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ARTICLE INFO ABSTRACT
Article history: Suppose G is a graph, k is a non-negative integer. We say G is weighted-k-antimagic if for
Available online 13 October 2011 any vertex weight function w : V — N, there is an injectionf : E — {1,2,...,| E | +k}

such that for any two distinct vertices u and v, Zeem) fe)+w) # ZeeE(u) fe)+w(u).

ﬁ‘r?; :/;?;gfc labeling There are connected graphs G # K, which are not weighted-1-antimagic. It was asked in
Vertex weighted graph Wong and Zhu (in press) [ 13] whether every connected graph other than K is weighted-2-

antimagic, and whether every connected graph on an odd number of vertices is weighted-
1-antimagic. It was proved in Wong and Zhu (in press) [ 13] that if a connected graph G has a
universal vertex, then G is weighted-2-antimagic, and moreover if G has an odd number of
vertices, then G is weighted-1-antimagic. In this paper, by restricting to graphs of odd prime
power order, we improve this result in two directions: if G has odd prime power order p*
and has total domination number 2 with the degree of one vertex in the total dominating
set not a multiple of p, then G is weighted-1-antimagic. If G has odd prime power order p?,
p # 3 and has maximum degree at least | V(G) | —3, then G is weighted-1-antimagic.

© 2011 Elsevier B.V. All rights reserved.

Combinatorial Nullstellensatz

1. Introduction

Assume G is a graph with vertex set {0, 1, ..., n — 1} and edge set {eq, e, . .., ey}. A labeling f of the edges of G with
distinct integer labels is called antimagic if for any two distinct vertices i and j, ZeeE(i) f(e) # Zeem) f(e), where E (i) is the
set of edges incident to vertex i. If G has an antimagic labeling using labels {1, 2, ..., m + k}, then G is called k-antimagic.

We call G antimagic if G is 0-antimagic. Hartsfield and Ringel [5] introduced the concept of antimagic labeling of graphs
in 1990, and conjectured that every connected graph other than K, is antimagic. Alon et al. [2] proved that graphs G with
minimum degree §(G) > Clog|V(G)| (for some absolute constant C) or with maximum degree A(G) > |V(G)| — 2 are
antimagic. Kaplan et al. [8] proved that if a tree T has at most one vertex of degree 2, then T is antimagic (cf. [9]). The
Cartesian products of various graphs are shown to be antimagic in [3,4,11,12].

In the study of antimagic labeling of graphs, Hefetz [6] introduced the concept of (w, k)-antimagic labeling of graphs.
Suppose G is a graph and w : V(G) — N is a vertex weight function, which assigns to each vertex v a weight w(v). A
labeling f of the edges of G with distinct integer labels is called a w-antimagic labeling of G if for any two distinct vertices
iandj, Zeem)f(e) + w(i) # Zeew)f(e) + w(j). The sum ZeeE(Df(e) + w(i) is called the vertex sum at i (with respect to
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labeling f and w). Suppose k is a non-negative integer. A (w, k)-antimagic labeling of G is a w-antimagic labeling of G such
that f(e) € {1, 2, ..., m + k} for every edge e. We say G is weighted-k-antimagic if for any vertex weight function w, G has
a (w, k)-antimagic labeling.

Observe that if G has a spanning subgraph H which is weighted-k-antimagic, then G itself is weighted-k-antimagic. It was
proved in [6] that if H has a 2-factor consisting of circuits of length 3, and the total number of vertices is n = 3* for some
positive integer k, then H is weighted-0-antimagic. As a consequence, if a graph G has n = 3* vertices and has a 2-factor
consisting of circuits of length 3, then G is antimagic. This result is further improved in [7], where the number 3 is replaced
with any prime number. Le., if p is a prime, the number of vertices of G is a power of p, and G has a 2-factor consisting of
circuits of length p, then G is weighted-0-antimagic. In particular, if G has a Hamilton cycle and its order is a prime, then G
is weighted-0-antimagic, and hence antimagic.

The proof of Alon et al. [2] actually shows that graphs G with minimum degree §(G) > Clog|V(G)| are weighted-0-
antimagic.

Nevertheless, not every connected graph G # K, is weighted-0-antimagic. It is observed in [13] that any star is not
weighted-0-antimagic, and any star on an even number of vertices is not weighted-1-antimagic. Then they asked the
following questions.

Question 1. Is it true that every connected graph G # K, is weighted-2-antimagic?

Question 2. s it true that every connected graph G on an odd number of vertices is weighted-1-antimagic?

In [13], it is proved that if G has an odd number of vertices and has domination number 1 (i.e., has a universal vertex),
then G is weighted-1-antimagic; if G # K, has an even number of vertices and has domination number 1, then G is weighted
2-antimagic; if G has a prime number of vertices and having a Hamilton path, then G is weighted-1-antimagic.

A set X of V(G) is called a total dominating set if every vertex of V (G) (including vertices in X) is adjacent to some vertex
in X. The total domination number of G is the cardinality of a smallest total dominating set. In this paper, by restricting to
graphs of prime power order, we improve the resultin [ 13] about graphs having a universal vertex in two directions: assume
G has prime power number of vertices. If G has total domination number 2, then G is weighted-1-antimagic if the degree of
one vertex in the total dominating set is not a multiple of p. If G is a graph on p* vertices, where p > 5 is a prime and z is an
integer, whose maximum degree is at least |V (G)| — 3, then G is weighted-1-antimagic.

2. Preliminaries

We associate to each edge e; of G a variable x;. For each vertex i of G, let v (i) = Zejes(o x;. Let w be a vertex weight
function of G, where wj is the weight of i. Let Q¢ ,, be the polynomial defined as

Q@i X xm) = [] @i—x) ] @ez)+wi—vezl) — wy.

1<i<j<m 0<i<j<n—1

It is obvious that a mapping f : E(G) — Nis a w-antimagic labeling of G if and only if Q. ,, (f (e1), f(e2), ..., f(em)) # 0.So
to find a w-antimagic labeling of G is equivalent to finding a non-zero assignment for the polynomial Qg ,,. For the purpose
of proving the existence of such an assignment, we use Combinatorial Nullstellensatz.

Theorem 3 ([1]). Let F be a field and let P(x1, X2, ..., Xn) be a polynomial in F[xq, X2, ..., X ). Suppose the degree of P is
equal to erll t; and the coefficient of ]_[";] x;j in the expansion of P is nonzero. Then for any subsets S1, S5, ..., Sy of F with
ISj| = tj + 1, there exist sy € S1,52 €Sy, ..., Sm € Sp S0 that

P(s1,82,...,5m) # 0.

The polynomial Qc,, has degree (}) + (). By Theorem 3, if (}) + () = I, ; and the monomial [, ;" in the
expansion of Qg ,, has nonzero coefficient, then for any list assignment L which assigns to e; a set L(e;) of t; + 1 permissible

labels, there is a w-antimagic labeling f of G with f(e) € L(e) for every edge e. Let

Q%o oxm) = [ ®i—x) [] ezl —vez)).

1<i<j<m O<i<j<n—1

If (3) + (%) = [, ti, then the monomial [, x;' has the same coefficient in Q;,,, and Qc. Thus we have the following
lemma.

Lemma 4. Let Q; be the polynomial defined as above. If there is a monomial [, xi' with }""  t; = (3) + (%) and whose

i=1
coefficient in the expansion of Qg is nonzero, then for any vertex weight function w and for any list assignment L such that
|L(e;)| > t; + 1, there is a w-antimagic labeling f of G with f(e) € L(e) for every edge e.



2164 P.-Y. Huang et al. / Discrete Mathematics 312 (2012) 2162-2169

Assume that G is a tree. Hence the number of edges isn — 1.

Let a be the coefficient of the monomial ]_[" 11 ]” Yin Qc(x1,X2, ..., X;,—1). By Lemma 4, if a # 0, then G is weighted-1-
antimagic.

To calculate the coefficient a, we use the following lemma proved in [10].

Lemmas5. If P(X1,X2, ..., Xq—1) € R[X1, X2, ..., Xy,_1] iSofdegree < s{+s,+- - -+s,_1, Wheresy, Sa, .. ., Sp_1 are nonnegative
integers, then

P S1 9 52 9 Sn—1
— — e P(x1,%X3, ..., Xn—
<8X1 ) (sz ) (Z)xn 1 ) (Xl X2 Xn l)

— Z Z (—1sta < ]) (= 1)S- (S"_1 ) P(ay, ..., an1).
an—1

a1=0 ap_1=0 n

Apply Lemma 5 to the polynomial Q; withs; = n — 1forevery 1 <i < n — 1, we conclude that the coefficient a of the

monomial ]_[" ! X~ Vin Q¢ satisfies the following equality.

8 n—1 8 n—1
a-(n—pH'= (8)(1) ”.(ax _1) Qc(X1, ..., Xn—1)

n—1 n—1
— Z . Z (_1)n—l+a1+.4.+an_l (n — 1> o <Tl — 1) Qc(al, )
a ap—1

a;=0 ap—1=0

=140 (1)+-+0o(n—1) 1) ( n—1 ) _
—Z( 1) (0(1) on—1)) LED. o),

where the last sum runs over all the mappingso : {1,2,...,n— 1} — {0, 1,2, ..., n — 1}. However, if o is not injective,
then Qg(0(1),0(2),...,0(n—1)) = 0, so the sum can be taken to run over all injective mappingso : {1,2,...,n—1} —>
{0,1,2,...,n—1}.

Let I be the set of injective mappings from {1,2,...,n—1}to{0,1,2,...,n— 1}.Foro € I', let

veo () = Y o,

ejeE(i)
ao) =[] (ool —veo),
O<i<j<n-—1
n—1 n—1 . .
b(o) = (6(1) ) (o(n B 1)) 1<fl;[n_1(a(l) —a(j)).
n—1 n 1

The coefficient a of the monomial ]_[

Z(—1)““”‘“2”"*"("—”b(wa(o) # 0. (A)
oel’

Let V' be the set of leaves of G. Let E’ be the set of edges incident to V’. Assume |V \ V'| = k. Let the vertices in V' be
labeled by k, k+ 1, ...,n — 1 and let the edge of E’ incident to i € V' be labeled by e;. Fori € {k,k+ 1, ..., n — 1}, vertex i
is incident to e; only, i.e,, E(i) = {e;}. Hence foro € I',fori e {k,k+1,...,n — 1}, 0 (i) = vs, (i).

Let ® be the subgroup of the automorphism group Aut(G) of G that fix every non-leaf vertex of G. Thus each
automorphismin @ is a permutationof {0, 1, ..., n—1} whichfixes0, 1, ..., k—1.Givena permutation r of {1, 2, ..., n—1}
that fixes {1, 2, ..., k — 1}, let v, be the permutation of {0, 1, ..., n — 1} that fixes {0, 1, ...,k — 1} and equals to T on
{k,k+1,...,n— 1}.1tis obvious thatif v; € ® and o € I', then v; ;or = Vg, © V;. Moreover, it is easy to see that

is non-zero if and only if

a(o o t) = sign(t)a(o),
b(o o T) = sign(t)b(o).
Consequently,
b(o o t)a(o o t) = b(o)a(o).
Foro € I'llet[c] ={o o7 : v, € ®}.Then {[o] : 0 € I'} partitions I" into parts of cardinality |@|. Thus
Z(_])a(l)+a(2)+~-+a(n—l)b(a)a(a) =|0| X:(_])a(l)+a(2)+~-+a(n—1)b(a)a(g)7
oel [o]

where the second summation runs over all the equivalence classes {[c] : o € I'}.
In the following, we assume that n = p? is an odd prime power. For o € I', we define the sign of o as (—1) to the power
of the number of pairs i < j such that o (i) > o (j).
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Lemma 6. Forany o € I', b(o) = sign(o)c for some constant c.

Proof. Assume the range of o is {0, 1,...,n — 1} \ {¢}. Then

n—1 -1
b(o) =sign(o)1_[<n;1> I1 (i—j)((n;1>2!(n—l—£)!>
i=0 O<i<j<n—1
n—1 -1
- sign(a)]_[<” i ) [T i-p@-vy. o
i=0 O<i<j<n—1

To prove (A), it is equivalent to prove that

1
Z(—1)"“)“’(2”'”“(’1_1)Sign(o)a(a) — H Z(_-l)cr(1)+a(2)+~-+a(n—l)Sign(a)a(O_)
[o]

£0.

For an integer q, the order of g with respect to p is
ord(q) = max{j : p'|q}.
Lets = ord (HO <icjen—1(— j)). Instead of proving the inequality above directly, we prove the following stronger statement.

oel’

1

|@| Z(_-l)U(1)+U(2)+'-~+0(n—l)sign(a)a(o.) 7—é 0 (mOd ps+l). (B)

oel’

Lemma?7. Foro € I,

ord( I1 (Uc,o(i)—UG,o(f))>ZS

O<i<j<n—1

and equality holds if and only if v¢ (i) # ve.,(j) (mod n) for all i # j.

Proof. Assumeo € I".Fori=1,2,...andj=0,1,...,p' —1,let
aij = {t : vG0 () =j (mod p)}.

Then

i

o p-l .
ord( I (Uc,o(i)—Uc,a(i))) =25 (%)

o0<i<j<n—1 i=1 j=0

For eachi > 1, Z}’:)] a;j = n = p®.Itis obvious that the order

ord ( 1_[ (v, (1) — V6,0 (i)))

O<isj<n—1
is minimum if and only if for any i, &;; = n/p' = p**
V.o (j) (mod n) for every i # j. In this case,

ord ( 1_[ (v6,o (1) — vc,a(i))> =s. O

O<i<j<n—1

is a constant for all j. This happens if and only if vg (i)

A mapping o € I' is called faithful if v; » (i) # v+ (j) (mod n) for any two distinct vertices i and j of G.
Let

2 = {o € I' : o is faithful}.
By Lemma 7, the summation in (B) can be restricted to faithful o’s in I, i.e., (B) is equivalent to
1

|@| Z(_1)U(])+U(2)+"~+U(n*1)Sign(o_)a(o_) ;_ﬁ 0 (mod p5+1). (C)

oeR
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Claim 1. If o is faithful, then o is a permutation of {1,2,...,n— 1}.

Proof. Aso € I' isaninjectionfrom{1,2,...,n—1}to{0, 1, ..., n— 1}, there is exactly one elementi € {0, 1,...,n—1}
which is not in the range of . As n is odd, we have

1+2+---+(n—1)=0(mod n),
and hence Z 1 a(}) = —i (mod n). Since o is faithful,
n—1
Z V6,0 (j) = 0 (mod n).
j=0
On the other hand,
n—1 n—1
> 6o () =2 o) = —2i(mod n).
j=0 j=1

As n is odd, we have i = 0. Hence o is a permutationof {1,2,...,n—1}. O

Foro € £, let vG - () = vg () (mod n). Then Uc is a permutation of {0, 1,...,n — 1} and o is a permutation of
{1,2,...,n— 1}. By Lemma 7, to prove (C), it suffices to show that

|@| ;} sign(o)sign(vg ,) # 0 (mod p). (D)
Extend o to a permutation of {0, 1, ..., n — 1} by letting o (0) = 0. Then
sign(o)sign(vg ,) = sign(c ' o V6o
By our labeling of the vertices and edges of G, we know that o (i) = véﬁ (i) fori € {k,k+ 1,...,n — 1}. Hence, the
restriction of o~ o véﬁa to{k,k+1,...,n— 1} is identity, and the restriction of 6~ o vgyg to{0, 1, ...,k — 1}, which we
denote by ¢*, is a permutation of {0, 1, ..., k — 1}. Moreover,

sign(o ™' o vg ) = sign(co®).
To prove the coefficient a is nonzero, it suffices to show that

Z sign(c*) # 0 (mod p). (E)

oefl

16]

3. Double star

A tree whose non-leaf vertices induces a K5 is called a double star. This section proves the following theorem.

Theorem 8. If G is a double star of prime power order n = p* and the degree of one non-leaf vertex (and hence of both non-leaf
vertices) is relatively prime to n, then G is weighted-1-antimagic.

Proof. Assume G is a double star with exactly two non-leaf vertices: 0 and 1.

For o € £2,let o* be the permutation over {0, 1} defined as in the previous section.

LetTy ={o € 2:0"@{) =ifori=0,1},and T, ={c € 2 : 6*({) =1 —ifori =0, 1}. Sosign(c*) = 1ifo € T; and
sign(c*) = —1if o € T,. To prove (E), we need to show that

ﬁ(lﬂl — IT2]) # 0 (mod p).

Let Uy = {2, 3, ..., k} be the set of leaves adjacent to 0, and let U, = {k + 1,k + 2, ...,n — 1} be the set of leaves
adjacent to 1. Then |®| = (k — D)!(n — k — 1)L

Foro € 2,letX, = Zieul o@and Y, = Zieuz o(i).Since o € 2,0(i) # Oforevery1 < i < n — 1. Therefore
Xo+Ys4+0(1)=14+2+---4+n—1=0 (mod n).

Observe that 0*(0) = 0 means that v{ ;(0) = 0(0) =0, i.e, ZejeE(O) o(j) = X, +0(1) = 0 (mod n). This is equivalent
toY, =0(modn),asX, + Y, +0(1)=1+2+---4+n—1= 0 (mod n). So the following equalities are equivalent:

c*(0)=0

X, +0(1) =0 (mod n)
Y, = 0 (mod n)

o*(1) =1.

Hence o € T; if and only if X, + o (1) = 0 (mod n). Similarly, 0 € T, if and only if X, = 0 (mod n).
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Forj=1,2,...,n— 1,let A be the set of solutions to the equation
yi+y2+---+y =0 (mod n)

subject to the condition thaty; € {1, 2, ..., n — 1} and y; are pairwise distinct. Let o;; = |A;].
If 0(1),0(2),...,0(k) are chosen so that X, + o(1) = 0 (mod n), then arbitrary assigning {1,2,...,n — 1} \
{c(1),0(2),...,0k)}toc(k+1),0(k+2),...,0(n— 1), we obtain an element of T;. So

Tyl =oax-(n—1—Kk)!.
Similarly, we have
IT2| = atg—1 - (n = k)!
and hence
IT2| — [Thi| = (n— k= DI((n — k)o—1 — o).

Observe that o1 is a multiple of (k — 1)!, because given a solution to the equation y; + y, + - - - 4+ ¥x—1 = 0 (mod n)

with y; pairwise distinct, any permutation of y1, ¥, . .., Yx_1 is also a solution. So
ML — 0 (mod p)
= mo .
(k—1)! b
Hence
L) 1 (IT3] — ITy]) # 0 (mod p)
— — = — mo
o T T G T i —k— 1y 2 T P
if and only if

Gy ke + ) # 0 (mod p).

Instead of calculating «; directly, we consider a slightly different parameter. Let B; be the set of solutions to the equation

subject to the condition that y; € {0, 1, ..., n — 1} and y; are pairwise distinct. Let 8; = |B;|. There is a simple formula for
ﬁj. Let

v ) ={W1,¥2,-.-.¥) :¥i€{0,1,...,n— 1}, and y; are pairwise distinct}.

Then |¥ ()| =n(n—1)...(n—j+ 1).
Let ~ be the equivalence relation on ¥ (j) defined as (y1, ¥, ..., ¥) ~ (V7. Y5, - - ,yj/.) if there is a constant d such that
yi=y;+d(modn)fori=1,2,...,j Observe thatif (y1,¥,,...,¥) and (v}, 5, ... ,y]/-) are equivalent but distinct, then

J;:=1 Vi = {zly; + jd (mod n) for some 0 < d < n — 1.If j and n are coprime, then there is no such d. Hence each
equivalence class of ~ contains exactly one j-tuple of B;. As each equivalence class contains n tuples, we have

Bi=IBl=1¥{l/n=m-1D0—=2)...(n—j+ 1.

If (¥1,¥2,...,¥;) € Bj, then either none of the y;'s is equal to 0, and hence (y1, ¥, ..., ¥;) € Ajor exactly one of y;’s is 0.
Ify; =0, then (¥1, ¥2, ..., ¥i—1, Yit1, - - -, ¥j) € Aj_1. Therefore

Bj = aj +jetj1.
Since, by assumption, (k, n) = 1, we have

1 R - Dm-2)...(n—k+1)
e 1y K Fa) = g A= k—1)!

=% 0 (mod p)
The last inequality holds because for 1 < i < n— 1, we have ord(i) = ord(n —i). This completes the proof of Theorem 8. O

Corollary 9. If G is of prime power order p* and has a spanning tree which is a double star such that the degree of one non-
leaf vertex is relatively prime to n, then G is weighted-1-antimagic. In particular, if G is of prime order and has total domination
number 2, then G is weighted-1-antimagic.
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4. Graphs with large maximum degree

It was proved in [2] that graphs G of order n and maximum degree at least n — 2 are antimagic, i.e., 0-antimagic. It was
proved in [6] that for k > 3, graphs G of order n and maximum degree at least n — k are (3k — 7)-antimagic. In this section,
we assume that p > 5 is a prime and z is an integer. We prove that if G is a graph of order n = p* and whose maximum
degree is at least n — 3, then G is weighted-1-antimagic.

Lemma 10. Assume G is a tree with vertices {0, 1,...,n — 1} and edgese; = Oifori = 4,5,...,n— 1ande; = 01,e;, =
12, e3 = 23. Then G is weighted-1-antimagic.
Proof. Giveno € £2,letX, = Y i, o'(i). Then

v¢ ,(0) = X, + o (1) (mod n),

vi, (1) = o(1) + 0 (2) (mod n),

V6., (2) = 0(2) +0(3) (mod n).

As o is faithful and véﬁ(i) =o(i)fori=3,4,...,n— 1, we know that

{v6.6(0), vg , (1), v5 , (2} = {0,0(1), 5 (2)}.

Since none of o (1), 0 (2) is congruent to 0 modulo n, we conclude that v¢ (1) # o (1), o (2), and hence v¢ , (1) = 0. Thus
o (1) = n—0(2).As o (3) is not congruent to 0 modulo n, we know that v¢ , (2) # o (2) and hence

Ve, =0(), 5,0 =0(Q2).

This implies that for any o € £2, 0* = (210). Moreover, we have ¢ (3) = 20(1) (mod n). Asp # 3,foranya € Z, \ {0},
a,n — a, 2a (mod n) are distinct elements. By assigning a to o (1), n — a to ¢ (2) and 2a (mod n) to o (3), and arbitrarily
assigning the n — 4 remaining elementsin {1, 2, ..., n— 1} to the remammg edges, we obtain an element o of 2. Therefore
2] = (n—1)- (n—4)!. As |©| = (n — 4)!, we conclude that > Lsign(c*) = 0 (mod p). Hence G is weighted-1-
antimagic. O

oeR 10|

Lemma 11. Assume G is a tree with vertices {0, 1,...,n — 1} and edgese; = Oifori = 5,6,...,n— lande; = 01,6, =
02, e3 = 13, e4 = 24. Then G is weighted-1-antimagic.

Proof. Giveno € 2,letX, = Z;’;; o (i). Then
V5, (0) = X, 4+ 0(1) + 5(2) (mod n)
Ve, (1) =0 (1) 4+ o(3) (mod n)

Vi, (2) = 0(2) + 0 (4) (mod n).
Again, we have
{060, Vg, (1), VG, (D)) = {o (1), 0(2), 0}.

Similarly as in the previous lemma, we know that vG (1) # o(1) and UG - (2) # 0(2). In other words, the permutation ¢ *
over {0, 1 2} satisfies a*(l) # land o*(2) # 2. Therefore, o* has three possibilities:

(1)o™ = (021); (2) 0™ = (012); (3) 0™ = (12).

It is straightforward to verify that o* is of type (1) if and only if for some a,b € {1,2,...,n — 1} such that b #
a, —a, —2a, —%a (mod n), the following hold

o(1) =a+ b (mod n),

o(2) =a,
0(3) = —(a+ b) (mod n),
o(4) = b.
Since p > 5 is a prime and n = p* for a positive integer z, for any a € {1,2,...,n — 1}, the four elements

a, —a (mod n), —2a (mod n), —%a (mod n) are distinct. So a has n — 1 choices, and b has n — 5 choices, implying that
there are (n — 1)(n — 5)(n — 5)! permutations o € £2 of type (1). Type (1) and type (2) are symmetric. So there are
(n — 1)(n — 5)(n — 5)! permutations o € 2 are of type (2). A permutation o € §2 is of type (3) if and only if for some
a,be{l1,2,...,n— 1} such that b # a, —a, —2a (mod n), the following hold

o(1) =a+ b (mod n),

0(2) =b,

0(3) = —a (mod n),

o(4) =a.
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Asp > 5,foranya € {1, 2, ..., n— 1}, the three elements a, —a (mod n), —2a (mod n) are distinct. So a has n — 1 choices,
and b has n — 4 choices, implying that there are (n — 1)(n — 4)(n — 5)! permutations o € §2 are of type (3).
For o of type (1) and type (2), sign(c*) = 1. For o of type (3), sign(c*) = —1. Therefore

1
Z @sign(a*) =mnm—-1)2-n—-5—-mMm—4)={m-1)(n—6) # 0 (mod p).
oefR

This completes the proof of Lemma 11. O

Theorem 12. If p > 5 is a prime, G is a connected graph of order n = p* for some integer z and has maximum degree at least
n — 3, then G is weighted-1-antimagic.

Proof. If G is a connected graph of maximum degree at least n — 3, then G has a spanning tree which is either a star or a
double star with one vertex of degree 2 or 3, or a tree as described in Lemma 10 or in Lemma 11. The results above show
that such a tree is weighted-1-antimagic. Therefore G itself is weighted-1-antimagic. O

Remark. We may define a graph G to be weighted-k-antimagic choosable if the following hold: for any list assignment L
which assigns to each edge e a set L(e) of |E| 4 k permissible weights (integers) and for any weight function w on the vertex
set of G, there is a mapping f which assigns to each edge e a distinct weight f(e) € L(e) so that for any two vertices i, j,
Zeew) fle)+w(@) # ZeeE(/') f(e)+w(j). The graphs proved to be weighted-1-antimagic are actually weighted-1-antimagic
choosable graphs.
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