16 research outputs found

    Antimagic Labelings of Weighted and Oriented Graphs

    Get PDF
    A graph GG is kk-weightedlistantimagicweighted-list-antimagic if for any vertex weighting ω ⁣:V(G)R\omega\colon V(G)\to\mathbb{R} and any list assignment L ⁣:E(G)2RL\colon E(G)\to2^{\mathbb{R}} with L(e)E(G)+k|L(e)|\geq |E(G)|+k there exists an edge labeling ff such that f(e)L(e)f(e)\in L(e) for all eE(G)e\in E(G), labels of edges are pairwise distinct, and the sum of the labels on edges incident to a vertex plus the weight of that vertex is distinct from the sum at every other vertex. In this paper we prove that every graph on nn vertices having no K1K_1 or K2K_2 component is 4n3\lfloor{\frac{4n}{3}}\rfloor-weighted-list-antimagic. An oriented graph GG is kk-orientedantimagicoriented-antimagic if there exists an injective edge labeling from E(G)E(G) into {1,,E(G)+k}\{1,\dotsc,|E(G)|+k\} such that the sum of the labels on edges incident to and oriented toward a vertex minus the sum of the labels on edges incident to and oriented away from that vertex is distinct from the difference of sums at every other vertex. We prove that every graph on nn vertices with no K1K_1 component admits an orientation that is 2n3\lfloor{\frac{2n}{3}}\rfloor-oriented-antimagic.Comment: 10 pages, 1 figur

    Antimagic Labelings of Caterpillars

    Get PDF
    A kk-antimagic labeling of a graph GG is an injection from E(G)E(G) to {1,2,,E(G)+k}\{1,2,\dots,|E(G)|+k\} such that all vertex sums are pairwise distinct, where the vertex sum at vertex uu is the sum of the labels assigned to edges incident to uu. We call a graph kk-antimagic when it has a kk-antimagic labeling, and antimagic when it is 0-antimagic. Hartsfield and Ringel conjectured that every simple connected graph other than K2K_2 is antimagic, but the conjecture is still open even for trees. Here we study kk-antimagic labelings of caterpillars, which are defined as trees the removal of whose leaves produces a path, called its spine. As a general result, we use constructive techniques to prove that any caterpillar of order nn is ((n1)/22)(\lfloor (n-1)/2 \rfloor - 2)-antimagic. Furthermore, if CC is a caterpillar with a spine of order ss, we prove that when CC has at least (3s+1)/2\lfloor (3s+1)/2 \rfloor leaves or (s1)/2\lfloor (s-1)/2 \rfloor consecutive vertices of degree at most 2 at one end of a longest path, then CC is antimagic. As a consequence of a result by Wong and Zhu, we also prove that if pp is a prime number, any caterpillar with a spine of order pp, p1p-1 or p2p-2 is 11-antimagic.Comment: 13 pages, 4 figure

    Inside-Out Polytopes

    Get PDF
    We present a common generalization of counting lattice points in rational polytopes and the enumeration of proper graph colorings, nowhere-zero flows on graphs, magic squares and graphs, antimagic squares and graphs, compositions of an integer whose parts are partially distinct, and generalized latin squares. Our method is to generalize Ehrhart's theory of lattice-point counting to a convex polytope dissected by a hyperplane arrangement. We particularly develop the applications to graph and signed-graph coloring, compositions of an integer, and antimagic labellings.Comment: 24 pages, 3 figures; to appear in Adv. Mat

    On a combination of the 1-2-3 conjecture and the antimagic labelling conjecture

    Get PDF
    International audienceThis paper is dedicated to studying the following question: Is it always possible to injectively assign the weights 1, ..., |E(G)| to the edges of any given graph G (with no component isomorphic to K2) so that every two adjacent vertices of G get distinguished by their sums of incident weights? One may see this question as a combination of the well-known 1-2-3 Conjecture and the Antimagic Labelling Conjecture. Throughout this paper, we exhibit evidence that this question might be true. Benefiting from the investigations on the Antimagic Labelling Conjecture, we first point out that several classes of graphs, such as regular graphs, indeed admit such assignments. We then show that trees also do, answering a recent conjecture of Arumugam, Premalatha, Bača and Semaničová-Feňovčíková. Towards a general answer to the question above, we then prove that claimed assignments can be constructed for any graph, provided we are allowed to use some number of additional edge weights. For some classes of sparse graphs, namely 2-degenerate graphs and graphs with maximum average degree 3, we show that only a small (constant) number of such additional weights suffices

    Weighted-1-antimagic graphs of prime power order

    Get PDF
    AbstractSuppose G is a graph, k is a non-negative integer. We say G is weighted-k-antimagic if for any vertex weight function w:V→N, there is an injection f:E→{1,2,…,∣E∣+k} such that for any two distinct vertices u and v, ∑e∈E(v)f(e)+w(v)≠∑e∈E(u)f(e)+w(u). There are connected graphs G≠K2 which are not weighted-1-antimagic. It was asked in Wong and Zhu (in press) [13] whether every connected graph other than K2 is weighted-2-antimagic, and whether every connected graph on an odd number of vertices is weighted-1-antimagic. It was proved in Wong and Zhu (in press) [13] that if a connected graph G has a universal vertex, then G is weighted-2-antimagic, and moreover if G has an odd number of vertices, then G is weighted-1-antimagic. In this paper, by restricting to graphs of odd prime power order, we improve this result in two directions: if G has odd prime power order pz and has total domination number 2 with the degree of one vertex in the total dominating set not a multiple of p, then G is weighted-1-antimagic. If G has odd prime power order pz, p≠3 and has maximum degree at least ∣V(G)∣−3, then G is weighted-1-antimagic

    Antimagic Labeling for Unions of Graphs with Many Three-Paths

    Full text link
    Let GG be a graph with mm edges and let ff be a bijection from E(G)E(G) to {1,2,,m}\{1,2, \dots, m\}. For any vertex vv, denote by ϕf(v)\phi_f(v) the sum of f(e)f(e) over all edges ee incident to vv. If ϕf(v)ϕf(u)\phi_f(v) \neq \phi_f(u) holds for any two distinct vertices uu and vv, then ff is called an {\it antimagic labeling} of GG. We call GG {\it antimagic} if such a labeling exists. Hartsfield and Ringel in 1991 conjectured that all connected graphs except P2P_2 are antimagic. Denote the disjoint union of graphs GG and HH by GHG \cup H, and the disjoint union of tt copies of GG by tGtG. For an antimagic graph GG (connected or disconnected), we define the parameter τ(G)\tau(G) to be the maximum integer such that GtP3G \cup tP_3 is antimagic for all tτ(G)t \leq \tau(G). Chang, Chen, Li, and Pan showed that for all antimagic graphs GG, τ(G)\tau(G) is finite [Graphs and Combinatorics 37 (2021), 1065--1182]. Further, Shang, Lin, Liaw [Util. Math. 97 (2015), 373--385] and Li [Master Thesis, National Chung Hsing University, Taiwan, 2019] found the exact value of τ(G)\tau(G) for special families of graphs: star forests and balanced double stars respectively. They did this by finding explicit antimagic labelings of GtP3G\cup tP_3 and proving a tight upper bound on τ(G)\tau(G) for these special families. In the present paper, we generalize their results by proving an upper bound on τ(G)\tau(G) for all graphs. For star forests and balanced double stars, this general bound is equivalent to the bounds given in \cite{star forest} and \cite{double star} and tight. In addition, we prove that the general bound is also tight for every other graph we have studied, including an infinite family of jellyfish graphs, cycles CnC_n where 3n93 \leq n \leq 9, and the double triangle 2C32C_3

    Ideal Basis in Constructions Defined by Directed Graphs

    Full text link
    The present article continues the investigation of visible ideal bases in constructions defined using directed graphs. This notion is motivated by its applications for the design of classication systems. Our main theorem establishes that, for every balanced digraph and each idempotent semiring with identity element, the incidence semiring of the digraph has a convenient visible ideal basis. It also shows that the elements of the basis can always be used to generate ideals with the largest possible weight among the weights of all ideals in the incidence semiring

    Ideal bases in constructions defined by directed graphs

    Full text link
    The present article continues the investigation of visible ideal bases in constructions defined using directed graphs. Our main theorem establishes that, for every balanced digraph D and each idempotent semiring R with 1, the incidence semiring ID(R) of the digraph D has a convenient visible ideal basis BD(R). It also shows that the elements of BD(R) can always be used to generate two-sided ideals with the largest possible weight among the weights of all two-sided ideals in the incidence semiring
    corecore