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 Free space optical communication links are an attractive technology for 

broadband communications when fiber optic links are unavailable or simply not 

feasible.  Atmospheric turbulence, aerosols, and molecular absorption all affect the 

propagation of optical waves in the atmosphere.  Since atmospheric turbulence is the 

major source of errors on free space optical communication links, this dissertation 

investigates two techniques to reduce the impact of atmospheric turbulence on such 

links.  These two techniques are aperture averaging and the incorporation of 

nonimaging optical elements into optical receiver systems. 

 Aperture averaging is the process by which atmospheric turbulence-induced 

intensity fluctuations are averaged across a receiver aperture of sufficient size.  We 

investigate the behavior of aperture averaging in weak and strong turbulence conditions 

by comparing experimental data with available models for plane and spherical wave 



propagation.  New expressions for the aperture averaging factor in weak turbulence are 

given.  In strong turbulence conditions, aperture averaging is analyzed with special 

attention to the various wavenumber spectrum models.  This is the first report of 

experimental strong fluctuation aperture averaging data acquired in non-saturated 

conditions. 

 Nonimaging optical elements are particularly useful for the mitigation of 

atmospheric turbulence-induced beam wander in the focal plane of a free space optical 

communication receiver.  Experimental results of the bit error ratio enhancement due to 

the incorporation of a nonimaging optical element, specifically a compound parabolic 

concentrator, are presented.  Two link ranges were tested, a 1.7 km link at the 

University of Maryland experiencing weak turbulence, and a 32.4 km link at the Naval 

Research Laboratory’s Chesapeake Bay Detachment experiencing saturated, strong 

turbulence.  These results are the first reported experimental test of a nonimaging 

optical element integrated into an outdoor free space optical communications system. 
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3.18: Spherical wave aperture averaging factor for ℓo = 1.45 cm using Eq. 
(3.17) plotted along with the new data. The dashed line represents Eq. 
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Chapter 1 

Introduction 

 

1.1 History of Free Space Optical Communication 

Since the invention of the Ruby laser in 1960, scientists have attempted to 

establish reliable communications channels by modulating and propagating optical 

signals over a line-of-sight path [1].  Most of the early development of free space 

optical communication links was directed towards space-based applications [2,3,4].  

Due to the relative immaturity of laser technology and flawed system demonstrations, 

research in free space optical communication began a cycle of declining interest and 

funding, only to be resurrected over and over again. 

During the mid- to late-1990s, free space laser communication was once again 

resurrected.  This time, an increasing demand for high bandwidth communications, 

fueled by the explosion of the internet, renewed interest in free space optics (FSO).  By 

this time, optical fiber communications was well established, and researchers had found 

ways to use these efficient, cost-effective components in FSO systems.   

FSO was voted one of the ten hottest technologies in 2001 [5].  The hype 

surrounding the technology was partly due to the lack of optical fiber backbone 

connectivity in metropolitan areas and the high cost of laying optical fiber in those 

areas.  After September 11, 2001, FSO systems were deployed to reconnect parts of the 

critical New York City infrastructure; after copper wires, optical fiber, and RF antennas 

were destroyed.  The advantages of FSO were trumpeted throughout the 
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telecommunications sector.  These advantages include: rapidly deployablility; support 

for high bandwidth transmissions; high security; the ability to extend the reach of the 

optical fiber backbone; and use in disaster recovery situations.  Unfortunately, the 

technology bubble in the stock market burst.  This left FSO vendors without 

telecommunication and cable carriers who could purchase and deploy FSO units on a 

large scale. 

Even with the significant capital investment in FSO during this time, researchers 

did not solve the technology’s reliability problems due to atmospheric turbulence, 

aerosols, and molecular attenuation.  These three environmental properties destroy the 

coherence of a propagating optical wavefront.  The research presented here 

demonstrates techniques to mitigate the distortions induced on the optical beam by 

atmospheric turbulence. 

1.2 Free Space Optical Communication Techniques 

Researchers have pursued a variety of system architectures in an attempt to 

improve the reliability of FSO links.  A “bare bones” FSO system transmits “1” bits by 

turning the optical source on, and “0” bits by turning the optical source off.  This 

method is called intensity modulation/direct detection (IM/DD), or on-off keying 

(OOK).  This is a low overhead technique, because there is no attempt made to ensure 

the integrity of the signal.  This transmission scheme attempts to collect enough photons 

at the receiver to correctly detect “1” and “0” bits.  Atmospheric turbulence may easily 

prevent the detection of a sufficient number of photons to correctly interpret the 

received bits. 
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Beyond the basic IM/DD scheme, researchers have tried to come up with 

techniques to improve the likelihood that data bits will be received correctly.  Scientists 

have used adaptive optics techniques, originally developed to improve the quality of 

stellar telescopes, to try to restore a distorted wavefront to its original state before it was 

destroyed by atmospheric turbulence.  Some used phase conjugation techniques, to pre-

distort the beam and hope that atmospheric turbulence, by distorting the wavefront, will 

actually work to render the wavefront to its unperturbed form.  Although these 

techniques have shown limited success, they require bulky and computation-intensive 

systems to achieve wavefront correction.  Additionally, systems have not been able to 

compute the wavefront correction fast enough to entirely counteract the affects of 

atmospheric turbulence. 

Diversity techniques are another method of improving the reliability of an FSO 

system.  In effect, if the optical wavefront propagates in at least two distinct ways, there 

is an increased likelihood that the detected signal will be read correctly.  Diversity can 

occur in the form of spatial diversity (requiring multiple transmitters and/or receivers), 

temporal diversity (requiring a signal to be transmitted twice, separated by a time 

delay), or wavelength diversity (requiring the transmission of data on at least two 

distinct wavelengths).  Each of these techniques requires a synchronization of the 

received signals.  Although the techniques are promising, they do require a significant 

electronic overhead in the retiming and synchronization process. 

Finally, coding schemes used in RF and wired communications systems have 

been adapted for FSO communication.  Methods requiring heterodyne detection, 

including phase shift keying and quadrature amplitude modulation, have been 
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experimentally demonstrated but do not guarantee enough improvement to be viable 

commercially [6,7].  Forward error-correction (FEC) codes insert check bits into the 

data stream, which contribute an additional power and bandwidth overhead on the 

system.  Although coding provides an additional layer of information security, studies 

have shown that even the best FEC codes cannot negate the affects of atmospheric 

turbulence alone [6,8,9]. 

1.3 Low-Overhead Techniques to Mitigate the Effects of Atmospheric Turbulence 

The research presented here demonstrates how high-performance FSO 

communication systems may be designed using techniques that add nearly no power, 

bandwidth, size, or weight overhead to the overall design. 

1.3.1 Aperture Averaging 

Aperture averaging is a well known concept, which states that the amount of 

measured radiation may be increased by increasing the size of the receiver collecting 

lens aperture.  In effect, any irradiance fluctuations across the collecting lens are 

“averaged” by the size of the lens.  Therefore, a lens of any diameter will collect more 

photons than an ideal point receiver.  In a binary communications transmission, such as 

OOK, aperture averaging will increase the likelihood of correctly detecting the 

transmitted data stream. 

Aperture averaging of irradiance fluctuations was first studied by Fried in 1967 

[10].  Fried developed a theoretical expression characterizing the amount of aperture 

averaging given an incident infinite plane wave.  Aperture averaging was 

experimentally investigated for both horizontal and space-to-ground paths under weak 
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levels of atmospheric turbulence.  However, Fried came to an erroneous conclusion that 

the amount of aperture averaging is proportional to the inverse square of the aperture 

diameter.  Later in 1973, Fried came to the correct conclusion that there is a 3/7−  

power dependence. 

Subsequent experiments on aperture averaging in weak atmospheric turbulence 

found very poor agreement with theory.  The concept that the amount of irradiance 

fluctuations saturates after a certain propagation distance was not understood, so 

scientists could not truly differentiate between weak and strong fluctuations.  Finally, in 

1991, Churnside published experimental results that have shown the best agreement 

with theory in weak turbulence conditions until now [11].  The behavior of optical 

waves propagating in strong turbulence is not well understood, although new theories 

and models have been developed recently.  As such, there have been no consistent 

experimental results for aperture averaging in strong turbulence. 

1.3.2 Nonimaging Optics 

On a basic level, imaging optics form an image based on the transformation of 

an object by an imaging element.   A lens or compound lens is a typical imaging 

element.  If a converging lens is used, then the object and image are located on opposite 

sides of the lens, when the object is placed at or beyond the focal length of the lens.  A 

diverging lens will form a virtual image on the same side of the lens as the object.  

Ideally, the image or virtual image is a perfect replica of the object, although its size 

may be magnified or reduced. 

Imaging optics are useful when the quality of an optical wavefront must be 

preserved.  In the case of FSO with IM/DD, we are only concerned with collecting a 
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maximum number of photons.  Any information about the phase of the wavefront is 

ignored.  Atmospheric turbulence will destroy the coherence of a propagating optical 

wave, and induce phenomena that will affect the collection of a maximum number of 

photons. 

Nonimaging optics are not required to preserve the integrity of the object.  

Instead, what would be the image may be partially or completely randomized.  Only the 

conservation of energy is required.  A special type of nonimaging optical element is 

called a concentrator.  These elements collect radiation over a restricted angular range, 

and dispense radiation over a wider angular range.  The concentrator operates on the 

principle of conservation of brightness, preserving the relationship between the 

irradiance and its angular distribution.   

In this research, a nonimaging concentrator is used to mitigate the affects of 

atmospheric turbulence on the focal plane of an imaging optical receiver.  The 

nonimaging concentrator will not preserve the coherence of the wavefront, but will 

improve the detection efficiency of the receiver.   

1.4 Useful Terminology 

Radiometric terminology has been loosely used in scientific research.  Here, we 

specifically define radiometric terms used throughout this dissertation. 

Solid angle – Ω, the projection of an area onto a unit sphere; measured in steradians (sr).  

A sphere has a 4π solid angle. 

Projected area – the area projected onto a plane whose normal is the line of sight; the 

area is multiplied by the cosine of the angle between the normal to the area and the line 

of sight. 
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Optical power – P, also known as radiant flux; the flow of radiant energy per unit time; 

expressed in W/m2. 

Radiance – L, the optical power (or radiant flux) per unit projected area per unit solid 

angle; expressed in W/m2sr. 

Irradiance – Ω= d
dPI , also known in this work as intensity; the flow of energy per 

unit area per unit time; expressed in W/m2.  The irradiance is proportional to the square 

of the amplitude of the electric field of an optical wave.  

Spectral radiance – λλ d
dLL = , the distribution of radiance per unit wavelength; 

expressed in W/m2srHz.  The spectral radiance is meaningful by integrating it over a 

wavelength range. 

Frequency – ν , the number of cycles per second; measured in Hz or sec-1. 

Optical wavenumber – λ
π2=k , where λ is the wavelength of the optical wave. 

Spatial wavenumber – κ, the inverse of a spatial scale length. 

1.5 Organization 

This dissertation is organized in four chapters detailing the theory, methodology, 

and analysis used to study techniques to mitigate the effects of atmospheric turbulence.  

Chapter 2 reviews both the physical nature of atmospheric turbulence and theories 

developed to characterize atmospheric turbulence.  A framework for studying optical 

wave propagation through atmosphere turbulence, in strong and weak turbulence 

conditions, is presented.  Chapter 3 involves an in depth study of aperture averaging in 

weak turbulence conditions.  Aperture averaging models, experimental methodology, 



 8

and analysis of new experimental data are explained.  Chapter 4 follows the 

organization of Chapter 3, but instead addresses aperture averaging in strong turbulence 

conditions.  New experimental data in the strong turbulence region are analyzed and 

compared with available models.  Chapter 5 studies and characterizes the performance 

enhancement of free space optical communication systems when nonimaging optics are 

integrated into the optical receiver.  Chapter 6 summarizes the contributions of this 

work and addresses areas for future research. 
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Chapter 2 

Optical Wave Propagation through Atmospheric Turbulence 

 

2.1 The Atmosphere 

Propagation of optical waves through the atmosphere is affected by atmospheric 

turbulence, scattering off aerosols, and atmospheric absorption.  This thesis addresses 

the predominant cause of distortion of optical waves in the atmosphere, which is 

atmospheric turbulence.  Atmospheric turbulence is a result of localized variations of 

temperature, humidity, and pressure in the atmosphere.  These variations result in 

localized refractive index fluctuations, where each localized area of lower or higher 

refractive index is known as a turbulent eddy [1].  The refractive index of each 

individual eddy is not much greater than unity, but the cumulative effect of eddies over 

a 1 km path is great. 

The refractive index of air at optical frequencies is, 
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where n is the total refractive index, λ is the wavelength in µm, p is the pressure in mb, 

and T is the temperature in K.  At sea level, n − 1 is typically 3×10-4 [1].  Humidity 

effects are typically neglected over land, since humidity affects the value of the 

refractive index by less than 1%.   
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2.2 Turbulent Energy Flow 

Turbulent flows result when large inertial forces draw together fluid volumes 

with very different velocities, and irregular velocity fluctuations are apparent.  

Turbulent flows exist when the Reynolds number is greater than 2500 to 5000 [12], 

where the Reynolds number is defined by: 

υ/ULRe =  (2.2) 

where U is the characteristic flow velocity, L is the characteristic dimension of viscous 

flow, and υ is the kinematic viscosity of the fluid.  Since Reynolds numbers in the 

atmosphere are large, the associated fluid flows are also highly unstable.  Eddies of 

scale sizes on the order of flow dimensions move randomly, and eventually give rise to 

eddies of smaller scale sizes and lower velocities.  Eventually, eddies become small 

enough that viscosity forces overcome inertial forces, and the eddies can no longer 

decay.  The breakdown in eddies is dictated by [12], 

( ) ( ) ( ) ( )jjjj LURe υ=  (2.3) 

where j is the order of the eddy.  Higher orders denote smaller eddies. 

Richardson first developed a picture of the turbulent energy redistribution in the 

atmosphere.  The process is shown pictorially in Figure 2.1, with an energy input 

region, inertial subrange, and energy dissipation region.  The dissipation rate ε is related 

to the velocity Uℓ of an eddy with characteristic length ℓ by [12], 

( ) 3/1
ll ε≈U  (2.4) 

At large characteristic lengths ℓ, a portion of kinetic energy in the atmosphere is 

converted into turbulent energy [13].  When the characteristic length reaches a specified 
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outer scale length, Lo, energy begins to cascade.  The energy of one eddy is 

progressively redistributed into eddies of smaller scales, until eddies reach a size equal 

to the inner scale length, ℓo.  The inner scale length, or Kolmogorov microscale, is 

defined by, 

( ) 4/134.7 ευ=ol  (2.5) 

At the surface layer of the Earth, ℓo is typically on the order of 4 mm [12], and υ is 

typically 0.148 cm2s-1 [13].  Kolmogorov proposed that in the inertial subrange, where 

Lo > ℓ > ℓo, turbulence is isotropic and may be transferred from eddy to eddy without 

loss.  When the diameter of a decaying eddy reaches ℓo, the energy of the eddy is 

dissipated as heat energy through viscosity processes [13]. 

 
Figure 2.1: Depiction of the process of turbulent decay, showing the energy cascade and 
subsequent division of turbulent eddies in the atmosphere [adapted from Ref. 13]. 
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2.3 Kolmogorov Turbulence 

Turbulence is by nature a random process, and as such may be described using 

statistical quantities.  In 1941, Kolmogorov first developed a universal description of 

atmospheric turbulence by developing a structure tensor to describe a mean square 

velocity difference between two points in the atmosphere.    The structure function, 

( )rDij
r , is [1]: 

( ) ( ) ( )[ ] ( ) ( )[ ]1111 rvrrvrvrrvrD jjiiij
rrrrrrr

−+⋅−+=  (2.6) 

where rr  is the displacement between two points in space, rr rr
+1  and 1r

v  [1]; and i and j 

are two velocity components.  To continue the structure function analysis, two 

approximations are made given the condition that the displacement is within the inertial 

subrange.  The first is to assume local homogeneity in the atmosphere, which restricts 

the dependence of the velocity statistics in Eq. (2.6) to the vector displacement, rr .  A 

second assumption of local isotropy limits Eq. (2.6) to a dependence on the magnitude 

of rr , given as rr .  These assumptions allow the velocity structure function to be 

treated as a scalar function [1]: 

( ) ( ) ( ) ( ) ijjiij rDnnrDrDrD δrrrr
⊥⊥ −−= ][ ||  (2.7) 

where ( )rD r
||  and ( )rD r

⊥  are the structure function components of the wind velocity 

field parallel and transverse to rr , { }jijiij ≠⇒=⇒∈ 0;1δ , and ni, nj are the 

components of a unit vector along rr  [1].  To continue this analysis, the flow is assumed 

to be incompressible, giving 0=⋅∇ vr .  This assumption is valid when 122 <<aν
r

, 
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where a is the velocity of sound [12].   Using the assumption of an incompressible flow, 

we can relate the parallel and transverse components of the velocity structure function: 

( )||
2

2
1 DrD dr

d
r=⊥ . (2.8) 

With this relation, we can describe the structure function in terms of one component: 

( ) ( )[ ]211|||| rvrrvD −+=  (2.9) 

As mentioned previously, Kolmogorov determined that as long as r is within the inertial 

subrange, we can assume localized fluctuations and the structure function becomes [1]: 

3/22
|| rCD v=  (2.10) 

where Cv
2 is the velocity structure constant with units m-2/3.  Eq. (2.10) is the 

Kolmogorov-Obukhov “two-thirds” power law [12]. To use this relation in 

electromagnetic wave propagation problems, the velocity fluctuation form of Eq. (2.10) 

must be transformed into a refractive index fluctuation form.  This is accomplished by 

using the potential temperature, θ, which is the temperature of a parcel of air that is 

brought adiabatically (where heat is neither gained nor lost) from a state having 

pressure p and temperature T to a state where pressure p0 = 1000 mbar [14].  For small 

values of r, as when r is in the inertial subrange, the potential temperature can be 

approximated by [15]: 

hT
pc

g+=θ  (2.11) 

where T is the absolute temperature in Celsius, g is the acceleration of gravity, cp is the 

specific heat, pcg = 9.8 °/km, and h is the height of the parcel above the Earth’s 

surface [1,16].  The value pcg  is also the adiabatic rate of decrease of the absolute 
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temperature.  At small heights above the Earth’s surface, the adiabatic rate pcg  can be 

neglected and T is treated as a passive additive [1,16,17].  Passive additives to do not 

affect turbulence statistics, and therefore do not alter the two-thirds law in Eq. (2.10).  

The structure function for the potential temperature is well known [1], and is described 

by: 

( ) 3/22rCrD θθ =  (2.12) 

By taking the derivative of both sides of Eq. (2.1) with respect to n, we find: 
















 ∂
−

∂







 ⋅
+=∂

−

T
T

p
p

T
pn 2

31052.716.77
λ

 (2.13) 

Knowing that pressure fluctuations are relatively small compared to temperature 

fluctuations, we can approximate 0→∂p , giving: 

6
22

3

101052.716.77 −
−

⋅∂














 ⋅
+=∂ T

T
pn

λ
 (2.14) 

Using the relation of potential temperature to absolute temperature from Eq. (2.11), and 

the relation of their derivatives θ∂=∂T  because T is a passive additive, we find that for 

λ = 0.6328µm: 

6
2 1006.79 −⋅∂






=∂ θ

T
pn  (2.15) 

The direct relationship between refractive index fluctuations and potential temperature 

fluctuations is shown in Eq. (2.16).  We can now infer a relationship between the 

structure parameter for refractive index and that of the potential temperature as: 

62
2

2 1006.79 −⋅





= θC

T
pCn  (2.16) 
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Optical refractive index fluctuations near the Earth’s surface are a result of temperature 

variations [1].  2
nC  is formally known as the refractive index structure parameter, and 

varies spatially and temporally.  We use this indicator to quantify the strength of 

turbulence along the path of the optical propagation.  The value of 2
nC  typically varies 

from 10-17 m-2/3 under “weak turbulence” conditions to 10-13 m-2/3 in “strong turbulence” 

conditions.  Using previous information, the refractive index structure function obeys 

the same Kolmogorov-Obukhov “two-thirds” power law: 

( ) 3/22 rCrD nn
rr

=   (2.17) 

2.4 Wavenumber Spectrum Models 

By using a methodology similar to that used for the characterization of the 

strength of various frequency components in a time-varying electrical signal, we can 

define a Fourier transform to quantify the ability of different eddy sizes to influence the 

refractive index of a random medium.  To develop a Fourier spectrum, we must first 

determine how refractive index fluctuations vary between different points in the 

atmosphere.  This relationship is given by a spatial covariance [1,13]: 

( ) ( ) ( )1111 , rnrrnrrrBn
rrrrrr δδ +=+  (2.18) 

where nδ is the fluctuating part of the refractive index, with nnn δ+= .  Following the 

previous discussion of Kolmogorov turbulence (Sec. 2.3), the assumption of 

homogeneity implies that only the separation between two points and not the location of 

the two points in a random medium affects the physics, so that ( ) ( )rBrrrB nn
rrrr

→+ 11 , .  

Near the Earth’s surface, the random medium may be treated as isotropic, allowing 
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( ) ( )rBrB nn →
r .   In spherical coordinates, the three-dimensional Fourier transform for 

the spatial covariance is: 

( ) [ ] ( )

( ) [ ] ( )

( ) ( )
r

rd

ridddd

ridrB

n

n

nn

κ
κκκκπ

κκκφθθκκ

κκκ
π π

sin4

expsin

exp

0

2

0

2

0

2

3

Φ=

Φ⋅=

Φ⋅=

∫

∫ ∫ ∫

∫

∞

∞

∞−

rrr

rrrr

 (2.19) 

where ( )κnΦ  is the isotropic and homogeneous turbulence spectrum.  A Fourier 

integral also relates the structure function to the isotropic and homogeneous turbulence 

spectrum: 

( ) ( ) ( )
∫
∞







 −Φ=

0

2 sin18
r

rdrD nn κ
κκκκπ  (2.20) 

which has been derived from the generic Fourier transform description of the spatial 

covariance and the definition of the refractive index structure function, 

( ) ( ) ( )[ ]2
1111 , rnrrnrrrDn δδ −+=+ .  The two descriptions of the refractive index 

structure function from Eqs. (2.17) and (2.20) may be compared to determine the 

wavenumber power spectrum: 

( ) ( )
∫
∞







 −Φ=

0

23/22 sin18
r

rdrC nn κ
κκκκπ  (2.21) 

Using power law relations, the wavenumber spectrum is [1,3]: 

( ) 3/112033.0 −=Φ κκ nn C  (2.22) 

Eq. (2.22) is the Kolmogorov spectrum.  It is only valid in the range 
oo lL

11 <<<< κ .  

( )κnΦ  is an equivalent representation of ( )rDn  in inverse space. 
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There are other spectrum models that attempt to describe behavior beyond the 

inertial subrange.  The Tatarskii spectrum uses a Gaussian function to extend coverage 

to the dissipation range (
ol

1>κ ), where small eddies are influential: 

( ) 




−=Φ −

m
nn C κ

κκκ exp033.0 3/112  (2.23) 

where 
o

m l
92.5=κ .  The von Karman model is the most widely-used model to describe 

characteristics in the energy-input region (
oL

1<κ ).  Although it does an excellent job 

of describing large eddy formation in the troposphere, the model was originally 

proposed to describe fluid flow in a circular pipe [18].  The von Karman spectrum 

integrates the small eddy dependence in the Tatarskii spectrum with a large eddy 

description to give: 

( ) ( )
( ) 6/1122

22
2 /exp033.0

in

m
nn C

κκ
κκκ

+

−
=Φ  for mκκ <<0  (2.24) 

where om l92.5=κ  and oin L1=κ .  In the inertial subrange, the von Karman spectrum 

reduces to the Kolmogorov spectrum value.   

The Kolmogorov and von Karman spectrums fail to show a “bump” at high 

wavenumber values in the inertial subrange, near mκ .  Hill constructed an exact 

spectrum that accounts for the high wavenumber rise [19].  Andrews developed an 

analytical approximation to the Hill spectrum, since the Hill spectrum uses a second-

order differential equation that has to be solved numerically.  Andrews calls his 

approximation the Modified Atmospheric Spectrum, which has the representation [20]:  
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( )

( )
( )22

22

6/7
2

exp

254.0802.11033.0

in

l

ll
nn C

κκ
κκ

κ
κ

κ
κκ

+
−

×




















−








+=Φ

 (2.25)  

The Kolmogorov, von Karman, and modified atmospheric spectrums are plotted 

in Fig. 2.2 for scale sizes of Lo = 10 m and lo = 5 mm.  The high wavenumber “bump” 

occurs in the transition between the inertial subrange and dissipation range.  The bump 

occurs in the plot of the modified atmospheric spectrum at the boundary between the 

energy dissipation range and the inertial subrange in Fig. 2.2, and is especially apparent 

in the scaled spectral plot in Fig. 2.3. 

 
Fig. 2.2:  Three wavenumber spectrum models for refractive index fluctuations.  The 
three energy ranges relevant to turbulence statistics are indicated. 
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Fig. 2.3: Scaled spectral models for the von Karman spectrum, Eq. (2.24), and modified 
atmospheric spectrum, Eq. (2.25), plotted against the wavenumber scaled by the inner 
scale. 

2.5 Rytov Approximation 

The Rytov approximation is a method to solve Maxwell’s equations for 

electromagnetic wave propagation while accounting for diffraction effects [1,21,22].   A 

derivation of optical wave propagation is begun from Maxwell’s equations, assuming 

no free charges, µ0 permeability, and an electromagnetic field with a harmonic time 

dependence of e-jωt [1,22]: 

( )
( ) ( )[ ]
( ) ( ) ( )
( ) ( )trHjktrE

trEtrnjktrH

trEtrn

trH

,,

,,,

0,,

0,

0

2
0

2

rrrr

rrrrr

rrr

rr

=×∇

−=×∇

=⋅∇

=⋅∇

 (2.26) 
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where ck ω=0  is the free space wavenumber, c is the speed of light in vacuum, n = 

n(r) is the refractive index of the atmosphere, and 1−=j .  It is also assumed that the 

variation of the field with time is much slower than e-jωt, which justifies a quasi-steady 

state approach.  After some manipulation with vector identities and substitution [1,22], 

a wave equation is found: 

( )( ) 0ln2222 =∇⋅∇−+∇ nEEnkE
rrr

 (2.27) 

where the third term on the left hand side is a depolarization term.  Since it has been 

shown that the change in polarization of a propagating wave is negligible for both cases 

of λ << lo and λ > lo [1], this term may be dismissed.  Eq. (2.28) becomes: 

0222 =+∇ EnkE
rr

 (2.28) 

Eq. (2.28) may be transformed into a scalar equation for each of the three electric field 

components.  Given a mean air refractive index of 1, the total refractive index is: 

( )rnrn rr δ+= 1)(  (2.29) 

where δn << 1.  The Rytov method considers a solution of the form: 

( ) ( )( )rrE rr
Ψ= exp  (2.30) 

Substitution of Eq. (2.30) into Eq. (2.29) yields the nonlinear Ricatti equation [22,23]:  

( ) ( ) ( ) ( )rnkrrr rrrr 22
0

2 δ−=Ψ∇⋅Ψ∇+Ψ∇  (2.31) 

The Ricatti equation may be solved by a multiplicative perturbation method with a 

solution [22,23,45]: 

( ) ( ) ( ) ( ) ( ) ...3210 +Ψ+Ψ+Ψ+Ψ=Ψ rrrrr rrrrr  (2.32) 
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The field equation for the basic Rytov solution is a result of keeping the first two terms 

in the expansion [22,23,45]: 

( ) ( ) ( ) ( )rnkrrr rrrr δ2
0101

2 22 −=Ψ∇⋅Ψ∇+Ψ∇  (2.33) 

Amplitude and phase information for the propagating wave falls out of the Rytov 

approximation.  The first iterative solution to Eq. (2.33) may be written as the perturbed 

field ( ) ( )( )rrUrU rrr
10 exp)( Ψ= , where ( )rU r

0  is the unperturbed field [45].  Following 

Refs. [20] and [45], the complex phase perturbation is written as ( ) 11 iSr +=Ψ χr  

)()/ln( 00 SSiAA −+=  where χ is the logarithm of the amplitude A, and S is the phase 

of the field ( )rU r .  The unperturbed amplitude and unperturbed phase are denoted by A0 

and S0, respectively.  This analysis shows that under the Rytov approximation, 

irradiance fluctuations obey a lognormal distribution, since [ ] 2/)/ln( 2AI=χ  [20,45].  

The Rytov approximation yields a log amplitude variance 2χ  for infinite plane wave 

propagation [22,45]: 

6/76/11222 307.0 kLCn== χσχ  (2.34) 

It has been shown that Eq. (2.34) is a good approximation to the log amplitude variance 

in the range 2
χσ < 1.  The log intensity is related to the log amplitude variance by [1,45]: 

222
log 4loglog χσσ =−= III  (2.35) 

and 

26/76/1122
log 23.1 RnI kLC σσ ==  (2.36) 
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where 2
Rσ  is the Rytov variance.  The Rytov variance of an infinite plane wave helps to 

define the strength of irradiance fluctuations, although it is not an absolute measure of 

turbulence strength, as shown in Table 2.1.   

Strength of Fluctuations Rytov variance

Weak 3.02 <Rσ  

Intermediate 1~2
Rσ  

Strong 12 >>Rσ  

Table 2.1: Typical Rytov variance ranges corresponding to weak, intermediate, and 
strong turbulence levels. 

A better comparison of the strength of irradiance fluctuations is provided by the 

transverse coherence length for a optical wave [13,24].  The coherence length for a 

plane wave is: 

( ) 5/322
0 46.1 −

= nLCkρ  (2.37) 

The coherence length for a spherical wave is: 

( ) 5/322
0 546.0 −

= nCLkρ  (2.38) 

Fried defined a coherence radius 00 099.2 ρ=r  where ρ0 is defined in Eq. (2.38) [25,1]. 

A better way to determine the region of turbulence experienced by a propagating 

optical wavefront is to plot the three relevant scale sizes: the transverse coherence 

length, ρ0, the Fresnel zone size, zλ , and the scattering disk size, 0/ ρkL .  These are 

plotted in Fig. 2.3 for the plane wave case with Cn
2 = 5×10-14 m-2/3, Fig. 2.4 for the 

spherical wave case with Cn
2 = 5×10-15 m-2/3, and Fig. 2.5 for the spherical wave case 

with Cn
2 = 5×10-13 m-2/3.  The intersection of the three scale sizes denotes the onset of 

strong scintillation [19].  
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Eq. (2.37) is bounded by inner scale and outer scale scattering parameters, since 

optical propagation in the visible and near-infrared wavelengths near the Earth’s surface 

is dominated by Fresnel scattering [21].  The large eddies in the spectrum set the outer 

scale scattering parameter: 

2
00 2 LLλπζ =  (2.39) 

while the small eddies define the inner scale scattering parameter: 

2
0

2
2 56.5

l
λκζ L

k
L m

m ==  (2.40) 

For a test range length of L = 863 m and a wavelength λ = 0.6328 µm, the Fresnel 

length is 2.47 cm, which is well away from the scale of either scattering parameter. 

 
Fig. 2.4: The Fresnel zone size, coherence length, and scattering disk size plotted for a 
plane wave against propagation distance.  For L = 863 m, there are scale sizes on the 
link contributing to strong fluctuations.  The shaded area shows scale sizes that do not 
contribute to strong fluctuations. 
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Fig. 2.5: Three scale sizes plotted against the propagation distance for the spherical 
wave case with L = 863 m.  When Cn

2 = 5×10-15 m-2/3, the wavefront sees weak 
scintillations with contributing scale sizes on the order of the Fresnel zone size.  

 
Fig. 2.6: Three scale sizes plotted against the propagation distance for the spherical 
wave case with L = 863 m.  From the graph, the wavefront experiences strong 
fluctuations when Cn

2 = 5×10-13 m-2/3, with contributing scale sizes beyond the shaded 
area. 
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2.6 Strong Turbulence Theory 

Multiple scattering of an optical wave by refractive index inhomogeneities 

results in strong fluctuations of the irradiance.  As the amount of multiple scattering 

increases with increasing propagation path length, irradiance fluctuations saturate and 

approach a value of one.  This phenomenon was first experimentally reported in a 

Russian journal by Gracheva and Gurvich [26].  Although Rytov and other Markov 

based solutions to the stochastic wave equation were investigated [27], no existing 

analysis method was successful in describing the saturation of scintillation.  New 

research in perturbation theory led to the development of the asymptotic theory for 

strong scintillations [27,28,29,30].  Other scientists used heuristic methods to predict 

the saturation of amplitude fluctuations [31,32].  Although the heuristic methods show 

good results, there is no well-defined relationship between amplitude and irradiance 

fluctuations in strong turbulence.  Heuristic theory will not be used in the analysis of 

aperture averaging, since the analysis requires information of the value of the logarithm 

of the amplitude.   

2.6.1 Andrews – Prokhorov Asymptotic Analysis 

The propagation of an optical wave is defined by different moments of the field.    

The angular spread of the beam is characterized by the second order moment, which is 

known as the mutual coherence function (MCF).  The fourth order moment defines the 

irradiance fluctuations of the propagating wave.  When the propagating wavelength is 

small compared to the scale size of inhomogeneities in the random medium, and the 

variation of the refractive index is much less than one, the fourth order moment with E
r

 

in the ẑ propagation direction is [27,29]: 
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( ) ( ) ( ) ( ) ( )21
**

21214 ,0,,,,, rrzEzErzErzErrz +=Γ  (2.41) 

The irradiance variance is related to the fourth order moment by [29]: 

( ) ( ) 10,0,4
22 −Γ=−= zIIIσ  (2.42) 

With the lack of an analytical solution to Eq. (2.42), asymptotic solutions for the fourth 

order moment yield the best results for strong turbulence over long propagation paths.  

Prokhorov summarized the development of asymptotic analysis using the local method 

of small perturbations [27].  He constructed a set of equations for the averaged field to 

which the moments of the field were solutions.  The local method of small perturbations 

required that the phase of the fluctuating wave experiences only small variations over a 

propagating distance 0zz − , and satisfies the limit: 

1222 <<∆ lεk  (2.43) 

where ( ) εεεε /2 −=∆  and ℓ is the scale of the inhomogeneities in the turbulent 

medium. 

2.6.1.1 Andrews Asymptotic Analysis for a Plane Wave 

The equation for the fourth-order moment of the electric field of a plane wave 

propagating in a statistically homogeneous random medium is [27]: 

( )
21

4
2

4
4

rrk
iV

z rr
∂∂
Γ∂

−Γ−=
∂
Γ∂  (2.44) 

with 

( ) ( ) ( ) ( )
22

2121
21

rrDrrDrDrDV
rrrr

rr −′
−

+′
−′+′=  (2.45) 
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where Γ4 is the fourth moment of the field and ( )uD′  is the derivative of the phase 

structure function.  Prokhorov wrote the spectral function of irradiance fluctuations as 

[27]: 

( ) [ ] ( )2142 ,,exp
2
1,, rrzuqiudrqzM rrrrrrr

Γ−= ∫π
 (2.46) 

which is the Fourier transform of the fourth order moment with q representing the scale 

of frequency components in the spectrum.  The full power spectrum in the strong 

fluctuation regime is presented in Eq. (4.17) of Ref. [27].  In his analysis, Prokhorov 

derived the scintillation index, m2, or irradiance variance, in strong, saturated turbulence 

conditions [27]: 

( ) ( ){ } ( )( )

( ) 1/for 

/1
2/2

3
22

>>

+==
−−

kzD

kzDNmI

αα
ασ  (2.47) 
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( ) ( ) ( )

{ })1/(;;1,14
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
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
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



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F
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 (2.48) 

where α is the power-law exponent of the phase structure function, α)()( kuCuD = , Γ 

represents the gamma function, and 2F1 is the confluent hypergeometric function.  The 

phase structure function in the inertial subrange approximates a 5/3 power relation [13].  

For α = 5/3, N3(α) = 1.22.  A solution to the scintillation index can be found using the 

phase structure function representation [27]: 

( ) 3/5329.2 zrkCrD n=  (2.49) 
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By substituting this into Eq. (2.47), we find the asymptotic relation between the 

scintillation index and the Rytov variance for a plane wave in saturated strong 

turbulence [20,27]: 

( ) 5/22
2 86.01

R
I

σ
σ +=  (2.50) 

For the duration of this thesis, we will refer to Eq. (2.50) as the Andrews asymptotic 

model for the plane wave case. 

The generalized asymptotic form for the covariance may also be written in terms 

of the transverse coherence length [24,11].  The form of the covariance for a plane wave 

is given by a two-scale model: 

( ) ( ) ( ) ( )[ ]ρρρ
ρ
ρρ 21

3/12
0

3
5

3

3/5

0 2
1exp bb

L
kNCI +




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


+








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


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






−=  (2.51) 

where b1 and b2 are scale functions that represent the influence of two different scale 

sizes on the propagating wave.  When ρ approaches zero, b1 and b2 go to unity; while as 

ρ approaches infinity, b1 and b2 go to zero.  When 0→ρ , Eq. (2.51) becomes the 

asymptotic form of the irradiance variance in Eq. (2.50), as expected. 

2.6.1.2 Andrews Asymptotic Analysis for the Spherical Wave 

In spherical coordinates, the fourth-order moment of the electric field for a 

propagating spherical wave in a statistically homogeneous random medium is [27]: 












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∂∂
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 (2.52) 
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where ( )φθ ,,r  are spherical coordinates with ( )φθ ξξ ,  and ( )φθ ηη ,  are constant 

differences in angular coordinates due to the conversion from cartesian to spherical 

coordinates.  In the region of the interest of the fourth moment, the angles of interest, 

( )φθ ξξ ,  and ( )φθ ηη , , are small and near the equator of the spherical coordinate system 

with θ ≈ π/2 [27].  Therefore, due to the small angles in the second derivative on the 

right hand side of Eq. (2.52), there will be an additional constant factor in the term.  In 

saturated strong turbulence, the scintillation index is [27]: 

( ) ( ){ } ( )( )αα
ασ

−−
+==

2/222 /1 krDNm spspspI  (2.53) 

with the spherical wave structure function related to the plane wave structure function 

in Eq. (2.49) by [27]: 

( ) ( ) ( )uDuDsp
11 −+= α  (2.54) 

and  

( ) ( ) ( ) ( )

( ) ( )22114

2/12/sin12
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2
1
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




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
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−

+
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α
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α
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 (2.55) 

The spherical wave scintillation index is related to the plane wave phase structure 

function by [27]: 

( ) ( ){ } ( )( )αα
ασ

−−
+==

2/2

,3
22 /1 krDNm spspI  (2.56) 

where we have defined N3,sp as: 

( ) ( ) ( )( ) ( )ααα αα
spsp NN −−+= 2/2

,3 1  (2.57) 
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As for the plane wave, we assume the phase structure function obeys a 5/3 power law in 

the inertial subrange, giving N3,sp(5/3) = 3.86.  The asymptotic scintillation index for a 

spherical wave in saturated strong turbulence conditions with α = 5/3 becomes [20,27]: 

( ) 5/22
2 73.21

R
I

σ
σ +=  (2.58) 

The asymptotic formula for the covariance of a spherical wave is of the same form as 

the two-scale model given by Eq. (2.51), with the spherical values for N3, ρ0, b1, and b2 

used.  Throughout the rest of this thesis, we will refer to Eq. (2.58) as the Andrews 

asymptotic model for the spherical wave for convenience. 

2.6.2 Churnside Asymptotic Analysis 

After the phenomenon of saturation of scintillation was understood, Churnside 

built upon Fried’s work and published the first significant application of asymptotic 

theory to the study of aperture averaging.  Churnside used the covariance function in 

Eq. (2.48) to devise a framework to study intensity scintillations when the inner scale is 

small.   

2.6.2.1 Churnside Asymptotic Analysis for the Plane Wave 

Churnside evaluated the two-scale model of the covariance function by 

representing the two scale functions, b1 and b2, as: 
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Both functions go to unity when ρ approaches zero, and go to zero when ρ approaches 

infinity.  Churnside’s scale functions are compact forms of the functions presented in 

Chapter 3 of Ref. [1].  Different authors have evaluated these equations under different 

constraints [1,29], and Churnside uses limits relevant to aperture averaging. Based on 

Eq. (2.59), Churnside calculated the irradiance variance to be: 
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or, in terms of the plane wave Rytov variance: 
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The Churnside asymptotic approximation is slightly different from that of Sec. 2.6.1. 

2.6.2.2 Churnside Asymptotic Analysis for the Spherical Wave 

The two-scale model of the covariance function in Eq. (2.51) is evaluated using 

Churnside’s spherical wave representations for b1: 
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where b2 is the same as in the plane wave case.  The Churnside asymptotic equation for 

the irradiance variance of a spherical wave is: 
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or, in terms of the plane wave Rytov variance: 
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( ) 5/22
2 35.51

R
I

σ
σ +=  (2.64) 

The multiplicative constant is slightly higher by Churnside’s calculation, compared to 

the earlier theory in Section 2.6.1.   

2.7  Irradiance Variance Models Valid in Both Weak and Strong Turbulence 

Conditions 

2.7.1  Scintillation Index Model for a Plane Wave 

Andrews and Philips developed a model to describe plane wave characteristics 

over the entire range of fluctuation conditions, from weak to strong turbulence [33].  

They use the effective Kolmogorov spectrum, which modifies the Kolmogorov 

spectrum by two filter functions that exclude mid-scale sizes that have an insignificant 

effect on the propagating wave in the moderate-to-strong turbulence region.  The 

effective Kolmogorov spectrum model is [20,33]: 

( ) ( ) ( )[ ]κκκκ yxnn GGC +=Φ − 3/112
, 033.0l  (2.65) 

where the large-scale filter function that passes only spatial frequencies xκκ < is: 
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and the small-scale filter function, passing only spatial frequencies yκκ > , is: 
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The wavenumber spectrum given by Eq. (2.65) is a two-scale model for generic scale 

sizes x and y.  Likewise, modified Rytov theory may be used to define the scintillation 

index, 2
Iσ , in terms of large-scale and small-scale scintillations [20,33]: 

( ) 1exp 2
ln

2
ln

2 −+= yxI σσσ  (2.68) 

where 2
ln xσ  and 2

ln yσ  are the large-scale and small-scale log irradiance fluctuations.  

These functions are evaluated in Ref. [33], to define the scintillation index for a plane 

wave, excluding inner scale effects, as: 
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where 2
Rσ  is the Rytov variance for a plane wave.  Eq. (2.69) reduces to the Rytov 

approximation in weak turbulence conditions, and the asymptotic model from Eq. (2.58) 

in strong turbulence saturation conditions. 

2.7.2  Scintillation Index Model for a Spherical Wave 

The scintillation index (SI) model attempts to describe the behavior of irradiance 

fluctuations over the entire range of turbulence strengths.  The model for a spherical 

wave is developed using the effective Kolmogorov spectrum, using the same two-scale 

filter functions presented in Eqs. (2.66) and (2.67) for the plane wave case.  The small 

scale and large scale log irradiance fluctuations are evaluated to define the scintillation 

index of a spherical wave, neglecting inner scale effects, by [20,33]: 
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where 2
Rσ  is the plane wave Rytov variance.  Eq. (2.70) has the same form as Eq. 

(2.69), when we rewrite Eq. (2.69) using the relation between the spherical wave and 

plane wave Rytov variances 22
, 4.0 RsphR σσ = . 

2.7.3 Scintillation Index Model using the Atmospheric Spectrum 

The modified atmospheric spectrum is useful when accounting for the influence 

of the inner scale, lo, in the calculation of the irradiance variance.   The spectrum is still 

represented by a two scale model, with an enhanced description of the large-scale filter 

function integrated into the model.  In order to properly account for the influence of the 

inner scale, the new large-scale filter function is defined as [20]: 
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 (2.71) 

where the term in the {} arises out of the modified atmospheric spectrum in Eq. (2.25).  

The small-scale filter function has the same form as in Eq. (2.67).  Eqs. (2.71) and 

(2.67) may be combined to form the Effective Atmospheric Spectrum, which is an 

extension of the modified atmospheric spectrum [20]: 

( ) ( ) ( )[ ]κκκκ yoxnn GGC +=Φ − l,033.0 3/112  (2.72) 

The irradiance variance of a spherical wave using the spectrum in Eq. (2.72) may be 

broken down into components attributed to the modified atmospheric spectrum and 

effective atmospheric spectrum [20]: 
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where L
kDd 4

2
= .  The components of Eq. (2.68) are defined in Eqs. (2.71) through 

(2.74).  The spherical wave Rytov variance is given by: 

6/116/722
, 497.0 LkCnspR =σ  (2.74) 

The scintillation index using the modified atmospheric spectrum in weak turbulence is 

[20]: 
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where 2/89.10 ol kLQ l= .  In saturated strong turbulence, the scintillation index becomes 

[20]: 
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Either Eq. (2.75) or Eq. (2.76) may be used in Eq. (2.73) depending on the strength of 

turbulence experienced on the link.  Finally, the part of the scintillation index resulting 

from the effective atmospheric spectrum, ( )ox D l,2
lnσ , in Eq. (2.73) is defined by [20]: 
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where 
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Although Eq. (2.73) may be used to quantify the effects of the inner scale lo on the 

irradiance variance, it is generally accepted that lo has little effect on the strong 

turbulence irradiance variance [20].  As such, the scintillation index model using the 

atmospheric spectrum presented in Eq. (2.73) will only be used in conjunction with 

weak turbulence analysis. 
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Chapter 3 

Aperture Averaging in Weak Turbulence 

 

3.1  Introduction 

As electromagnetic waves propagate through the atmosphere, they undergo 

refraction by turbulent eddies.  They eddies are characterized by localized variations in 

refractive index from the mean. As a propagating wave moves through these eddies, 

spatially and temporally random irradiance patterns are formed.  When a portion of the 

wave reaches a receiver, the receiver aperture will average across all of these random 

spatial fluctuations unless the aperture is smaller than the spatial scale of the 

fluctuations.  This phenomenon is called aperture averaging.  The aperture averaging 

factor of the receiver is defined as the ratio of the irradiance fluctuations seen at a 

receiver with diameter D, to those fluctuations seen by a point receiver (or a receiver 

that is small enough to approximate a point receiver). 

Aperture averaging theory has been extensively developed for plane and 

spherical waves in weak turbulence conditions [1,10,11,16,21,24,33].  Minimal theory 

is available for the strong turbulence regime [20,24].  There has been some previous 

experimental work [10,11], but early experiments did not account for scintillation 

saturation, and resulted in data markedly different from that predicted by theory.  Later 

experiments did not sufficiently account for background light, and were limited by the 

short path lengths under investigation[11].   
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Aperture averaging of optical scintillations is an essential consideration in any 

receiver telescope design.  Incorporating aperture averaging techniques helps optimize 

optical receiver designs; in that a larger aperture will collect more incoming radiation 

and reduce the likelihood of fading on an optical communications link.  In this chapter, 

an experiment to quantify the system enhancement of an aperture averaged receiver is 

conducted.  This experiment is built upon the theoretical foundation presented in 

Chapter 2.  A description of the methodology of this experiment is followed by a 

presentation and discussion of experimental results. 

3.2  Data Analysis for Weak Turbulence 

3.2.1  General Aperture Averaging Form 

The generic form of the aperture averaging factor for a circular aperture with 

diameter D is [10,11]: 
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where r is the distance between two points on the aperture surface, CI(r) is the spatial 

covariance of the irradiance, CI(0) is the variance of the irradiance, and the term in the 

square brackets is the modulation transfer function (MTF) of the circular aperture.   

3.2.2 Weak Turbulence 

Weak turbulence was defined in Fig. 2.4 as the case when the transverse 

coherence length of the received wave is much larger than the Fresnel length.  The 

covariance of the irradiance is [11]: 
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where k = 2π/λ, ( )κnΦ  is the wavenumber spectrum, z is the distance traveled over path 

length L, J0 is a Bessel function of the first kind, and s is a scaling factor that is 1 for a 

plane wave and z/L for a spherical wave. 

3.2.2.1 Plane Wave, Small lo 

To calculate the covariance values necessary to input into the aperture averaging 

factor equation, the Kolmogorov spectrum in Eq. (2.22) may be used since the inner 

scale is much smaller than the Fresnel length, lo << (L/k)1/2.  After the Kolmogorov 

spectrum is substituted into Eq. (3.2), and we assume a point receiver with r = 0, the 

variance of the irradiance is found as [11]: 

( ) 226/116/7223.10 RInI LkCrC σσ ≡===  (3.3) 

The exact aperture averaging factor for a plane wave is [11]: 
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The inner integral of the Bessel function is given by ( ) 222
1 2/ DDJ κκπ .  After a change 

of variables to let u = κD/2, A becomes solely a function of (kD2/4L)1/2 [11]:  
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It is seen that for a small receiver aperture, when kD2/4L << 1, A approaches one as 

expected.  For large apertures, when kD2/4L >> 1, the sine term is small and may be 

replaced by the expansion 6
3sin γγγ −≈ , so that [11]: 
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The D-7/3 dependence indicates that the scattering due to turbulence is over a small 

angle.  The light will not be scattered wide enough to miss the receiver aperture 

entirely.  The total aperture averaging factor in the weak turbulence plane wave region 

has been approximated by Churnside as [11,24,33]: 
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Eq. (3.7) is plotted in Fig. 3.1 along with the exact theory formula, Eq. (3.4), for the 

plane wave.  There is a 17% difference in the approximate value of A from the exact 

theory when 14
2

=L
kD  [11].  Other approximations have been made to the 

theoretical aperture averaging factor, and show slightly better results.  Andrews 

reported the approximate form for the aperture averaging factor as [34]: 
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At the same location, where 14
2

=L
kD , the Andrews approximation is 7% higher 

than the exact theory assuming a Kolmogorov spectrum. 
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Fig. 3.1: Aperture averaging factor for a plane wave plotted against the ratio of the 
aperture radius to the Fresnel zone size.  The solid line is the exact theory from Eq. (3.4) 
while the dashed line is Churnside’s approximation in Eq. (3.7) [11]. 

 

3.2.2.2 Plane Wave, Large lo 

Either the Tatarskii spectrum from Eq. (2.23) or the Hill spectrum [19] may be 

used when the inner scale is large lo >> (L/k)1/2.  The Tatarskii spectrum is analytically 

simpler than the Hill spectrum, and the results are similar [24].  By substituting Eq. 

(2.23) into the covariance Eq. (3.2), and letting 0→r , the covariance becomes [11]: 

( ) 3/7328.120 −= onI LCC l  (3.9) 

By following a similar method as in  Section 3.2.2.1, and making the substitution u = 

kD/2, the aperture averaging factor is [11]: 
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When D >> 1, the exponential in Eq. (3.10) approaches unity, and A can be 

approximated by [11]: 
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An improved approximation to Eq. (3.11) is [11]: 
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3.2.2.3 Plane Wave, lo on the Order of the Fresnel Length 

In an intermediate regime, when the inner scale is similar to the Fresnel length, a 

decision must be made as to which approximation to the aperture averaging factor to 

use.  By setting the two aperture averaging approximations equal to each other, Eq. 

(3.8) = Eq. (3.12), they are found to be equal when lo = 2.73(L/k)1/2.  Churnside has 

recommended using the small inner scale approximation when lo < 2.73(L/k)1/2, and the 

large inner scale approximation when lo > 2.73(L/k)1/2  [11].  Andrews recommends 

using Eq. (3.8) when kD2/4L < 1 [34]. 

3.2.2.4 Spherical Wave, Small lo 

The Kolmogorov spectrum may be used to evaluate the covariance of the 

irradiance (Eq. (3.2)), along with s = z/L for a spherical wave, and r = 0 [11]: 

( ) 2
,

26/116/72497.00 spRInI LkCC σσ ≡==  (3.13) 

The exact form of the aperture averaging factor in Eq. (3.1) is written using the 

spherical wave covariances [11]: 
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After evaluating the aperture averaging factor integral as in Section 3.2.2.1, it can be 

approximated as [11]: 
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The exact and approximate forms of the aperture averaging factor for a spherical wave 

with small inner scale are shown in Fig. 3.2.  Where 14
2

=L
kD , the approximate 

version predicts the amount of aperture averaging to be 86% less than the theory 

[11,24]. 

 
Fig. 3.2: Aperture averaging factor for a spherical wave with small inner scale.  The 
solid line is the exact theory given a Kolmogorov spectrum, while the dashed line is the 
approximate formula of Eq. (3.15) [11]. 
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3.2.2.5 Spherical Wave, Large lo 

By evaluating the covariance of the irradiance in Eq. (3.2) with the Tatarskii 

spectrum, and r = 0 [11]: 

( ) 23/73228.10 IonI LCC σ== −l  (3.16) 

The aperture averaging factor is approximated by [11]: 

13/7

109.01

−




















+=

o

DA
l

 (3.17) 

3.2.2.6 Spherical Wave, lo on the Order of the Fresnel Length 

By following the argument in Section 3.2.2.3, Eq. (3.15) is equal to Eq. (3.17) 

when lo is 1.5 times the Fresnel length.  Churnside recommends using the small inner 

scale approximation when lo < 1.5(L/k)1/2 and the large inner scale approximation when 

lo  >1.5(L/k)1/2  [11].  Andrews recommends using the small inner scale result when 

kD2/4L <1.  

3.3  Aperture Averaging Experiment 

Experimental aperture averaging data is necessary to verify previously 

developed theory [1,13,16,17,20] and ensure that modern optical communication 

systems are correctly optimized.  After the development of plane wave theory of optical 

propagation through turbulence, the advent of the laser allowed experimental studies of 

aperture averaging.  However, these experiments were conducted over very long paths 

and were susceptible to the effects of saturation of scintillation [17].  A more recent 

experiment by Churnside [11,24] used 100, 250, 500, and 1000 m paths to avoid 
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saturation effects, and produced results in reasonably good agreement with spherical-

wave theory over short paths of 250 m [11,24].   Over longer paths, the experimental 

data tended to diverge from theory.  The scintillometer used in the experiment measured 

turbulence over a 250 m path, and not the path length under test, which reduces 

confidence in the precision of the Cn
2 data. Other shortcomings of this experiment 

include the lack of simultaneous background light measurements and a use of only six 

apertures, ranging from 1 mm to 5 cm.  Many commercial free space optical 

communication units use apertures with diameters larger than 5 cm, so breadth of data 

collected by Churnside in Ref. [11] is insufficient for practical use. 

3.3.1 Aperture Averaging Transmitter and Receiver Systems 

The aperture averaging transmitter uses a 21 mW JDS Uniphase HeNe laser.  

The laser operates in a single mode (TEM00) at 632.8 nm, with a 0.70 mm output 

diameter and 1.15-mrad beam divergence.  The beam passes through an optical chopper 

and a 30x Melles Griot beam expander.  The beam expander is adjustable so that the 

beam diameter at the receiver may be tuned; for this experiment, the beam diameter at 

the receiver is ~1.5 m.  The optical chopper serves an important purpose during the data 

acquisition in that it allows us to calculate mean background light levels at the same 

time that intensity data is being recorded.  The optical chopper is operated with a 

frequency of 3.636 ms, which is on the order of the time that the turbulence on a 

specific path through the atmosphere remains constant.  A photograph of the aperture 

averaging transmitter is shown in Fig. 3.3. 
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Fig. 3.3: Aperture averaging transmitter on the roof of the A.V. Williams Building at 
the University of Maryland, College Park. 

 

The laser light propagates over an 863 m path between the A.V. Williams 

Building and the Chesapeake Building.  The transmitter on the roof of A.V. Williams is 

approximately 14 meters above the ground, while the receiver in the Chesapeake 

Building is approximately 12 meters above ground.  An aerial photograph of the path, 

with the line of sight indicated, is shown in Fig. 3.4.  The terrain propagated over is 

mostly asphalt parking lots, with a few trees and grassy fields.  One part of the path 

passes near the rotunda on the east side of the Comcast Center, which may have some 

affect on the homogeneity of the turbulence measurements.   
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Figure 3.4: An aerial photograph of the propagation path (dotted line).  Satellite 
photograph taken in 2002 by GlobeXplorer. 

 

The receiver system is composed of two receive apertures, a point receiver and a 

variable aperture receiver, shown in Fig. 3.5.  The point receiver is an effective 

scintillometer and is used to calculate path-averaged Cn
2 measurements.  Light is first 

filtered through a laser line filter at 632.8 nm with a 10 nm passband width.  The filter 

removes any stray light from interfering with the operation of the scintillometer.  The 

laser line filter is angle dependent, so only light parallel to the propagation path at a 

wavelength near 632.8 nm will pass.  The aperture diameter of the point receiver is 5 

mm, which is smaller than the Fresnel zone size for the path, cm 34.2=Lλ .  The 

minimum aperture size, required to measure A = 1 in weak turbulence, is the diameter 
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where 14
2

=L
kD .  For this experimental setup,  Dmin = 1.86 cm.  Since the 

scintillometer aperture diameter is smaller than the minimum aperture diameter for A = 

1, the baseline Cn
2 measurements are true path-averaged values.  After passing through 

the scintillometer receive aperture, light is detected by a Perkin-Elmer FFD-100 Si 

photodetector.  The FFD-100 has a 5.1 mm2 active area, with a responsivity of 0.43 

A/W at 632.8 nm.  The detected signal is amplified by a variable transimpedance 

amplifier and recorded by LabVIEW. 

The variable aperture receiver is a Rolyn Optics 20 cm planoconvex lens.  An 

aperture stop of sizes ranging from 1 cm to 16 cm is placed behind the plane side of the 

lens, to limit the aperture diameter.  To ensure that the receiver does not saturate, a New 

Focus neutral density filter wheel is placed in front of the photodetector.  At large 

receive apertures, the filter wheel is necessary to avoid detector saturation and measure 

the intensity variance accurately.  Since neutral density filters are not angle dependent, 

they will not affect the distribution of irradiance fluctuations.  The incident beam is then 

received by a Perkin Elmer FFD-200 Si photodetector and amplified through a variable 

transimpedance amplifier.  The transimpedance gain is set when the photodetector is 

illuminated through the smallest aperture diameter; thereby allowing the electronic gain 

to remain constant, while the receive optical power is controlled by changing the neutral 

density filter transmittance.  The FFD-200 has a 20 mm2 active area with a responsivity 

of 0.43 A/W at 632.8 nm. The signal is than recorded and processed in LabVIEW.  

Typical oscilloscope traces of the aperture averaged and scintillometer signals are 

shown in Fig. 3.6. 
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Fig. 3.5: Diagram of the aperture averaging receiver setup.  The scintillometer channel 
uses a 5 mm diameter receive lens. 

 
Fig. 3.6:  An optically chopped signal propagated over 863 m and viewed on the 
Tektronix oscilloscope.  Channel 1 is the signal detected by the scintillometer, while 
Channel 2 is detected by the aperture averaged receiver.  The signal detected on 
Channel 2 shows smaller intensity fluctuations. 
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3.3.2  LabVIEW Data Acquisition 

A customized LabVIEW program, whose front panel is shown in Fig. 3.7, 

samples the optically chopped 275 Hz signal at a rate of 3000 samples/sec.  Data 

collection for each aperture is typically done in 5 to 15 minute intervals.  The maximum 

and minimum interchannel sampling delays for two channels are 62.5 µsec and 5 µsec, 

respectively.  This time difference is well below the reordering time of the turbulent 

atmosphere, so the turbulent channel is quasistationary. 

 
Fig. 3.7:  Front panel of the LabVIEW program designed to calculate and record 
irradiance statistics for the aperture averaging experiment. 

 

The LabVIEW program calculates irradiance statistics relevant to determining 

the aperture averaging factor over a 1 minute sampling interval.  Fig. 3.8 is a flowchart 

representing the data acquisition process for one channel.  The chart explains the 

methodology used to determine the normalized irradiance variance, 2
Iσ , from the 



 51

measured waveform data.  The waveform type in LabVIEW is a new data type 

introduced in LabVIEW 6.0 that stores information on sampled voltage (y), acquisition 

start time (t0), and sampling interval (∆t).  The waveform type makes signal analysis 

easier because the sampled data is synchronized with the sampling time.  LabVIEW 

also includes an extensive functionality to take advantage of the waveform type. 

From Fig. 3.8, the detected chopped signal is sorted into high and low voltage 

values.  The mean of the low values is the average background signal.  This background 

signal is than subtracted from the recorded high values, which is then averaged over a 1 

minute interval to give the mean intensity.  Simultaneously, the variance of the high 

values for that acquisition period is calculated.  The variance of the high values is then 

normalized by the square of the mean intensity, which gives 2
Iσ .   

Table 3.1 shows the 13 values that are output by LabVIEW into a data file.  The 

two channels recorded are called Ch. 0 and Ch. 1, due to the naming conventions in 

LabVIEW.  The one 1-min path averaged Cn
2 is then calculated from the normalized 

irradiance variance 2
Iσ  using the equation for the plane wave Rytov variance.  The 

aperture averaging factor, A, is calculated each sampling interval from the ratio of the 

normalized intensity variances of the two channels, as in Eq. (3.1).  These values are 

then written to a data file every minute.  The background variance values are only 

output to ensure that there is no significant baseline wander on the measured signal that 

could distort the measured irradiance statistics. 

The LabVIEW program requires a large storage buffer to hold 60 seconds worth 

of samples, measured at 3000 samples per second.  Shorter averaging times were also 

used in the initial experiments, however results were much more erratic.  The longer 
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averaging time ensures that there are a sufficient number of samples so that lognormal 

statistics are obeyed [35].  Only half the number of samples acquired may be used in the 

calculation of the irradiance variance, since the signal is optically chopped.  The other 

half of the samples are used to determine the mean background level. 

 
Fig. 3.8:  Flowchart of the data acquisition process in LabVIEW for one channel.  The 
diagram explains how intensity and background levels are determined for the sampled 
signal averaged over a 1 min. interval. 
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Time measured to 1/1000th of a second 

Signal Ratio 
0.

1.

Ch

Ch

I
I

 

Aperture Averaging Factor, A 
1.

2
0.

2

ChI

ChI

σ
σ

 

Cn
2 Ch. 0 6/116/7

0.
2

23.1 Lk
ChIσ

 

Irradiance Variance Ch. 0 
0.

2
ChIσ , variance of high values normalized 

by 2

0.Ch
I  

Average Intensity Ch. 0 0.Ch
I , mean of high values with 

background level subtracted out 

Average Background Ch. 0 mean of low values 

Background Variance Ch. 0 variance of low values 

Cn
2 Ch. 1 6/116/7

1.
2

23.1 Lk
ChIσ

 

Irradiance Variance Ch. 1 
1.

2
ChIσ , variance of high values normalized 

by 2

1.Ch
I  

Average Intensity Ch. 1 1.Ch
I , mean of high values with 

background level subtracted out 

Average Background Ch. 1 mean of low values 

Background Variance Ch. 1 variance of low values 

Table 3.1: List of 13 values output per averaging interval in LabVIEW data file.  Here, 
Channel 0 represents the aperture averaged signal, while Channel 1 represents the 
scintillometer signal. 

 

3.3.3  Fetch Effects 

The height of the path above ground, approximately 12 m, limits the strength of 

turbulence experienced on an average day.  Although the terrain along the path is 

mostly flat with grass of pavement, there are a few trees and two buildings that impinge 
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on the path, which could result in fetch effects.  To be able to neglect fetch effects, the 

height above ground must be larger than the boundary layer 100-to-1 rule for fetch 

effects [36,37].  The rule states that there will be an internal boundary layer established 

at a height that is 1/100th of the half width of the path.  For our path of 863 m, this 

height is approximately 4.3 m.  Since that propagation path is higher than this internal 

boundary layer, we can assume that we are nearly free of fetch effects [36,37]. 

3.4  Plane Wave Experimental Results 

Theory and approximation of the plane wave aperture averaging factor with 

small inner scale was presented in Sec. 3.2.2.1.  The aperture averaging factor, A, is 

typically plotted against the ratio of the aperture radius to the Fresnel zone size.  Recall 

that the Fresnel zone size is the dominant scale size in cases of weak turbulence.  Three 

accepted approximations to the aperture averaging factor are calculated and plotted in 

Fig. 3.9.  The scintillation index model is an attempt to define an irradiance variance 

that is valid across all turbulence levels.  The plane wave scintillation index diverges 

from its Rytov predicted weak turbulence value when 5.02 ≥Rσ .  Therefore, for 

different strengths of turbulence indicated by Cn
2, the scintillation index model does 

predict different aperture averaging results from the accepted approximations to weak 

turbulence theory.  A Cn
2 value of 10-16 m-2/3 corresponds to 2

Rσ = 0.0043.  A Cn
2 of    

10-14 m-2/3 changes the Rytov variance by a factor of 100 and we find that 2
Rσ = 0.43. 
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Fig. 3.9: Plane wave aperture averaging factor plotted as the Churnside approximation 
Eq. (3.7), the Andrews approximation Eq. (3.8), and the scintillation index (SI) model 
for various values of Cn

2.   

Experimental data plotted against the ratio L
kD

4
2

 is shown in Fig. 3.10.  The 

mean data is plotted with error bars of one standard deviation.  The data does follow the 

trend predicted by theory.  For smaller apertures, the experimental aperture averaging 

data seems to retain high values, whereas the approximate models drop off.  Since the 

laser is diverged, we expect better agreement with the spherical wave aperture 

averaging models.   

The Andrews scintillation index model is the only model that takes into account 

the strength of turbulence in the weak fluctuation region.  As seen from Fig. 3.10, the SI 

model predicts less aperture averaging than weak fluctuation theory for given values of 

receiver aperture.  When our experimental data was analyzed, there was no significant 
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dependence of A on Cn
2 in the weak turbulence region, and certainly not the substantial 

variation predicted by the scintillation index model. 

 
Fig. 3.10: New mean experimental data plotted with error bars, along with 
approximations to the aperture averaging factor. 

 

The mean data is plotted along with the experimental Churnside data in Fig. 

3.11.  The Churnside data was measured on a 500 m path, although Cn
2 was measured 

over only half the path using an incoherent scintillometer [11,24].  It was assumed that 

due to the flatness of the terrain that the measured Cn
2 was indicative of the path 

averaged value.  The laser and scintillometer were propagated over a plateau of 

grassland at a height of 1.5 m above ground.  The 1.2 mrad divergence of the HeNe was 

used directly, so it was assumed that the data would be a better fit to the spherical wave 

theory.  It is apparent from Fig. 3.11 that the plane wave theory does not sufficiently 
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characterize the amount of aperture averaging taking place, especially at larger aperture 

diameters. 

 
Fig. 3.11: New mean aperture averaging data plotted with Churnside experimental data 
taken over a 500 m path.  Neither the plane wave Churnside approximation nor the SI 
model are a good fit to the data. 

 

3.5  Spherical Wave Experimental Results 

Spherical wave weak turbulence theory and approximation was presented in 

Section 3.2.2.4.  Since the beam divergence in this experiment is ~ 1 mrad, we expect 

the data to be in good agreement with the spherical wave analysis.  Fig. 3.12 compares 

the Churnside approximation to the scintillation index model for the aperture averaging 

factor.  The Churnside model predicts a higher knee than the scintillation index model.  

As shown in Fig. 3.2, this knee overpredicts the exact theory given a Kolmogorov 

spectrum, thereby underestimating the amount of aperture averaging taking place. 
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Fig. 3.12: Comparison of two different models for the spherical wave in weak 
turbulence.  The Churnside approximation, Eq. (3.7), predicts a higher knee in the curve 
than the SI model.  

 

Experimental mean aperture averaging data with error bars is shown in Fig. 

3.13.  In contrast to what is predicted by the exact theory, we see a higher knee in the 

data that the theory predicts near 14
2

≈L
kD .  It also shows that the Churnside 

approximation is a better fit to the spherical wave data than the scintillation index 

model.  This supports a generally accepted notion that aperture averaging in weak 

turbulence is independent of Cn
2. 
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Fig. 3.13: Experimental mean aperture averaging data plotted against the ratio of 
aperture radius to the Fresnel zone size.   

 

The Churnside experimental data measured over a 500 m path is displayed along 

with our mean data in Fig. 3.14.  The Churnside data does not exhibit the same knee 

that our new data shows.  Churnside assumed that a high knee is a result of a violation 

of propagation uniformity due to cloud cover over part of the path [11].  This seems to 

be an unlikely explanation for the knee in our new data, since the data was taken under 

clear weather conditions with wind speeds less than 4 m/s and low relative humidity.  It 

is possible that a few trees and a building near the propagation path adversely affect the 

homogeneity of the atmosphere in that area.  There may be additional scintillations 

induced near the transmitter since the laser propagates about 1.5 m above the roof of 

A.V. Williams over a length of 10 m.   
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Fig. 3.14:  Comparison of our new mean data with the Churnside data.   

 

 It is not apparent that the knee in the new data is due to inner scale effects.  A 

large inner scale (larger than the Fresnel zone size), should reduce the aperture 

averaging factor, and not increase it as we are seeing.  The Fresnel zone size is on the 

order of 1 cm, making it unlikely that the inner scale ℓo is larger than 1 cm for this path 

length and height.  However, an inner scale that is smaller than the Fresnel zone size 

will still impact the data in weak turbulence conditions.  Therefore, irradiance variance 

models including an ℓo dependence should be investigated. 

3.6 New Aperture Averaging Model 

Data was fit to the generalized form of the Churnside model in Eq. (3.15).  A 

must be 1 when the aperture diameter becomes infinitesimal, so only the coefficient of 
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the L
kD

4
2

 term was varied.  The genfit function in MathCad allows arbitrary 

functions to be fitted to data matrices.  Using this function, a fit to the measured 

aperture averaging data was found to be: 
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+=
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This new recommended fit, along with the new data and the Churnside approximation, 

given by Eq. (3.15), are plotted in Fig. 3.15. 

 
Fig. 3.15: New weak turbulence fit (Eq. 3.18) shown with new data and the Churnside 
model (Eq. 3.15). 

The limitations of the L
kD

4
2

 term do not pick up on the nuances of the data; 

more specifically, it does not predict the knee that we see in Fig. 3.14.  Including a 
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square root term in the model does pick up on the knee, and we find the approximate 

formula using MathCad: 
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Fried had previously proposed that a fit could be improved with a 
12/72

4 







L

kD  term, 

although Churnside discounted the term as unnecessary [16]. 

 
Fig. 3.16: New fit to weak turbulence data with an additional square root term, given by 
Eq. (3.19), plotted along with the Churnside approximation in Eq. (3.15). 

 

3.7  Determination of the Inner Scale of Turbulence, ℓo 

Although inner scale could not be measured during the aperture averaging 

experiments, ℓo may be determined by fitting available aperture averaging models to the 
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collected new data.  Similar to the development of a new aperture averaging model in 

Section 3.6, the genfit function in MathCad is used to determine ℓo.   

In a first attempt to extract a value of ℓo, the new data is fit to the plane wave 

aperture averaging factor given a large ℓo given by Eq. (3.11).  The fit determined ℓo = 

5.27 cm, a value that is approximately an order of magnitude larger than what would be 

expected in weak turbulence conditions.  The new data is plotted along with Eq. (3.11) 

using ℓo = 5.27 cm in Fig. 3.17.  In our previous analysis, spherical wave models are 

expected to be in better agreement with data acquired on the Chesapeake-AVW test 

range.  Although the fit in Fig. 3.17 is reasonable, the assumption that the diverged 

beam approximates a plane wave is not. 

 
Fig. 3.17:  Eq. (3.11) plotted using the curve fit value of ℓo = 5.27 cm, against the ratio 
of the aperture diameter to the inner scale.  The dashed line represents Eq. (3.11). 
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The new data was next fitted to the aperture averaging factor for a spherical 

wave given a large inner scale, given by Eq. (3.17).  The fit resulted in a predicted ℓo = 

1.45 cm.  This value is on the high end of the range of inner scale measurements 

reported in the literature [60,61].  The new data along with Eq. (3.17) with ℓo = 1.45 cm 

is shown in Fig. 3.18.   

 
Fig. 3.18: Spherical wave aperture averaging factor for ℓo = 1.45 cm using Eq. (3.17) 
plotted along with the new data.  The dashed line represents Eq. (3.17). 

 

Since a reasonable value of ℓo has not been determined using the standard 

approximation to the aperture averaging factor, a more involved model for the 

dependence of the aperture averaging factor on ℓo is investigated.  Recall that the 

modified atmospheric spectrum and effective atmospheric spectrum presented in 

Section 2.7.3 compose the best model to date for determining the influence of inner 
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scale on the irradiance variance.  Using these spectra and assuming spherical wave 

propagation, the aperture averaging factor is calculated by taking the ratio of Eq. (2.73) 

with aperture diameter D to Eq. (2.73) with D = 0: 

( )
( )oI

oI DA
l

l

,0
,

2

2

σ
σ

=  (3.20) 

By using the genfit function in MathCad, the aperture averaging factor using the 

atmospheric spectrum predicts ℓo = 4.008 mm.  The new data along with the 

atmospheric spectrum aperture averaging factor for ℓo = 4.008 mm are plotted in Fig. 

3.19. 

 
Fig. 3.19:  New data is plotted using the predicted value ℓo = 4.008 mm.  The inner 
scale was determined using the atmospheric spectrum, which is represented by the 
dashed line. 
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The primary reason the Churnside plane wave and spherical wave 

approximations to the aperture averaging factor, given by Eq. (3.11) and (3.17), did not 

produce accurate inner scale values is that the models are meant to be used when the 

inner scale is larger than the Fresnel zone size.  In our case, we expect the Fresnel zone 

size to be larger than ℓo.  The atmospheric spectrum produces reasonable results 

because it is not constrained by the Fresnel zone size.  The atmospheric spectrum 

mandates that the inner scale always impacts the irradiance variance in weak turbulence 

conditions.  Although the model is much more complex than the Churnside 

approximations, its usefulness in determining the inner scale, especially when ℓo is not 

measurable, is proven. 

Referring back to the discussion in Sec. 3.5, the atmospheric spectrum aperture 

averaging model with ℓo = 4.008 mm in Fig. 3.19 does not follow the knee of the data, 

as the Churnside spherical wave approximation in Fig. 3.18 does.  It is still unclear what 

physical mechanism contributes to the knee.  From Fig. 3.19, we can ascertain that even 

small values of ℓo will reduce A.  It seems likely that the terrain uniformity and slightly 

off-horizontal path could act as forces counteracting the impact of ℓo.  Either way, it is 

clear that improvements must be made to the atmospheric spectrum models of the 

irradiance variance in order to capture the physical nature of the relationship between 

the aperture averaging factor and ℓo. 

3.8 Conclusions 

The experimental results presented in this chapter show the behavior of the 

aperture averaging factor in weak turbulence.  The data is consistent with models 

developed from the Kolmogorov, Tatarskii, and atmospheric spectra for spherical wave 
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propagation.  This experiment was carefully planned out, and the results are the most 

accurate to date.  The aperture averaging measurements presented here consider a 

variety of receive aperture diameters, simultaneous measurement of background light 

levels, and concurrent measurement of path-averaged Cn
2 values.  Inner scale was also 

estimated from the data. 
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Chapter 4 

Aperture Averaging in Strong Turbulence 

 

4.1 Introduction 

Aperture averaging in strong turbulence is extremely difficult to study because 

of the lack of a comprehensive theory for strong intensity scintillations including 

saturation effects [1,11,20,21,27,29,33,40,41].  In order to make useful comparisons of 

the experimentally determined aperture averaging factor with previously developed 

theory and numerical approximations, non-measurable quantities must be evaluated for 

this experiment.  These include the Rytov variance, transverse coherence length, Fresnel 

zone, inner scale, and scattering disk size. 

4.2  Data Analysis in Strong Turbulence 

4.2.1 General Aperture Averaging Form 

The general form of the aperture averaging factor for the spherical wave has the 

same representation as in weak turbulence theory, given by Eq. (3.1).  The spatial 

covariance terms are represented by their strong turbulence theory counterparts. 

4.2.2 Plane Wave Analysis 

4.2.2.1 Churnside Asymptotic Analysis for the Plane Wave 

The aperture averaging factor in strong turbulence may be evaluated using 

asymptotic theory [11,27].  The theory relies on the assumption that the irradiance 
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variance is the sum of 1 and a perturbation term, as discussed in Section 2.6.1.  

Asymptotic theory is the best theory to describe behavior in the saturation regime, 

because it uses a two-scale model to describe behavior in the inertial subrange and the 

transition into the dissipation region.   

The asymptotic method uses three terms from the series expansion of the 

covariance function [27].  The asymptotic form of the covariance function for a plane 

wave with small inner scale is [11]: 

( ) ( )[ ] ( ) ( ) ( )[ ]ρρρ ρ
ρ
ρ

21

3/1

32
13/5 2

0

0
exp bbNC L

k
I ++−=  (4.1) 

where N3 is a constant equal to 1.22 for a plane wave, and b1 and b2 are functions that 

go to unity as ρ goes to zero and go to zero when ρ goes to infinity.  Specific 

descriptions of the formulas and the constant are found in Sec 2.6.1 and Ref. 27.  

Asymptotic theory includes the impact of two scale sizes, the scattering disk, L/kρ0, and 

the transverse coherence length, ρ0.  Asymptotic theory is expected to be valid only 

where the irradiance variance is close to unity, indicating a region of strong, saturated 

path-integrated turbulence [11].   

For zero inner scale, the variance of the irradiance is related to the transverse 

coherence length by: 
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By solving for ρ0 in Eq. (4.2), we can find the predicted asymptotic value of ρ0 by using 

measured values of 2
Iσ .  We can also use the transverse coherence length, ρ0, for plane 

wave propagation, given in Eq. (4.3), to find predicted values of Cn
2 and, consequently, 

2
Rσ  using: 
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Churnside evaluated the aperture averaging factor as a sum of two terms, based on the 

two scale functions b1 and b2 in Eq. (4.1): 
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By evaluating the two components of the aperture averaging factor for large and small 

diameters, the approximate aperture averaging factor is given as [11]: 
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The approximate aperture averaging factor, given in Eq. (4.6), for a plane wave with a 

small inner scale is plotted in Fig. 4.1, using AVW-Chesapeake test range characteristic 

values. 
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Fig. 4.1:  The plane wave aperture averaging factor A vs. the ratio of the aperture radius 
D/2 to the transverse coherence length ρ0, for L = 863 m and λ = 632.8 nm.  The legend 
indicates different values of irradiance variance 2

Iσ , where turbulence strength 
increases in the asymptotic limit of 12 →Iσ . 

 

The impact of the two scale sizes, the scattering disk and the transverse coherence 

length, is especially evident in the curves with 2
Iσ = 1.25 and 1.5 in Fig. 4.1.  According 

to asymptotic theory, values of 2
Iσ  closer to unity indicate stronger levels of turbulence.  

From Eq. (4.2), the width of the plateau, which is the separation of the two scales, may 

be determined.  For 2
Iσ = 1.5, the width is 14.5.  For 2

Iσ = 1.1, the separation is 1815, 

which indicates that the drop off in Fig. 4.1 is beyond the range of the chart.  The 

location of the plateau is also at a lower value of A for 2
Iσ = 1.1.   

The graphs for various irradiance variances in Fig. 4.1 show the trend of the 

aperture averaging factor in strong turbulence.  Initially, there is more aperture 
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averaging in strong turbulence conditions, because A drops off faster in strong 

turbulence than in weak turbulence.  At larger values of D/2ρ0, plateaus form in the 

strong turbulence aperture averaging factor from the influence of the two-scale sizes, 

the transverse coherence length and the scattering disk size.  The plateaus cause the 

aperture averaging factor to remain high over a wide range of aperture diameters, and 

allow the weak turbulence aperture averaging factor to catch up to the strong turbulence 

value.  For most practical purposes, D/2ρ0 will always be small enough so that the link 

will experience more aperture averaging in strong turbulence conditions. 

4.2.2.2 Andrews Asymptotic Analysis for the Plane Wave 

Andrews approached the theory of aperture averaging using the effective 

Kolmogorov spectrum and modified Rytov theory to determine a model for aperture 

averaging valid over the range of weak-to-strong scintillations.  This approach will be 

fully developed in the following section.  In the strong fluctuation region, the 

asymptotic relation of the irradiance variance for a plane wave to the Rytov variance 

developed from Prokhorov is used [20,27]: 
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which is valid when 2
Iσ >> 1 and the spatial coherence radius, 02ρρ ≈ , is larger than 

the inner scale, ℓo.  The aperture averaging factor given by Eq. (4.7) has been plotted in 

Fig. 4.2 for a variety of irradiance variance values.  Given a value of 2
Iσ , Eq. (4.7) may 

be solved for Cn
2, from which the transverse coherence length for a plane wave is 

determined and substituted into Eq. (4.6) to calculate A.  This model for A reduces the 

width of the plateau on the aperture averaging curve. 
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Fig. 4.2:  Aperture averaging factor using the Andrews asymptotic model vs. the ratio of 
aperture radius to the transverse coherence length.   

4.2.2.3 Scintillation Index (SI) Model for the Plane Wave 

Andrews and Philips developed a model to describe plane wave characteristics 

over the entire range of fluctuation conditions, from weak to strong turbulence [33].  

They use the effective Kolmogorov spectrum, which modifies the Kolmogorov 

spectrum by two filter functions to exclude mid-scale sizes that have an insignificant 

effect on the propagating wave in the moderate-to-strong turbulence region.  The 

effective Kolmogorov spectrum model is [20,33]: 

( ) ( ) ( )[ ]κκκκ yxnn GGC +=Φ − 3/112
, 033.0l  (4.8) 

where the large-scale filter function that passes only spatial frequencies xκκ < is: 

( ) 
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

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xG
κ
κκ  (4.9) 
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and the small-scale filter function, passing only spatial frequencies yκκ > , is: 

( ) ( ) 6/11

3/11

y
yG

κκ
κκ
+

=  (4.10) 

Likewise, modified Rytov theory may be used to define the scintillation index, 2
Iσ , in 

terms of large-scale and small-scale scintillations [20,33]: 

( ) 1exp 2
ln

2
ln

2 −+= yxI σσσ  (4.12) 

where 2
ln xσ  and 2

ln yσ  are the large-scale and small-scale log irradiance fluctuations.  

These functions are evaluated in Ref. [33], to define the scintillation index for a plane 

wave, excluding inner scale effects, as: 
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where 2
Rσ  is the Rytov variance for a plane wave.  Eq. (4.13) reduces to the Rytov 

approximation in weak turbulence conditions, while it reduces to the Andrews 

asymptotic model in saturated strong turbulence conditions. 

4.2.2.4 Comparison of Strong Turbulence Models for the Plane Wave 

The three irradiance variance models, along with weak turbulence theory 

( 22
RI σσ = ), are plotted in Fig. 4.3.  The Andrews and Churnside asymptotic models 

follow a similar trend, with the Andrews asymptotic model matching the scintillation 

index model when 362 >Rσ  [33].  In the weak-to-moderate fluctuation regime with 

25.0 2 << Rσ , the scintillation index model has a lower slope than what weak turbulence 

theory would predict.  It is well known that weak turbulence theory is most accurate 
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when 3.022 <= IR σσ , and the scintillation index model accounts for the deviation of data 

in this region from weak turbulence theory.  

The coherence length is expected to follow asymptotic behavior in the saturation 

region.  When the irradiance variance 2
Iσ  approaches 1, asymptotic theory predicts that 

the transverse coherence length will become infinitely small.  This would require the 

presence of unreasonably high turbulence levels on the link.  Fig. 4.4 shows the 

behavior of the transverse coherence length based on three different models for the 

irradiance variance in strong turbulence.  The scintillation index model is plotted in the 

onset-of-strong turbulence region, where 25.0 2 << Rσ .  In the onset of strong 

turbulence, ρ0 is in the range of 2 mm to 6 mm for a path length of 863 m and λ = 632.8 

nm. 

 
Fig. 4.3:  Irradiance variance, or scintillation index, of a plane wave versus Rytov 
variance.  Asymptotic models in the saturation region are shown. 
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Fig. 4.4: Transverse coherence length based on strong turbulence models plotted against 
irradiance variance, 2

Iσ .  

 

4.2.3 Spherical Wave Analysis 

4.2.3.1 Churnside Asymptotic Analysis for the Spherical Wave 

Aperture averaging theory for spherical wave propagation with small inner scale 

is also evaluated using asymptotic theory as in Sec. 4.2.2.1.  The spherical wave 

analysis uses the same covariance function as presented in Eq. (4.1), although N3, b1, 

and b2 take on spherical wave representations.  The transverse coherence length for the 

spherical wave is defined by: 

( ) 5/322
0 545.0 −
= nLCkρ  (4.14) 
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The coefficient in Eq. (4.14) is the only difference between the plane and spherical 

wave cases, otherwise the behavior of 0ρ is the same.  The constant N3 also takes on a 

new value of 3.86 for the spherical wave case.  The two scale functions b1 and b2 are 

also modified from the plane wave situation, although their behavior as ρ goes to zero 

and infinity are the same.  For negligible inner scale, the irradiance variance is related to 

ρ0 by [11]: 

3/12
02 86.31 




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
+=

L
k

I
ρσ  (4.15) 

The irradiance variance is related to the plane wave Rytov variance 2
Rσ  by using the 

form presented in Eq. (2.36). 

Churnside evaluated the strong turbulence spherical wave aperture averaging 

factor as a sum of two terms which are strongly influenced by b1 and b2 in the 

evaluation of the covariance equation [11]: 
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As in Eq. (4.15), the term A1 represents scale sizes smaller than ρ0, while the term A2 

represents scale sizes larger than the scattering disk, L/kρ0.  The total aperture averaging 

factor is A=A1+A2, and is given by [11]: 
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Eq. (4.17) is plotted for various values of irradiance variance in Fig. 4.5 below.  The 

separation of scale sizes for the spherical wave case, calculated from the width of the 

plateau, is wider than in the plane wave case.  For 2
Iσ = 1.1, the Fresnel zone size is 

240ρ0, and the width of the plateau is beyond the range of the graph at 57512.  When 

2
Iσ = 1.25, the Fresnel zone size is smaller at 60.6ρ0, and the plateau width is 3681.  For 

2
Iσ =1.5, the Fresnel zone size is 21.4ρ0, and the plateau width is 460.  As in the plane 

wave case, larger irradiance variances show higher plateaus in A. 

 
Fig. 4.5: Churnside approximate aperture averaging factor plotted against the ratio of 
the aperture radius to the transverse coherence length, for 2

Iσ = 1.1, 1.25, and 1.5.  
Curves calculated for an AVW test range path length of 863 m. 
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4.2.3.2 Andrews Asymptotic Analysis for the Spherical Wave 

Andrews used the Kolmogorov spectrum to relate the irradiance variance in the 

saturation region to the plane wave Rytov variance 2
Rσ  [11]: 

( ) 5/22
2 73.21

R
I

σ
σ +=  (4.19) 

where 2
Iσ  >> 1.  This asymptotic model predicts a transverse coherence length that is 

different from the Churnside asymptotic model by a factor of 2.74.  This coherence 

length is then used in the aperture averaging factor model given by Eq. (4.17).  The shift 

in the aperture averaging factor from its value given by the Churnside model is visible 

in Fig. 4.6.  The plateaus are also narrower than those of the Churnside model.  The 

Andrews asymptotic analysis is a good fit to the scintillation index model for a spherical 

wave, which will be presented in Sec. 4.2.3.3.   

 
Fig. 4.6:  Andrews asymptotic model for the spherical wave plotted against the ratio of 
the aperture radius to the transverse coherence length. 
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4.2.3.3 Scintillation Index (SI) Model for the Spherical Wave 

The scintillation index model attempts to describe the behavior of irradiance 

fluctuations over the entire range of turbulence strengths.  The model for a spherical 

wave is developed using the effective Kolmogorov spectrum, using the same filter 

functions as presented in Eqs. (4.9) and (4.10) for the plane wave case.  The small scale 

and large scale log irradiance fluctuations are evaluated to define the scintillation index 

of a spherical wave, neglecting inner scale effects, by [20]: 

( ) ( ) ( ) 1
23.01
20.0

19.01
20.0exp 6/55/12

2

6/75/12

2
2 −













+
+

+
=

R

R

R

R
I L

σ
σ

σ
σσ  (4.20) 

where 2
Rσ  is the plane wave Rytov variance. 

4.2.3.4 Comparison of Strong Turbulence Models for the Spherical Wave 

Both asymptotic models, along with the scintillation index model and weak 

turbulence theory, are plotted in Fig. 4.7.  As in the plane wave case, the asymptotic 

models are similar, with the Andrews model matching the scintillation index model 

when 2
Rσ  > 64.  In the onset of strong scintillation region, where 0.5 < 2

Rσ  < 2, the 

scintillation index model has a lower slope than that predicted by weak turbulence 

theory. 
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Fig. 4.7: Spherical wave irradiance variance plotted as a function of plane wave Rytov 
variance.  Asymptotic and weak turbulence relations are indicated. 

 

The transverse coherence length also behaves asymptotically in the saturation 

region.  Figure 4.8 shows that ρ0 becomes infinitely small as 12 →Iσ .  The scintillation 

index model predicts values of ρ0 in the range of 1 mm to 1 cm.  In the saturated region, 

the scintillation index model follows the Andrews asymptotic model.  The asymptotic 

models predict that for strong saturation conditions, the transverse coherence length 

becomes very small (0.1 mm to 0.001 mm) for path lengths on the order of the range 

used in this experiment. 
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Fig. 4.8: Behavior of the transverse coherence length in the strong fluctuation region, 
plotted as a function of the plane wave Rytov variance. 

 

4.3 Aperture Averaging Experiment 

4.3.1  Experimental setup 

Strong turbulence aperture averaging data was collected over multiple days 

along the 863 m AVW-Chesapeake test range.  The only valid experimental method for 

determining the aperture averaging factor in strong turbulence is to directly measure the 

irradiance variance of a propagating wave [40].  Unlike the situation in weak 

turbulence, there is no way of equating the irradiance variance to the log-irradiance 

variance in strong turbulence.  On this test range, measured intensity variance values 

ranged from 1.01 to 1.35; however, a sufficiently large data set is available only at 2
Iσ = 

1.1.   
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The transmitter and receiver systems are the same as those used in the weak 

turbulence aperture averaging experiment, presented in Section 3.3.1.  Aperture 

diameters ranging from 1 cm to 16 cm were used; however, due to atmospheric 

variations during the data collection period, not all available aperture diameters 

produced data in strong turbulence conditions.   

Data was collected during clear weather conditions.  Winds ranged from 1 m/s 

to 4.5 m/s, with low relative humidity (less than 50%).  Temperatures ranged from 60°F 

to 83°F.  Strong turbulence values were always measured in daylight.   

4.3.2  LabVIEW Data Acquisition 

Data acquisition for the strong turbulence case proceeded in the same manner as 

for the weak turbulence case, which was presented in Section 3.3.2.  The LabVIEW 

program was shown in Fig. 3.7, and outputs the same 13 data values presented in Table 

3.1.  Received intensity was sampled in LabVIEW at 3000 samples/sec, with intensity 

variance values averaged over 1 minute intervals.   The 1 minute averaging time 

allowed for more accurate measurements.  Data is sorted according to the measured 

irradiance variance of the scintillometer channel.  Data is then grouped by irradiance 

variance value and separated into two regions: weak irradiance fluctuations, 0.12 <Iσ , 

and strong irradiance fluctuations, 0.12 >Iσ .   

4.4  Experimental Results for the Plane Wave Case 

Data was analyzed by the process described in Section 4.2.1.  The Fresnel zone 

size is 9.32 mm, and the scattering disk is 8.69·10-5/ρ0.  To neglect inner scale effects, 

0ρ≤ol and ρ0 < (L/k)1/2.  As in the weak turbulence case, we expect the spherical wave 
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analysis to be in better agreement with the theory, due to the divergence of the laser 

beam. 

New data is plotted in Fig. 4.9 using the Churnside asymptotic value for ρ0.  The 

data plotted has an average 2
Iσ  ranging from 1.07 to 1.12.  Therefore, the mean data 

should follow the solid line for 2
Iσ  = 1.1.  Error bars represent one standard deviation of 

the measured values.  Since ρ0 is calculated from measured values of irradiance 

variance, it also has a range of values within one standard deviation of the mean.  The 

asymptotic theory curve seems to underpredict the aperture averaging factor, thereby 

overestimating the amount of aperture averaging that is taking place in strong 

turbulence.  In the plateau region, near D/2ρ0 = 350, the experimental aperture 

averaging factor is 43% higher than the value predicted by the model.   

 
Figure 4.9: Average aperture averaged data in strong turbulence using Churnside 
asymptotic analysis plotted against the ratio of the aperture radius to the transverse 
coherence length.  Churnside asymptotic analysis predicts Cn

2 = 9.3×10-12 m-2/3. 
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As mentioned previously, the direct measurement of the intensity to determine 

2
Iσ  is the only valid method for determining aperture averaging in strong turbulence 

[40].  In the absence of independent measurements of Cn
2 by an non-saturating 

incoherent scintillometer [11,24], the asymptotic model presented in Sec. 4.2.2.1 was 

used to extract values for 2
Rσ  and ρ0.  Typical values of ρ0 in weak to non-saturated 

strong turbulence are on the order of 1 mm.  Using measured data values the asymptotic 

model predicts ρ0 in the order of 0.01 mm to 0.1 mm for saturated strong turbulence, 

along with values of Cn
2 averaging 9.3×10-12     m-2/3.  These values are consistent with 

those expected experimentally, since very long propagation paths have very small 

transverse coherence lengths [42].   

New data is plotted in Fig. 4.10 using the Andrews asymptotic relation of Eq. 

(4.7).  The only difference between this data and the data plotted using the Churnside 

asymptotic representation in Fig. 4.9 is that the data is left-shifted on the x-axis by a 

factor of 1.52.  There is a small constant offset between Eqs. (4.2) and (4.7), leading to 

this shift.  Once again, the data clustered near A = 0.06 appears to exhibit a plateau 

effect.  The Andrews asymptotic model gives ρ0 = 0.39 mm and Cn
2 = 5.7×10-12 m-2/3 

for this data. 
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Fig. 4.10:  New data using the Andrews asymptotic theory plotted against the ratio of 
the aperture radius to the transverse coherence length.  The solid line represents the 
aperture averaging factor given by the Andrews asymptotic theory for 2

Iσ  = 1.1. 

 

We previously introduced an expression for irradiance variance 2
Iσ  based on 2

Rσ  

that is valid over all turbulence conditions, with inner scale effects neglected.  This is 

the scintillation index (SI) model.  In order to determine the transverse coherence length 

from Eq. (4.3), we have interpolated values of 2
Iσ  based on 2

Rσ  for the rising portion of 

the scintillation index curve shown in Fig. 4.3.  Therefore, the data is analyzed 

assuming strong turbulence without saturation, giving a value for ρ0 that is consistent 

with the conditions on the experimental test range.  This new data is presented in Fig. 

4.11, along with scintillation index model curves using saturated and non-saturated 

values of the Rytov variance for 2
Iσ  = 1.1. 
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Fig. 4.11:  New aperture averaging data calculated using the SI model plotted against 
the ratio of aperture radius D/2 to the transverse coherence length ρ0 for a plane wave 
propagating in strong turbulence.  The curves represent the aperture averaging factor 
given saturated and non-saturated strong turbulence values for 2

Rσ . 

 

The new data in Fig. 4.11 is in better agreement with theory, and visibly follows 

the predicted trend for 1.12 =Iσ .  Using the scintillation index model to find a Rytov 

variance of 9.22 ≈Rσ  when 1.12 =Iσ , the transverse coherence length  is found to be  ρ0 

≈ 4.4 mm.  The turbulence strength average is Cn
2 = 8.4×10-14 m-2/3.  Since our data was 

not acquired under strong saturation conditions [42], our receive aperture on the 

scintillometer channel with D = 5 mm is sufficient to avoid aperture averaging effects.  
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4.5 Experimental Results for the Spherical Wave Case 

Strong turbulence data for the spherical wave case was acquired through the 

process presented in Section 4.3. Using the models presented in Section 4.2.3, we can 

compare measured aperture averaging data with that of the theoretical approximations 

for the spherical wave case.  The Fresnel zone size is 9.32 mm, while the typical 

transverse coherence length was near 7 mm, indicating that we are within the strong 

turbulence region. 

New data with 1.12 ≈Iσ is shown in Fig. 4.12 using the Churnside asymptotic 

model, presented in Section 4.2.3.1, to determine ρ0.  The approximate formula from 

Eq. (4.17) is also plotted in Fig. 4.11, for 2
Iσ  = 1.1.  The data is slightly higher than 

what the approximate formula for 1.12 =Iσ  predicts.  The Churnside asymptotic model 

predicts ρ0 ≈ 0.04 mm and Cn
2 = 7.2 ×10-10 m-2/3 when 1.12 =Iσ .  The predicted Cn

2 

indicates very strong turbulence because the asymptotic model assumes strong 

saturation conditions that force the transverse coherence length to be a very small value, 

on the order of 0.01 mm.  The drawbacks of the asymptotic model are explained in 

more detail later in this chapter. 

The Andrews asymptotic relationship for the transverse coherence length was 

used to plot the aperture averaging factor in Fig. 4.13 for 1.12 ≈Iσ .  Eqs. (4.14) and 

(4.19) were used to determine ρ0 for this set of data.  As with the Churnside asymptotic 

analysis, the data is higher than what the asymptotic approximations predict.  The 

Andrews model predicts the transverse coherence length for this path to be on the order 

of 0.1 mm.  Andrews asymptotic analysis estimates the level of turbulence at Cn
2 = 1.2 

×10-10 m-2/3. 
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In the case of both asymptotic relations, the Churnside and Andrews asymptotic 

models predict that A will always be much less than 1 for an aperture diameter of any 

reasonable size.  In order to measure A near 1, the receiver aperture diameter must be on 

the order of the saturated value of ρ0, which ranges from 0.01 mm to 0.1 mm.  The 

residual value in Figs. 4.12 and 4.13 is that they clearly show that this data was not 

taken in saturated strong turbulence conditions.  The two data points located at A = 0.78 

and A = 0.18 would not have been measured if the turbulence was saturated.  The rest of 

the data points indicate a plateau effect, although the mean of those five points is about 

36% higher than the asymptotic model values at D/2ρ0 = 2000.  Recall that the 

discrepancy between the Churnside and Andrews asymptotic models is that ρ0 in the 

Andrews model is a factor of 2.74 larger than that of the Churnside asymptotic model. 

 
Fig. 4.12:  New strong turbulence data analyzed using the Churnside asymptotic method 
for a spherical wave, with irradiance variances near 1.1.   
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Fig. 4.13:  New strong turbulence data plotted using the Andrews asymptotic model for 
the spherical wave from Eq. (4.19).  The curve represents the Andrews asymptotic 
model aperture averaging factor for 1.12 =Iσ . 

 

To address the shortcomings of the asymptotic theories, the scintillation index 

model for the irradiance variance in Eq. (4.20) was used to analyze the experimental 

data in a non-saturation strong turbulence region.  The ρ0 for 1.12 =Iσ  was near 7 mm, 

putting us well within the strong turbulence region on this path.  This corresponds to an 

average Cn
2 = 8.4×10-14 m-2/3.  Fig. 4.14 shows the mean data plotted with the 

approximation to the aperture averaging theory when 1.12 =Iσ .  The data appears to 

show a tapering off and potentially a plateau area near D/2ρ0 = 10, similar to that 

predicted by the approximate curve.  This is consistent with the turbulence working to 

render scale sizes larger than ρ0 ineffective along the path.   
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Fig. 4.14:  Mean data with error bars plotted against the ratio of the aperture radius to 
the transverse coherence length.  The solid line is the aperture averaging approximation 
in Eq. (4.17) for 1.12 =Iσ .   

 

The new data using the asymptotic and SI models have been plotted along with 

the Churnside experimental data in Figs. 4.15 and 4.16.  The Churnside data is the only 

well-accepted set of aperture averaging data in strong turbulence.  The Churnside data 

was taken by propagating a HeNe laser over a 1000 m path, with an average irradiance 

variance of 3.08 ± 0.38.  The Churnside asymptotic curve for 08.32 =Iσ  is shown in 

Fig. 4.15 to contrast with the Churnside data.  Data for six apertures was collected 

simultaneously; and Cn
2 was measured over a 250 m path, adjacent to the 1000 m 

aperture averaging path, using an incoherent scintillometer.  The inability to measure 

Cn
2 over the same path as A calls into question the true path-averaged nature of the 

turbulence data. The average Cn
2 measured was 1.29 ± 0.39 × 10-12 m-2/3, and ρ0 = 1.74 
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mm ± 0.24 mm.  The Churnside data is limited in breadth, since Churnside did not have 

large enough apertures available to measure very small aperture averaging factors.  This 

also limited their ability to see any scale size effects due to the size of turbulent eddies 

relative to ρ0 and the scattering disk.   

In a condition of strong saturated turbulence, the new data analysis using 

asymptotic theory in Fig. 4.15 results in data that is beyond the range of the Churnside 

data.  Although the analyzed data demonstrates a plateau in reasonable agreement with 

approximate theory, the data should only be treated as an estimate of what could occur 

if the link experienced strong saturated turbulence, following the discussion presented 

earlier regarding Figs. 4.12 and 4.13.  The new data reinforces the idea that it will be 

difficult to surpass the plateau and reach the scattering disk scale in saturated 

conditions; this would require an extremely large diameter receiver.  By plotting the 

aperture averaging factor on the plateau, an aperture size near the ρ0 scale may be 

chosen for a specific link, if it is required to work in saturated scintillation conditions.   

As mentioned previously, the ρ0 and scattering disk scale sizes result in a plateau 

region in the aperture averaging factor for strong turbulence.  The Churnside data does 

not show any scale effects, while the new aperture averaging data using the SI model 

(Fig. 4.16) begins to exhibit a tapering around D/2ρ0 = 10, likely leading to a plateau.  

The new data is in good agreement with the predicted aperture averaging curve, even at 

higher values of A. The spherical wave treatment is also much improved over the plane 

wave analysis of Section 4.4, which is due to the beam divergence of the transmitter.  

Only the point at A = 0.188 and D/2ρ0 = 4.32 in Fig. 4.16 does not include the 
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approximate theory for the aperture averaging factor within the error bars.  This is due 

to a limited number of data points at that aperture size.   

 
Fig. 4.15:  Mean data analyzed with the Churnside asymptotic model, plotted along with 
the strong turbulence Churnside data taken over a 1000 m path. 

 

The new data in Fig. 4.16 is shown with both the SI model curves for saturated 

and non-saturated strong turbulence at 1.12 =Iσ .  The new data is in good agreement 

with both curves.  Although Fig. 4.16 is beginning to show scale size effects, data for 

larger apertures is needed to discern the validity of these results.   Given that the amount 

of strong turbulence data over this test range was limited, these results should encourage 

further experimental studies of aperture averaging in strong turbulence in order to 

improve the quality of theoretical models available in saturated and non-saturated 

strong atmospheric turbulence. 
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Fig. 4.16:  Mean data analyzed using the scintillation index model in the non-saturated 
strong turbulence region, plotted along with the Churnside data for a 1000 m path.  
Saturated and non-saturated SI model curves for 1.12 =Iσ  are also shown. 

4.5 Conclusions 

Strong turbulence aperture averaging data, measured on an 863 m test range at 

the University of Maryland, College Park, has been analyzed using the Churnside 

Asymptotic, Andrews Asymptotic, and Scintillation Index models.  The models are 

used to determine values for ρ0 and 2
Rσ , which otherwise could only be measured by 

using an incoherent light scintillometer.  The SI model shows the best aperture 

averaging results for the spherical wave in strong turbulence.  Due to the height of the 

propagation path above ground, it was difficult to acquire enough data points in strong 

turbulence conditions for analysis.  The only large data set was available for 1.12 =Iσ .  

In spite of these limitations, this is the first set of strong turbulence aperture averaging 

data to be acquired in non-saturation conditions. 
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Chapter 5 

Free Space Optical Communication using Nonimaging Optics 

 

5.1  Introduction 

Atmospheric turbulence adversely affects the propagation of optical waves.  As 

we have investigated in the previous chapters, the atmosphere distorts the wavefront 

and produces intensity scintillations.  Another manifestation of the interaction of 

atmospheric turbulence with an optical wave is the receiver spot wander in the focal 

plane.  High speed optical receivers use photodetectors with diameters on the order of 

10s of microns.  In an on-off keyed transmission system, achieving a good bit error ratio 

(BER) requires that a maximum amount of received light is received by the 

photodetector.  When turbulence induced beam wander moves the focal spot, there is a 

definite increase in the BER. Commercial systems for data transmission typically 

require a BER of 10-9 or better [43].  Minimizing beam wander in the focal plane of the 

receiver is an important and relatively low cost step in maximizing link reliability. 

5.2  Turbulence-Induced Beam Motion 

5.2.1  Beam Wander 

After a beam propagates through a length equal to a few transmitter diameters of 

turbulent atmosphere, the beam begins to wander randomly in the plane transverse to 

the propagation direction [44].  Beam wander is a result of the electromagnetic wave 

interacting with turbulent eddies of sizes on the order of the transmit aperture diameter 
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[44].  Typically, the influential scale sizes are larger than the inner scale, ℓo. Although 

the beam wanders, it tends to maintain the shape it would have if the beam was 

propagating through free space [45].  It has been shown experimentally that the time 

constant of the beam wander is on the order of the ratio of the beam size to the wind 

velocity.  Previous work has proposed that a fast tracking transmitter be used to 

minimize beam wander [20,45].   

The motion of the centroid of the beam, rc, is defined by [20]: 

222/12
STLTc WWr −=  (5.1) 

where WST is the short term beam width, and WLT is the long term beam width, shown in 

Fig. 5.1.  Beam wander may be observed while propagating a visible laser (such as a 

HeNe) at night. 

 
Fig. 5.1: Beam wander at the receiver plane is characterized by the short term and long 
term beam widths [adapted from Ref. 20]. 

5.2.2  Angle of Arrival and Image Dancing 

Imaging dancing, also called beam wander in the focal plane, is related to 

turbulence-induced phase fluctuations on the propagating optical wave.  The angle-of-
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arrival is a result of a phase shift along the receiver lens diameter that is manifested as 

an optical path difference.  The angle-of-arrival, α, is defined by [20]: 

D
S

D
l ∆

=
∆

=α   (in radians)  (5.2) 

where ∆l is the optical path difference and ∆S is the phase shift across a receiver 

aperture with diameter D.  Using Eq. (5.2), the RMS image displacement, ∆sRMS, is [20]: 

( ) fLDCfs nRMS
2/13/122/12 91.2 −==∆ α  for oD l>>   (5.3) 

where f is the focal length of the optical receiver in meters.  Using the specifications of 

link under test and typical weak turbulence conditions, Cn
2 = 5×10-15 m-2/3, L = 863 m, D 

= 16 in or 40.6 cm, and f/10, the RMS image displacement is 16.47 µm.  In testing high 

speed (> 1 Gbps) transmission systems, low-capacitance, small aperture photodetectors 

with diameters of less than 100µm are used. Any image motion will result in the loss of 

photons and will increase the BER.   

5.3  BER in On-Off Keyed Systems 

An on-off keyed (OOK) system is binary transmission protocol where 1s and 0s 

are represented by the transmission of a large number of photons or the lack of photons 

in a bit slot.  The optical signal is created by either the direct modulation of a laser, or 

the use of an external modulator to control the emission from a continuous-wave (CW) 

laser source.  Depending on the power and subsequent amplification of the laser source, 

the number of photons transmitted for a “1” may be upwards of 1,000,000,000 photons.  

On an atmospheric link with a fade on the order of 40 dB during a “1” bit period, and a 

transmitter power of 0 dBm = 1 mW, only 7800 photons may make it to the receiver.  
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For a p-i-n photodetector operating at 100 Mbps with a minimum receive power of -42 

dBm, a minimum of 4925 photons must make it to the photodetector surface.  Loosing 

photons due to beam wander in the focal plane is an unnecessary liability in an optical 

wireless link. 

Measuring the BER is the best way to characterize the performance of an optical 

wireless communication system.  The BER also accounts for the modulation format of 

the transmission, which in this case is the OOK format.  In an OOK system, the 

probability of an error may be written as  [20]: 

)1|0Pr()0|1Pr()Pr( 10 pperror +=  (5.4) 

where p0 is the probability that a “0” is transmitted, p1 is the probability that a “1” is 

transmitted, and p0 + p1 = 1.  When a pseudorandom sequence is transmitted, an equal 

number of “1” and “0” bits are transmitted on average, implying that p0 = p1 = 0.5.  The 

BER of an OOK system is derived from the theoretical probability of a bit error 

assuming a Gaussian noise distribution [20]: 


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




=

N

Sierfcerror
σ222

1)Pr(  (5.5) 

where iS is the signal current of one bit pulse, and σN is the standard deviation of the 

Gaussian noise distribution.  The BER for an OOK system is [20,46]: 
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 (5.6) 

where SNR is the signal-to-noise ratio of the transmission, and pI(S) is the Nakagami 

gamma-gamma distribution with variables representing the contribution of small-scale, 

γ, and large-scale, ψ, components to the irradiance of the transmission, I = γ ψ [20,47]: 
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where Kψ-γ() is the modified Bessel function of the second kind.  The gamma-gamma 

distribution is the representative probability distribution function for a range of physical 

phenomena, including the propagation of radio waves in the troposphere or ionosphere 

[20].  The components of the irradiance in the presence of atmospheric turbulence may 

be defined by [20,47]: 
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By defining a new random variable 
Si

Sx = , and its derivative dxidS S= , Eq. (5.6) 

can be transformed into the BER of an OOK system in the presence of atmospheric 

turbulence [47]: 
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Eq. (5.9) is plotted in Fig. 5.2 to demonstrate the relationship between the BER and 

SNR for different values of irradiance variance.  The three values of irradiance 

fluctuation were chosen to represent weak 3.02 =Rσ , intermediate 6.02 =Rσ , and non-



 100

saturated strong turbulence 0.22 =Rσ .  Three more curves in Fig. 5.2 are plotted to show 

the BER improvement for a 4 inch aperture along a 1.726 km link.  For a BER of 10-9, 

there is a between a 4 dB and 15 dB improvement with aperture averaging across each 

level of irradiance fluctuations. 

 
Fig. 5.2: The BER of a communications link with a gamma-gamma probability 
distribution function (PDF) as a function of signal-to-noise ratio.  The Rytov variances 

plotted are 0.3, 0.6, and 2.0.  When 14
2

=L
kD , there is no aperture averaging present 

because the aperture radius is equal to the Fresnel zone size (FZ).  Three more curves 
are plotted for an aperture averaged case using a 4 inch diameter aperture.  The 
irradiance variances used in the calculation are the same in both cases. 

5.4  Nonimaging Optics 

To address the problem of beam wander in the focal plane, presented in Sec. 5.2, 

we have chosen to integrate a nonimaging optical element into the optical receiver of an 

optical wireless link. 
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5.4.1 Theory of the Compound Parabolic Concentrator 

Roland Winston and W.T. Welford published the first book on nonimaging 

optics in 1978 [48].  Initially, nonimaging optical elements were investigated for 

application to the concentration of solar energy.  In 1976, the design of the dielectric-

filled Compound Parabolic Concentrator (CPC) for energy concentration was first 

published [49].  The CPC is an extension of the basic cone concentrator.  The cone 

concentrator was limited in its performance, because some rays would be reflected back 

through the entrance aperture of the cone.  This behavior is indicated by the double 

arrows in Fig. 5.3. 

 
Fig. 5.3: The cone concentrator with cone angle γ and maximum entrance angle θi.  
(adapted from Ref. 48).  The cone is hollow with reflective (metallic) edges. 

 

The CPC uses surfaces traced out by an off-axis parabola to improve the 

concentration ratio over that of the cone concentrator.  Figure 5.4 shows a diagram of 

the CPC.  As in the case of the cone concentrator, θi is the maximum entrance angle of 

the CPC.  This angle is related to the entrance and exit apertures by: 
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where aout is the radius of the exit (smaller) aperture, and ain is the radius of the entrance 

(larger) aperture.  The parabola has a focal length of: 

( )( )ioutaf θsin1+=  (5.11) 

The design equations of the CPC in Cartesian coordinates are easily determined from 

Fig. 5.4: 
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where the parametric angle φ is the angle between the axis of the parabola and the 

vector r.  The parametric angle has minimum and maximum angles of  iθφ 2min =  and 

iθπφ +=
2max .  The length, L, of the concentrator is found by calculating z for φ = φmin:   
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The theoretical maximum concentration ratio for a 3-dimensional CPC is: 

( )i
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max sin−=
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


=  (5.14) 

In fact, the maximum concentration ratio will depend on the reflectance of the 

concentrator surface. 
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CPCs are especially useful for integration into FSO communications receivers; 

they are easily designed, highly efficient, add minimal size and weight to the system, 

and are self baffling.  The self baffling nature of the CPC limits the amount of stray 

light incident on the photodiode. 

 
Fig. 5.4: The design of the CPC surface.  The axis of the parabola and the CPC axis are 
different.  The surface of the CPC is traced out by moving the vector r through the 
parametric angle φ. 

5.4.2  The Dielectric-Filled CPC 

 Dielectric-filled CPCs take advantage of the principle of total internal reflection 

to maximize the concentration ratio.  Since total internal reflection is nearly 100% 

efficient, the theoretical maximum concentration ratio becomes [48]: 
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where n is the refractive index of the dielectric material, and θe is the maximum angle of 

incidence of an entrance ray on the dielectric surface.  Figure 5.5 is a plot of θe and the 

internal maximum transmission angle, θn.  The angles θe and θn are related to n by: 

( )
( )2/21sin

/2sin

n

nn
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e

−≤

−≤

θ

θ
 (5.16) 

If n > 2, the angle θe becomes imaginary.  Since the CPC cannot accept an angle 

larger than 90°, the maximum angle that is refracted into the dielectric is given by 

Snell’s Law as ( )n/1sin 1− .   

 
Fig. 5.5: Plot of the maximum entrance angle in air, θe, and the maximum internal ray 
angle, θn for a range of refractive indices. 
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The parametric equations for the dielectric CPC are the same as those used to 

describe the hollow CPC, given by Eq. (5.11) through (5.13), with θi replaced by the 

maximum internal transmission angle of the CPC. 

5.4.3  The CPC-Photodetector Combination 

The coupling of a CPC to a light detection device is logical method of increasing 

the probability that an optical signal is accurately detected.  CPCs must obey the 

brightness principle, which states that an image cannot be brighter than the incident 

object [48,50,51].  When considering a CPC, the brightness theorem dictates that 

radiation incident on the CPC over an angle of incidence θi will exit the CPC 

maintaining the same flux per unit area; therefore, the radiation will exit the CPC over a 

range of angles larger than θi. 

Using the brightness principle, a relation is found between the entrance aperture 

of the CPC and the photodetector area required to achieve maximum efficiency [50,51]: 

( )
2

2sin
n

AA i
iPD

θ
=  (5.17) 

where APD is the area of a photodetector and Ai is the area of the entrance aperture of the 

CPC.  In order to minimize the detection noise and maximize the bit rate of the system, 

the smallest photodetector allowed by Eq. (5.17) should be used.  The maximum 

collection efficiency expected by Eq. (5.17) will be less than 100%, since Fresnel losses 

may exist at the entrance and exit surfaces of the CPC.   

Alternative designs of nonimaging concentrators have been proposed, including 

the θi/θo concentrator [48], and RX and RXI dielectric concentrators [50,51].  The 



 106

former design restricts the exit angle by using a cone section at the exit aperture.  The 

latter designs enhance the uniformity of the output irradiance distribution. 

5.5 1.7 km CPC Link Experiment 

The hypothesis of a BER improvement when using a CPC in the optical receiver 

of an optical wireless link was tested on a 1.7 km range at the University of Maryland, 

College Park. 

5.5.1 Experimental Setup and Test Range 

The test range used for the CPC link experiment is the same range that was used 

for aperture averaging experiments.  The addition of a hollow, corner-cube 

retroreflector (CCR) allowed the link range to be doubled to 1.726 km.  A schematic of 

the link experiment is shown in Fig. 5.6.  The bit error ratio tester (BERT) generates a 

pseudorandom binary sequence (27-1), which modulates the laser diode.  The output of 

the fiber-coupled laser diode is transmitted to the erbium doped fiber amplifier (EDFA), 

which amplifies the signal to approximately 158 mW.  After the signal exits the optical 

fiber, the optical beam is transmitted by a beam expansion system to the CCR 

downrange.  The beam expander contains a 10 x magnifying lens and a 2.25 in. 

biconvex lens.  The 5 in. corner-cube retroreflector is gold-plated for maximum infrared 

reflectance.  Since the retroreflector has a narrow divergence angle of 1 mrad, the 

transmitting lens system must be placed in front of the center of the 16 in. Meade 

Schmidt-Cassegrain telescope.  Almost fortunately, part of the primary aperture on the 

telescope is obstructed by the secondary mirror, so the amount of obstruction due to the 

transmitter lens system is minimized. 
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After a portion of the beam is reflected by the CCR, the reflected wave expands 

and is incident on the 16 in. telescope.  The Meade is an f/10 telescope, although the 

focus is adjustable.  A ZnSe dielectric-filled CPC with a 1 cm entrance aperture is 

placed in front of the focal plane of the telescope to maximize collection efficiency.  

Details of the ZnSe CPC are discussed in the following section.  The exit aperture (1 

mm diameter) of the CPC is butt-coupled to a New Focus DC - 125 Mhz InGaAs 

photodiode (PD), Model 1611.  The photodiode signal is amplified through two RF 

amplifiers and subsequently read by the BERT receiver.  The BERT is an Anritsu 

ME522, which can transmit data at rates from 50 Mbps to 700 Mbps.  An external 

multiplexer/demultiplexer will increase the limit to 1.4 Gbps.  The BERT measurement 

period is variable from 1 second to hours. 

EDFA TX
Laser, 
Power Supply

CPC

CLOCK DATA

IR Camera

PD
ErrorsTo CCR

CPC

BERT

16″ Meade

TX Lens

Amplifier

EDFA TX
Laser, 
Power Supply

CPC

CLOCK DATA

IR Camera

PD
ErrorsTo CCR

CPC

BERT

16″ Meade

TX Lens

Amplifier

 
Fig. 5.6:  Setup of the CPC link experiment.  Black lines are electrical connections; 
orange lines are fiber optic connections. The IR camera is used for alignment purposes 
only, and is lowered below the field of view of the 16 in. Meade telescope when not in 
use. 
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5.5.2  ZnSe CPC 

 The CPC used in this experiment was made of ZnSe, due to its high 

transmission at 1.55 µm.  The refractive index of ZnSe at 1.55 µm is 2.48.  The CPC is 

approximately 2.25 cm long, with an entrance diameter of 1 cm and an exit diameter of 

1 mm.  A profile of the CPC is shown in Fig. 5.7, with a canned photodiode centered at 

the exit aperture of the CPC.  The CPC has a maximum entrance angle of ~5°.  At 

normal incidence, 18% of the light is reflected at each aperture. 

For the 1.7 km experiment, the photodetector integrated into the package was 

removed.  The New Focus InGaAs photodetector was used in its place.   

ZnSe CPC

InGaAs Photodiode

Al mounting tube

ZnSe CPC

InGaAs Photodiode

Al mounting tube

ZnSe CPC

InGaAs Photodiode

Al mounting tube

 
Fig. 5.7: Profile of the mounted ZnSe CPC directly coupled to an InGaAs PD. 

5.5.3 Link Budget 

The link budget is a design method to ensure that enough power will reach the 

optical receiver given that there will be some losses on the optical link.  It may be 

written in the form [52]: 

sLRXTX MCPP ++=  (5.18) 
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where PTX is the average transmitter power, PRX is the receiver sensitivity in dBm, CL 

represents the channel losses, and Ms is the system margin, which represents the 

maximum additional loss the system can handle.  The link budget is normally written 

with the optical power in dBm, where ( )mW 1/10logdBm 1 10 P= , and the electrical 

power in dB.  The link budget of the 1.7 km link, without the CPC, is articulated in 

Table 5.1. 

The system margin is given by: 

dB2.28
dB5.38dBm3.44dBm22

=
−+=

−−= LRXTXs CPPM
 (5.19) 

Although this system margin is sufficient to maintain a BER of 10-9 in a digital 

communications system, where an electronic noise margin of 21 dB is required [20, 

46,53], it does not account for fading on the optical wireless link.  A fade is a sudden 

drop in the signal strength that may result in the erroneous detection of a bit.  Fading on 

optical wireless links is induced by the motion of turbulent eddies in the atmosphere.  

Fades of 10dB are common, although fades of over 40 dB have been reported [54].  Fig. 

5.2 shows that for a BER of 10-9 in weak turbulence ( 3.02 =Rσ ), a SNR of 17 dB is 

needed.  This is a clear example of how receivers integrated with nonimaging 

concentrators should improve the link margin without placing any additional size, 

weight, or power burdens on the system. 
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Link component Component specifications Power (in dB or dBm) 

1.55 µm laser:  
Force, Inc.  
model 2666A  

Max. launch power 0.15 mW, 
extinction ratio 10:1 

-8 dBm

Optigain EDFA  
model 2000 

Max. gain 30 dB 
Max. output 23 dBm 

30 dB
 

PTX Transmitter power = 158 mW 22 dB
Fiber splice 2 splices @ -0.15 dB -0.3 dB
Fiber connectors 2 connectors @ -0.5 dB -1 dB
Viracon thermal pane 
window in  
Chesapeake Bldg. 

Average 25% transmission for 
infrared wavelengths 

-6 dB

Atmospheric 
transmission 

Assume an attenuation of 0.2 
dB/km for clear air [55] 

-0.75 dB

Retroreflector Loss due to mismatch of beam 
width and CCR diameter (129mm) 

-11.7 dB

 Surface reflectivity -0.175 dB
Atmospheric 
transmission 

 -0.75 dB

Window loss  -6 dB
Meade LX 200 EMC Loss due to mismatch of beam 

width and 16 in. aperture 
-6.54 dB

 Loss due to secondary mirror 
obstruction of Schmidt-Cassegrain 
design telescope 

-0.446 dB

 Telescope transmission at 1.55µm 
with EMC coatings 

-1.25 dB

Coupling loss Coupling of focal spot to 
photodetector 

-0.5 dB

Total channel loss, CL 
 

 -38.5 dB

PRX 
New Focus 1611 
InGaAs photodetector 

Receiver sensitivity 
NEP = 2.5pW/(Hz)1/2 

-44.3 dBm

Table 5.1: Link budget analysis for the 1.7 km link, neglecting atmospheric turbulence. 

 

5.5.4 Cn
2 Measurements 

The strength of turbulence, Cn
2, is measured over the same time interval as the 

BER.  Measurements over 1 minute intervals gave the most reliable results.  The Cn
2 
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was measured over the scintillometer channel used in the aperture averaging 

experiment. 

5.5.5 Experimental Results and Analysis 

A 100 Mbps pseudorandom binary sequence with a pattern length of 27-1 bits 

was transmitted downrange and reflected by the corner cube retroreflector.  Test runs 

were done with and without a ZnSe CPC placed directly in front of the New Focus 1611 

InGaAs photodetector.  The exit aperture of the CPC was in direct contact with the 

photodetector window in order to achieve maximum optical coupling.  This coupling is 

especially important since there is a large area mismatch between the CPC exit aperture 

(1 mm diameter) and PD (0.3 mm diameter).  The coupling of the CPC and 

photodetector is very angle sensitive, and the CPC was placed on a 6 degree-of-freedom 

stage to attempt to maximize light output.  The PD was mounted on an xyz stage.  The 

actual PD surface is set back 0.5 mm from the lens case.  A significant loss of coupling 

was observed when there was more than 2 mm of air space between the PD and the 

CPC. 

Data was taken over two consecutive days in weak turbulence conditions 

( )3.02 <Iσ .  BER for 100 Mbps PRBS transmission with and without the CPC is plotted 

against the measured Cn
2 in Fig. 5.8, with error bars representing the fluctuation of Cn

2 

over a 1 min. acquisition period.  Fig. 5.9 plots a first order linear fit along with the 

mean data.  The curve fit equation is also shown in the plot. 

From Figs. 5.8 and 5.9, the measured BERs were found to be on the order of   

10-3 to 10-4.  The range of BER measurements indicates that the beam may not have 

been as collimated as was thought.  Since the system operates at 1.55 µm, the width of 
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the beam when it reaches the 5 inch retroreflector is extremely difficult to measure.  

Though the BERs on the FSO link are high, the important result is the relative 

enhancement of the BER when the optical communications receiver includes a CPC. 

 
Fig. 5.8:  BER plotted as a function of Cn

2 for the 1.7 km link with and without the CPC 
integrated into the optical receiver.  The error bars in Cn

2 represent its fluctuation over 
the 1 min averaging interval. 
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Fig. 5.9: Same data as in Fig. 5.8, plotted along with a first order linear fit to the mean 
data. 

 

There is approximately a factor of 5 improvement in the BER when using the 

CPC in the optical receiver.  This enhancement is particularly encouraging, considering 

that only about 11% of the light that exits the CPC is collected by the PD, due to the 

area mismatch.  A CPC-PD combination where the PD area is either the same or 

slightly larger than the exit aperture of the CPC should yield a better BER enhancement.  

Also, the CPC and PD were mounted on a tripod, which caused the signal to be 

sensitive to vibrations of the floor.  Since the Meade telescope is in its own, very large, 

heavy tripod, it does not feel the vibrations.  A telescope with the CPC and PD using the 

same optomechanical mount would also improve the performance by making the 

system immune to vibrations. 
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 Fig. 5.10 is an oscilloscope trace of the amplified received data, before and after 

passing the signal through a limiting amplifier.  The second trace in Fig. 5.10 is actually 

the inverse of the data, which is connected to the oscilloscope so that each of the 

limiting amplifier terminals are properly terminated.  Nonetheless, it shows how the 

limiting amplifier attempts to clean up the turbulence induced fluctuations of the data, 

but still leaves residual noise on the data that it cannot clean up.  In using the BERT, the 

user must be careful that the terminals of the BERT are not overloaded; otherwise there 

could be significant damage to the system.  The turbulence-induced optical fluctuations 

of the receive signal affect the quality of the electrical signal output of the RF 

amplifiers.  The amplified signal even showed some baseline wander due to the 

fluctuations in the intensity of the received signal.  The amplified signal was attenuated 

to between 30 mVp-p and 500 mVp-p so that any sudden spikes in intensity would not 

overload the limiting amplifier.  The limiting amplifier then outputs a 1.2 Vp-p signal to 

the BERT. 
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Fig. 5.10: Trace 1 shows the data stream after passing through two 20 dB RF amplifiers.  
Trace 2 shows the inverted data after passing through a limiting amplifier. The signal 
after the limiting amplifier is much cleaner; however there is still enough turbulence-
induced noise to degrade the BER. 

 

5.6 NRL Test Range Experiment over the Chesapeake Bay 

An experiment to demonstrate the BER enhancement due to the use of a CPC-

PD combination in an optical receiver was conducted at the Naval Research 

Laboratory’s Chesapeake Bay Detachment, in Maryland (NRL-CBD). 

5.6.1 Experimental Setup and Test Range 

The Naval Research Laboratory has a facility located on the Chesapeake Bay in 

Maryland that they have set up for use as a laser communications test site.  They have 

previously used the facility to test their modulating retroreflector (MRR) array 

technology [56,57].  To test high speed laser communications, a solid retroreflector 

array is located on a tower at Tilghman, MD, and can be interchanged with an MRR 
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array.  The Tilghman site is approximately 16.2 km across the bay from NRL-CBD.  

Fig. 5.11 is a diagram of the test range. 

 
Fig. 5.11:  The NRL-CBD laser communication test range [56].  

The retroreflector array at the Tilghman tower is composed of 12 solid 

retroreflectors, aligned three wide by four tall, spaced on 5 inch centers.  Each 

retroreflector is 2 inches in diameter.  The optical transmitter uses a fiber-coupled diode 

laser at 1.55 µm that is subsequently amplified to 2 W.  The signal exiting the fiber is 

expanded and collimated, and sent downrange to the retroreflector array.  Fig. 5.12 is a 

diagram of the optical transmitter.  A BERT pattern generator (Agilent model 86130A) 

modulates the fiber-coupled diode with a 27-1 PRBS pattern. 

 
Fig. 5.12: Optical transmitter at NRL-CBD.  The collimated optical output is 
approximately 2 W [56]. 

When the retroreflected signal returns, it is collected by a 16 in. Meade LX200 

Schmidt-Cassegrain telescope.  This is the same telescope used in the 1.7 km link at the 

University of Maryland.  It is estimated that 1.84 mW of the 2 W launch power is 
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collected by the 16 in. receiver telescope [56].  Since the signal strength is very low 

after traversing a 32 km roundtrip, the signal is amplified with a Femto variable gain 

voltage amplifier that can amplify a signal by up to 60 dB (model DHPVA-100).  The 

signal is then detected by the BERT receiver.  A description of the optical receiver is 

shown in Fig. 5.13. 

 
Fig. 5.13: The optical receiver at NRL-CBD [56]. 

5.6.2 CPC-PD Combination System 

The integrated CPC-photodiode optical receiver, shown in Fig. 5.7, is used as 

the detection system in the NRL-CBD experiment.  The detector integrated into the 

package is a Telecom Devices 35PD500-TO InGaAs photodiode with a 0.5 mm 

diameter.  The distance between the TO-46 package window and the photodiode surface 

is 0.38 mm.  At 1.5 µm, the photodiode has a responsivity of 1.0 A/W.  The back end of 

the aluminum mounting tube has bond pads and short leads that connect the photodiode 

signal to a Maxim 3266 low noise transimpedance preamplifier chip.   

The input sensitivity of the preamplifier for a BER of 10-9 is: 
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where OSNR is the optical SNR required to achieve a BER of 10-9, IN is the input-

referred RMS noise current of the Maxim 3266, rex is the extinction ratio of the laser 

transmitter (defined here by the ratio P1/P0) [58,59], and ℜ is the responsivity of the 

photodiode in A/W.  The optical power in a “1” bit and “0” bit may also be calculated.  

When using a PRBS transmission pattern, the optical power in a “1” bit is approximated 

by twice the average power [43].  Given a 10:1 extinction ratio and assuming a 2W (33 

dBm) average power, the optical power in a “0” bit is 10 dB lower than that of a “1” bit: 

mW004W41.0P
W4

0

1

=×=
=P

 (20) 

where P0 is the power in a “0” bit, and P1 is the power in a “1” bit.   

5.6.3 Experimental Results and Analysis 

BER measurements were taken over the 32.4 km test range at NRL-CBD.  The 

CPC-PD receiver was used in place of a 62.5 µm optical fiber coupled receiver.  

Measurements were made at standard telecommunication data transmission rates of OC-

1 (51.84 Mbps), OC-2 (103.68 Mbps), and OC-3 (155.52 Mbps).  Data was taken over a 

4 hour window with an atmospheric temperature range of 2.4° to 3.5°, a water 

temperature range of 5.8° to 5.9°, and an average windspeed ranging from 1.0 m/s to 

2.6 m/s.  These temperature and windspeed measurements were taken from a NOAA 

buoy in proximity to the NRL-CBD test range at Thomas Point, MD.  The experiment 

was attempted twice prior to the successful test, but had to be cancelled because of the 

amount of turbulence present on the link.  The turbulence made it impossible to align 

the test link using LED beacons on the tower at Tilghman and a position sensitive 

detector located at NRL-CBD. 
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From Eq. (5.3), the beam wander in the focal plane is estimated at ∆sRMS = 339.6 

µm for a Cn
2 = 1×10-13 m-2/3.  A high value of Cn

2 is assumed because link must be in 

the saturated strong turbulence range, due to the extremely long propagation length. 

Data collected at OC-1 is shown in Fig. 5.14.  The overall BER is plotted in 1 

min intervals, along with the “0” error rate and “1” error rate.  The Agilent BERT has 

the ability to count “0” errors and “1” errors.  Typically, we expect that “0” errors are 

much lower than “1” errors because the power in a “0” bit should be below the 

threshold of the BERT.  For the OC-1 test, the “0” error rate is lower than the “1” error 

rate, although not substantially lower.   

 
Fig. 5.14: Measurements of BER using the CPC-PD receiver when an OC-1 PRBS 
transmission pattern was tested during a 35 minutes test period.  The BER of 1 bit in a 
51.84 Mbps transmission is 3.215×10-10, as indicated by the dark horizontal line.  There 
were no errors between minutes 1 and 19.  The only errors were detected in the 31st 
minute. 
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BER measurements taken at OC-2 are shown in Fig. 5.15.  In the 11th minute, 

the “1” error rate is much higher than the “0” error rate.  Fig. 5.16 shows OC-2 BER 

data published in an NRL paper, with a 62.5 µm optical fiber coupled receiver in place 

of the CPC-PD receiver.  The signal is measured by an OC-12 receiver, regenerated and 

collected by an OC-48 receiver, and finally received by the Agilent BERT. 

 
Fig. 5.15: BER at OC-2 over a 12 minute acquisition period using the CPC-PD receiver.  
A single bit error in a 103.68 Mbps transmission at OC-2 gives a BER of 1.607×10-10. 
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Fig. 5.16:  BER at 100Mbps measured over the NRL-CBD test range with an optical 
fiber coupled receiver, from Ref. 46.  Note that data is plotted for 5 sec intervals.  The 
minimum BER for a 5 sec interval is 2×10-9, which is beyond the range of the graph. 

 

A comparison of the data from the CPC-PD receiver (Fig. 5.15) and the NRL-

CBD optical fiber coupled receiver (Fig. 5.16) shows a significant improvement in BER 

when using the CPC.  The long link length contributes to the amount of beam wander in 

the focal plane.  In Fig. 5.16, there is not one acquisition interval that is error-free.  The 

problem of beam wander in the focal plane is visibly reduced, and manifested in the 

BER improvement. 

BER results from tests with the highest transmission rate, OC-3, are shown in 

Fig. 5.17.  The first 4 minutes of acquisition are error free.  The following 11 minutes 

show significant errors.  This behavior is indicative of transmitter alignment problems 

and not problems with the CPC-PD receiver.   There is no autotracking between the 
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transmitter and receiver on the link.  There was also an evening haze rolling in during 

this acquisition time, which could affect alignment over such a long range. 

The first 4 minutes of error free acquisition are extremely encouraging.  Fig. 

5.18 shows published results from the link with an optical fiber coupled receiver for 

data transmitted at 200 Mbps.  A direct comparison with OC-3 data is not available.  

Fig. 5.18 shows a consistent and significant number of errors throughout the acquisition 

period.  Compared with the new data in Fig. 5.17, it appears that the addition of a CPC 

into the receiver system would improve the BER.  New data could not be acquired at 

200 Mbps, due to the bandwidth range of the Femto variable gain amplifier.  The device 

had a bandwidth of 100 MHz, and the receive signal intensity at 200 Mbps fell off 

significantly. 

Overall, each of the three data rates tested showed a significant amount of error-

free time.  Although this CPC-PD receiver was not optimized for the link, nor was the 

optical coupling between the CPC exit aperture and PD surface optimized, the device 

performed extremely well. 
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Fig. 5.17:  BER at OC-3 measured over a 15 minute period using the CPC-PD receiver.  
The single error BER for a 1 min acquisition period is 1.072×10-10.   

 
Fig. 5.18: BER at 200Mbps measured over the NRL-CBD test range with an optical 
fiber coupled receiver, from Ref. 46.  Note that data is plotted for 5 sec intervals.  The 
minimum BER for a 5 sec interval is 1×10-9, which is beyond the range of the graph. 
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5.7 Conclusions 

The experimental results presented in this chapter show the performance 

enhancement in BER due to the integration of nonimaging optical elements into a FSO 

optical receiver.  The data shows a factor of 5 improvement in BER when a compound 

parabolic concentrator was integrated into the optical receiver system of a 100 Mbps 

link over a 1.7 km retroreflected test range at the University of Maryland, College Park.  

An integrated CPC-photodiode device was tested at the Naval Research Laboratory’s 

32.4 km Chesapeake Bay test range.  The link showed only rare periods of burst errors 

during this experiment, as compared to significant, sustained errors without the use of 

the device.  Both experiments validate the ability of the CPC to significantly reduce the 

number of data transmission errors due to beam wander in the focal plane of the 

receiver.  Optimized CPC-photodiode combinations will improve on the results 

presented here. 
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Chapter 6 

Conclusion 

 

6.1 Summary of Contributions 

This dissertation describes two techniques that will enhance the performance of 

free space optical communication systems, while minimizing the size, weight, and 

power of the system.  Through experimental studies and comparison with available 

models and theory, on-off keyed FSO communication systems will show a significant 

performance improvement in data transmission when aperture averaging methods and 

nonimaging optical elements are incorporated into the system design.  Both studies 

show the ability to mitigate the effects of atmospheric turbulence on the propagating 

coherent optical wave.   

Aperture averaging techniques specifically aim to reduce the atmospheric 

turbulence-induced intensity fluctuations that appear on a propagating optical 

wavefront.  Experimental studies of aperture averaging were conducted in both weak 

and strong fluctuation conditions over a test range at the University of Maryland, 

College Park.  Due to the technical complexities involved in designing an aperture 

averaging experiment, only one set of published data to this point has been available to 

compare with analytical models.  The experiment presented in this dissertation exceeds 

the scope of the previously published data.  The new data presented here represents 

significantly improved measurements in both weak turbulence and strong turbulence 

conditions due to: the examination of a wider range of aperture diameters; the use of 
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better quality electronics, computers, and data acquisition equipment; the measurement 

of Cn2 over the entire length of the aperture averaging test range; the simultaneous 

measurement of background light levels with aperture averaging data; and the use of an 

elevated test range allowed for minimal fetch influences.  This is also the first report of 

aperture averaging data collected for non-saturated strong turbulence conditions.  Since 

the behavior of the refractive index spectrum in the energy dissipation range is still in 

contention, strong turbulence theory is still questionable.  This data will be useful in 

improving the quality of strong turbulence theory and models available for the study of 

aperture averaging in strong fluctuation conditions.  

Compound parabolic concentrators integrated into optical wireless receivers are 

shown to counteract the bit error ratio degradation attributed to atmospheric turbulence-

induced beam wander in the focal plane of the receiver.  This dissertation is the first 

report of an experimental characterization of the performance enhancement due to the 

integration of the CPC into the receiver.  Promising BER improvements by a factor of 5 

resulted from the testing of 100 Mbps data in weak turbulence conditions on the 1.7 km 

link at the University of Maryland, College Park.  Due to the small link margin and 

difficulty in link alignment, PRBS bit error ratio tests were not achieved at rates beyond 

100 Mbps.  This experiment is supplemented by BER testing using a CPC-photodiode 

combination receiver at the Naval Research Laboratory’s Chesapeake Bay Detachment.  

The 32.4 km retroreflected link always experiences saturated strong turbulence 

conditions.  By comparison with previously published NRL data, the CPC-PD receiver 

showed only minimal burst errors over the testing time, at optical communication 

standard rates of OC-1 through OC-3.  The performance enhancements demonstrated in 
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this dissertation, along with the compact size of the device, should make the CPC a 

mandatory part of any OOK FSO communication receiver.  By designing the CPC in 

such a way that its exit aperture maximizes concentration of optical energy onto the 

surface of a photodiode, data transmission errors due to beam wander in the focal plane 

could be absolutely canceled. 

6.2 Future Work 

This dissertation has begun to address perhaps the most significant problem 

plaguing the design of FSO systems: the lack of experimental data pertaining to the 

effects of atmospheric turbulence on the propagation of coherent optical waves.  The 

experimental data presented here provides valuable insights into how FSO receivers 

may be optimized to improve the transmission of OOK systems.  Although the data 

spans both weak and strong turbulence conditions, more data in strong turbulence 

conditions should be gathered to complement the data presented here.   

Due to the height of the optical test range at the University of Maryland, only 

limited data was collected for aperture averaging in strong turbulence.  The testing of 

smaller and larger receiver apertures on a new range that consistently experiences 

saturated strong turbulence conditions would also be beneficial.   

Regarding the CPC experiments, an optimized CPC-PD device should allow the 

experimental determination of the extent of a BER performance enhancement.  A new 

electronic preamplifier and receiver would have to be designed to test the device at data 

rates beyond 1 Gbps.  It would certainly be interesting to characterize the maximum 

OOK transmission rate the CPC could handle.   
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Finally, the data presented here should be studied to improve the quality of the 

refractive index spectrums designed for strong turbulence.  Although the Hill spectrum 

has been shown to be the most accurate in strong turbulence conditions, the fact that it 

needs to be solved numerically makes it difficult to use in practical situations.  

Approximations to the Hill spectrum, like the modified and effective atmospheric 

spectrums, still leave room for improvement.  The new aperture averaging data 

presented here is valuable because it directly measured the irradiance variances in 

strong turbulence.  In the past, spectrums have been derived from log-irradiance 

variance statistics, which do not address the practical measurements of the irradiance 

variances in strong turbulence conditions.  Theoretical researchers need to address the 

refractive index spectrum in strong turbulence by studying experimental data collected 

for the strong turbulence irradiance variance. 
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