535 research outputs found

    Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations (Long Version)

    Get PDF
    Optical signal propagation through underwater channels is affected by three main degrading phenomena, namely absorption, scattering, and fading. In this paper, we experimentally study the statistical distribution of intensity fluctuations in underwater wireless optical channels with random temperature and salinity variations as well as the presence of air bubbles. In particular, we define different scenarios to produce random fluctuations on the water refractive index across the propagation path, and then examine the accuracy of various statistical distributions in terms of their goodness of fit to the experimental data. We also obtain the channel coherence time to address the average period of fading temporal variations. The scenarios under consideration cover a wide range of scintillation index from weak to strong turbulence. Moreover, the effects of beam-collimator at the transmitter side and aperture averaging lens at the receiver side are experimentally investigated. We show that the use of a transmitter beam-collimator and/or a receiver aperture averaging lens suits single-lobe distributions such that the generalized Gamma and exponential Weibull distributions can excellently match the histograms of the acquired data. Our experimental results further reveal that the channel coherence time is on the order of 10310^{-3} seconds and larger which implies to the slow fading turbulent channels

    Measurements of Aperture Averaging on Bit-Error-Rate

    Get PDF
    We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 in. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments

    Atmospheric propagation effects relevant to optical communications

    Get PDF
    A number of atmospheric phenomena affect the propagation of light. The effects of clear air turbulence are reviewed as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study. Useful information on the atmospheric propagation of light in relation to optical deep space communications to an earth based receiving station is available, however, further data must be generated before such a link can be designed with committed performance

    Techniques to Mitigate the Effects of Atmospheric Turbulence on Free Space Optical Communication Links

    Get PDF
    Free space optical communication links are an attractive technology for broadband communications when fiber optic links are unavailable or simply not feasible. Atmospheric turbulence, aerosols, and molecular absorption all affect the propagation of optical waves in the atmosphere. Since atmospheric turbulence is the major source of errors on free space optical communication links, this dissertation investigates two techniques to reduce the impact of atmospheric turbulence on such links. These two techniques are aperture averaging and the incorporation of nonimaging optical elements into optical receiver systems. Aperture averaging is the process by which atmospheric turbulence-induced intensity fluctuations are averaged across a receiver aperture of sufficient size. We investigate the behavior of aperture averaging in weak and strong turbulence conditions by comparing experimental data with available models for plane and spherical wave propagation. New expressions for the aperture averaging factor in weak turbulence are given. In strong turbulence conditions, aperture averaging is analyzed with special attention to the various wavenumber spectrum models. This is the first report of experimental strong fluctuation aperture averaging data acquired in non-saturated conditions. Nonimaging optical elements are particularly useful for the mitigation of atmospheric turbulence-induced beam wander in the focal plane of a free space optical communication receiver. Experimental results of the bit error ratio enhancement due to the incorporation of a nonimaging optical element, specifically a compound parabolic concentrator, are presented. Two link ranges were tested, a 1.7 km link at the University of Maryland experiencing weak turbulence, and a 32.4 km link at the Naval Research Laboratory's Chesapeake Bay Detachment experiencing saturated, strong turbulence. These results are the first reported experimental test of a nonimaging optical element integrated into an outdoor free space optical communications system

    Performance of free space optical communication using M-array receivers at atmospheric conditions

    Get PDF
    Abstract: In free space optical (FSO) communication links, atmospheric parameters including absorption, scattering and turbulence have significant impacts on the quality of laser beams propagating through the atmosphere. Absorption and/or scattering, due to atmospheric particles result in optical losses, whereas turbulence contributes to the intensity scintillation that can severely impair the operation of FSO communications systems. In this paper, using a modified model we analyze the atmospheric effects on the signal-to-noise ratio (SNR) and the bit error rate (BER) of an FSO system. We show that there is an improvement in BER when using M-array receivers instead of one a single receiver

    Vertical laser beam propagation through the troposphere

    Get PDF
    The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described

    The effect of aperture averaging upon tropospheric delay fluctuations seen with a DSN antenna

    Get PDF
    The spectrum of tropospheric delay fluctuations expected for a DSN antenna at time scales less than 100 s has been calculated. A new feature included in these calculations is the effect of aperture averaging, which causes a reduction in delay fluctuations on time scales less than the antenna wind speed crossing time, approximately equal to 5-10 s. On time scales less than a few seconds, the Allan deviation sigma(sub y)(Delta(t)) varies as (Delta(t))(sup +1), rather than sigma(sub y)(Delta(t)) varies as (Delta(t))(exp -1/6) without aperture averaging. Due to thermal radiometer noise, calibration of tropospheric delay fluctuations with water vapor radiometers will not be possible on time scales less than approximately 10 s. However, the tropospheric fluctuation level will be small enough that radio science measurements with a spacecraft on time scales less than a few seconds will be limited by the stability of frequency standards and/or other nontropospheric effects
    corecore