3,776 research outputs found

    Space Forms and Group Resolutions: the tetrahedral family

    Full text link
    The orbit polytope for a finite group G acting linearly and freely on a sphere S is used to construct a cellularized fundamental domain for the action. A resolution of the integers over G results from the associated G-equivariant cellularization of S. This technique is applied to the generalized binary tetrahedral group family; the homology groups, the cohomology rings and the Reidemeister torsions of the related spherical space forms are determined.Comment: 37 pages, 5 figures. A proof of the minimal rank property for the resolution has been adde

    On Volumes of Permutation Polytopes

    Full text link
    This paper focuses on determining the volumes of permutation polytopes associated to cyclic groups, dihedral groups, groups of automorphisms of tree graphs, and Frobenius groups. We do this through the use of triangulations and the calculation of Ehrhart polynomials. We also present results on the theta body hierarchy of various permutation polytopes.Comment: 19 pages, 1 figur

    Probabilistic Monads, Domains and Classical Information

    Full text link
    Shannon's classical information theory uses probability theory to analyze channels as mechanisms for information flow. In this paper, we generalize results of Martin, Allwein and Moskowitz for binary channels to show how some more modern tools - probabilistic monads and domain theory in particular - can be used to model classical channels. As initiated Martin, et al., the point of departure is to consider the family of channels with fixed inputs and outputs, rather than trying to analyze channels one at a time. The results show that domain theory has a role to play in the capacity of channels; in particular, the (n x n)-stochastic matrices, which are the classical channels having the same sized input as output, admit a quotient compact ordered space which is a domain, and the capacity map factors through this quotient via a Scott-continuous map that measures the quotient domain. We also comment on how some of our results relate to recent discoveries about quantum channels and free affine monoids.Comment: In Proceedings DCM 2011, arXiv:1207.682

    An Implicitization Challenge for Binary Factor Analysis

    Get PDF
    We use tropical geometry to compute the multidegree and Newton polytope of the hypersurface of a statistical model with two hidden and four observed binary random variables, solving an open question stated by Drton, Sturmfels and Sullivant in "Lectures on Algebraic Statistics" (Problem 7.7). The model is obtained from the undirected graphical model of the complete bipartite graph K2,4K_{2,4} by marginalizing two of the six binary random variables. We present algorithms for computing the Newton polytope of its defining equation by parallel walks along the polytope and its normal fan. In this way we compute vertices of the polytope. Finally, we also compute and certify its facets by studying tangent cones of the polytope at the symmetry classes vertices. The Newton polytope has 17214912 vertices in 44938 symmetry classes and 70646 facets in 246 symmetry classes.Comment: 25 pages, 5 figures, presented at Mega 09 (Barcelona, Spain

    Membership in moment polytopes is in NP and coNP

    Full text link
    We show that the problem of deciding membership in the moment polytope associated with a finite-dimensional unitary representation of a compact, connected Lie group is in NP and coNP. This is the first non-trivial result on the computational complexity of this problem, which naively amounts to a quadratically-constrained program. Our result applies in particular to the Kronecker polytopes, and therefore to the problem of deciding positivity of the stretched Kronecker coefficients. In contrast, it has recently been shown that deciding positivity of a single Kronecker coefficient is NP-hard in general [Ikenmeyer, Mulmuley and Walter, arXiv:1507.02955]. We discuss the consequences of our work in the context of complexity theory and the quantum marginal problem.Comment: 20 page

    Few smooth d-polytopes with n lattice points

    Get PDF
    We prove that, for fixed n there exist only finitely many embeddings of Q-factorial toric varieties X into P^n that are induced by a complete linear system. The proof is based on a combinatorial result that for fixed nonnegative integers d and n, there are only finitely many smooth d-polytopes with n lattice points. We also enumerate all smooth 3-polytopes with at most 12 lattice points. In fact, it is sufficient to bound the singularities and the number of lattice points on edges to prove finiteness.Comment: 20+2 pages; major revision: new author, new structure, new result
    corecore