force is negative the runner will 

decelerate (braking force > propulsive force), if it is positive the runner will accelerate 

(braking force < propulsive force) and if the two forces are equal the runner will 

maintain a constant speed (Miller, 1990; Toon, 2008). It is reported that, to maximise 
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sprint velocity, braking force needs to be minimised with propulsive forces being 

maximised (Mero and Komi, 1986; Mero et al. 1992; Wood, 1987). Anteroposterior 

forces have been demonstrated to vary depending on classification of runner, as midfoot 

strikers have been found to produce a double peaked braking force, whereas, rearfoot 

strikers create a single peaked pattern (Cavanagh and LaFortune, 1980) as illustrated in 

Figure 5.6.  

 

The vertical component of GRF has the largest magnitude of the three force 

components, typically in excess of 2.2 body weights (BW) when running at 4.5ms-1 

(Cavanagh and LaFortune, 1980). For rearfoot and midfoot strikers the vertical 

component is typically bimodal in shape, as depicted in Figure 5.7. When discussing 

rearfoot strikers, the initial peak is referred to as the passive force peak or impact peak, 

with the second peak being termed as the active force peak (Nigg et al, 1983). There is a 

key difference between rear and midfoot strikers in the magnitude of the passive force 

peak, with rear foot strikers displaying a much larger and prominent passive peak when 

compared to midfoot strikers (Figure 5.7). Literature suggests that the vertical 

component of GRF is positively correlated with speed, as Nigg (1986) showed that as 

running speed doubled from 3m/s-1 to 6m/s-1  the impact force peak values increased 

from between 1300 N and 1400 N to between 2090 N and 2240 N.  

 

The final component of GRF is the mediolateral force which identifies how the centre 

of mass of the body transfers from side to side during the stance phase. It has been 

identified as the smallest of the three components, with reported peak to peak 

amplitudes of 0.35 BW for midfoot strikers and 0.12 BW for rearfoot strikers 

(Cavanagh and LaFortune, 1980) and, perhaps for this reason, has been studied to a 

lesser extent. 

 

Joint angular motion is another major factor in sprint performance and it has been 

identified that individual joint segment movement patterns vary according to locomotive 

speed. Guo et al. (2006) identified that changes in lower extremity joint angular motion 

as a result of increased velocity, resulted in increased stride length. As speed increases, it 

has been found that knee flexion decreases in the early stance phase, then significantly 
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increases in the swing phase enabling longer strides to be taken. Ankle kinematics were 

also shown to be speed dependant with subjects demonstrating increased plantarflexion 

during push off allowing greater power production, and decreased dorsiflexion during 

the swing phase (Guo et al., 2006).   

 

The aim of this second stage of testing was to identify if wearing different pads causes a 

measurable difference in running kinematics, which could account for the negative 

effect on running performance not attributable to weight. Pad movement was also 

measured to help determine possible causes of changes in running kinematics.  

 

5.2.1 Method 

For this study, nine male county 1st and 2nd team players were used with a mean age of 

20.2 years old (± 1.1 years). The nine subjects within this testing were different to those 

used within Stage 1; this was deemed acceptable due to the consistent trend 

demonstrated across the 10 subjects within Stage 1. Players were asked to perform six 

single runs for each of the five conditions outlined in the running time testing (NP, P1, 

P2, P3 and WC); again, condition order was randomised. The use of single runs rather 

than three consecutive runs was deemed acceptable as this study focused on the section 

of a run where the player is at maximal speed rather than accelerating/ decelerating, as 

Stage 1 identified this to be where cricket pads impede performance. However, to 

replicate the running pattern, in terms of accelerations and decelerations the players 

were asked to start from a stationary position and stop at a point 17.7m away from the 

start point. The start point was approximately 8m from the force plate such that the 

player would strike the force plate within their typical stride pattern (Figure 5.8). The 

exact start position was determined from trial runs and was recalculated for each 

condition. Three of the six runs were designed to obtain a left foot strike, the other 

three a right foot strike, by varying the lead foot/ leg at the start point. For all data 

captures the direction of locomotion was along the x axis of the force plate.  

 

Motion data was collected using a four camera CX1 Coda system (Figure 5.9) sampling 

at 200Hz with two integrated Kistler 9281CA force plates, sampling at 1000Hz. The 
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kinematic data was taken from the middle segment of the run between 6m and 10m 

with the force plate in the centre of this volume (Figure 5.10). Due to the protective 

equipment, a standard marker set up was not appropriate, as markers placed on the 

standard anatomical land marks at the knee and ankle would be covered by the leg 

guards, therefore, the CAST technique was used (Cappozzo et al, 2005).  For the static 

trial, the marker positions were captured whilst the participant was standing in the 

centre of the capture volume with their arms raised so no markers were occluded; a 

redundant marker set of 32 active markers was used (Figure 5.11), which incorporated 

additional markers on both thighs, shanks and feet for the clusters (Table 5.1). The 

static trial was an essential procedure within the data collection process and was used to 

determine the relative position of the cluster markers to those placed on the anatomical 

landmarks, which are deemed as being representative of the joint centres. Once the 

static trial had been captured, two walking and running trials were completed again 

without leg guards to assess accuracy of the marker set up. The joint centre positions 

(Table 5.2) and joint angles (Figure 5.12) at the knee and ankle when calculated using 

the clusters were compared to those obtained using the markers on the knee and ankle. 

The difference between the two methods are outlined in Table 5.2, with a mean root 

mean square (RMS) of 1.64mm and 1.54mm across all subjects being found for the knee 

joint centre (KJC) and ankle joint centre (AJC) respectively. The maximum difference in 

knee angle between the cluster and anatomical marker placements was 3°, which is less 

than the amount of skin artefact identified by Reinschmidt et al. (1997), therefore, the 

CAST method was deemed appropriate. Once the static trial and accuracy tests were 

completed, markers that would be covered by the leg guards were removed; these 

included the medial and lateral knee and ankle markers for both legs. For the padded 

conditions, two additional markers were placed on each pad allowing the movement of 

the pad relative to the leg to be captured (Figure 5.13). 
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Marker Definition Position 

L/RASI 

RASI 

Left anterior super iliac 

Right anterior super iliac 

Bony protrusion of the anterior superior iliac. 

LPSI 

RPSI 

Left posterior super iliac 

Right posterior super iliac 

Dimples created by the posterior super iliac. 

LTHAS 

RTHAS 

Left thigh anterior superior 

Right thigh anterior superior  

Placed on the left and right thigh 

LTHPS 

RTHPS 

Left thigh posterior superior 

Right thigh superior 

Placed on the thigh approximately 2 inches 
posteriorly to the LTHAS or RTHAS. 

LTHAI 

RTHAI 

Left thigh anterior inferior 

Right thigh anterior inferior 

Placed on the thigh, 1 inch below the L/ 
RTHAS and 2 inches forward of the line 
between L/ RTHIS and L/ RTHII. 

LTHPI 

RTHPI 

Left thigh posterior inferior 

Right thigh posterior inferior 

Placed on the thigh, 1 inch below the L/ 
RTHPS and 2 inches behind the L/ RTHAI 
and L/ RTHAI. 

LKNEL 

RKNEL 

Left knee Lateral 

Right knee lateral 

Along the flexion/ extension axis of rotation at 
the lateral femoral condyle. 

LKNEM 

RKNEM 

Left knee medial 

Right knee medial 

Along the flexion/ extension axis of rotation at 
the medial femoral condyle. 

LCALFS 

RCALFS 

Left calf superior 

Right calf superior 

Placed 2 inches below the line between the 
L/RKNEL and the L/RKNEEM on the back 
of the calf. 

LCALFA 

RCALFA 

Left calf inferior  

Right calf inferior 

Placed 5 inches directly below the L/RCALFS 

LANKL 

RANKL 

Left ankle lateral 

Right ankle lateral 

Along the flexion/ extension axis of rotation at 
the lateral Malleolus. 

LANKM 

RANKM 

Left ankle medial 

Right ankle medial 

Along the flexion/ extension axis of rotation at 
the medial Malleolus. 

LMTPL 

RMTPL 

Left metatarsal lateral 

Right metatarsal lateral 

Dorsal aspect of the fifth metatarsal head. 

LMTPM 

RMTPM 

Left metatarsal medial 

Right metatarsal medial 

Dorsal aspect of the first metatarsal head. 

LFTC 

RFTC 

Left foot central 

Right foot central 

Placed directly 2 inches below the lateral 
Malleolus  

LHL 

RHL 

Left heel 

Right Heel 

Placed on the back of the foot.  

Table 5. 1: Marker set and anatomical position, with redundant markers for static capture only in 
bold 
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The measurements taken from this study were stride parameters (stride width and 

length), kinematic data (knee and ankle joint angles (Cardan angles with a rotation 

sequence of  xyz) and velocities, stance time, and stride frequency), GRF and pad 

rotation about the leg, allowing a biomechanical analysis of cricket leg guard influence 

on running movement and force generation, as well as determining the affect of pad 

movement on perceived comfort. Stride length was calculated as the distance between 

proximal end position of the foot at ipsilateral heel strike to the proximal end position 

of the foot at the next ipsilateral heel strike. The vector between these two points was 

then used in the calculation of stride width. The cross product of this vector with the 

position of the intermediate step gave the stride width i.e. the medio-lateral distance 

between proximal end position of the foot at ipsilateral heel strike to the proximal end 

position of the foot at the next contralateral heel strike. The GRF data was measured in 

terms of body weight (BW) which was calculated by dividing the force data by each 

participant’s weight for the NP condition and dividing by their weight plus the weight of 

the pad or leg weight for the other conditions. This was to compensate for differences in 

subject and pad weight. The pad movement was calculated as a rotation about the leg 

axis, by determining the angle between two planes, which were defined by the KJC, AJC, 

lateral knee marker, lateral ankle marker and 2 pad markers, one of which was located at 

the centre of the knee area and one in the centre of the ankle area as illustrated in 

Figure 5.13. Plane 1 represented the leg and was identified from the lateral knee marker, 

Subject KJC error  
RMS (mm) 

AJC error  
RMS (mm)              

1 1.08 1.36 
2 2.14 1.13 

3 1.03 1.97 
4 2.45 1.23 
5 1.37 1.74 
6 1.77 1.49 
7 2.26  1.73 

8 1.75 1.33 
9 1.05 1.89 

Table 5. 2: Root mean square (RMS) difference in joint centre position at the knee joint centre 
(KJC) and ankle joint centre (AJC) when calculated using the knee and ankle landmarks and the 

cluster markers for all 9 subjects 



P a g e  | 87 
 

 

knee joint centre and ankle joint centre. Plane 2, represented the pad and was identified 

from the knee joint centre, ankle joint centre and top pad marker. The angle between 

these two planes was calculated throughout the run, with average angle and standard 

deviation representing pad movement. The same calculations were used to calculate 

movement at the bottom of the pad utilising the lateral ankle marker rather than lateral 

knee marker for the leg, and the bottom pad marker rather than top marker for the pad.  

 

Kinanthropometric data was also collected to analyse the fit of the pad, enabling a 

comparison between fit and performance to be made. The measurements taken were 

circumference and width of the leg without pads at the thigh (8cm above the top of the 

patella), knee (across the point of articulation) and calf (mid point between the knee and 

ankle). These measurements were also taken in each of the three padded conditions 

measuring the combined width and circumference of the leg and pad.    

 

5.2.1.1 Subjective analysis 
A subjective analysis was also performed on the pads; after all three pads had been worn 

players were asked to rank them in terms of perceived fit, restriction, pad movement and 

running impedance on a scale, as illustrated in Figure 5.14. A rank of 1 was given to the 

best fitting, least restrictive, least moving and least impeding pad.  

 

5.2.1.2 Data processing  
Once all the data had been captured, a 3D kinematic model was built using Visual 3D 

(version 4) software with the thigh cluster and foot cluster used to track movement of 

the knee and ankle joint centres (Figure 5.15).  

 

5.2.1.3 Statistical analysis 
Initially the knee and ankle data was analysed through the use of a cross correlation to 

determine if the movement pattern was consistent between trials and between subjects, 

with a high positive value (0.7-1) indicating a high degree of similarity between data sets. 

As with the running time data in stage 1 a Shapiro-wilks test was used to determine if 

the data was normally distribute. Providing the data was normally distributed a one-way 
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repeated measures ANOVA with a post-hoc Tukey-Kramer test was completed to 

determine which results were significantly different (p≤0.05). A Gabriel comparison 

interval was used to illustrate where significant differences were identified between 

conditions (Gabriel, 1978). 

  

5.2.2 Results 

The kinematic and ground reaction force (GRF) data collected allowed a more in-depth 

study of the effect of cricket leg guards on running performance to be conducted. From 

the data, stride parameters such as width and length were investigated, as were the GRF 

forces in all three axes (anterior/posterior, medial/lateral and vertical). Once these 

parameters had been considered, kinematic data was used to determine if any changes in 

running technique were due to negative effects on running kinematics. Finally, to gain a 

further understanding of the interaction between the pad and the human, 

anthropometric measurements of the leg with and without pads were taken to 

determine if fit and size of the pad influenced the running motion.  

 

5.2.2.1 Stride Parameters 

As with the running time data, an ANOVA was performed on the results which revealed 

no significant differences between NP, P1, P2, and the WC (p>0.213). P3, however, was 

found to significantly decrease stride length by 0.1 meters (p=0.01) on average (Figure 

5.16a) and increase the stride width of players by up to 0.12 meters (p=0.001) (Figure 

5.16b).    

 

5.2.2.2 Ground Reaction Force 
The GRF was measured for each completed run, allowing a comparison of 

anterior/posterior (x), medial/lateral (y), and vertical (z) forces between conditions. To 

assess if different pads affected the GRF, maximum force and impulse were measured 

(Hunter et al., 2005). From the results it was apparent that all nine cricketers were 

midfoot strikers from the mediolateral and vertical GRF graphs depicted in Figure 5.17. 
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All nine participants had a double peaked breaking force as described in the literature as 

a typical characteristics associated with a midfoot striker (Cavanagh and LaFortune, 

1980; Nigg et al., 1983). 

The anterior/posterior forces were used to determine if decreases in running speed 

could be attributed to larger braking forces and decreased propulsive forces whilst 

running in cricket pads. The ANOVA results showed that wearing cricket pads 

significantly (F=16.35, p=0.000) increased braking force by 0.1 BW, 0.09 BW, 0.3 BW 

and 0.1 BW for P1 (p=0.021), P2 (p=0.041), P3 (p=0.000) and the WC (p=0.038), 

respectively, when compared to the NP condition (Figure 18a). Maximum braking force 

was also significantly larger for P3 when compared to P1 (p=0.000), P2 (p=0.000) and the 

WC (p=0.000). As well as an increased maximum braking force, braking impulse also 

significantly increased (F=72.566, p= 0.000) for all padded conditions and the WC when 

compared to running in no pads, by 0.0061 BW.s, 0.0083 BW.s, 0.0163 BW.s and 

0.0085 BW.s for P1 (p=0.000), P2 (p=0.000), P3 (p=0.000) and the WC (p=0.000) 

respectively (Figure 18b). As with maximum braking force, no significant differences 

were found between P1, P2, and the WC (p>0.082), whereas, P3 was found to 

significantly increase braking impulse when compared to all other conditions (p<0.001). 

When considering propulsive impulse, a significant difference between conditions was 

found (F=9.383, p=0.000), with the NP condition resulting in a significantly greater 

impulse when compared to the other conditions. P3 significantly reduced the propulsive 

impulse compared to NP (p=0.000), P1 (p=0.003), P2 (p=0.003) and WC (p=0.001), 

whereas, no significant differences were found in regards to maximum propulsive force 

(F=0.623, p=0.646) (Figure 18c and 18d). As a result, it was found that overall impulse 

was significantly lower in all padded and WC (F=70.436, p=0.000) conditions compared 

to the NP condition (Figure 19); P3 was also found to significantly decrease overall 

impulse compared to P1 (p=0.002), P2 (p=0.000) and the WC (p=0.000).  

 

In terms of mediolateral forces, there were no significant differences between the NP 

and WC in terms of maximum force (p=0.342) or impulse (p=0.200), but, P1 and P2 

significantly increased maximum force by 0.119 BW (p=0.000) and 0.091 BW (p=0.000) 

and impulse by 0.004 BW.s (p=0.000) and 0.005 BW.s (p=0.000) respectively when 
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compared to the NP condition. As with maximum braking force, P3 was found to 

significantly increase maximum mediolateral force (p=0.000) and impulse (p=0.000) 

when compared to the other four conditions, with an increase in maximum force of 

0.213 BW and impulse of 0.015 BW.s when compared to the NP condition (Figure 18e 

and 18f). Finally, within the vertical forces no significant differences were identified 

between the five conditions for maximum force (F=2.153, p=0.144) or impulse (F=0.798, 

p=0.528) (Figure 18g and 18h). 

 

5.2.2.3 Kinematic analysis 
The effect of cricket leg guards on running kinematics was assessed to determine if 

changes in stride parameters, GRF and effectively running speed were a result of 

restricted range of motion, resulting in changes in knee and ankle flexion and extension 

as well as joint angular velocities. Initially a cross correlation was performed on the 

mean data for each subject, where the data for all six repetitions were combined, with a 

value of 0 representing no correlation and a value of 1 representing a strong correlation. 

A strong correlation between subjects was identified, suggesting that there is limited 

variation between subjects (Table 5.3). Secondly a cross correlation was performed on 

the mean data between conditions which also illustrated a strong correlation (0.863 to 

0.930) (Table 5.4) suggesting that there is considerable similarity between the joint angle 

data for all five conditions in terms of movement pattern, movement duration and 

degree of flexion and extension. 

 

Figure 5.20 depicts joint angle data for subject 3’s left knee and ankle, these results were 

deemed to be representative of all nine subjects’ data, due to the high correlation shown 

between subjects. To determine if there were any significant differences in joint angles, 

the points of minimum and maximum flexion for the knee and ankle of each stride 

were considered; a one-way repeated measures ANOVA was used to determine if there 

were any significant differences between conditions (Figure 5.21). No significant 

differences (0.533≤ F ≤1.878, p>0.713) were found, suggesting that changes in stride 

parameters, GRF and running times are not as a result of changes in maximum flexion 

and extension of the knee or ankle.  
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Joint angle Mean correlation Standard deviation 

Left knee angle 0.864 ±0.013 

Left ankle angle 0.818 ±0.019 

Right knee angle 0.823 ±0.021 

Right ankle angle 0.811 ±0.018 

Table 5. 3: : Mean cross-correlation results between subjects 
 
 
  

Joint angle Mean correlation Standard deviation 

Left knee angle 0.911 ±0.009 

Left ankle angle 0.863 ±0.012 

Right knee angle 0.893 ±0.007 

Right ankle angle 0.931 ±0.012 

Table 5. 4: Mean cross correlation results between conditions 
 
 

Further analysis was completed on step frequency, stance time, angular velocity and 

running velocity (Table 5.5 and Figure 5.22). The results demonstrate significant 

differences in running velocity between conditions (F=1.436, p=0.001), with all padded 

and WC conditions found to significantly decrease running velocity when compared to 

the NP condition (p<0.01) (Table 5.5). No significant differences were found between 

P1, P2 and WC (p>0.317), however, P3 was found to have a significantly larger effect on 

running performance than all other conditions (p<0.01), supporting the results in Stage 

1. The results demonstrate that although there is a significant difference in running 

velocity (p=0.001) there is no significant difference in peak angular velocities during 

ankle flexion (F=0.486, p=0.746) or knee flexion (F=0.657, p=0.894), ankle extension 

(F=0.274, p=0.894) or knee extension (F=0.387, p=0.816) (Figure 5.22). Further, no 

differences were found in step frequency (F=0.419, p=0.735), step time (F=0.237, 

p=0.914) or stance time (F=0.927, p=0.816). These results suggest that although cricket 

leg guards do significantly affect running speed, this is not a result of changes in knee 

and ankle joint kinematics or step frequency/ time.  
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Variable Group Mean (±1SD) 

 NP P1 P2 P3 WC 

Step 

Frequency 

(Hz) 

3.97 ± 0.27 3.89 ± 0.26 3.94 ± 0.26 3.87 ± 0.28 3.91 ± 0.29 

Step time (s) 0.25 ± 0.02 
 

0.26 ± 0.02 
 

0.25 ± 0.02 
 

0.26 ± 0.016 
 

0.26 ± 0.02 
 

Stance time 

(s) 

0.17 ± 0.014 
 

0.17 ± 0.013 
 

0.16 ± 0.053 
 

0.17 ± 0.025 
 

0.17 ± 0.013 

Velocity 

(m/s) 

6.35 ± 0.15 
 

6.13± 0.13 6.14 ± 0.18 6.01 ± 0.21 6.14 ± 0.20 

Table 5. 5: : Kinematic data group means ± 1 standard deviation 
 

5.2.2.4 Pad Movement 
 

The results revealed relatively little pad movement across all three conditions, with a 

maximum rotation of 2.3° for any subject across all conditions. A strong mean 

correlation coefficient of 0.893 (±0.063) between repetitions of each condition was 

found for all nine subjects, as well as a mean correlation coefficient of 0.814 (±0.089) 

between subjects for all conditions. The high correlation found suggests that the pad 

movement is consistent over multiple runs and across different wearers. The results for 

Subject 4 are shown in Figure 5.23 as a representation of the overall findings. The 

results identify that for all three conditions, the average rotation from the original 90° 

position is less than 0.5°, with maximal rotation being less than or equal to 1° (Figure 

5.23). No significant differences (p=0.571) between conditions were found, suggesting 

that perceived differences in pad movement are not a consequence of actual pad 

rotation whilst running. 

 

5.2.2.5 Kinanthropometry  
Six static measurements were taken for each condition, including width and 

circumference of the thigh, knee and calf. The results are shown in Figure 5.24 and were 

used to determine if there was a relationship between pad size and impedance. It was 

found that all three pads added a significant amount of size to the legs in terms of width 

and circumference at all three locations. The biggest changes in dimension were around 
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the knee and calf for all three pads in respect to width and circumference. Overall, P3 

added the greatest amount of bulk, increasing the width at the knee by 10.1cm 

compared to 7.4cm and 8.5cm on average for P1 and P2 respectively. These results 

suggest that the significant increase in stride width for P3 could be due to the added 

bulk in between the legs, preventing a natural running motion (as demonstrated in the 

NP condition) for P3 alone. 

 

5.2.2.6 Subjective analysis 
The subjective results collected throughout the testing allowed for a comparison 

between the cricketers’ perceptions of the three pads and their actual affect on 

performance. The initial question focused on the perceived fit of the pad, with P1 and 

P2 consistently being identified as the best fitting pads (Figure 5.25a). A Friedman’s test 

identified significant differences in perceived fit between the different pads, with the 

LSDrank suggesting that both P1 and P2 are a significantly better fit than P3.  When 

considering perceived restriction, P3 was also identified as the most restrictive pad with 

no significant differences between P1 and P2 (Figure 5.25b). With regards to pad 

movement, there was no significant difference found between P1 and P2 or between P2 

and P3, however, P3 was perceived to move around the leg significantly more than P1 

(Figure 5.25c). Finally, it was identified that P3 was perceived to impede running 

significantly more than P1 and P2. Players also perceived P1 as having a greater affect on 

their running performance than P2 (Figure 5.25d).  

 

5.3 Discussion  

It has been found that wearing cricket pads can have a negative effect on running 

performance and, contrary to Loock et al’s (2006) findings, the magnitude of this effect 

is dependent on the type of pad being worn. Adding mass to the leg does affect running 

performance; however, other underlying factors clearly affect running speed. Certain 

pads, for example P3 in this study, can alter the natural running stride of the athlete 

causing them to shorten and widen their stride. This is particularly apparent when the 

added size to the leg forces an increase in natural stride width. Although there was an 

apparent change in stride kinematics, it was found that this was not as a result of 
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restricted motion around the knee or ankle as the joint kinematics did not significantly 

alter between conditions.  

 

GRF was also studied and the results suggest that, pads which cause an increase in stride 

width and decrease stride length also resulted in increased braking forces exerted on the 

body, resulting in a reduced overall impulse in the direction of locomotion, which, 

therefore, will decrease velocity. Associated with the decrease in anteroposterior impulse 

was an increase in mediolateral impulse suggesting that as stride width increases less 

force is applied in the direction of locomotion which contributes further to a lower 

resultant running speed. The combination of these results indicates that adding mass to 

the leg does have a significant effect on running speed and, therefore, to increase 

running performance the pad needs to be as light as possible. Other factors, such as the 

fit of the pads also appear to have an influence on performance. As an approximate 

guide, the size of the pad inside the leg needs to be minimised and kept below the width 

of the natural running stride as measured in the NP condition in order to minimise 

changes in running gait. The results suggest that minimising the effects on stride 

parameters and braking force, force generation in the direction of locomotion will be 

maximised and in turn reduce impedance caused by the pads. Pad movement was also 

assessed, using the angle between two planes to determine how much the pad rotates 

about the leg. A cross correlation identified that there was a strong correlation between 

both subjects and conditions. No significant differences in pad movement were found 

between conditions. 

 

Alongside the objective results, subjective data was collected regarding perceived fit, 

restriction, running impedance and pad movement. A high degree of agreement was 

found between the subjective data and objective findings. P3 was rated as the worst 

fitting pad, which correlates with the dimensions of the pad when worn by the subjects. 

As shown in Figure 5.24, the additional width at the knee was significantly greater for 

P3 compared to P1 and P2. When considering perceived running impediment, there 

was agreement between the two sets of results although to a lesser extent, as P1 was 

correctly identified as having a lesser effect on running performance than P3, but was 

also identified as causing significantly more impedance than P2, which according to the 
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running times data was not the case. In terms of actual and perceived pad movement 

there was no agreement between the two sets of results. No significant differences were 

found in the amount the pad moves about the leg, however, P3 was perceived to move 

significantly more than the other pads, suggesting further work is required regarding the 

interaction between the pad and the leg.   

 

5.4 Summary 

This study has measured and quantified the influence of cricket leg guards on running 

performance. Through the development of a procedure which allowed a biomechanical 

analysis of routine movements typically performed within the sport, further 

understanding of the degree of restriction provided by various leg guards and possible 

causes has been gained. The results suggest that all pads significantly hinder running 

performance when compared to running without PPE. In addition, significant variations 

in the degree of restriction between pads were discovered, which could not be solely 

attributed to the additional mass of the pads. A kinematic analysis revealed that certain 

pads significantly increase stride width and decrease stride length resulting in increased 

braking and mediolateral forces, without affecting joint kinematics. Pad movement was 

also assessed, with no significant differences between pads being identified, highlighting 

the need for further investigation of why different pads are perceived to move more than 

others. Comparing these results with static fit measurements, a common link between 

pad width and changes in stride parameters was ascertained, suggesting that the wider 

the pads are between the legs the more impedance will occur.  
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Chapter 6 
 

6 Measurement of skin contact pressure under cricket leg 

guards 

 

The hierarchical model discussed in Chapters 2 and 3 revealed that ‘Fit’ is a major 

factor in determining perceived comfort. Within ‘Fit’, pad movement and strap pressure 

were found to influence user comfort and satisfaction with the product. The work 

presented in Chapter 5 concluded that the ‘Fit’ of the pad does have a significant affect 

on performance in terms of running speed, however, the perception of different pads 

moving around the leg whilst running was not fully justified. Throughout the results 

presented thus far, another common finding has been the discomfort caused by areas of 

perceived high pressure, in particular, behind the straps. Therefore, the aim of this study 

was to identify relationships between areas of perceived discomfort and high pressure, as 

well as to determine if contact pressure variations during a stride contribute to the 

perception of pad movement.    

 

6.1 Measurement of contact pressure 

Garment design and fit play an important role in the sensation of pressure on the skin, 

which can have a significant influence on perceived comfort and greatly affects the 

desirability of an item of clothing or protective equipment (Sakaguchi et al. 2002).  

Pressure has been described as a maintained touch, which is experienced when an object 

is pressing on ones skin, resulting in a deformation (Hendrik et al., 2008). In regards to 

skin pressure caused by a garment, it has been stated that the sensation experienced is 

closely related to the space between the body and the garment; if a garment’s girth 

measurement is smaller than the body, either the garment will have to stretch or the 

body compress, resulting in a pressure being generated (Zhang et al., 2002). The skin has 

been found to be incredibly sensitive to pressure and can detect a displacement as small 

as 0.001mm in ideal conditions (Sciffman, 1995).  Previous research has discovered that 

the pressure a garment applies to the skin is dependent on several variables including 
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body shape, mechanical properties of the fabrics used, style and weight of the garment 

(Wong et al., 2004).  Searches have revealed there has not been any research published 

regarding the interaction between cricket leg guards and the skin; however, there is an 

abundance of literature within other fields, for example, brassier design and medical 

PPE (Miyatsuji et al, 2002). The results have identified the importance of minimising 

contact pressure and, as a result, deformation of the skin, when seeking to improve 

comfort (Acton et al., 1976; Kyung and Nussbaum, 2007; Tsujisaki et al, 2004). High 

pressures not only cause discomfort but also physiological responses associated with the 

autonomic nervous system (Maruta and Tokura, 1988; Miyatsugi et al, 2002; Ogawa et 

al, 1979; Sone et al, 2000; Takagi, 1960), with high pressure brassier straps being found 

to reduce sweat rates and suppress saliva secretion when compared to low pressure 

straps.  When relating these objective pressure results to subjective findings, it was found 

that areas of high pressure caused severe discomfort and pain (Miyatsuji et al, 2002) 

suggesting that, areas of high pressure need to be minimised to maximise comfort. 

Contact pressure has also been found to have a significant effect on the perceived fit of a 

garment, which has been identified as being a major contributor to perceived comfort.  

 

A substantial amount of work has been conducted on skin contact pressure, with 

regards to comfort and end-user perceptions, across a wide variety of applications, from 

baseball hats (Kang, et al, 2007) to brassiers (Miyatsuji et al, 2002) as well as hand tools 

(Kuijt-Evers et al, 2007), using a variety of objective and subjective methods. Subjective 

methods used within various pressure studies have included questionnaires, rating scales 

and discomfort maps (Groenesteijn et al. 2004; Kong and Freivalds, 2003; Kilbom et al., 

1993). Although these methods can assist in developing designers understanding of end-

users experiences, there are several limiting factors associated with these methods. For 

example, a large sample size is needed to gain a full understanding of the interaction 

between the subject and the item in question, which can make testing costly and time 

consuming (Lee et al., 1993). Also the use of subjective methods alone can result in 

preconceptions and personal preferences being reflected in the data (Chen et al, 1994). 

Due to these limitations it has been recommended that objective and subjective 

methods are used together, allowing a fuller understanding to be gained.  
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In terms of objective measures, a variety of techniques have been used to predict end-

user comfort including pressure sensors and numerical simulations (McGorry et al, 

2003). Various pressure sensors have been used in previous studies, including load cells, 

miniature load cells, cantilever beams and strain gauges, and thin-film force sensors, 

allowing dynamic pressure measurements to be taken in real life situations (Makabe et al. 

1991; Momota et al. 1994; Schmidt, 2007). However, there are several limitations 

associated with such methods, including sensor placement, which affects the accuracy 

and consistency of a measurement due to differences in anatomy between subjects 

(Wong et al., 2004). Previous sensor technologies have limited results when considering 

the contact pressure of a large area. This was as a result of limitations in the number of 

sensing points, meaning as the sensor increased in size the area that each sensing point 

was covering was increased. Increasing the area covered by each sensing point could 

result in key factors being missed due to pressures being averaged over a larger area.  To 

try and maximise consistency and overcome the need for subjects, 3D numerical 

modelling techniques have been used, which enable pressure distributions to be 

predicted on the basis of fabric properties. Although these methods have been found to 

decrease the cost of testing and demand on resources, they are static models, and 

therefore do not consider the affect of human movement on pressure (Wong et al., 

2004).  

 

Sakaguchi et al. (2002) attempted to overcome issues with sensor technologies and 3D 

modelling techniques through the development of a new measurement technique, 

utilising a soft transparent rubber substitute for the human body, allowing existing 

products to be tested, without the need for subjects. Sakaguchi et al (2002) used the 

artificial limb to measure skin deformation; this was accomplished by shinning a light 

perpendicular to the skin surface of the substitute limb. As the light passed through the 

rubber, the deflection of the light was measured and used to determine skin 

deformation. If there was no deformation of the limb, the light shone perpendicular to 

the skin, whereas the deformed areas resulted in the light being reflected in a direction 

other than perpendicular, resulting in differences in brightness. Although this method 

was identified as a compromise between 3D modelling techniques and the use of 
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pressure sensors on human subjects, allowing pressure measurements to be obtained 

over larger surface areas, it still does not take into account human movement.  

 

As discussed, there are limitations with both objective and subjective measurements, 

therefore, it has been determined that both measurements need to be used when 

measuring comfort because of the complex nature of human sensory response to 

garment materials and their interaction with the skin (Kang et al. 2007). The 

combination of subjective and objective measures allows for a greater understanding of 

the relationship between design, materials, human sensitivity and comfort. The aim of 

this chapter is to develop an understanding of how the pad interacts with the leg both 

statically and dynamically, identifying correlations between areas of perceived discomfort 

and high pressure, also determining if variations in contact pressures whilst running 

contribute to perceptions of pad movement.    

 

6.2 Sensor evaluation and selection 

A major part of developing a suitable method for measuring skin contact pressure was 

determining which measurement system would enable the most accurate results to be 

collected, in terms of both a static and dynamic data collection. Previous studies have 

used a variety of techniques to measure contact pressure including load cells, strain 

gauges and thin-film force sensors (Ashruf, 2002; Bray et al. 1990; Schmidt, 2007; The 

Institute of Measurement and Control, 1998).  Table 6.1 compares the different 

measurement types in terms of sensor flexibility, durability, resolution and accuracy 

(Schmidt, 2007).  

From this analysis of different measurement techniques, it was determined that for 

measuring pressure on an irregular shape with a large contact area, for example the leg, 

thin-film force sensors would be most appropriate due to their flexible nature and high 

spatial resolution.  
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Sensor Type Flexible Spatial 

Resolution 

Time-Resolved 

Measurements 

Accuracy Cost Durability 

Load Cell No Poor Yes High Moderate High 

Miniature Load 

Cell 

No Moderate Yes High Moderate High 

Cantilever Beams 

and Strain Gauges 

No Poor to 

Moderate 

Yes High to 

Moderate 

Low Moderate 

Thin-Film Force 

Sensors 

Yes High Yes Moderate Variable Low to 

Moderate 

 
Table 6. 1: Force sensor comparison based on the results of several studies (Schmidt, 2007; 

Ashruf, 2002; Bray et al. 1990; The Institute of Measurement and Control, 1998) 

 

There are a variety of thin-film force sensors produced by different companies, all of 

which have differing characteristics to consider. Three main sensor technologies were 

considered - Tekscan, X-sensor and Novel. The specifications of the sensors are 

compared to the minimum required for this testing in Table 6.2. From this analysis, it 

was determined that the X-sensor would be the most appropriate measurement system 

for this analysis, due to excellent hysteresis and drift performance, whilst maintaining 

accuracy at the same level as the other types of sensors. Another advantage of the X-

sensor is its ability to hold its calibration, enabling the entire testing to be completed 

without re-calibrating the sensor. The other two sensors require calibrating pre and post 

measurement, due to sensor instability (Schmidt, 2007). Another decisive factor was the 

number of sensing elements. With X-sensor it is possible to have up to 10,000 sensing 

elements per sensor, which allows good spatial resolution even for a large sensor. 

Texscan and Novel have a maximum of 1936 and 2048 sensing elements respectively, 

and as the sensor size increases the spatial resolution therefore decreases. The major 

limitation of the X-sensor is the low sampling rate that is a consequence of maximising 

the number of sensing elements to improve spatial resolution.  
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After comparing the different types of sensor, it was determined that an X-sensor 

pressure mat would be used within this testing, utilising a custom made LX200 sensor 

with dimensions of 50 cm by 40.6 cm (Figure 6.1). These dimensions were deemed 

suitable as it enabled the sensor to wrap around the majority of legs (up to 90th 

percentile) and map the pressure from the top of the foot to above the knee on the 

majority of wearers. The sensor had an operating pressure range of 1.4-150 kPa, 

incorporating 7000 sensing points with a resolution of 0.5 cm, which could be sampled 

at 15 Hz. The sampling rate was less than ideal, but a compromise had to be made, and 

as this would equate to between 12 and 14 samples per stride, it was considered to be 

adequate.  

 

 

6.3 Contact pressure test methodology 

6.3.1  Subjects 

Nine university cricketers, playing at various levels from county first team to local club, 

all of whom were training at least once a week, and had good experience of wearing 

cricket leg guards, were recruited for this study. The participants had a mean age of 21.6 

±1.2 years.  

 

6.3.2 Pad selection 

Four pads currently available on the market were used (P1, P2, P3 and P4), varying in 

weight, design, construction and number of straps (Figure 2.2). These four pads were 

deemed to be a suitable representation of the current market as they had been identified 

as varying in terms of strap pressure and pad movement within Chapters 2 and 5. 

Within Chapter 2, P3 and P4 were identified as causing greater discomfort as a result of 

increased contact pressure than P1 and P2. Results from Chapter 5 also suggested that 

P3 is perceived to move about the leg significantly more than P1 and P2.  
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6.3.3 Objective measurement protocol  

Each participant was required to complete one static and two dynamic measurements on 

a treadmill, whilst wearing the X-sensor mat under each set of pads. The treadmill used 

was a HP Cosmos Saturn (Figure 6.3); this treadmill was deemed suitable due to its 

wider running belt (1.25m wide) that would allow the subjects to naturally increase their 

stride width, if necessary, due to the cricket pads. The treadmill was fitted with handrails 

Feature Minimum 

Requirement 

XSensor Tekscan (5101) Novel 

Sensor flexibility Excellent Excellent Average Excellent 

Spatial Resolution 5 mm From 2.5 mm From 2.5 mm From 5 mm 

Accuracy +/- 10% +/- 10% +/- 10% +/- 10% 

Sample Rate 25 Hz Up to 68 Hz 

(dependant on sensor 

size) 

150 Hz (500 

Hz high speed) 

400 hz 

Hysteresis 

(percentage of full 

scale) 

<5% <2% 5% <7% 

Durability Excess of 10,000 

measurements 

>100,000 Up to 1000 >100,000 

Drift <5% per 15 min <5% over 1 hour 15% over 1 

min 

7.6% over 1 

min 

Pressure Range 1.4-140 kPa Up to 1.4-150 kPa 0-517 kPa 0-13,789 kPa 

Calibration Once per 100 cycles Once per 100,000 

cycles 

Pre and post 

cycle 

Pre and post 

cycle 

Sensing area 300 mm x 400 mm Up to 810 mm x   

2100 mm 

Up to 340 mm 

x 149 mm 

Up to 506 mm 

x 506 mm 

Number of sensors 5000 Up to 10,000 1936 Up to 2048 

Thickness 2.5 mm 1.04 mm 0.1 mm 2 mm 

Temperature range 10-40°C 10-40°C -9-69°C 10-40°C 

Humidity 5-90% 5-90% 5-90% 5-90% 

Compatible with 

Matlab 

Yes Yes Yes Yes 

Table 6. 2: Comparison of three different types of thin-filmed pressure sensors 
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and a harness to allow participants to safely stop the test at any point if necessary.  To 

determine a suitable treadmill speed, the players were asked to run at approximately 

80% of their maximum intensity, whilst wearing their own pads, to prevent any 

augmentation or pre-judgements being made prior to the test commencing. This 

resulted in all trials being conducted at running speeds ranging from 5.2m/s to 7.3m/s.  

 

The pressure sensor was wrapped around the leading leg of the player (left leg for right 

handed batsmen and right leg for left handed batsmen) and secured in place to the bare 

leg with 3M hypoallergenic double sided tape, so that the sensor covered an area from 

the top of the shoe to above the knee. All participants wore shorts throughout the 

testing to prevent variations and creases in trouser material affecting the pressure data. 

The sensor was wrapped around the leg ensuring that the sensor overlap was located 

under the buckle on the lateral side of the pad, so that the sensing area covered the 

entire circumference of the leg. Creases in the sensor were kept to a minimum under the 

pad and strap regions to maximise measurement accuracy (Figure 6.4). Once the sensor 

was in place, the data acquisition box and port were fastened to the lateral side of the 

thigh through the use of elasticated straps, and all cables passed through the harness to 

ensure that they did not interfere with the running stride. All players fastened the pad to 

the leg themselves, at their preferred tightness, to allow the results to reflect the contact 

pressures the players would experience if wearing the pads whilst playing. The order in 

which the pads were worn was randomised for each participant to prevent any order 

effects. The pressure sensor was also used to trigger a Photron Fastcam high speed 

camera (Figure 6.2), capturing at 125 frames per second, to enable pressure 

measurements to be synchronised with the stride motion. 

 

A static measurement was recorded initially with the participant standing still for 5 

seconds. The static measurement was taken to assess the fit of the pad prior to running, 

whilst the leg was straight. Two dynamic measurements were then captured with 2 

minutes rest between each trial. The participants were asked to run at their designated 

speed (as previously set) for ten strides, whilst pressure and video data was captured. 
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After all three measurements had been captured; the participants had 5 minutes rest 

before testing recommenced with the next pad, to help prevent fatigue. All methods 

used within this testing were approved by the Loughborough University ethical 

committee prior to testing. 

 

6.3.4 Subjective measurement protocol 

Throughout the testing, a questionnaire was completed by all participants (Appendix 6). 

Initially, they were asked for their first impressions of each of the four pads prior to 

running in them. This section of the questionnaire was completed after the static trial, 

but prior to the two dynamic trials. Within this first section, an open ended question 

was used to record location and cause of any initial discomfort or dislikes. The second 

section of the questionnaire was completed post use and recorded the subjects final 

assessment of the pad, using, rating scales for pad width and length (Figure 6.5), and an 

open ended question, as used within section one, to record the location and cause of 

any discomfort. This section also asked participants to identify any sources of perceived 

restriction on an image of the pad. The final section was completed once all four pads 

had been assessed; the players were asked to rank the pads in terms of comfort, strap 

pressure, fit, and pad movement on a continuous scale, as illustrated in Figure 6.6. This 

final section was included to enable relationships between end-user perceptions and 

objective measurements to be analysed. 

 

6.3.5 Data processing and analysis 

The dynamic data was processed in three stages. Firstly, the video data and pressure data 

were synchronised allowing the data to be separated into ten individual strides within 

each data capture. The data was then separated into different sub-stages of the running 

stride, from ipsilateral heel strike to contralateral toe off, identifying front foot heel 

strike (FFHS), front foot toe off (FFTO), back foot heel strike (BFHS) and back foot toe 

off (BFTO). Finally, the data was separated into different regions (pad, top strap, middle 

strap and bottom strap). The location of each region was determined visually by the 



P a g e  | 105 
 

 

outline depicted on the X-sensor pressure map and the position in relation to the edge 

of the sensor, which was always positioned under the buckles of the pad. The size and 

area of each pad was compared to the actual pad to validate the dimensions and the size 

of each region was kept constant during the analysis of different data sets.   

 

Initially, a qualitative analysis was conducted on both the static and dynamic data. This 

was done by overlaying the pressure map on an image of the corresponding pad, as 

depicted in Figures 6.7 and 6.10-6.13A. Then a more in-depth objective analysis was 

conducted studying contact area, peak pressure and mean pressure for all four regions 

(parts A-C of Figure 6.8 and parts B-D of Figures 6.10-6.13). The contact area 

represented the total area under each region where a pressure greater than 1.4 kPa was 

being measured. The peak pressure represented the maximum pressure measured at any 

one sensing point within each region, and average pressure was the mean pressure over 

the contact area.  It was determined that both peak and average pressure should be 

studied, as the peak pressure allowed the maximum pressure exerted on the leg to be 

identified, however, it only represents a single sensel within the area and the sensel at 

the highest pressure could vary from frame to frame. It is therefore more sensitive to 

measurement error. The average pressure data is based on more data and gives more 

reliable results, however, small localised areas of extremely high pressure will have less 

influence on the average data, which could result in areas of significant importance 

going unnoticed.  

 

6.3.5.1 Statistical analysis   
To determine if there were differences in pressure profiles between strides and subjects, 

each capture was separated into 20 separate strides (10 strides from trial one and 10 

from trial 2) for each condition, and each stride considered as a percentage of cycle 

completion to overcome differences in stride duration between subjects and align data. 

Peak pressure, average pressure and contact area were studied at each of the four regions 

previously determined (pad, top strap, middle strap and bottom strap).  Once the data 

had been separated into individual strides, a cross correlation was utilised to determine 
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if there was a significant difference in movement pattern, giving a value between -1 and 

1, with a higher value indicating a strong positive correlation. To determine if the data 

was normally distributed a Shapiro-Wilk test was performed on the objective data. Once 

data had been found to be normally distributed (p>0.05), a one-way repeated measures 

ANOVA was used to determine if there was a main effect between conditions, secondly 

a Tukey-Kramer post-hoc test was completed to determine which results were 

significantly different (p≤0.05). 

 

6.4 Contact pressure results 

6.4.1 Static results 

The static measurements were taken immediately after the pads were fixed in place by 

the players, whilst the subject stood stationary on the treadmill. The results from these 

measurements are illustrated in Figures 6.7 and 6.8 and were used to determine if 

differences in pad and strap pressures were as a result of differences in fit or whether 

they are only present whilst the player was in motion. The results of the static 

measurement suggest that there were significant differences in contact area between the 

four padded conditions (p=0.000). P2 was found to have a significantly greater contact 

area in comparison to the other three pads. Increasing contact area by 42cm2 (p=0.01), 

90cm2 (p=0.000), and 84cm2 (p=0.000) when compared to P1, P3 and P4 respectively 

(Figure 6.8b). There were differences in the size of the pads with P2 having the largest 

surface area (1220cm2), with 17.3% of the total surface area applying a pressure greater 

than 1.4kPa to the leg, compared to 15.3%, 10.7% and 11.0% for P1, P3 and P4 

respectively. P1 was also found to have a significantly greater contact area than both P3 

(p=0.01) and P4 (p=0.01), which had similar contact areas. In terms of strap contact area, 

the top strap of P1 was found to have a significantly greater contact area than P3 

(p=0.02) and P4 (p=0.02), between which there was no significant difference (p=0.492). 

For both the middle and bottom straps, P1, P3 and P4 were found not to vary 

significantly, whereas the contact area under the middle strap of P2 was significantly less 

(p=0.001).  
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Regarding peak pressures, no significant differences were found between the four 

conditions under the padded area (p=0.351) (Figure 6.8d), whereas P3 (p=0.01) and P4 

(p=0.01) were both found to apply significantly greater pressure under the top strap 

compared to P1. With P2 not having a top strap these high pressures of up to 57.2 kPa 

were not applied to the leg. Under both the middle and bottom straps, P1 and P2 

applied significantly less pressure to the leg than P3 (p<0.01) and P4 (p<0.01), with no 

significant differences being found between P1 and P2 (p>0.457) or P3 and P4 

(p>0.261). Finally average pressure under each region was considered. Pads P1 and P2 

were found to apply significantly less pressure to the leg under the padded region, 

compared to P3 (p=0.001) and P4 (p=0.001), which did not vary significantly (p=0.297). 

In regards to the straps, there were no significant differences measured between any of 

the four conditions (p=0.371). Between subject variation was also analysed; with no 

significant difference being found between subjects for any of the conditions (p>0.278) 

or individual regions (p>0.317), despite the players attaching the pad at their preferred 

tightness.  

 

6.4.2 Dynamic test results 

The dynamic data included two repetitions of ten strides per condition per subject, 

resulting in large amounts of data. The initial analysis was aimed at determining if the 

pressure profiles varied significantly between individual strides for each condition and 

between participants. The cross-correlation results identified there was a strong 

correlation between the separate strides for all four regions in regards to peak pressure 

(0.835 to 0.999), average pressure (0.838 to 0.999) and contact area (0.806 to 0.999), 

across all four conditions (Table 6.3 to 6.5). Therefore, a mean pressure profile for each 

condition was calculated for all nine subjects, allowing a between subjects and 

conditions analysis to be conducted. The results indicated a high degree of consistency 

between subjects, as can be seen by the limited variation between the means for each 

subject, illustrated by the results for average pressure under the pad in Figure 6.9. 

Therefore, it was deemed appropriate to discuss the results as a whole rather than on an 

individual subject basis. However, when discussing the pressure maps for each pad, the 
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data for Subject 5 will be presented as it was deemed representative of the other results, 

as it contained the same trends as can be seen in all nine subjects’ data. 

Analysis of the pressure maps revealed several interesting features regarding the way each 

pad interacts with the leg. The pressure exerted on the leg by P1 (Figure 6.10) under the 

pad region maintained a consistent location throughout the running stride, with the 

majority of pressure being exerted down the centre of the pad. Although the location of 

the pressure was consistent the contact area did appear to vary, gradually decreasing in 

size during the swing phase. A substantial increase in pressure was apparent from 20% 

to 60% of the stride in the centre of the shin area. In regards to strap pressure, both the 

middle and bottom straps appear to maintain a relatively consistent pressure and contact 

area throughout, however, a substantial increase in peak pressure under the top strap 

can be seen during the swing phase, as the leg reaches maximum flexion (60-75%). The 

contact area of P2 appears to be larger than P1, with a more even distribution of 

pressure across the entire pad (Figure 6.11), rather than just down the centre. The 

location and size of the pressure appeared to be more consistent than P1. Subtle 

increases in strap contact pressure can be seen but are not to the magnitude of those 

found under the top strap of P1. The contact area of P3 (Figure 6.12) was much smaller 

than that found for P1 and P2, with large variations in regards to size and location. 

Throughout the entire stride, the location of the pressure applied to the leg varies from 

the medial side of the pad (1%) to the lateral side (60%) before returning to the original 

position (90%). As with P1, a substantial increase in peak pressure under the top strap 

occurred at the point of maximum flexion. The middle strap displayed minimal 

variation in terms of contact area and magnitude of pressure, whereas a substantial 

increase in pressure throughout the stance phase was found under the bottom strap. P4 

demonstrated similar results to P3 with the contact pressure varying in both location 

and size (Figure 6.13). As with P1 and P2 there was a change in the magnitude of 

pressure exerted under the pad during the stance phase, however, it was not as large an 

increase as with the other pads. Throughout the running stride, contact pressure under 

the middle and bottom strap did not appear to vary significantly, whereas the top strap 

demonstrated a significant increase in contact pressure at the point of maximal flexion, 

as was described for P1 and P3.    
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Table 6. 3: Cross-correlation results for the comparison of individual strides in terms of contact area 

 

 

 

  P1 P2 P3 P4 

Subject Pad 

Top 

strap 

Middle 

strap 

Bottom 

strap Pad 

Middle 

strap 

Bottom 

strap Pad 

Top 

strap 

Middle 

strap 

Bottom 

strap Pad 

Top 

strap 

Middle 

strap 

Bottom 

strap 

1 0.998 0.988 0.998 0.991 0.983 0.962 0.880 0.897 0.942 0.986 0.896 0.992 0.953 0.970 0.975 

2 0.996 0.946 0.977 0.988 0.997 0.963 0.977 0.989 0.862 0.988 0.917 0.996 0.874 0.993 0.938 

3 0.985 0.954 0.991 0.879 0.955 0.806 0.926 0.979 0.832 0.975 0.839 0.951 0.858 0.979 0.851 

4 0.960 0.935 0.934 0.930 0.929 0.925 0.929 0.926 0.918 0.930 0.920 0.930 0.916 0.940 0.894 

5 0.999 0.982 0.998 0.991 0.986 0.997 0.942 0.986 0.974 0.967 0.985 0.980 0.968 0.984 0.997 

6 0.979 0.959 0.966 0.961 0.958 0.961 0.935 0.956 0.946 0.948 0.952 0.955 0.942 0.962 0.946 

7 0.972 0.959 0.963 0.942 0.936 0.930 0.922 0.936 0.917 0.943 0.920 0.946 0.929 0.933 0.938 

8 0.971 0.959 0.963 0.946 0.944 0.946 0.937 0.944 0.926 0.948 0.928 0.947 0.933 0.939 0.941 

9 0.970 0.957 0.956 0.940 0.938 0.939 0.938 0.945 0.932 0.944 0.933 0.947 0.936 0.941 0.941 
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  P1 P2 P3 P4 

Subject Pad 

Top 

strap 

Middle 

strap 

Bottom 

strap Pad 

Middle 

strap 

Bottom 

strap Pad 

Top 

strap 

Middle 

strap 

Bottom 

strap Pad 

Top 

strap 

Middle 

strap 

Bottom 

strap 

1 0.995 0.990 0.997 0.999 0.965 0.962 0.938 0.995 0.908 0.983 0.993 0.999 0.913 0.905 0.992 

2 0.997 0.977 0.968 0.997 0.985 0.970 0.983 0.980 0.864 0.982 0.951 0.992 0.839 0.994 0.974 

3 0.994 0.944 0.993 0.925 0.991 0.993 0.849 0.935 0.873 0.994 0.835 0.975 0.851 0.986 0.972 

4 0.966 0.949 0.948 0.945 0.944 0.940 0.935 0.937 0.934 0.945 0.937 0.948 0.936 0.981 0.973 

5 0.974 0.995 0.986 0.998 0.990 0.995 0.991 0.984 0.928 0.988 0.991 0.989 0.934 0.995 0.993 

6 0.970 0.972 0.967 0.972 0.967 0.967 0.963 0.961 0.931 0.967 0.964 0.969 0.935 0.988 0.983 

7 0.976 0.969 0.971 0.968 0.955 0.951 0.928 0.944 0.933 0.961 0.931 0.943 0.943 0.940 0.952 

8 0.974 0.969 0.972 0.973 0.964 0.958 0.933 0.945 0.935 0.961 0.931 0.952 0.952 0.946 0.958 

9 0.972 0.966 0.969 0.969 0.960 0.954 0.935 0.948 0.941 0.959 0.939 0.957 0.960 0.951 0.963 

 
Table 6. 4: Cross-correlation results for comparison of individual strides for peak pressure 
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  P1 P2 P3 P4 

Subject Pad 

Top 

strap 

Middle 

strap 

Bottom 

strap Pad 

Middle 

strap 

Bottom 

strap Pad 

Top 

strap 

Middle 

strap 

Bottom 

strap Pad 

Top 

strap 

Middle 

strap 

Bottom 

strap 

1 0.999 0.989 0.998 0.996 0.982 0.976 0.974 0.996 0.942 0.988 0.984 0.998 0.935 0.985 0.990 

2 0.995 0.968 0.987 0.995 0.995 0.980 0.983 0.996 0.854 0.992 0.970 0.998 0.887 0.994 0.981 

3 0.993 0.953 0.985 0.942 0.992 0.961 0.838 0.982 0.914 0.981 0.876 0.997 0.857 0.986 0.954 

4 0.977 0.957 0.957 0.954 0.953 0.949 0.947 0.951 0.946 0.956 0.950 0.957 0.943 0.979 0.968 

5 0.994 0.997 0.997 0.998 0.996 0.994 0.993 0.986 0.990 0.985 0.967 0.995 0.985 0.987 0.985 

6 0.986 0.977 0.977 0.976 0.974 0.972 0.970 0.969 0.968 0.970 0.958 0.976 0.964 0.983 0.976 

7 0.980 0.973 0.978 0.973 0.961 0.961 0.944 0.958 0.946 0.971 0.946 0.960 0.955 0.956 0.963 

8 0.980 0.974 0.979 0.976 0.965 0.963 0.948 0.961 0.948 0.969 0.948 0.964 0.959 0.958 0.966 

9 0.979 0.973 0.975 0.972 0.962 0.959 0.954 0.966 0.955 0.964 0.952 0.967 0.964 0.960 0.968 

 
Table 6. 5: Cross-correlation results for comparison of individual strides  for average pressure 
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Once a visual inspection of the pressure maps had been conducted a more in-depth 

objective assessment was completed. Initially, the interaction between the padded region 

and the leg was studied, with a particular focus on contact area, average pressure and 

peak pressure. Again, P2 was found to have the largest and most consistent contact area 

(Figure 6.14), with a mean area of 212.8 ±10.1 cm2 (17.4 ±0.8% of total surface area), 

compared to P1, P3 and P4 which were all found to have significantly smaller contact 

areas with larger variations during the stride of 166.7 ±16.2 cm2 (15.9 ±1.65% of total 

surface area), 129.3 ±23.9 cm2 (12.5 ±2.31% of total surface area) and 123.1 ±20.3 cm2 

(11.3 ±1.86% of total surface area) respectively (Figure 6.14 and 6.15).  

 

Significant changes in peak pressure under the padded region were found (Figure 6.16); 

however, average pressure over the area in contact with the leg did not change 

accordingly for any of the four pads. These results suggest that there are very localised 

areas of high pressure, however, when considering the entire region there is not a 

significant difference, demonstrating the need to consider both peak and average 

pressures. In terms of peak pressure, a consistent trend can be seen for P1, P3 and P4, 

where a sudden increase in peak pressure occurs between BFIC and BFTO (Figure 6.16). 

This stage in the gait cycle was where the front leg reached maximum flexion (Figure 

5.20a), with the areas of high pressure being located at the same position that the straps 

are attached to the pad, with particular reference to the top strap. Although all three 

pads demonstrated a significant increase in pad pressure, there were substantial 

differences in maximum pressure, with P1 reaching peak pressures of 67.4 ±3.9kPa, 

compared to 79.6 ±4.6kPa and 80.8 ±4.0kPa for P3 and P4 respectively.  

 

The second area of interest was the top strap, which was identified as a major source of 

discomfort in terms of pressure within all of the testing chapters thus far. As previously 

mentioned, it was found that there was a significant increase in peak pressure under the 

top strap from just prior to BFIC to BFTO (swing phase of the instrumented leg) for P1, 

P3 and P4 (Figure 6.17). For P1 a dramatic increase in strap pressure was measured at 
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the point of maximum flexion reaching 101.9 kPa (±7.3 kPa) on average. This sudden 

increase in peak pressure was also found for P3 and P4 which reached peak pressures of 

133.2kPa (±5.0 kPa) and 141.3 kPa (±3.5 kPa) respectively. As P2 is of a two strap design 

it was not subject to these extreme pressures found behind the knee. Unlike changes in 

pad pressure, these increases corresponded to significant increases in average pressure 

over the contact area (Figure 6.18), despite the contact area for P1 and P4 increasing and 

P3 remaining relatively constant (Figures 6.10-6.13b). Although these findings were 

consistent for all nine subjects there was a discrepancy in timing of the peak pressures 

for P1, with four subjects reaching their peak pressure approximately 10% earlier in the 

gait cycle. This misalignment of peak forces could be as a result of the relatively slow 

sampling frequency of the X-sensor. From the pressure maps (Figures 6.10a to 6.13a) it 

can be seen that the areas of high pressure are localised to two very specific areas, with 

other areas of the strap maintaining a lower pressure, closer to those experienced 

throughout the rest of the gait cycle. For all three pads which have a top strap, the 

extreme high pressure is consistently located over the area where the semi-tendinosus 

and semi-membranous tendons protrude whilst knee flexion occurs (Figure 6.10a to 

6.13a).  

 

The middle strap region for all four pads remained substantially more stable within each 

condition, in regards to contact area, peak pressure and average pressure (Figures 6.10-

6.13), as discussed in the qualitative analysis. Peak and average pressures were 

significantly lower than under the top strap, with no sudden increases or decreases in 

pressure as a result of gait cycle position. There were no significant differences found 

between conditions in terms of peak (p=0.679) or average pressure (p=0.473), however, 

P2 was found to have a significantly lower contact area of 24.9 ±2.8 cm2 (p<0.001), 

compared to 80.5 ±6.7 cm2, 72.3 ±15.1 cm2 and 71.1 ±9.0 cm2 for P1, P3 and P4 

respectively (Figure 6.19).  

 

The final region to be studied was the bottom strap, which typically sits below the belly 

of the calf muscle and at the top of the Achilles tendon. For P2 and P4, the contact area 
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of the bottom strap shows minimal variation throughout the gait cycle, with average 

contact areas of 10.39 ±1.6 cm2 and 35.8 ±4.3 cm2 (Figure 6.20). As with the middle 

strap, P2 was found to have a significantly lower contact area than the other three pads 

(p=0.000). P1 demonstrates more variation than P2 within the gait cycle, as contact area 

starts to decrease just after FFIC (10%) maintaining this decreased area until just before 

BFTO (80%) (Figure 6.20). P3 was found to have the greatest variation in contact area, 

as it was found to have a sudden decrease in contact area, dropping from 51.3 cm2 to 

39.8 cm2 on average between FFTO and BFIC. This sudden decrease in contact area 

could be as a result of the ankle flexing as the front leg is brought through (Figure 

5.20b), resulting in the bottom of the pad being compressed against the leg, releasing 

pressure under the bottom strap. The pressure map for P3 supports this, as an increased 

area of high pressure can be seen on the pad around the area that the bottom strap is 

attached (Figure 6.12a), suggesting the pad is pressing into the leg at this area to a 

greater extent. The peak pressure data showed variation throughout the running stride 

for all four conditions. The change in bottom strap peak pressure throughout the 

running stride varied between conditions. P1 demonstrated a reduction in peak pressure 

of 9.73 ±2.14 kPa between 10% and 60% of the gait cycle. P2 demonstrated an increase 

of 11.29 ±2.83 kPa between FFIC and FFTO, followed by a gradual decrease, returning 

to the levels experienced at FFIC, between BFIC and BFTO. P3 demonstrated a sudden 

increase in peak pressure of 4.64 ±1.68 kPa between FFTO and BFIC.  Finally P4 also 

demonstrated a sudden increase in peak pressure at BFIC of 14.13 ±3.22 kPa. However, 

no significant differences in peak pressure were identified between conditions (p=0.194). 

P1 and P3 demonstrate a constant average pressure, whereas P2 was found to increase 

pressure during FFTO, despite no variation in contact area or peak pressure, suggesting 

more of the contact area reaches the upper limits of the pressure applied by the bottom 

strap, this is illustrated within the pressure map for P2 (Figure 6.11). P3 was also found 

to have a significantly higher average pressure under the bottom strap than the other 

three pads (p<0.01) (Figure 6.21). 

6.4.2.1 Subjective responses  

The questionnaire used to assess subjective responses enabled the end-users’ perceptions 

of the pads to be assessed in regards to their initial perceptions of the pads, post use 
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opinions, as well as recording any areas of significant discomfort. The initial assessment 

of the pad was incorporated to help determine the end-users instant perception of the 

pad was when they wore it for the first time, in terms of fit and contact pressure. The 

final assessment was used to determine if the perception of pads had changed during 

use. The results from both assessments were found to be consistent, suggesting that the 

initial sources of discomfort remained a factor throughout use and will, therefore, be 

discussed together. Within the two pad assessments (initial and final), P2 stimulated the 

most positive responses in terms of fit of the pad, with seven respondents referring to 

how well the pad fits the leg (Table 6.6). This was reflected within the pad width and 

length assessments (Figures 6.22 and 6.23) where P2 was identified to be of ideal width 

and length, six and five times respectively. Other positive connotations between the fit 

and reduced restriction were made, all be it with less frequency. However, P2 was 

perceived to have some less desirable features including the rigidity of the pad, with 

specific comments referring to the way the pad digs into the knee and thigh due to its 

lack of flexibility. P1 was also found to have some desirable features although to a lesser 

extent than P2, with particular reference to how the pad moulds to the leg and the 

material of the straps, although, these positive features did appear to be due to more 

personal preference rather than a reflection of the majority of subjects. In terms of 

negative perceptions, there was a general consensus that the pad was slightly bulky and 

needed to be longer amongst other things, however, the strength of agreement between 

different subjects was substantially less than for comments regarding P2.  This was 

reflected within the results regarding perceived width as P1 had a greater degree of 

variation in terms of the perceived size of the pad, with an equal split between 

participants in terms of the width of the pad, with half of the sample identifying it to be 

of ideal width and the other half finding it to be too wide. The majority of players found 

P1 to be of ideal length (Figure 6.22 and 6.23). 

 

The results highlighted a common dislike for the top strap design of P3 and P4, with a 

very strong consensus between the subjects stating that the top strap caused a high 

degree of discomfort behind the knee. Related to this dislike for the pressure applied 

behind the knee, three subjects also commented that the coarseness of the material used 
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for the top strap caused discomfort. The majority of participants stated that both P3 and 

P4 are too wide, with all nine respondents identifying P3 as being too wide and eight 

respondents identifying P4 as too wide or much to wide in the assessment of perceived 

width (Figure 6.22). Although the majority of comments for P3 were of a negative 

nature, there were some positive comments made regarding the length of the pad, with 

six respondents identifying the pad to be of ideal length (Figure 6.23). P4 however, does 

not receive any positive comments regarding the design of the pad suggesting the 

subjects were generally dissatisfied with the pad itself.  

 

 
Table 6. 6: Compilation of the nine subjects’ initial and final assessment results of each of the four 

pads, subject numbers are in brackets 

Pad 1 Pad 2 Pad 3 Pad 4 

Pad feels slightly bulky. 

(1,2,3,5,6) 

Well fitted so not bulky 

(1,2,3,7) 

Top strap digs in behind 

the knee. (1,2,3,4,6,7,9) 

Material of the top 

strap is rough. (1,3,5) 

Overall relatively 

comfortable (1) 

Feel a lot less restrictive 

between the legs. (2,7,9) 

Pad is very wide around 

the knee. (1,2,4,7,8) 

Top strap digs in 

behind knee. 

(2,4,5,6,7,8,9) 

Pad feels snug. (1) Top of pad digs into the 

thigh when standing 

straight legged. (1,3,6,8) 

Feels wide on the thigh. 

(2,5) 

Pad feels wide. (1,4,5) 

Very good straps, 

material feels good. 

(2,8) 

Pad digs into the knee. 

(4,3,8) 

Pad does not feel secure 

to the leg. (3) 

Restrictive behind the 

knees. (2,7,8) 

Top strap digs in a 

little. (3,4,9) 

Very rigid (4,5) Pad is very bulky. (2,4) Pad feels long. (4) 

Pad feels short. (4) Feel short. (5) Good length (1,5,6,9) Very inflexible. (4) 

Does not sit on the 

foot well. (5) 

Straps too short (6) Digs into foot. (7,9) Tight fit around the 

ankle (5) 

Straps to short. (6)   Dig into foot (7, 6) 
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6.4.2.2 Areas of discomfort 

Figure 6.24 depicts the areas of each pad which were specifically identified as causing 

severe discomfort and the amount of agreement shown between participants. The results 

suggest that, on the whole, P1 and P2 were perceived to be the more comfortable pads 

with fewer regions of discomfort identified and with less frequency for P1, two main 

areas of discomfort, the top strap and the inside of the knee were identified by four 

participants as areas of discomfort. The foot arch was also identified as an area of 

discomfort by two participants. Out of these four areas, the top strap was the only area 

of discomfort relating to contact pressure. Only one major area of discomfort was 

highlighted for P2 which was the top of the pad which was mentioned in both initial 

and final assessments, with six participants highlighting this area as causing significant 

discomfort. P3 appears to have caused more discomfort than P1 and P2 with six areas 

identified as major causes of discomfort by three or more respondents. The top strap, 

knee roll and inside edge of the pad all caused discomfort to at least six respondents. 

Only two of the areas identified were related to contact pressure (top and bottom strap), 

with the other regions being as a result of their affect on the running stride. P4 received 

similar responses to P3 with five areas identified by a minimum of four participants as 

causing discomfort, including the knee roll, top strap and inside edge of the pad as was 

found to be the case with P3.  

 
 

6.4.2.3 Rank orders 
The rank order results were analysed through the use of a Friedman’s test as described 

in Chapter 3. For all questions, the Friedman’s T statistic revealed significant differences 

between the conditions (p<0.05), as it was greater than the Chi-square value of 11.3 (for 

k=4 at a significance level of 0.01). To identify which conditions were perceived to be 

significantly different in regards to comfort, strap pressure, fit, weight, pad movement, 

and ease of running the statistical method of Fisher’s LSDrank was used, with a lower rank 

sum indicating the pads were more comfortable, of better fit, moved less and applied 

lower strap pressure. For overall comfort, there were no perceived differences between 

P1 and P2, or between P1, P3 and P4, however, P2 was perceived to be significantly 
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more comfortable than P3 and P4 (p<0.01) (Figure 6.25). P1 and P2 were ranked as a 

significantly better fit than P3 and P4 (p<0.05) (Figure 6.25). This was also the case with 

perceived strap pressure where no significant difference was identified between P1 and 

P2, but these two pads were perceived to out perform P3 and P4. When considering 

degree to which the pad moves whilst running, P2 was perceived to move significantly 

less than the other three conditions (p<0.05). P1 was also perceived to move about the 

leg significantly less than P3 and P4 (p=<0.05) (Figure 6.25).     

 

6.5 Discussion 

From the results, it can be seen that the way in which the pad applies pressure to the leg 

does not vary significantly between players or from stride to stride; whereas, distinct 

differences in static and dynamic contact pressures were found between pads. Significant 

differences were found between the four conditions in terms of contact area and 

pressure applied to the leg and these differences can be related to perceived comfort. P2, 

which was the only pad of a moulded design, was found to have the largest and most 

consistent contact area. Within the subjective results P2 was identified as the best fitting 

pad, as well as the pad which moved about the leg the least. The shape of P2 also 

allowed the contact pressure to be distributed evenly around the leg, whereas for P1, P3 

and P4, more localised pressures were applied. Pressure was primarily located down the 

centre of the pad for P1, whereas for P3 and P4 the pressure was more down one side. 

Throughout the running stride, the pressure applied to the leg by P3 and P4 varied 

significantly in terms of location and contact area, certainly more so than for P1 and P2, 

this may be the reason why P3 and P4 were perceived to move about the leg significantly 

more than P1 and P2.  

 

The magnitude of pressure applied to the leg in terms of average and peak pressure were 

also considered. In terms of average pressure under the pad region, there were no 

significant differences found between conditions. Peak pressures, however, did increase 

for P1, P3 and P4 at BFIC, but this was not commented on within the subjective results, 
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suggesting that although there is an increase in pressure, it is not at a high enough level 

to cause discomfort. There was also a discrepancy between the objective and subjective 

results for P2. The top of the pad was identified as a major source of discomfort, as a 

result of it ‘digging’ into the leg, but no increase in pressure in that region was 

measured.  

 

P1, P3 and P4 were all identified as causing discomfort under the top strap. These 

results were supported within the objective data where the highest pressures were 

consistently found under this region, reaching almost three times that of any other 

region. These increases were reflected within the average data despite the peak values 

being located at two very small areas located over the semi-tendinosus and semi-

membranous tendons. With P2 being of a two strap design, it was not subject to these 

peak pressures, and consequently was ranked by the subjects as having the lowest strap 

pressure. The significant differences in peak values between P1, P3 and P4 were also 

identified within the subjective responses. 

  

The middle strap applied a more consistent pressure throughout the running stride 

compared to the top strap, with no significant differences between conditions in terms 

of peak or average pressure. P2 was the only condition where the middle strap was 

identified as a source of discomfort within the subjective results. This could be due to 

the location and decreased contact area of the strap rather than as a result of differences 

in pressure.  

 

Finally, no significant differences were found between conditions in terms of peak 

pressure under the bottom strap, despite P2 having a significantly smaller contact area 

than the other three pads. P3 had a significantly higher average pressure throughout the 

running stride, which was reflected in the subjective assessment with four subjects 

identifying it as a cause of discomfort.  



P a g e  | 120 
 

 

 

The results suggest that there is a relationship between perceived pad movement and 

contact area with greater variations in contact area resulting in higher levels of perceived 

pad movement. With regards to fit, the results suggest that pads with a larger contact 

area and fewer areas of high pressure are perceived to be of a better fit. Finally, it was 

found that overall comfort was affected by contact pressure; pads that caused increased 

peak and average pressures, along with contact area variation, were perceived to be less 

comfortable. Therefore, to maximise end-users’ perceived comfort, contact area under 

the pad needs to be maximised, reducing areas of high pressure and in turn minimising 

average pressure. The pad also needs to apply a consistent pressure around the leg to 

minimise perceived movement of the pad throughout the running motion.  
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Chapter 7 
 

 
 

7 A product design specification and concept design for a 

cricket leg guard 

 

This research has been conducted as part of a larger collaborative project between the 

Sports Technology and Additive Manufacturing (AM) research groups based at 

Loughborough University. The collaborative project has incorporated six different work 

packages, focusing on a variety of areas including comfort, material development, design 

tools, impact absorption and the biomechanics of injury. Through the collaboration of 

the six work packages a product design specification for a cricket leg guard has been 

developed. This chapter details the development of the product design specification 

(PDS) focusing on the elements that this research has contributed to. Working in 

tandem with the design engineer and impact specialist on the project, a concept design 

has been developed, based on the PDS. The aim of the concept was to demonstrate how 

the results of this research could be embodied in a future pad design, to improve 

comfort, fit and performance. Although the focus was on fit and ergonomic aspects of 

the concept pad, protection was also considered. Research in this area of the project is 

still ongoing and, as a result, interim data had to be used.  

  

7.1 Product design specification (PDS) 

A PDS is a document based within the design core, consisting of design requirements 

and end-user needs. This document is the basis for all subsequent stages in the design 

process, acting as a control mechanism for all design activities (Pugh, 1991). The PDS 

document itself is seen as a dynamic document, as it can be updated as the design 

process progresses (Pugh, 1991). The starting point for a PDS is typically market research 

and testing of existing products, as has been demonstrated within Chapters 2 to 6; this 

systematic approach enabled a more detailed and comprehensive fundamental control 

mechanism to be developed.   
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A PDS typically incorporates thirty-two constituent elements ranging from performance 

to maintenance and product lifespan. The research within this thesis has concentrated 

on comfort, therefore, the elements of performance, size, weight and ergonomics will be 

the primary focus of this chapter. The full document is detailed within Appendix 7.  

 

7.1.1 Performance 

The performance element of the PDS incorporates details on protection, contact 

pressure, and thermal comfort, each of these is discussed in sections 7.1.1.1 to 7.1.1.3. 

 

7.1.1.1 Protection 
The online questionnaire on perceived protection (Chapter 3) revealed the regions 

where cricketers’ perceive they need the greatest amount of protection. The results 

indicate that more protection is required down the central shin and in the centre of the 

knee, compared to the outside edges of the pad. Less protection is required at the inside 

edge, top and bottom of the pad. These results were compared to impact results taken 

from existing pads (Walker, 2009; Webster et al., 2009). Several leg guards were each 

mounted on a freely suspended anvil (mass = 7.87 kg) and impacted at 16 different 

locations by a 0.163 kg ball travelling at 31.3 m/s. Six accelerometers measured the 

acceleration of the pad/anvil system at impact for all six degrees of freedom, from which 

maximum transmitted force was calculated using Newton’s 3rd law. The impact results 

indicated a similar trend, highlighting that lower peak transmitted forces were 

experienced within the areas perceived to require greater protection, as demonstrated in 

Figure 7.1. These results were also compared to the British standard (BS 6183-3:2000) 

for cricket batting pads. Within BS 6183-3:2000, peak transmitted force is measured 

using a drop test, where a pad is attached to a steel anvil, which is mounted on to a load 

cell, then impacted by a steel hemispherical impactor (mass = 2.5 kg) producing an 

impact energy between 5 J and 40 J, resulting in a maximum impact velocity of 5.66 

m/s. For a cricket leg guard to meet the requirements of BS 6183-3:2000, the maximum 

transmitted force must not exceed those stated in Table 7.1. Using the impact results 

from Walker’s (2009) testing and maximum transmitted forces given in BS 6183-3:2000,  
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a minimum protection level for each zone of the pad was determined (Table 7.1), to 

ensure that protection levels will be equal to or greater than that provided by existing 

pads. 

 

Zone Maximum transmitted force 

BS 6183-1:200 

(5.66m/s impacts) 

(kN) 

Transmitted Force 

at 31.3 m/s (kN) 

(Walker, 2009) 

PDS Maximum 

Transmitted Force 

at 31.2 m/s (kN)  

1 6 9.95 8 

2 6 6.71 6.5 

3 5 6.05 5 

4 6 6.71 6.5 

5 6 8.17 8 

6 5 5.70 5 

7 6 8.12 7.5 

8 6 9.65 7.5 

 
Table 7. 1: British standard, current pad and target protection levels 
 

7.1.1.2 Contact pressure 
Contact area, peak and average pressures were documented for the pad, top strap, 

middle strap and bottom strap in Chapter 6 for a range of different pads. It was 

concluded that, to maximise perceived comfort and fit, the contact area needs to be 

maximised and remain constant during a stride, with reduced peak and average 

pressures exerted on the leg. Four existing pads were tested with P2 emerging as the best 

performing pad in terms of perceived comfort, fit and pad movement. Therefore, the 

PDS specifies that the contact area must be greater than 220 cm2, with a maximum 

variation in contact area of 4%, to further reduce perceived pad movement. These 

values were typically achieved with P2.   

 

The top strap was identified as a major source of discomfort and regions of high 

pressure were evident in the measured contact pressures behind the strap. The online 

questionnaire results (Chapter 3) illustrated that, although cricketers found the top strap 
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to be uncomfortable, they did not like pads that have a two strap design, due to the top 

of the pad not being attached to the leg. Therefore, in accordance with the findings in 

Chapter 6, the PDS states that no area of the pad must produce a peak contact pressure 

of 75 kPa or an average pressure of 30 kPa. These values were specified as the contact 

pressure results for P2, which was identified as the most comfortable pad, maintained 

contact pressures below these values throughout the entire running stride. Also the 

results for the bottom strap of P3 suggest that as peak and average pressure values went 

above this, negative responses were recorded in terms of contact pressure.  

 

7.1.1.3  Thermal 
Within the comfort model developed in Chapter 2, ‘Thermal comfort’ emerged as 

having an effect on perceived comfort, however, it was considered to be significantly less 

important than ‘Fit’, ‘Protection’ and ‘Weight’. Therefore, for the PDS, current pads 

were benchmarked in terms of dry and wet insulation. The thermal insulation was 

measured through the use of a thermal manikin (Newton) in a climate chamber (Figure 

7.2). The skin temperature was set to 34°C, with an ambient temperature of 20°C whilst 

measuring dry heat loss, and 34°C for wet heat loss, with a wind speed of 0.1m/s. P1, P2 

and P3 (Figure 2.2) were tested, with heat loss for the entire leg and specifically the shin 

area being measured (Table 7.2). From these results, a maximum dry insulation value of 

0.18 m2°C/W for the whole leg and 0.33 m2°C/W for the shin area was set to ensure 

that the new leg guard design equalled or improved on existing pads. In terms of wet 

insulation, maximum values of 26.4 m2Pa/W and 106.26 m2Pa/W for the whole leg and 

shin area, respectively, were set.  

 

Pad Whole leg Shin 

Dry insulation 

(m2°C/W) 

Wet insulation 

(m2°C/W) 

Dry insulation 

(m2Pa/W) 

Wet insulation 

(m2Pa/W) 

P1 018 32.4 0.33 151 

P2 0.18 26.4 0.55 984 

P3 0.19 29.2 0.36 106 

PDS 0.18 26.4 0.33 106 

Table 7. 2: Thermal manikin results for P1, P2 and P3 
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7.1.2 Size 

The size of a pad, included within the ‘Fit’ dimension of the comfort model, has a 

significant effect on perceived comfort. The width and length of the pad were 

specifically identified, with short pads perceived to provide inadequate protection and 

long pads restricting motion when playing shots and running. There is a large variation 

in the length of pads available commercially (Figure 7.3), however, a preference was 

found in Chapter 6 towards P1 and P3 for pad length and, therefore, within the PDS it 

is stated that the pad length must fall between 645mm (P1) and 670mm (P3) to satisfy 

the majority of users.   

 

It has been found that pad width can affect running speed and perceived restriction. 

From the running analysis described in Chapter 5, it was determined that to minimise 

interference with the natural running stride, the pad must not add more than 40mm to 

the inside of each leg. Therefore, it has been specified in the PDS that each pad must 

not increase leg width by more than 80mm in total, and in particular not add more than 

40mm to the inside of the leg.   

7.1.3 Weight 

Various pads have been tested during this project varying in construction and mass 

(Table 7.3). There has been a consistent preference for light weight pads; in Chapter 2 

for example P1, P2 and P5 were preferred in comparison to P3, P4 and P6. These results 

were also supported in the subsequent subjective and objective testing, with P1 and P2 

significantly out performing P3 and P4 in terms of perceived weight and restriction, as 

well as, running performance. Therefore, the PDS states that a pad must have a mass of 

0.85 kg or less, in accordance with the most popular pads currently on the market. This 

was supported by the WC results within Chapters 4 and 5 as no significant differences 

were found between the lightest pad (0.5 kg) and the WC (0.9 kg), suggesting that a pad 

mass of 0.85 kg or less will not impede running or batting performance.   
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Pad Pad mass (kg) 

P1 0.85 

P2 0.54 

P3 0.9 

P4 0.89 

P5 0.72 

P6 1.04 

 
Table 7. 3: Individual pad mass for P1 to P6 

 

7.1.4  Ergonomics 

To maximise performance, PPE needs to provide minimal restriction, allowing the end-

user to perform routine movements without having to change their technique as a result 

of their equipment. Chapters 4 and 5 measured joint angles whilst performing a variety 

of shots and running, from these results it was possible to identify the range of angles 

the leg guard must be able to go through without causing restriction, but still 

maintaining protection. The results in Chapter 4 identified the sweep as the shot where 

the leg goes through the largest range of motion, with the knee angle ranging from 165° 

to 60° across all subjects. In Chapter 5 it was found that knee angles range from 140° at 

the point of maximum extension to 95° at the point of maximum flexion during the 

running stride. From these results, it has been specified that a pad must allow 120° of 

motion, ranging from 170° to 50° without restricting the leg, to ensure that all shots and 

running can be performed with minimal impedance (Figures 4.8 to 4.10 and Figure 

5.20). 

 

7.2 Concept design 

The second section of this chapter details the development of a concept design based on 

the PDS, with a particular focus on maximising the comfort and fit of the leg guard, as 

this has been the main aim of the work presented within this thesis. Although comfort 

is the primary focus of this design, protection was considered, and results from other 

work packages were used to make informed decisions about the level of protection 

required. 
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7.2.1 Market research 

Prior to developing a concept design, PPE used within other sports and industries were 

considered. Two items of PPE were found to be particularly relevant for providing knee 

protection whilst not restricting motion. These two items were motorcycle knee pads 

and shooting kneeling pads (Figure 7.4). These two examples were of particular interest 

due to the innovative way they articulate at the knee, without sacrificing protection. 

Knee articulation was seen as a possible way to address two major issues, discomfort 

caused by the top strap and pads impeding the hands during shot play. This would allow 

the top strap to be positioned above the knee so that the thigh protection would be 

fixed to, and move with the upper leg rather than the pad remaining in a straight 

position when the leg is flexed. The difficulty with these types of design however, is 

allowing the knee to bend through the full range required without gaps in protection 

occurring.     

 

When considering the shape, size and protection elements of PPE it was considered 

necessary to study items of equipment used to provide protection against similar types of 

impacts, whilst being used to complete similar movements and tasks. A range of baseball 

catcher’s pads were considered (Figures 7.5), which use a hard outer shell with soft 

padding underneath. This allows the pad to protect by spreading impact loads over a 

larger area, whilst maintaining its shape and form by wrapping round the leg, rather 

than relying on straps to pull the pad around the leg. The use of a hard shell was 

identified as a possible way to reduce the amount of padding needed to protect the leg, 

due to it spreading the impact force over a larger area, in a similar way to how canes in 

traditional pads distributed the force longitudinally down the pad. 

  

7.2.2 Overview of concept design 

A concept design was developed from the PDS specifically aiming to maximise fit and 

perceived comfort. The concept design, illustrated in Figure 7.6, incorporates a 

combination of impact absorbing foams and a hard shell made from Nylon 12, allowing 

the leg guard to be formed to the shape of the leg and to spread impact forces over a 

larger area. The concept leg guard also incorporates an articulating knee to help 
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minimise restriction whilst performing routine movements. Finally an elasticated fabric 

sleeve is used to fasten the pad to the leg, replacing traditional straps (Figure 7.6). The 

details of the structure, shape and size of the pad are detailed in sections 7.2.2 to7.2.5. 

 

7.2.3 Structure of the pad 

One of the main considerations in the development of the concept design was the 

structure of the pad, in terms of materials and construction. Within existing pads a 

variety of materials are used, including cane, different grades of EVA foams and plastics, 

however, the use of Confor foams, has not been explored. Confor foams were identified 

as a suitable material to be used within cricket PPE, as the polyurethane foams soften 

and conform when warmed, which should enhance comfort by minimising pressure 

peaks on the body, but also have high energy absorption characteristics (Davies and 

Mills, 1999).  

 

Within the concept design it was envisaged that the use of Confor foam would enable 

less material to be used whilst maintaining a sufficient protection level, due to the foams 

high energy absorbing properties. Confor foam comes in four different grades (yellow, 

pink, blue and green) with varying stiffnesses and energy absorption properties. To 

determine which grade of Confor foam was most suitable for use within a cricket leg 

guard and how thick it needed to be, impact data from Walker (2009) was used. Within 

this set of tests, different grades and thicknesses of Confor foams were compared as well 

as layered structures containing solid plastic plates embedded between foam layers 

(Figure 7.7). A combination of green (25.5mm thick) and pink (20mm thick) Confor 

foam with a 3mm Nylon 12 insert was found to provide greater protection than any 

existing pad; a mean transmitted force of 4.8 kN was measured when impacted at 31.3 

m/s by a 0.163 kg mass (Figure 7.8). The data suggests that this combination of foams 

and plastic will provide a suitable level of protection for the central shin and knee areas 

and provide up to double the level of protection required at the inner and outer edges 

of the pad, therefore, giving scope for the pad thickness at the sides to be reduced from 

48.5mm, satisfying the size criteria outlined in the PDS. Impact data from Walker 

(2009) also found that impacting 15mm of green foam at 31.3 m/s with a 0.163 kg mass 
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would produce a transmitted force of 10.8 kN, providing equal protection to that 

provided by existing pads at Zones 2,4,5,7 and 8. However, due to this pad being of a 

closer fit, it was determined that varying the pad thickness from 48.5mm in the centre 

(25.5mm green, 3mm nylon and 20mm pink) to 23mm at the edge (10mm green, 3mm 

nylon and 10mm pink) would ensure a suitable level of protection was provided. 

According to the impact results, these dimensions will provide adequate protection as 

well as allowing the pad to be significantly thinner, which could help reduce running 

impedance.  

 

7.2.4 Shape and size of the pad 

The shape and size of the pad have been identified as significant contributors to 

perceived comfort, in terms of their effect on protection, restriction and contact 

pressure. An advantage with using a solid structure within the design was the ability to 

shape the pad so that it conforms to the leg, allowing the size and shape to be optimised. 

To optimise the size and shape of the concept design, 3D body scanning and AM were 

combined, allowing a pad to be designed around the dimensions of an individual’s leg. 

This process involved a 3D body scan being taken, producing a point cloud of the body 

(Figure 7.9), which then had a surface fitted to it (Figure 7.10). A hard shell was formed 

using an offset, which can be equal across the whole design, however, for this concept 

design a variable offset was used to allow for the varying thicknesses of foam. The CAD 

(computer aided design) model of this surface can then be used to build the part on a 

laser sintering machine, allowing for a completely custom pad. This process not only 

allows for the pad to fit to the leg, increasing contact area, but also allowed the 

individual to specify the length of the pad, rather than being limited to a set length.  

 

7.2.5 Knee area 

The knee area has emerged as a significant factor for leg guard design, in terms of its 

appearance, protection provided and influence on range of motion. In Chapters 2 and 

3, players had a preference for a pad with a defined knee roll, although there was a clear 

dislike for pads that were wide at the knee, as they were perceived to reduce running 

performance. Another key consideration for the concept design was the flexibility of the 
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pad at the knee, as pads which did not bend with the knee were disliked because they 

could get in the way of the hands whilst playing shots.   

 

Current pads on the market tend to adopt one of two designs for the knee area (Figure 

2.2) - a segmented knee roll separated into multiple segments (typically 3) or no clearly 

defined knee area (for example P2). Although both these design have been used across a 

wide range of pads, they both provide very limited flexibility as a result of the stiff 

materials used, resulting in the pad remaining straight when the knee is flexed. This has 

several disadvantages including restricting shot ROM, gaps opening between the pad 

and leg above the knee, high strap pressures and reducing contact area whenever the leg 

is bent. The inclusion of an articulated knee, as used within motorbike knee protection, 

was considered advantageous, as this would allow the top of the leg guard to remain in 

contact with the thigh at all times, increasing contact area, whilst minimising restriction.  

 

Within the concept design, the knee was made to articulate through the use of a hinge 

along the line of the knee joint centre, with the top section (thigh protector) being 

encapsulated by the bottom half of the pad (Figure 7.11); this allowed the knee to be 

bend through the 120° needed, without the leg being exposed to the ball. Through the 

use of this design, additional protection would be provided to the centre of the knee, 

which covers the patella, whilst minimising pad size at the inside and outside of the pad. 

 

7.2.6 Strap design 

The concept pad illustrated in Figure 7.6 can be customised to an individual resulting in 

a pad which is contoured to the leg and can articulate at the knee. The advantage of 

these two factors is that the straps are there to stop the leg guard detaching whilst 

moving, rather than to pull the pad against the leg, so that it bends around the shape of 

the body. Material selection is of key importance, as the wrong material could result in 

the leg becoming extremely hot, and restrict the natural expansion/contraction of the 

muscle. Therefore, it was decided that the use of a breathable, high wicking material (as 

used in compression garments) would be appropriate, aiding moisture transportation 
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away from the skin and increasing heat dissipation through evaporation. The concept 

leg guard is attached to the leg through the use of two Nylon/Polyester (as used in 

compression garments) sleeves, as depicted in Figure 7.6. The use of sleeves rather than 

straps will result in strap contact area being significantly larger, allowing average contact 

pressure to be reduced. 

 

7.2.7 Summary of concept design 

The concept design was developed based on several criteria outlined within the PDS 

(Appendix 7). The focus of this design was on factors affecting perceived comfort, with 

particular emphasis on fit, protection and weight. Table 7.4 compares the PDS with 

concept design data taken from the CAD model (Figure 7.11) (developed by the design 

engineer). Thermal comfort, running performance, average pressure and peak pressure 

of the concept design are not discussed within this section, as these features require 

physical testing and can not be estimated from the CAD model. From the comparison 

of the PDS and concept design (Table 7.4) it is apparent that the concept design satisfies 

the PDS in terms of mass, predicted protection, inside leg thickness, contact area and 

pad length.  

 

7.2.8 Conclusion 

The test data provided within Chapters 2 to 6 enabled a PDS to be developed specifying 

size, weight and levels of protection. The PDS was used to develop a concept design 

where the main focus was perceived comfort and protection, with the aim of maximising 

player performance and end-user satisfaction. Through the use of new technologies such 

as 3D body scanning and AM, a concept design was developed which is customised to 

the individual. The concept design was developed from a 3D body scan, resulting in the 

pad fitting to the individual’s leg, maximising contact area. The inclusion of Confor 

foams and a Nylon 12 shell enabled the thickness of the pad to be minimised, whilst 

maintaining adequate protection. Finally, an articulating knee was incorporated within 

the design, to prevent the pad from affecting the player’s batting technique. The 

articulating knee and conformity of the design also allowed for the strap behind the 

knee to be removed, which was a major source of discomfort.  The concept design 
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demonstrates how the results of the testing and the knowledge gained throughout the 

project can be embodied in a design that should be more comfortable to wear and 

impact running performance to a lesser extent, compared to existing pads.  

 

Criteria PDS Concept design 
Mass <0.85kg AM insert =0.343kg 

Outer foam =0.200kg 

Inner foam = 0.285kg 

Total = 0.828kg 

 

Length 645-670cm Built to subject’s 

specification 

 

Inside leg thickness <40mm 26mm 

 

Protection (transmitted 

force at 31.2m/s) 

• Minimum 

transmitted 

force 

 

• Maximum 

transmitted 

force 

 

 

 

 

5kN 

 

 

 

8kN 

 

 

 

4.8kN (predicted from 

impact testing on 

100x100mm samples) 

 

8kN (predicted from 

impact testing on 100mm 

x 100mm samples) 

Thermal 

• Shin 

• Leg 

  Dry 

≤0.33m2°C/W 

≤0.18m2°C/W 

Wet 

≤106.26 m2Pa/W 

≤26.43 m2Pa/W 

 

 

Knee range of motion 120° 120° 

 

Contact area >220cm2 Up to 1212cm2 

 
Table 7. 4: Comparison between concept design and PDS 
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Chapter 8 
 

 
 

8 Conclusions and Future Work 

8.1 Conclusions 

This research represents a first investigation into the perceived comfort and fit of 

personal protective equipment in sport, and has developed an understanding of factors 

affecting perceived comfort. A new hierarchical model has been developed allowing the 

most influential features affecting perceived comfort to be identified and objective tests 

developed to help maximise end-user satisfaction. 

 

Two comfort models have been developed for cricket leg guards and taekwondo hogus 

which contain the same six dimensions of comfort. These items of PPE were selected as 

they are used within very different sports, varying in intensity, duration, environment 

and type of impacts that they protect against. The results identified only subtle 

differences in terminology were identified between the two models, down to the lower 

order sub-themes, where, more specific design features started to be identified. The two 

models also demonstrated a high degree of similarity in terms of inter dimension links, 

as demonstrated by the relationship models. Differences between the models did occur 

when considering the relative importance of each dimension, suggesting that individual 

comfort models for each piece of equipment are necessary. Although there were distinct 

differences in perceived importance with regards to ‘Protection’, ‘Weight’ and ‘Thermal 

comfort’, the majority of players for both sports perceived ‘Fit’ as the most important 

factor affecting comfort.  

 

Within the cricket leg guard comfort model, several contributing factors were identified 

within the ‘Fit’ dimension, including, awareness, customisation, flexibility, shape to the 

body, size, movement and strap design. Player movement, in terms of shot range of 
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motion and performance, was focused on. To assess these, a method was developed to 

allow 3D motion to be assessed whilst players wore leg guards that covered the 

anatomical land marks typically used to track motion. This method involved the use of 

cluster markers on the thigh and foot, allowing joint centres of the knee and ankle to be 

calculated, despite there being no markers at either location during dynamic trials. The 

use of cluster markers allowed an accurate model to be developed which could 

determine lower extremity joint angles. Joint angle data was combined with shot impact 

data and a subjective assessment of three pads, as well as for a no pad and weighted 

comparison whilst performing three different shots. The shot impact data suggested 

none of the pads or the weighted comparison significantly affected the performance of 

any of the three shots when compared to batting without pads, however, the subjective 

results suggested P3 was perceived by the majority of players to significantly restrict 

motion when compared to P1 and P2. These results were compared to joint angle data 

but there was no consistent trend in terms of actual restriction, suggesting that the 

perceived restriction was caused by other factors such as contact pressure, weight and 

size of the pad.  

 

A running speed study was conducted in two parts, initially focusing on the effect of 

cricket leg guards on running and turning speed, whilst the second part aimed to 

investigate possible causes of running impediment. The running time study identified 

that running in pads did significantly affect running performance, as did the weighted 

comparison; however, the level of impediment was dependent on type of pad worn. The 

results suggest that the loss of performance was due to a decrease in straight line running 

speed, as opposed to time taken to turn. The decrease in running speed could not be 

solely attributable to additional weight, as the weighted comparison was of equal weight 

to the heaviest pad (P3), yet running times were significantly slower for P3. These 

findings were further investigated through the use of 3D motion analysis and ground 

reaction force. No significant differences were found in joint angle kinematics at the 

knee or ankle between the five conditions, although, P3 was found to significantly 

increase stride width and decrease stride length. These changes in stride parameters were 

as a result of P3 adding over 5cm to the inside of each leg inhibiting the natural running 

stride, forcing the cricketer to run with a wider stride, whereas P1 and P2 added less 
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than 5cm so meant the cricketers could maintain a more natural gait, as measured in the 

no pad condition. Ground reaction force data identified that as a result of changes in 

running gait, braking forces were increased and propulsive impulse decreased in all 

padded conditions and the weighted comparison. Changes in anteroposterior forces 

coincided with increased mediolateral forces for the three padded conditions, suggesting 

less force was being applied in the direction of locomotion, ultimately decreasing 

running speed. 

 

Alongside the running data, pad movement relative to the leg was also measured to 

determine if there was a relationship between perceived and actual pad movement. The 

pad movement data was compared to subjective data assessing pad movement. Although 

there were no significant differences between the three padded conditions in terms of 

rotation about the leg, P3 was perceived to move significantly more than the other pads 

when running. These results suggest that other contributory factors must have created 

this perception of the pad moving on the leg whilst running.  

 

From the subjective responses collected throughout the testing it became evident that a 

key factor in determining perceived fit, with particular reference to pad movement and 

perceived restriction was the pressure the pad exerts on the leg. Contact pressure was 

measured for four pads, through the use of an X-sensor pressure mat, whilst running on 

a treadmill. The contact pressure data was assessed in terms of peak pressure, average 

pressure and contact area under different regions of the pad - the top, middle and 

bottom straps and the padded area. Subjective responses correlated with contact 

pressure data. The top strap was identified as the area applying the highest pressures to 

the leg and this was also found in the measured pressure data. A link between contact 

area variation, in terms of position and size, and perceived pad movement was also 

identified. Pads which had an inconsistent contact area were perceived to move about 

the leg more. These results suggest that contact area between the pad and leg needs to be 

maximised, with minimal variation whilst running.  

 

Finally the data collected throughout the testing stages of this thesis was incorporated 

into a product design specification, with specific sizes, contact areas, contact pressures, 
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protection levels and weights being defined. From this product design specification, a 

concept design was developed, which utilised 3D body scanning, additive manufacturing 

and Confor foams as a means of producing a custom made leg guard. The concept 

design illustrates how data collected through the use of various objective and subjective 

studies can be utilised to develop new products around the needs of the end-user. This 

research highlights the successful integration of the end-user within the design process, 

which in turn could lead to increased user satisfaction and perceived comfort.  

 

 

8.2 Future work  

This project has developed an approach to incorporate the end-user into the design 

process through the use of subjective and objective measurements. A comfort model has 

been developed for both cricket and taekwondo but only the dimension of ‘Fit’ has been 

investigated in depth and only for cricket. The testing of the other general dimensions 

through the use of player testing is one avenue of future work, as is the development 

and testing of a prototype leg guard, both of which will be discussed within this section.  

 

Within the PDS, protection levels were discussed with existing products being 

benchmarked. Further investigation needs to be conducted in order to fully understand 

the mechanisms of injury, as it is not known if current pads provide enough or even too 

much protection, which could have significant affects on the size and weight of the PPE. 

 

The research has presented data on running performance identifying a maximum weight 

for the concept design; however, further analysis is needed regarding the affect of weight 

on energy consumption and movement speed. The use of inverse dynamics could be 

used to determine the difference in moment size when different masses are added to the 

leg, whilst running at a set speed. This data would allow an understanding to be gained 

regarding the effect of cricket leg guards on movement efficiency, helping a leg guard to 

be developed that will minimise fatigue whilst batting. 
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Thermal comfort was another factor players’ perceived to affect comfort, therefore 

further player testing is required to assess the significance of differences in levels of 

insulation provided by leg guards. Work by Roberts (2008) illustrated that using lab 

based exercise protocols that replicate game conditions by inducing a heart rate pattern 

similar to that experienced in a match allows a more accurate analysis of skin and core 

temperature to be conducted, whilst allowing subjective feedback to be collected 

throughout the testing.  This method could be employed to assess thermal comfort of 

cricket leg guards throughout an innings, to determine if there is a correlation between 

skin temperature and perceived comfort, as well as determining how sensitive players are 

to different levels of heat restriction.  

 

The inclusion of data from the testing outlined within this section will allow a more 

complete PDS to be developed, which can then be used to further develop the concept 

design. Once the design has been adjusted to incorporate this new data, prototype leg 

guards could be manufactured and tested, determining if they satisfy the requirements 

outlined within the PDS. Once these tests have been conducted further subjective 

analysis needs to be conducted for the design to be optimised.  

 

Finally the approach outlined within this research could be replicated with other pieces 

of sporting equipment, including further analysis of the taekwondo hogu.   
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Figure 1. 1: Pontrelli’s “Comfort’s Gestalt” (1977) 
 
 
 

 
 

Figure 1. 2: Sontag’s “Human Ecological Approach” (1986) 
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Figure 1. 3: Branson and Sweeney’s comfort model (1991) 

 

 
Figure 1. 4: Subjective perception of comfort (Li, 2001) 
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Figure 2. 1: Modified version of Roberts (2001) study design process 
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Figure 2. 2: Range of cricket leg guards used within testing 
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Figure 2. 3: General dimensions and higher order sub-themes for cricket 
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Figure 2. 4: General Dimension of Aesthetics for cricket 
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Figure 2. 5: General Dimension of 'Weight' for cricket 
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Figure 2. 6: Higher order sub-theme of ‘Fit’ for cricket – Movement 
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Figure 2. 7: Higher order sub-themes of ‘Fit’ for cricket – Size and Shape to the body 
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Figure 2. 8: Higher order sub-theme of ‘Fit’ – Strap Design for cricket 
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Figure 2. 9: Higher order sub-themes of ‘Fit’ for cricket – Awareness and Customisation 
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Figure 2. 10: Higher order sub-themes of ‘Fit’ for cricket – Flexibility 
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Figure 2. 11: General dimension 'Protection' for cricket 
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Figure 2. 12: General dimension ‘Sensorial’ for cricket 
 
 
 
 
 
 

 
 

Figure 2. 13: General dimension ‘Thermal’ for cricket 
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Figure 2. 14: Structured Relationship model for comfort of a cricket leg guard
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Figure 2. 15: Taekwondo chest guards 
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Figure 2. 16: General dimensions and higher order sub-themes for taekwondo 
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Figure 2. 17: Higher order sub-themes of ‘Fit’ for taekwondo – Awareness, Adjustability and 

Flexibility 
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Figure 2. 18: Higher order sub-themes of ‘Fit’ for taekwondo – Shape and Movement 
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Figure 2. 19: Higher order sub-theme of ‘Fit’ for taekwondo – Size 
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Figure 2. 20: Higher order sub-theme of ‘Fit’ for taekwondo – Strap design 
 
 
 
 

 
Figure 2. 21: General Dimension of 'Thermal' for taekwondo 
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Figure 2. 22: General Dimension of ‘Weight’ for taekwondo 
 
 
 

 
 

Figure 2. 23: General Dimension of ‘Sensorial’ for taekwondo 
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Figure 2. 24: General Dimension of ‘Protection’ for taekwondo 
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Figure 2. 25: General Dimension of ‘Aesthetics’ for taekwondo 

 
 
 



P a g e  | 179 
 

 

 

 
 

Figure 2. 26: Structured Relationship model for comfort of a taekwondo hogu 
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Figure 2. 27: Comparison of general dimensions and higher order sub-themes for cricket and 
taekwondo 
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Figure 3. 1: Example question and response bars used within the AHP online questionnaire 

 

Cricket Pad Comfort Questionnaire  

1. Within each of the 5 pairs listed below, move the bars accordingly to show how
much more important one factor is than the other.  

(If slide bars do not appear allow blocked contents)  
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Figure 3. 2: Mean weighting of importance for all six general dimensions attained from the AHP process  (A) Combined results for all 100 respondents ±SD, (B) 
Comparison of Male and Female responses ±SD, and (C) Comparison of Amateur and Professional responses ±SD 

(A) 

(C) 

(B) 
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Figure 3. 3: Bootstrap results for 10,000 resamples for the cricket leg guard 
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Figure 3. 4: A comparison of weightings assigned to fit and protection between group 1 and 2 of 

the respondents 
 

 
Figure 3. 5: Individual weightings for members of group 1 for all general dimensions for cricket 
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Figure 3. 6: Individual weightings for members of group 2 for all general dimensions for cricket 
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Figure 3. 7: Location of the eight zones assessed within the cricket questionnaire to determine 
where players perceive the greatest need for protection 

 
 
 
 
 
 

 
Figure 3. 8: Rank sums for all eight zones regarding where the most protection is required for 

the cricket leg guard 
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Figure 3. 9: Section 2 question 2, aesthetics assessment 
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Figure 3. 10:Mean rating of cricket leg guards for the overall shape ±1 standard deviation 
 
 
 
 

 
Figure 3. 11: Mean rating of cricket leg guards for the area above the knee ±1 standard deviation 
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Figure 3. 12: Mean rating of cricket leg guards A-D for the knee area ±1 standard deviation 
 
 
 

 
Figure 3. 13: Mean rating of cricket leg guards for the shin area ±1 standard deviation 
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Figure 3. 14: Preference for cricket leg guards with two or three straps 
 

 
 

 
Figure 3. 15: Preference for cricket leg guards with or without a knee roll 
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(C) 
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Figure 3. 16: Mean weighting of importance for all six general dimensions attained from the AHP process for taekwondo (A) Combined results for all 43 
respondents ±SD, (B) Comparison of Male and Female responses ±SD, and (C) Comparison of expert and novice responses 
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Figure 3. 17: Bootstrap results for 10,000 resamples for the taekwondo hogu 

 

 
Figure 3. 18: Individual weightings for members of group 1 for all general dimensions for 

taekwondo 
 
 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

Resample

W
ei

gh
tin

g 
(%

)

 

 

Weight

Thermal

Protection

Fit

Sensorial

Aesthetics

 

Weight  Thermal  Protection Fit Sensorial   Aesthetics
0

5

10

15

20

25

30

35

40

45

General Dimension

 

 

W
ei

gh
tin

g 
(%

)



P a g e  | 193 
 

 

 

Figure 3. 19: Individual weightings for members of group 2 for all general dimensions for 
taekwondo 

 

 
Figure 3. 20: Location of the 6 zones assessed within the taekwondo questionnaire for where 

players perceive there to be the greatest need for protection 
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Figure 3. 21: Rank sum for all 6 zones regarding where the most protection is required for the 
taekwondo hogu 

 

 
Figure 3. 22: Preference for taekwondo hogus with Velcro or string straps 

 
 

 
Figure 3. 23: Assessment of whether hogu users perceive the pad to rub and irritate the neck 
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Figure 3. 24: Example of model validation scales used 
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Figure 4. 1: Rank sum ±1/2 LSDrank of perceived restriction caused by cricket pads for different 
shots 

 
 
 
 
 

 
 

Figure 4. 2: Example of experimental set up for the pull shot 
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Figure 4. 3: Camera position relative to subject batting position 
 
 
 
 
 

 
Figure 4. 4: Vicon head unit (Vicon, 2010) 
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Figure 4. 5: Ergocal calibration frame and wand 
 
 
 

 

 
 

Figure 4. 6: Redundant marker set  
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Figure 4. 7: Differences in joint angles calculated from cluster markers and markers on anatomical 
landmarks for one NP trial for all three types of shot 
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Figure 4. 8: Comparison of all 9 participants mean LKA from 1 second before impact to 1 second post impact whilst wearing no pads, for the A) drive, B) pull and 
C) sweep 
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Figure 4. 12: Mean LKA ±1SD for the sweep 0.5seconds before impact for all 9 subjects 
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Figure 4. 13: Mean LKA ±1SD for the sweep at impact for all 9 subjects 
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Figure 4. 14: Mean LKA ±1SD for the sweep 0.5seconds after impact for all 9 subjects 
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Figure 4. 15: Subject 5 ball impact label for the pull whilst wearing no pads 
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Figure 4. 16: All 45 ball impacts for the sweep
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Figure 4. 17: All 45 ball impacts for the drive 
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Figure 4. 18: All 45 ball impacts for the pull
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Figure 4. 20: Mean location and confidence ellipse for impact locations of all 5 conditions whilst 
performing a drive 

 

 
 

 

Figure 4. 19: Mean location and confidence ellipse for impact locations of all 5 
conditions whilst performing a sweep
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Figure 4. 21: Mean location and confidence ellipse for impact locations of all 5 
conditions whilst performing a pull

Figure 4. 22:Areas of discomfort identified for P1, P2 and P3 
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Figure 5. 1: Smart speed timing gate 
 
 

 

 
 

 
 

Figure 5. 2: Schematic diagram of running time test set up 
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Figure 5. 3: Positioning of the 0.9 kg mass for the WC tests 

Figure 5. 4:Mean time taken to complete three runs in each condition for all 10 subjects ±1 
standard deviation
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Figure 5. 5: Mean ± one Gabriel comparison interval for    A) overall time, B) time taken to turn 
for the 5 conditions of no pads (NP), weighted comparison (0.9kg), pad type 1 (P1) (0.54kg), pad 

type 2 (P2) (0.85kg) and pad type 3 (P3) (0.9kg)

Figure 5. 6: Example of a typical mediolateral GRF trace for a A) Rearfoot and B) Midfoot striker 
(Cavanagh and Lafortune, 1980)
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Figure 5. 7: Example of a typical vertical GRF trace for a A) Rearfoot and B) Midfoot striker 

(Cavanagh and Lafortune, 1980) 
 
 
 
 
 

 
 

Figure 5. 8: Subject 4 completing a running trial in P2
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Figure 5. 9: CODA head unit (Codamotion, 2010) 
 
 
 

 
 

 
 
 
 

Figure 5. 10: Schematic diagram of running kinematic test set up 
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Figure 5. 11: Static capture of full marker set up in visual 3D (version 4) 
 
 
 

Figure 5. 12: Comparison of A) knee and B) ankle angle for the left leg when running 
using cluster markers and anatomical landmarks 
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Figure 5. 13: Pad marker locations 
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Figure 5. 16: Mean ± one Gabriel comparison interval for A) stride length and B) stride width for all 
five conditions, with a significant difference demonstrated when the Gabriel comparison intervals do 

not overlap 
 
 

 
 

Figure 5. 15: 3D kinematic model with force vector 
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Figure 5. 17: Mediolateral and vertical GRF trace for Subject 2 in the N/P condition ±1 standard deviation 
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Figure 5. 18: Mean GRF  ± one Gabriel comparison interval for all conditions in regards to A) 

Maximum braking force, B) Braking impulse, C) Maximum propulsive force, D) Propulsive impulse, 
E) Maximum medial lateral force, F) Medial lateral impulse, G) Maximum vertical force and H) 

Vertical impulse, with significant differences demonstrated when the Gabriel confidence intervals do 
not overlap 
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Figure 5. 19: Mean anterior/posterior impulse ± one Gabriel confidence interval, with a significant 
difference demonstrated when the Gabriel comparison intervals do not overlap 

 
 

 
Figure 5. 20: Mean joint kinematics for Subject 3 for one complete stride with event labels (left heel 

strike (LHS), left toe off (LTO), right heel strike (RHS) and right toe off (RTO)) for A) left knee angle 
and B) left ankle angle for all five conditions 
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Figure 5. 21: Mean  ± one Gabriel comparison interval for A) Maximum knee extension, B) 

Maximum knee flexion, C) Maximum ankle extension and D) Maximum ankle flexion for the left leg, 
with a significant difference demonstrated when the Gabriel comparison intervals do not overlap 
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Figure 5. 22: Mean  ± one Gabriel comparison interval for A) Maximum knee extension angular 
velocity and B) Maximum knee flexion angular velocity, C) Maximum ankle extension angular 

velocity and D) Maximum ankle flexion angular velocity for the left leg, with a significant difference 
demonstrated when the Gabriel confidence intervals do not overlap 
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Figure 5. 23: Mean pad rotation (±1 standard deviation) about the front leg for A) P1, B) P2 and C) P3 
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Figure 5. 25: Subjective rankings of the three pads in terms of perceived A) Fit, B) Restriction, C) Pad movement and D) Running impedance +1 
LSDrank
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Figure 6. 2: Photron fastcam high speed camera (Photron, 2010) 
 

 

 
 

Figure 6. 1: X-sensor LX200 custom sensor 
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Figure 6. 3: HP Cosmos Saturn treadmill 
 

 
 

 

 
 

 
 
 
 

 
Figure 6. 4: Sensor mat mounted beneath pad on leading leg of cricketer 
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Figure 6. 6: Example of the rating scale used to subjectively rank the pads post use 
 
 

More 

Comfortable 

Less 

Comfortable 

P1 P4 P2P3
 

Pad Width: 
 

Much too Narrow   Too Narrow   Ideal   Too wide   Much too wide 
 
      
Pad Length: 
 

Much too short   Too short   Ideal   Too long   Much too long 

Figure 6. 5: Subjective rating scale used within the final assessment of each pad, assessing pad 
width and length
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Figure 6. 7: Subject 5’s X-sensor pressure maps for the static measurement for P1, P2, P3 and P4 

P2 P3 P4P1



P a g e  | 233 
 

 233

 

 
Figure 6. 8: Numerical compilation of nine subject’s static measurement results for A) contact area, B) peak pressure and C) average pressure
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Figure 6. 9: Mean pad average pressure for each subject for P1, P2, P3 and P4
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Figure 6. 10: A compilation of data for Subject 5 wearing P1  A) Pressure maps during one complete stride, with magnified views of the top strap, B) mean 

contact area, C) mean peak pressure and D) mean average pressure for each of the four regions for all 20 strides
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Figure 6. 11: A compilation of data for Subject 5 wearing P2  A) Pressure maps during one complete stride, B) mean contact area, C) mean peak pressure and 

D) mean average pressure for each of the four regions for all 20 strides
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Figure 6. 12: A compilation of data for Subject 5 wearing P3  A) Pressure maps during one complete stride, with magnified views of the top strap, B) mean 

contact area, C) mean peak pressure and D) mean average pressure for each of the four regions for all 20 strides
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Figure 6. 13: A compilation of data for Subject 5 wearing P4  A) Pressure maps during one complete stride, with magnified views of the top strap, B) mean 
contact area, C) mean peak pressure and D) mean average pressure for each of the four regions for all 20 strides
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Figure 6. 14: Variation in contact area showing the mean maximum, mean average and mean 
minimum contact area for all subjects
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Figure 6. 15: Mean pad contact area for each subject for P1, P2, P3 and P4 over one stride
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Figure 6. 16: Mean peak pressure for each subject under padded area of P1, P2, P3 and P4 over 1 stride
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Figure 6. 17: Mean peak pressure for each subject for the top strap of P1, P3 and P4
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Figure 6. 18: Mean average pressure for each subject for top strap of P1,  P3 and P4
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Figure 6. 19: Mean contact area for each subject for middle strap of P1, P2, P3 and P4
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Figure 6. 20: Mean contact area for each subject for bottom strap of P1, P2, P3 and P4
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Figure 6. 21: Mean bottom strap average pressure for each subject of P1, P2, P3 and P4
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Figure 6. 22: Subjective responses regarding perceived pad width for all padded conditions

Figure 6. 23: Subjective responses regarding perceived pad length for all padded conditions
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Figure 6. 24: Illustrates the areas identified as causing significant discomfort and the number of 
subjects that highlighted each specific area

Figure 6. 25: Rank sum results for each pad in relation to comfort, fit, pad movement and strap 
pressure +1 LSDrank 
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Figure 7. 1: Comparison between A) areas perceived to need the most protection and B) 
protection provided by a typical pad from a 31.3m/s impact (Webster et al. 2009) 

 
 
 

 
 

Figure 7. 2: Thermal manikin testing of P3 
 



P a g e  | 250 
 

 250

 

 
Figure 7. 3: Comparison of dimensions for P1 to P6 

 
 
 

Measurement (mm) 
Measurement Pad 

 P1 P2 P3 P4 P5 P6 

A 250 200 260 241 240 249 
B 645 600 670 693 650 688 
C 440 412 434 455 460 458 
D 235 78 247 234 278 235 
E 35 40 53 43 40 52 
F 28 - 24 27 28/50 26 
G 53 36 49 51 53 50 
H 53 38 48 51 53 50 
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Figure 7. 4: Examples of motorcycle (Northern accessories, 2009) and firearms knee pads 
(Sunshines, 2009) 

 
 
 
 
 
 

 
 

Figure 7. 5: Example of baseball catchers leg guards (Smarter, 2009) 
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Figure 7. 6: Concept design including Nylon and Polyester straps. 
 
 
 

 
 
 
 
 

3mm Nylon 
12 sheet 

Green  
Confor Foam 

Pink Confor 
Foam 

Figure 7. 7: Green and pink Confor foam test sample with a 3mm AM sheet
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Figure 7. 9: Point cloud taken from the 3D body scan of the leg 
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Figure 7. 8: Peak transmitted force at 31.3m/s for A) different combinations of Confor foams and 
EVA foam and B) different grades of Confor foams without an insert, with a polyurethane top 

layer, a polypropylene insert in the middle, canes in the middle and a Nylon 12 insert in the 
middle of the foam (Walker, 2009)
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Figure 7. 10: Surfaced leg made from the point cloud 

 
 
 
 

 

 
 
 
 
 

 

Figure 7. 11: Concept design A) wrapped around a leg, B) in a straight leg position and C) bent to
120°
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Appendix 1: Interview guideline  
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Interview Guidelines 
 

1. Was there any noticeable difference between the pads used today regarding 
comfort? If so what? 

 
2. What is your overall opinion of existing cricket pads regarding their comfort  

 
3. Give a time line regarding the pads from putting them on to taking them off 

when batting for a long period of time. 
 

4. What encouraged you to purchase your current set of pads? 
 

5. What features do you particularly like/ look for when choosing a pad and why? 
 

6. What features would deter you from using a certain pad? 
 

7. What is the biggest problem with wearing cricket pads? 
 

8. Do you feel cricket pads can effect your performance if so, how? 
 

9. When wearing pads for a length of time do any feelings of discomfort become 
more apparent? 

 
10. How have cricket pads improved since you began to play? 

 
11. What would you like to see improve with current cricket leg guards? 

 
12. As a group could you rate the pads in order as if you were choosing a pad for 

the team and explain why you placed the pad where you did. 
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Appendix 2: AHP online questionnaire 
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Thank you for participating in this survey for my research. I am a PhD student at
Loughborough University investigating the perception of comfort and fit of cricket legguards. 
Within this survey we are interested in what characteristics of a cricket pad you find most
important in regards to comfort. For more information about my research, please feel free to
contact me or visit the Sports Technology Research Group for other sports related research 
performed at Loughborough.  

For this survey, you will be presented with different question formats, so please read the 
instructions for each question carefully. Once you feel happy with your answers press the 
submit button at the bottom of the page.  

 

Cricket Pad Comfort Questionnaire  

  What leg guard do you currently use?  

Next 

 
Many thanks,  

James Webster  

J.M.F.Webster@lboro.ac.uk  
 
 
 
Age:  

Gender:  Male  Female  

Level played at (or equivlant):   
 
International  

 
     County  

 
University Team 

Batting position:  1-4  5-7  8+    
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Cricket Pad Comfort Questionnaire  

Six factors have been seen to affect the comfort of players whilst wearing
cricket pads, before answering the following questions please look at what
each factor incorporates. Once you are happy that you know what is meant
by each factor click continue.  

1 Heat balance Incorporates how the pad allows heat to be removed from the leg 
preventing sweating and over heating.  
2 Material feel involves the feel of the material caused by the interaction between the 
pad and the skin.  
3 Fit is determined by how flexible the pad is and whether it shapes to the leg or not, 
whether the pad restricts movement and how the pad is secured to the leg.  
4 Weight How light or heavy the pad is.  
5 Aesthetics Incorporates the shape and style of the pad, the colour of it, and any 
design features such as graphics, and stitching.  
6 Protection Includes whether there are any weaknesses within the pad, how 
exposed the leg is to the ball and how much padding there is.  

Factors  

Back Next  
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Cricket Pad Comfort Questionnaire  

1. Within each of the 5 pairs listed below, move the bars accordingly to show how
much more important one factor is than the other.  

(If slide bars do not appear allow blocked contents)  

 

 
Fit  Weight  

 

Material feel  Protection  

 
Heat balance  Weight  

 

Protection  Aesthetics  

Back Next  
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Cricket Pad Comfort Questionnaire  

2. Within each of the 5 pairs listed below, move the bars accordingly to show how
much more important one factor is than the other.  

(If slide bars do not appear allow blocked contents)  

 
Aesthetics  Weight  

 

Fit  Protection  

 

Heat balance  Aesthetics  

 

Weight  Material Feel  

 

Fit  Heat balance  

Back Next  
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Cricket Pad Comfort Questionnaire  

3. Within each of the 5 pairs listed below, move the bars accordingly to show how
much more important one factor is than the other.  

(If slide bars do not appear allow blocked contents)  

 
Aesthetics  Fit 

 

Heat balance 

 

Heat balance  Protection 

 

Fit   Material Feel  

 

Protection Weight 

Back Next  
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Cricket Pad Comfort Questionnaire  
         6. How many straps do you prefer?                 2 or 3                 

         7. Do you prefer pads to have a knee roll?     Yes or  No 

8. What characteristics would your ideal pad have?  

 
Thank you for your participation  

Back Submit  
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Appendix 3: Cricket batting pad 
questionnaire 
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Appendix 4: Comfort questionnaire 
 
 
 



P a g e  | 271 
 

 271

 



P a g e  | 272 
 

 272

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



P a g e  | 273 
 

 273

 
 
 
 
 
 
 
 

Appendix 5: Vicon code for cluster 
markers 
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MKR Label 
[Autolabel] 
 
RASI  Right SacroIliac Anterior 
RPSI  Right SacroIliac Posterior 
RHJC  Right Hip Joint Centre 
HJC  Centre between Joint Centres 
 
RKNEL  Right Knee Lateral 
RKNEM  Right Knee Medial 
RKNEJC  Right Knee Joint Centre (Actual) 
RKNELI  Right Knee Lateral (Imaginary - I) 
RKNEMI  Right Knee Medial (I) 
RKNEJCI  Right Knee Joint Centre (I) 
 
RTHII  Right Thigh Inferior 
RTHIS  Right Thigh Superior 
RTHIA  Right Thigh Anterior 
RKNELC  Right Knee Lateral (Cluster) 
RKNEMC  Right Knee Medial (Cluster) 
RKNEJCC  Right Knee Joint Centre (Cluster) 
 
RANKL  Right Ankle Lateral 
RANKM  Right Ankle Medial 
RANKJC  Right Ankle Joint Centre 
RANKLI  Right Ankle Lateral (I) 
RANKMI  Right Ankle Medial (I) 
RANKJCI  Right Ankle Joint Centre (I) 
 
RMTPL  Right MetatarsoPhalangeal Lateral 
RMTPM  Right MetatarsoPhalangeal Medial 
RMTPJC  Right MetatarsoPhalangeal Joint Centre 
RHL  Right Heel  
 
LASI  Left SacroIliac Anterior 
LPSI  Left SacroIliac Posterior 
LHJC  Left Hip Joint Centre 
 
LKNEL  Left Knee Lateral 
LKNEM  Left Knee Medial 
LKNEJC  Left Knee Joint Centre (Actual) 
LKNELI  Left Knee Lateral (I) 
LKNEMI  Left Knee Medial (I) 
LKNEJCI  Left Knee Joint Centre (I) 
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LTHII  Left Thigh Inferior 
LTHIS  Left Thigh Superior 
LTHIA Left Thigh Anterior 
LKNELC  Left Knee Lateral (Cluster) 
LKNEMC  Left Knee Medial (Cluster) 
LKNEJCC  Left Knee Joint Centre (Cluster) 
 
LANKL  Left Ankle Lateral 
LANKM  Left Ankle Medial 
LANKJC  Left Ankle Joint Centre 
LANKLI  Left Ankle Lateral (I) 
LANKMI  Left Ankle Medial (I) 
LANKJCI  Left Ankle Joint Centre (I) 
 
LMTPL  Left MetatarsoPhalangeal Lateral 
LMTPM  Left MetatarsoPhalangeal Medial 
LMTPJC  Left MetatarsoPhalangeal Joint Centre 
LHL  Left Heel 
 
RHJC,LHJC 
RHJC,RKNEJCI 
RKNEJCI,RANKJCI  
LHJC,LKNEJCI 
LKNEJCI,LANKJCI 
RHJC,RKNEJC 
LHJC,LKNEJC 
RKNEJC,RANKJC 
LKNEJC,LANKJC 
RANKJCI,RMTPJC 
LANKJCI,LMTPJC 
RANKJC,RMTPJC 
LANKJC,LMTPJC 
 
RKAngle  Right Knee Angle (I) 
LKAngle  Left Knee Angle (I) 
RKAngleA Right Knee Angle (A) 
LKAngleA Left Knee Angle (A) 
 
RAAngle  Right Ankle Angle (I) 
LAAngle  Left Ankle Angle (I) 
RAAngleA Right Ankle Angle (A) 
LAAngleA Left Ankle Angle (A) 

  

{*VICON - RANGE OF MOTION CODE - CRICKET*} 

{*============================================*} 
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{* Define Optional Points - include all*} 

{* In order: Hips, Knee, Ankle, Triads, Feet *} 

 

OptionalPoints(RASI,RPSI,RHJC,HJC) 

OptionalPoints(RKNEL,RKNEM) 

OptionalPoints(RANKL,RANKM,RANKJC) 

OptionalPoints(RTHIS,RTHII,RTHIA) 

OptionalPoints(RMTPL,RMTPM,RHL) 

OptionalPoints(LASI,LPSI,LHJC) 

OptionalPoints(LKNEL,LKNEM) 

OptionalPoints(LANKL,LANKM,LANKJC) 

OptionalPoints(LTHIS,LTHII,LTHIA) 

OptionalPoints(LMTPL,LMTPM,LHL) 

 

{* Defining Upper/Lower Leg Clusters *} 

{* R = Right, L = Left, U = Upper, Lo = Lower, Le = Leg, C = Cluster *} 

  

 RULeC = [RTHIS,(RTHIS+RTHII)/2-RTHIS,RTHIA-(RTHIS+RTHII)/2]  

 LULeC = [LTHIS,(LTHIS+LTHII)/2-LTHIS,LTHIA-(LTHIS+LTHII)/2] 

 RLoLeC = [RHL,RHL-(RMTPL+RMTPM)/2,RMTPL-(RMTPL+RMTPM)/2] 

 LLoLeC = [LHL,LHL-(LMTPL+LMTPM)/2,LMTPL-(LMTPL+LMTPM)/2] 

  

{* RUN A STATIC TRIAL FIRST *} 

{*============================================*} 

 

If $Static==1 then 
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{*Save Average Length of Leg as a Parameter*} 

 RKNEJC = (RKNEL+RKNEM)/2 

 RANKJC = (RANKL+RANKM)/2 

 LKNEJC = (LKNEL+LKNEM)/2 

 LANKJC = (LANKL+LANKM)/2 

 RMTPJC = (RMTPL+RMTPM)/2 

 LMTPJC = (LMTPL+LMTPM)/2  

 

 RLegLength = DIST(RASI,RKNEJC)+DIST(RKNEJC,RANKJC) 

 LLegLength = DIST(LASI,LKNEJC)+DIST(LKNEJC,LANKJC) 

 MP_LegLength = (RLegLength+LLegLength)/2 

 PARAM(MP_LegLength) 

 

{*Finding Local position of Knee Markers relative to Thigh Triad*} 

 $%RKNELI = RKNEL/RULeC 

 $%RKNEMI = RKNEM/RULeC 

 $%LKNELI = LKNEL/LULeC 

 $%LKNEMI = LKNEM/LULeC 

{*Finding local position of ankle markers relative to foot triad*} 

 $%RANKLI = RANKL/RLoLeC  

 $%RANKMI = RANKM/RLoLeC 

 $%LANKLI = LANKL/LLoLeC 

 $%LANKMI = LANKM/LLoLeC 

 

{*Saving the following local coordinate parameters*} 
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PARAM($%RKNELI,$%RKNEMI,$%LKNELI,$%LKNEMI,$%RANKLI,$%RA
NKMI,$%LANKLI,$%LANKMI) 

 

EndIf 

 

 

{*Hip JC - uses Davis et al. 1991*} 

{*=============================================*} 

 

SACR = (LPSI+RPSI)/2 

PELF = (LASI+RASI)/2 

 

Pelvis = [PELF, RASI-LASI, SACR-PELF, xzy] 

 

RATD = 0.1288*MP_LegLength-48.56 

LATD = RATD 

 

C = MP_LegLength*0.115-15.3 

InterASISDist = DIST(LASI,RASI) 

aa = InterASISDist/2 

mm = 14 

COSB = 0.951 

SINB = 0.309 

COST = 0.880 

SINT = 0.476 

COSTSINB = COST*SINB 

COSTCOSB = COST*COSB 
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RHJC = {-C*SINT+aa, C*COSTSINB-(RATD+mm)*COSB, -C*COSTCOSB-
(RATD+mm)*SINB}*Pelvis 

LHJC = {C*SINT-aa, C*COSTSINB-(LATD+mm)*COSB, -C*COSTCOSB-
(LATD+mm)*SINB}*Pelvis 

HJC = (RHJC+LHJC)/2 

 

OUTPUT(RHJC,LHJC,HJC) 

 

 

{*Knee and Ankle JCs from Virtual Markers*} 

{*==============================================*} 

 

If $Static==0 then 

{*transforming from local co-ordinates to global co-ordinates with '*' function*} 

  

 RKNELI = $%RKNELI*RULeC 

 RKNEMI = $%RKNEMI*RULeC 

 LKNELI = $%LKNELI*LULeC 

 LKNEMI = $%LKNEMI*LULeC 

 

 RANKLI = $%RANKLI*RLoLeC  

 RANKMI = $%RANKMI*RLoLeC  

 LANKLI = $%LANKLI*LLoLeC  

 LANKMI = $%LANKMI*LLoLeC 

 

EndIf 
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RKNEJCI = (RKNELI+RKNEMI)/2 

LKNEJCI = (LKNELI+LKNEMI)/2 

RANKJCI = (RANKLI+RANKMI)/2 

LANKJCI = (LANKLI+LANKMI)/2 

 

RKNEJC = (RKNEL+RKNEM)/2 

RANKJC = (RANKL+RANKM)/2 

LKNEJC = (LKNEL+LKNEM)/2 

LANKJC = (LANKL+LANKM)/2 

 

OUTPUT(RKNELI,RKNEMI,LKNELI,LKNEMI,RANKLI,RANKMI,LANKLI,
LANKMI) 

OUTPUT(RKNEJCI,LKNEJCI,RANKJCI,LANKJCI) 

OUTPUT(RKNEJC,RANKJC,LKNEJC,LANKJC) 

 

 

{*Limb Segments from Virtual Markers*} 

{* ==============================================*} 

 

{*Foot*} 

 

RMTPJC = (RMTPL+RMTPM)/2 

LMTPJC = (LMTPL+LMTPM)/2 

RANKJC = (RANKL+RANKM)/2 

LANKJC = (LANKL+LANKM)/2 

RKNEJC = (RKNEL+RKNEM)/2 
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LKNEJC = (LKNEL+LKNEM)/2 

 

RFoot = [RANKJCI,RMTPJC-RANKJCI,RANKLI-RANKJCI,XYZ]  

LFoot = [LANKJCI,LMTPJC-LANKJCI,LANKLI-LANKJCI,XYZ] 

NRMTPJC = RMTPJC+13*RFoot(1)-27*RFoot(2) 

NLMTPJC = LMTPJC+13*LFoot(1)-27*LFoot(2) 

RFT = [RANKJCI,NRMTPJC-RANKJCI,RANKLI-RANKJCI,XYZ] 

LFT = [LANKJCI,NLMTPJC-LANKJCI,LANKJCI-LANKLI,XYZ] 

 

OUTPUT(RMTPJC,LMTPJC) 

 

{*Tibia*} 

 

RTib = [RKNEJCI,RANKJCI-RKNEJCI,RANKLI-RANKJCI,XYZ] 

LTib = [LKNEJCI,LANKJCI-LKNEJCI,LANKLI-LANKJCI,XYZ] 

 

{*Femur*} 

 

RFem = [RHJC,RKNEJCI-RHJC,RKNELI-RKNEJCI,XYZ] 

LFem = [LHJC,LKNEJCI-LHJC,LKNELI-LKNEJCI,XYZ] 

 

 

{*Limb Segments from Real Markers*} 

{* ==============================================*} 

{*'A' at end of each segment specifies Actual*} 
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{*Foot*} 

 

RFootA = [RANKJC,RMTPJC-RANKJC,RANKL-RANKJC,XYZ] 

LFootA = [LANKJC,LMTPJC-LANKJC,LANKL-LANKJC,XYZ] 

NRMTPJCA = RMTPJC+13*RFootA(1)-27*RFootA(2) 

NLMTPJCA = LMTPJC+13*LFootA(1)-27*LFootA(2) 

RFTA = [RANKJC,NRMTPJC-RANKJC,RANKL-RANKJC,XYZ] 

LFTA = [LANKJC,NLMTPJC-LANKJC,LANKJC-LANKL,XYZ] 

 

{*Tibia*} 

 

RTibA = [RKNEJC,RANKJC-RKNEJC,RANKL-RANKJC,XYZ] 

LTibA = [LKNEJC,LANKJC-LKNEJC,LANKL-LANKJC,XYZ] 

 

{*Femur*} 

 

RFemA = [RHJC,RKNEJC-RHJC,RKNEL-RKNEJC,XYZ] 

LFemA = [LHJC,LKNEJC-LHJC,LKNEL-LKNEJC,XYZ] 

 

 

{*Joint Angles - Virtual/Real*} 

{* ==============================================*} 

 

{*KNEE - between Femur/Tibia*} 

RKAngle = <RTib,RFem,zxy> 

LKAngle = <LTib,LFem,zxy> 
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RKAngleA = <RTibA,RFemA,zxy> 

LKAngleA = <LTibA,LFemA,zxy> 

 

{*ANKLE - between Tibia/Foot*} 

RAAngle = <RFT,RTib,zxy> 

LAAngle = <LFT,LTib,zxy> 

RAAngleA = <RFTA,RTibA,zxy> 

LAAngleA = <LFTA,LTibA,zxy> 

 

OUTPUT(RKAngle,LKAngle,RKAngleA,LKAngleA,RAAngle,LAAngle,RAAngl
eA,LAAngleA) 
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Appendix 6: Leg guard comfort 
Questionnaire  
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Leg Guard Comfort Study 
 
 

Subject No. .…………………………. 
 

Name…………………………………. 
 

Date of Birth…………………………. 
 

Nationality……………………………. 
 

Sex………………………………........ 
 

Playing level….……………………… 
 

Batting position………………………. 
 
            Leg guard used……………………… 

 
 
 
 
 
 
 
 



P a g e  | 286 
 

 286

 
 

Pad ….  
 

Name of Pad: Puma  
 

Initial Assessment 

 
 

Final Assessment  
 
 
 
 
 
 
 
 

 
 

 

Pad Width: 
 

Much too Narrow   Too Narrow   Ideal   Too wide   Much too wide      
 
 
Pad Length: 
 

Much too short   Too short   Ideal   Too long   Much too long 
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Areas of discomfort 
 
Please circle and number any areas causing discomfort on 
the image of the Leg guard, then describe cause in the 
space provided below. 
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Pad … 
 

Name of Pad: Grey Nicholls  
 
 

Initial Assessment 

 
 

Final Assessment  
 
 
 
 
 
 
 
 
 

 

Pad Width: 
 

Much too Narrow   Too Narrow   Ideal   Too wide   Much too wide      
 
 
Pad Length: 
 

Much too short   Too short   Ideal   Too long   Much too long 
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Areas of discomfort 
 
Please circle and number any areas causing discomfort on 
the image of the Leg guard, then describe cause in the 
space provided below. 
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Pad …. 
 

Name of Pad: Aero 
 

Initial Assessment 
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Final Assessment  
 
 
 
 
 
 
 
 
 
 

 
 

Areas of discomfort 
 
Please circle and number any areas causing discomfort on 
the image of the Leg guard, then describe cause in the 
space provided below. 

Pad Width: 
 

Much too Narrow   Too Narrow   Ideal   Too wide   Much too wide      
 
 
Pad Length: 
 

Much too short   Too short   Ideal   Too long   Much too long 
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Pad ….  
 

Name of Pad: Woodworm 
 

Initial Assessment 
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Final Assessment  
 
 
 
 
 
 
 
 
 
 

 
 

Areas of discomfort 
 
Please circle and number any areas causing discomfort on 
the image of the Leg guard, then describe cause in the 
space provided below. 
 

Pad Width: 
 

Much too Narrow   Too Narrow   Ideal   Too wide   Much too wide      
 
 
Pad Length: 
 

Much too short   Too short   Ideal   Too long   Much too long 
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Assessment of overall Comfort 
 

Mark pad A to D on the following scales, as shown in the example below.  
 

       Example 

          

 
 
 

   Overall Comfort 
 
 

 
 

 
    Fit of the pad 

 
 

 
 

 
    Pad Movement 

 
 
 
 

 
    Strap Pressure 

 
 
 
 

 
    Restriction 

 
 
 
 
 

    Weight 
 
 
 
 
 

 
Thank you for your participation 

A D B

More 
Comfortable

Less 
Comfortable 

No 
Restriction 

Better  
Fit

Worse  
Fit 

More 
Comfortable 

Less 
Comfortable 

Very 
Restrictive 

Low Pressure 
 

High 
Pressure 

Light Heavy  

No 
Movement

Lots of 
Movement

C
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Appendix 7: Cricket batting pad PDS 
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Product Design Specification 
Cricket Leg Pad 
 
Current PDS version 1.3 
Current document amendment 
date 

30/11/09 

 
Any changes made to this specification must be documented in the below table and the 
above current details updated. 
 
Document Control History 
PDS version Date Brief description of 

amendments 
Amended by 

1.0 29/10/09 Document creation David Brackett 
1.1 06/11/09 Updated contour maps added to 

section 2.1 Performance 
protection 

David Brackett 

1.2 30/11/09 Section 24 dynamic testing 
performance updated 

Paul Walker 

1.3 30/11/09 Updated section 2.1: scale on 
perceived protection contour 
map, section 13: PDS weight 
specification and section 18: 
knee flexion details  

James Webster 

    
    
    
    
    
    
    
    
    
    
    
    
    
 
 
 

9 Aim  
 
The ultimate aim of the leg pad is to match or improve on the injury protection of 
existing pads while reducing the mass, bulk, and movement restriction.  
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10 Performance 

2.1. Protection 
 

• Negligible number of serious lower leg injuries in batsmen, 
therefore the leg pad protection should aim to match the impact 
absorption performance of existing pads. 

 
Fit 31%
Protection 24%
Weight 17%
Thermal 12%
Aesthetics 8%
Sensorial 8%

 
  Perceived areas of required protection:  

• Increased protection down the centre of the knee and shin 
• Less protection on the sides of the pad 
• Least protection around the thigh and ankle 

 

 
 

 
 

Perceived importance 

Figure 1 - Perceived protection levels 
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Figure 2 - Measured protection levels of a) Slazenger, b) Puma, and c) Aero pads 

 
Quantified protection levels: 

  
 
 
 
 
 
 
 
 
 

2.2. Comfort/Fit 
 

Fit 31%
Protection 24%
Weight 17%
Thermal 12%
Aesthetics 8%
Sensorial 8%

 
 

Zone Max. Transmitted Force (kN) 
British Standard 
(BS 6183-1:2000) 

PDS target from 
testing 

1 6 9.95 
2 6 6.71 
3 5 6.05 
4 6 6.71 
5 6 8.17 
6 5 5.70 
7 6 8.12 
8 6 9.65 

Table 1 - British standard and PDS target peak transmitted force 

Perceived 
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Fit: 
• PDS target contact area >220cm2. 

 

 
  Figure 3 - Contact area comparison for competitors 

• Strap design: Remove strap behind knee and increase strap area using a more 
flexible material 

• Should restrict movement no more than existing commercially available pads for 
the same purpose and have other benefits in terms of comfort or the level of 
protection afforded. 
 
Thermal: 

Pad Whole leg Shin 
Dry 

Insula
tion 

(m2°C/
W) 

Wet 
Insula
tion 

(m2Pa
/W) 

Dry 
Insula
tion 

(m2°C/
W) 

Wet 
Insula
tion 

(m2Pa
/W) 

Woodw
orm 

0.18 29.2 0.36 150.92 

Aero 0.18 26.43 0.55 984 
Puma 0.19 32.4 0.33 106.26 
PDS 0.18 26 0.33 106 

  Table 2 - Insulation comparison for competitors 
 
Sensorial 

• On impact the pad must not sound like a cricket bat being impacted. 
• Straps should not be too rough to avoid abrasion of the skin. 
• Users like the feel of real leather. 

 

2.3. Running Speed 
Should facilitate increased player movement freedom and increased running 
speed. 
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2.4. Technology integration 
  Measure: 

• Force 
• Pressure 
• Peak Pressure/Force Location 
• Displacement 
• Impact Velocity 
• Impact Time 

 
Transmit via secure wireless system in real time, range 100m. 
Integrated to allow full range of movement.  

11 Environment 
 

• Temperature range? 
• Pressure range? 
• Humidity? 
• Shock loading? 

 
 During use, manufacture, storage, assembly, packaging, transportation, 
display? 

12 Life in service (performance) 
 

• Professional users – continual use, minimum 6 months. 
• Semi professional – intermittent use, minimum 12-18 months. 

13 Maintenance 
 

• Must have the capability to be: 
1. Washed using conventional clothes washing equipment i.e. washing 

machine, hose pipe. 
2. Dried using non-specialised drying equipment. 

• Functional maintenance: the consumer is not expected to perform any 
functional maintenance of the product when faulty. 

• For sensor integration, to reduce the expense of waterproofing, it is 
allowable that some electronic components be removed/replaced such as 
the power source (battery) or control module. 
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14 Target product cost 
 

• Most commercially available pads cost £20-100 retail.  
• The pad should by competitive but a premium could be charged for 

significant improved performance. 

15 Competition 
 

• Products include: Slazenger, Gunn and Moore (GM), Puma, Aero, V-Lite, 
Canterbury, Gray Nicols, Readers 

• Majority (~90%?) still use a cane covered structure, some developments in 
using more modern materials for canes and padding 

• Puma represent a change in design whilst still selling product. No cane 
structure, just larger one piece areas of padding, also includes ability to 
alter shin and knee guard positions, customisation 

• Aero pads, said to be able to control rebound of ball, single piece mould 
design. Lighter and thinner. Not selling, possibly because of such a 
different design, possibly not sponsoring top cricketers. Designed for 
speeds up to 100mph (from website) 

• V sports V-lite batting pad in between. Pre-moulded shape, but traditional 
looking design. This is about as innovative and different as it gets. 

• Differentiation between all other pads just due to looks and marketing 
 

16 Shipping 
 

17 Packing 
 

Should use standard packaging. 

18 Quantity 
 

• Product largely bespoke and customised to the player so will be 
manufactured in batches of 1+.  

• Several of the same design may need to be manufactured to provide a stock 
of spares. 
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19 Manufacturing facility 
 

• The garment/s are required to utilise the design freedom and manufacturing 
flexibility of Additive Manufacturing (AM) to produce a customised and 
tailored protective personal system. 

• Additional manufacturing or post processing techniques may be required to 
produce: 
1. the shell or skin outer of the protective garments i.e. PVC textile 

manufacturing. 
2. the fastening system i.e. injection moulding of clasps. 

• Existing sewing techniques may be required for final assembly of the 
complete garment. 

• Sensor technology integration? 

20 Size 
 

• Shape – Traditional pad, curved at the top, Needs to cut back in towards the 
thigh, preferably with a 3 roll knee. Also needs to wrap around the leg for 
maximum coverage and minimum impedance on running. 

• Size- Must come well above knee to prevent feelings of being exposed to 
the ball as found by taller players using the oboe. 

 
Figure 4 Measurement reference for size comparison 
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Measurement (mm) 
Competition PDS 

Target 
 W/wor

m 
Puma Cant Slaz GM Aero Grays  

A 260 250 240 248 249 200 241  
B 670 645 650 675 688 600 693 645 - 670 
C 434 440 460 448 458 412 455  
D 247 235 278 245 235 78 234 <80 

additional 
to leg 

E 53 35 40 46 52 40 43  
F 24 28 28/50 23 26 - 27  
G 49 53 53 50 50 36 51  
H 48 53 53 52 50 38 51  

Table 3 - Size comparison with competitors 
 

21 Weight 
 

Fit 31% 
Protection 24% 
Weight 17% 
Thermal 12% 
Aesthetics 8% 
Sensorial 8% 

 

Perceived 
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Figure 5 - Mass comparison with competitors 

 
 
 
 
 
 

22 Aesthetics, appearance and finish 
 

Fit 31% 
Protection 24% 
Weight 17% 
Thermal 12% 
Aesthetics 8% 
Sensorial 8% 

 
Traditional pad: Ridges on front, fabric/leather covering, curved top, does not 
narrow at the bottom. 
New pad: The appearance of the pad should not dissuade the user from wearing 
it. 

23 Materials 

23.1 Properties of bulk material 
Individual parts of the pad may have different properties depending on 
the design, but overall, the pad should exhibit the attributes listed 
below: 
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Property High Low Importance 
weighting 

Storage modulus (Energy 
absorbed) 

   

Loss modulus (Energy lost as heat)    
Tan delta (Damping)    
Tear strength    
Indentation force deflection    
Elongation at break    
Ball rebound    
Density    
Flammability    
Compressive strength    
    
    
    
    
Processing specific:    
Enthalpy of fusion    
Viscosity    
Thermal window    
    

Table 4 - Desired material properties 
 

23.2 Properties of meso-structures 
• Isotropic 
• Similar compressive behaviour to foams 

 

24 Product life span 
 

• 1 to 2 seasons 

25 Standards and specifications 
 

• BS 6183-1:2000; Protective equipment for cricketers. General requirements 
• BS 6183-1:2000; Protective equipment for cricketers. Leg protectors for 

batsmen, wicket-keepers and fielders, and thigh arm and chest protectors 
for batsmen 

26 Ergonomics 
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• Must allow for at least 120° of flexion at the knee, whilst maintaining 
protection  

• Percentage of the thigh covered 
• Increased range of motion/ decreased impedance on running/ shots 
• Decreased weight 
• Increased moisture management 

27 Customer 
 

The initial customer base for this type of customised and tailored personal 
protective equipment are elite athletes. 

28 Quality and reliability 
 

29 Shelf life (storage) 
 

30 Process Specifications 
 

Additive manufacturing processes should be used in full or in part for 
production, specifically the selective laser sintering of powder. 

 

31 Testing 
 
Relevant standards: 
• BS 6183-1:2000; Protective equipment for cricketers. General requirements 
• BS 6183-1:2000; Protective equipment for cricketers. Leg protectors for 

batsmen, wicket-keepers and fielders, and thigh arm and chest protectors 
for batsmen 

 
 Impact Intensities: 

• Release speed of ~100 mph, speed at batting end ~ 81 mph; ball: mass = 
155-163 g, diameter = 224-229 mm (Penrose, 1976) 

 
 Dynamic Performance 

1) Normal impact testing: Pad to be attached to rigid cylinder, normal impacts 
with hockey ball and inbound velocities of: 20, 30, 40 and 45 m/s. Pads to 
conform to following ranges: 
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Inbound 
Velocity (m/s) 

Force 
(KN) 

Contact 
Time (ms) COR Deformation 

(mm) 
20 1 7 – 11 0.3 – 0.52 35 – 40 
30 2 – 4 5 – 7.5 0.3 – 0.52 37 – 47 
40 4 – 7 4 – 5.5 0.3 – 0.52 38 – 52.5 
45 5.5 – 9 3.5 – 4.75 0.3 – 0.52 42 – 55 

 
2) Oblique impact testing: - Pad to be attached to rigid cylinder, Oblique 

impacts with hockey ball at inbound velocity of 40 m/s at 4 positions: 
Position 1 = 0cm offset, Position 2 = 2.3 cm offset, Position 3 = 4.6 cm 
offset, Position 4 = 6.9 cm offset. 
 

Position Rebound 
Angle (deg) 

Contact 
Time (ms) COR Pad Twist 

(deg) 
1 (0 cm offset) -10 – 10 6 – 8 0.35 – 0.5 0 – 2.5 

2 (2.3 cm offset) 10 – 40 6 – 8 0.35 – 0.5 -2 – 4 
3 (4.6 cm offset) 40 – 75 6.5 – 9 0.35 – 0.5 2.5 – 15 
4 (6.9 cm offset) 65 – 110 6.5 – 10.5 0.35 – 0.5 4 – 25 

 
3) Positional impact testing: Paul Walker to complete 
 

• Using STI constructed custom rig  
• Cricket pads are impacted by a 72mm diameter hockey ball of mass 

160g (+-3g). 
• 15-20 impact positions are selected over the surface of the cricket pad, 

selected to be representative of protection given but also to highlight 
any vulnerable areas 

• 3 impacts carried out at each site, and an average is taken 
• Average values should not exceed those given in the table below for 

each area 
• Area definitions as is BS 

 
Area Peak force 

(kN) 
Inner Knee 5 
Outer Knee 10 
Inner Shin 6 
Outer Shin 8 

 
 

 
Quasi Static Performance 
• Instron based compression test (displacement: Ankle zone = 50 mm, Upper 

shin centre zone = 50 mm, Knee roll = 70 mm) using a cylindrical indentor 
of radius 45mm in diameter. The response should be bilinear and fall within 
the following ranges: 
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– Ankle zone: 
• Stiffness 1 = 5000 (-1250/+2500) N/m. ( For 0-40 mm) 
• Stiffness 2 = 27000 (-10000/+23000) N/m. ( For >40 mm) 

– Upper shin centre zone: 
• Stiffness 1 = 5000 (-1250/+1250) N/m. ( For 0-40 mm) 
• Stiffness 2 = 27000 (-10000/+18350) N/m. ( For >40 mm) 

– Knee roll: 
• Stiffness 1 = 3000 (-1250/+2500) N/m. ( For 0-50 mm) 
• Stiffness 2 = 1500 (-10000/+23000) N/m. ( For >50 mm) 
• At the maximum compression for each respective zone, 

contact pressure between pad and rigid plate, for a measured 
contact area of 72 mm x 200 mm  

– Ankle zone: 37 – 55 KPa  
– Shin centre zone: 30 – 55 KPa  
– Knee roll: 24 – 30 KPa  

 
Manufacturing testing 
The AM component of the personal protective garment will be subjected to a 
visual inspection and comparison to the 3D CAD data used for its manufacture. 
Required accuracy of manufacturing? 
 
Thermal testing 
Thermal mannequin to be used to test dry and wet insulation. 

32 Safety 
 
 Should provide a level of protection from injury consistent with existing leg 
pads. 
 

33 Patents 
 
If a patent has lapsed, anyone can use the information but it can't be claimed as part of 
your invention. 
 
AM structures approach: 
No relevant patents found as yet. 
 
Foam and AM insert combination with or without articulation: 
Depending on the design, 3 potentially relevant patents found. Details provided below. 
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GB2184641 Padding for sporting purposes (1985) 
 

The invention relates to pads for cricket, hockey or the 
like which comprise a shell of rigid polymeric material 
which is nevertheless resilient to forces opening the shell 
and which is non-deformable in normal use, the shell 
being shaped to conform with a portion of the body to be 
protected such as the shins, thighs and the like, and 
having a laminate of cushioning material inside the 
shell. 
 
CLAIMS 
1. Padding for sport including a shell of rigid yet 
resilient (to shell-opening forces) non-deformable (in 
normal use) polymeric material shaped to conform with 
the part of the body to be protected and having a 
laminate of a cushioning material there inside. 
2. The padding of claim 1 in which the padding 
comprises a first portion which covers the shin and knee 
and a second portion which covers the front of the thigh 
or portion thereof. 
3. The padding of claim 1 orclaim2whichinclu des an integral zone conforming to the side or 
sides of the thigh to correspond with a conventional thigh pad. 
4. Padding of any of the above claims in which the cushioning is a foamed polymeric material.
5. Padding of any of the above claims in which the shell includes a plurality of holes for 
ventilation.  
6. The padding of claim 5 in which the shell is corrugated and the holes are located in the 
troughs. 
7. Padding for sport substantially as described herein with reference to the accompanying 
drawings. 
 
Status: Application withdrawn, taken to be withdrawn or refused after publication under 
section 16 (1). 
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GB2073009 Improvements in or relating to leg guards 
(1981) 

 
Cricket pads and other leg guards for games players 
comprise a first, outer layer of plastics material which 
provides an impact resistant surface and a second, inner layer 
which provides a resilient padding for the leg of the user. 
The outer and inner layers, which can be in the form of a 
laminate, can respectively be a non-cellular polyethylene or 
polypropylene and a cellular polyethylene of polypropylene. 
The pad preferably has upper and lower portions adapted for 
hinge-like movement in the knee zone of the pad. 
 
CLAIMS 
1. A cricket pad or other leg guard formed from plastics 
material, comprising a first, outer layer which provides an 
impact-resistant surface, and a second, inner layer which 
provides a resilient padding for the leg of the user of the 
guard. 
2. A leg guard according to Claim 1, in which said first and 
second layers are in the form of a laminate. 
3. A leg guard according to Claim 2, in which the said laminate consists of said first and 
second layers. 
4. A leg guard according to Claim 1,2 or 3, in which said first layer is of a non-cellular 
polyethylene or polypropylene. 
5. A leg guard according to Claim 4, in which the first layer is of polyethylene having a 
specific gravity in the range from 0.91 to 0.99. 
6. A leg guard according to any of the preceding claims, in which the said second layer is of a 
cellular polyethylene or polypropylene. 
7. A leg guard according to Claim 6, in which said second layer is of polyethylene having a 
density in the range from 30 to 60 kg/m3. 
8. A leg guard according to any of the preceding claims, in which the ratio of the thickness of 
said first and second layers is in the range from 1:12 to 1:8.  
9. A leg guard according to any of Claims 2 to 8, which has been shaped from a flat sheet of 
said laminate under the influence of heat and moulding. 
10. A leg guard according to Claim 1, in which the outer and inner layers are flame-bonded 
together and of substantially the same superficial dimensions; the outer layer is of non-cellular 
polyethylene having a specific gravity in the range from 0.91 to 0.99; the inner layer is of 
closed-cell cellular polyethylene having a density in the range from 30 to 60 kg/m3; and the 
ratio of the thickness of the outer layer to that of the inner layer is in the range from 1:9 to 
1:11.  
11. A cricket pad or other leg guard which comprises a lower portion to protect, in use, at least 
the shin of the user; and an upper portion to protect, in use, at least the lower part of the thigh 
of the user; and the lower and upper portions are disposed with reference to the overall 
dimensions of the leg guard so that, in use, the knee of the user is behind a knee zone 
connecting, or comprising contiguous border zones of, said lower and upper portions, the leg 
guard having flexibility in said knee zone to permit hinge-like movement of said lower and 
upper portions. 
12. A leg guard according to Claim 11, in which said flexibility is provided by the use of slots 
or other re-entrant means extending inwardly from the side edges of the guard. 
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13. A leg guard according to Claim 12, in which said re-entrants each have an enlargement at 
their inner end. 
14. A leg guard according to Claim 12 or 13, in which the curvature of the edge of the upper 
portion immediately above the re-entrant means is less than that of the edge of the lower 
portion immediately below said re-entrant means to facilitate said hinge-like movement. 
15. A leg guard according to Claim 14, in which protective means are provided to protect said 
edges from damage by abrasion between them as a result of said hinge-like movement. 
16. A cricket pad according to Claim 1 or 11, substantially as described herein with reference 
to the accompanying drawings. 
17. A cricket pad substantially as described herein and substantially as shown in Figures 1 and 
2 of the accompanying drawings. 
18. A flat precursor for a cricket pad, substantially as described herein and substantially as 
shown in Figure 1 of the accompanying drawings. 
 
Status: Patent ceased through non-payment of renewal fee. 
 
WO0061244 Shock-absorbing 
composition and leg protector (2000) 

 
The invention relates to a composition of at 
least four layers (1, 2, 3, 4) of alternating 
force distribution and force absorbing 
materials having the ability to distribute 
pressure and reduce the effects of a sudden 
impact. In a first aspect the composition is 
intended for use as a protection of body 
parts, such as the shin during football 
practice, whereas it can also be used during 
other athletic practices, e.g. soccer, cricket, 
riding, motor sports, skiing and ice hockey 
and used as a means for general damage 
prevention of a person or a property during 
professional practice. 
 
CLAIMS  
1. Material composition for protection 
against impacts, comprising an outer layer 
(1,1') of a force distributing material and 
further layers of alternating force absorbing 
and force distributing materials 
characterised in that the alternating layers are at least three (2,2', 3,3', 4,4'), and that said force 
distributing and force absorbing materials are elastic, wherein a force reduction is obtained 
when an outer force is applied to the composition. 
2. A composition according to claim 1 characterised in that the force distributing and force 
absorbing materials result in a force reduction of at least 50%, wherein the force reduction is 
measured by means of the formula: Force reduction = (1-P/4000) x 100, and P = force of 
penetration. 
3. A composition according to claim 1 characterised in that the force distributing and force 
absorbing materials result in a force reduction of at least 80%, wherein the force reduction is 
measured using the formula: Force reduction = (1-P/4000) x 100, and P = force of penetration.



P a g e  | 313 
 

 313

4. A composition according to any of the preceding claims, characterised in that said hard 
material has a coefficient of elasticity of 0,5-100 GPa. 
5. A composition according to any of the preceding claims, characterised in that said soft 
material has a coefficient of elasticity of 10-200 GPa. 
6. A composition according to any of the preceding claims, characterised in that said hard 
material is a glass fibre composite or an aramide composite. 
7. A composition according to any of the preceding claims, characterised in that said soft 
material is a cellular or foamed plastic with closed cells. 
8. A composition according to claim 6, characterised in that said glass fibre composite has 3 or 
4 fibre sheets. 
9. A leg protective device comprising the composition according to any of the previous 
claims. 
10. A leg protective device according to claim 9, characterised in that it includes an outer layer 
of a glass fibre composite and thereafter three alternating layers of polyethene foam, glass 
fibre composite and ethylene vinyl acetate copolymer, respectively. 
 
Status: Lapsed. 
 
 
 

 


