Weighted-1-antimagic graphs of prime power order

Po-Yi Huang ${ }^{\text {a,1 }}$, Tsai-Lien Wong ${ }^{\text {b,c,2 }}$, Xuding Zhu ${ }^{\text {d,*,3 }}$
${ }^{\text {a }}$ Department of Mathematics, National Cheng-Kung University, Tainan, Taiwan
${ }^{\mathrm{b}}$ Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
${ }^{\text {c }}$ National Center for Theoretical Sciences, Taiwan
${ }^{\mathrm{d}}$ Department of Mathematics, Zhejiang Normal University, China

ARTICLE INFO

Article history:

Available online 13 October 2011

Keywords:

Antimagic labeling
Vertex weighted graph
Combinatorial Nullstellensatz

Abstract

Suppose G is a graph, k is a non-negative integer. We say G is weighted- k-antimagic if for any vertex weight function $w: V \rightarrow \mathbb{N}$, there is an injection $f: E \rightarrow\{1,2, \ldots,|E|+k\}$ such that for any two distinct vertices u and $v, \sum_{e \in E(v)} f(e)+w(v) \neq \sum_{e \in E(u)} f(e)+w(u)$. There are connected graphs $G \neq K_{2}$ which are not weighted-1-antimagic. It was asked in Wong and Zhu (in press) [13] whether every connected graph other than K_{2} is weighted-2antimagic, and whether every connected graph on an odd number of vertices is weighted-1-antimagic. It was proved in Wong and Zhu (in press) [13] that if a connected graph G has a universal vertex, then G is weighted-2-antimagic, and moreover if G has an odd number of vertices, then G is weighted-1-antimagic. In this paper, by restricting to graphs of odd prime power order, we improve this result in two directions: if G has odd prime power order p^{z} and has total domination number 2 with the degree of one vertex in the total dominating set not a multiple of p, then G is weighted-1-antimagic. If G has odd prime power order p^{2}, $p \neq 3$ and has maximum degree at least $|V(G)|-3$, then G is weighted-1-antimagic.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Assume G is a graph with vertex set $\{0,1, \ldots, n-1\}$ and edge set $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. A labeling f of the edges of G with distinct integer labels is called antimagic if for any two distinct vertices i and $j, \sum_{e \in E(i)} f(e) \neq \sum_{e \in E(j)} f(e)$, where $E(i)$ is the set of edges incident to vertex i. If G has an antimagic labeling using labels $\{1,2, \ldots, m+k\}$, then G is called k-antimagic. We call G antimagic if G is 0 -antimagic. Hartsfield and Ringel [5] introduced the concept of antimagic labeling of graphs in 1990, and conjectured that every connected graph other than K_{2} is antimagic. Alon et al. [2] proved that graphs G with minimum degree $\delta(G) \geq C \log |V(G)|$ (for some absolute constant C) or with maximum degree $\Delta(G) \geq|V(G)|-2$ are antimagic. Kaplan et al. [8] proved that if a tree T has at most one vertex of degree 2, then T is antimagic (cf. [9]). The Cartesian products of various graphs are shown to be antimagic in [3,4,11,12].

In the study of antimagic labeling of graphs, Hefetz [6] introduced the concept of (w, k)-antimagic labeling of graphs. Suppose G is a graph and $w: V(G) \rightarrow \mathbb{N}$ is a vertex weight function, which assigns to each vertex v a weight $w(v)$. A labeling f of the edges of G with distinct integer labels is called a w-antimagic labeling of G if for any two distinct vertices i and $j, \sum_{e \in E(i)} f(e)+w(i) \neq \sum_{e \in E(j)} f(e)+w(j)$. The sum $\sum_{e \in E(i)} f(e)+w(i)$ is called the vertex sum at i (with respect to

[^0]labeling f and w). Suppose k is a non-negative integer. A (w, k)-antimagic labeling of G is a w-antimagic labeling of G such that $f(e) \in\{1,2, \ldots, m+k\}$ for every edge e. We say G is weighted- k-antimagic if for any vertex weight function w, G has a (w, k)-antimagic labeling.

Observe that if G has a spanning subgraph H which is weighted- k-antimagic, then G itself is weighted- k-antimagic. It was proved in [6] that if H has a 2-factor consisting of circuits of length 3 , and the total number of vertices is $n=3^{k}$ for some positive integer k, then H is weighted- 0 -antimagic. As a consequence, if a graph G has $n=3^{k}$ vertices and has a 2 -factor consisting of circuits of length 3 , then G is antimagic. This result is further improved in [7], where the number 3 is replaced with any prime number. I.e., if p is a prime, the number of vertices of G is a power of p, and G has a 2 -factor consisting of circuits of length p, then G is weighted-0-antimagic. In particular, if G has a Hamilton cycle and its order is a prime, then G is weighted-0-antimagic, and hence antimagic.

The proof of Alon et al. [2] actually shows that graphs G with minimum degree $\delta(G) \geq C \log |V(G)|$ are weighted-0antimagic.

Nevertheless, not every connected graph $G \neq K_{2}$ is weighted-0-antimagic. It is observed in [13] that any star is not weighted-0-antimagic, and any star on an even number of vertices is not weighted-1-antimagic. Then they asked the following questions.

Question 1. Is it true that every connected graph $G \neq K_{2}$ is weighted-2-antimagic?
Question 2. Is it true that every connected graph G on an odd number of vertices is weighted-1-antimagic?
In [13], it is proved that if G has an odd number of vertices and has domination number 1 (i.e., has a universal vertex), then G is weighted-1-antimagic; if $G \neq K_{2}$ has an even number of vertices and has domination number 1 , then G is weighted 2-antimagic; if G has a prime number of vertices and having a Hamilton path, then G is weighted-1-antimagic.

A set X of $V(G)$ is called a total dominating set if every vertex of $V(G)$ (including vertices in X) is adjacent to some vertex in X. The total domination number of G is the cardinality of a smallest total dominating set. In this paper, by restricting to graphs of prime power order, we improve the result in [13] about graphs having a universal vertex in two directions: assume G has prime power number of vertices. If G has total domination number 2 , then G is weighted-1-antimagic if the degree of one vertex in the total dominating set is not a multiple of p. If G is a graph on p^{z} vertices, where $p \geq 5$ is a prime and z is an integer, whose maximum degree is at least $|V(G)|-3$, then G is weighted-1-antimagic.

2. Preliminaries

We associate to each edge e_{j} of G a variable x_{j}. For each vertex i of G, let $v_{G, \vec{x}}(i)=\sum_{e_{j} \in E(i)} x_{j}$. Let w be a vertex weight function of G, where w_{i} is the weight of i. Let $Q_{G, w}$ be the polynomial defined as

$$
Q_{G, w}\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\prod_{1 \leq i<j \leq m}\left(x_{i}-x_{j}\right) \prod_{0 \leq i<j \leq n-1}\left(v_{G, \vec{x}}(i)+w_{i}-v_{G, \vec{x}}(j)-w_{j}\right) .
$$

It is obvious that a mapping $f: E(G) \rightarrow \mathbb{N}$ is a w-antimagic labeling of G if and only if $Q_{G, w}\left(f\left(e_{1}\right), f\left(e_{2}\right), \ldots, f\left(e_{m}\right)\right) \neq 0$. So to find a w-antimagic labeling of G is equivalent to finding a non-zero assignment for the polynomial $Q_{G, w}$. For the purpose of proving the existence of such an assignment, we use Combinatorial Nullstellensatz.

Theorem 3 ([1]). Let F be a field and let $P\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a polynomial in $F\left[x_{1}, x_{2}, \ldots, x_{m}\right]$. Suppose the degree of P is equal to $\sum_{j=1}^{m} t_{j}$ and the coefficient of $\prod_{j=1}^{m} x_{j}^{t_{j}}$ in the expansion of P is nonzero. Then for any subsets $S_{1}, S_{2}, \ldots, S_{m}$ of F with $\left|S_{j}\right|=t_{j}+1$, there exist $s_{1} \in S_{1}, s_{2} \in S_{2}, \ldots, s_{m} \in S_{m}$ so that

$$
P\left(s_{1}, s_{2}, \ldots, s_{m}\right) \neq 0
$$

The polynomial $Q_{G, w}$ has degree $\binom{n}{2}+\binom{m}{2}$. By Theorem 3, if $\binom{n}{2}+\binom{m}{2}=\sum_{i=1}^{m} t_{i}$ and the monomial $\prod_{i=1}^{m} x_{i}^{t_{i}}$ in the expansion of $Q_{G, w}$ has nonzero coefficient, then for any list assignment L which assigns to e_{i} a set $L\left(e_{i}\right)$ of $t_{i}+1$ permissible labels, there is a w-antimagic labeling f of G with $f(e) \in L(e)$ for every edge e. Let

$$
Q_{G}\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\prod_{1 \leq i<j \leq m}\left(x_{i}-x_{j}\right) \prod_{0 \leq i<j \leq n-1}\left(v_{G, \vec{x}}(i)-v_{G, \vec{x}}(j)\right) .
$$

If $\binom{n}{2}+\binom{m}{2}=\sum_{i=1}^{m} t_{i}$, then the monomial $\prod_{i=1}^{m} x_{i}^{t_{i}}$ has the same coefficient in $Q_{G, w}$ and Q_{G}. Thus we have the following lemma.

Lemma 4. Let Q_{G} be the polynomial defined as above. If there is a monomial $\prod_{i=1}^{m} x_{i}^{t_{i}}$ with $\sum_{i=1}^{m} t_{i}=\binom{n}{2}+\binom{m}{2}$ and whose coefficient in the expansion of Q_{G} is nonzero, then for any vertex weight function w and for any list assignment L such that $\left|L\left(e_{i}\right)\right| \geq t_{i}+1$, there is a w-antimagic labeling f of G with $f(e) \in L(e)$ for every edge e.

Assume that G is a tree. Hence the number of edges is $n-1$.
Let a be the coefficient of the monomial $\prod_{j=1}^{n-1} x_{j}^{n-1}$ in $Q_{G}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$. By Lemma 4 , if $a \neq 0$, then G is weighted-1antimagic.

To calculate the coefficient a, we use the following lemma proved in [10].
Lemma 5. If $P\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \in \mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n-1}\right]$ is of degree $\leq s_{1}+s_{2}+\cdots+s_{n-1}$, where $s_{1}, s_{2}, \ldots, s_{n-1}$ are nonnegative integers, then

$$
\begin{aligned}
& \left(\frac{\partial}{\partial x_{1}}\right)^{s_{1}}\left(\frac{\partial}{\partial x_{2}}\right)^{s_{2}} \cdots\left(\frac{\partial}{\partial x_{n-1}}\right)^{s_{n-1}} P\left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \\
& \quad=\sum_{a_{1}=0}^{s_{1}} \cdots \sum_{a_{n-1}=0}^{s_{n-1}}(-1)^{s_{1}+a_{1}}\binom{s_{1}}{a_{1}} \cdots(-1)^{s_{n-1}+a_{n-1}}\binom{s_{n-1}}{a_{n-1}} P\left(a_{1}, \ldots, a_{n-1}\right)
\end{aligned}
$$

Apply Lemma 5 to the polynomial Q_{G} with $s_{i}=n-1$ for every $1 \leq i \leq n-1$, we conclude that the coefficient a of the monomial $\prod_{j=1}^{n-1} x_{j}^{n-1}$ in Q_{G} satisfies the following equality.

$$
\begin{aligned}
a \cdot((n-1)!)^{n-1} & =\left(\frac{\partial}{\partial x_{1}}\right)^{n-1} \cdots\left(\frac{\partial}{\partial x_{n-1}}\right)^{n-1} Q_{G}\left(x_{1}, \ldots, x_{n-1}\right) \\
& =\sum_{a_{1}=0}^{n-1} \cdots \sum_{a_{n-1}=0}^{n-1}(-1)^{n-1+a_{1}+\cdots+a_{n-1}}\binom{n-1}{a_{1}} \cdots\binom{n-1}{a_{n-1}} Q_{G}\left(a_{1}, \ldots, a_{n-1}\right) \\
& =\sum_{\sigma}(-1)^{n-1+\sigma(1)+\cdots+\sigma(n-1)}\binom{n-1}{\sigma(1)} \cdots\binom{n-1}{\sigma(n-1)} Q_{G}(\sigma(1), \ldots, \sigma(n-1)),
\end{aligned}
$$

where the last sum runs over all the mappings $\sigma:\{1,2, \ldots, n-1\} \rightarrow\{0,1,2, \ldots, n-1\}$. However, if σ is not injective, then $Q_{G}(\sigma(1), \sigma(2), \ldots, \sigma(n-1))=0$, so the sum can be taken to run over all injective mappings $\sigma:\{1,2, \ldots, n-1\} \rightarrow$ $\{0,1,2, \ldots, n-1\}$.

Let Γ be the set of injective mappings from $\{1,2, \ldots, n-1\}$ to $\{0,1,2, \ldots, n-1\}$. For $\sigma \in \Gamma$, let

$$
\begin{aligned}
& v_{G, \sigma}(i)=\sum_{e_{j} \in E(i)} \sigma(j), \\
& a(\sigma)=\prod_{0 \leq i<j \leq n-1}\left(v_{G, \sigma}(i)-v_{G, \sigma}(j)\right), \\
& b(\sigma)=\binom{n-1}{\sigma(1)} \cdots\binom{n-1}{\sigma(n-1)} \prod_{1 \leq i<j \leq n-1}(\sigma(i)-\sigma(j)) .
\end{aligned}
$$

The coefficient a of the monomial $\prod_{j=1}^{n-1} x_{j}^{n-1}$ is non-zero if and only if

$$
\begin{equation*}
\sum_{\sigma \in \Gamma}(-1)^{\sigma(1)+\sigma(2)+\cdots+\sigma(n-1)} b(\sigma) a(\sigma) \neq 0 . \tag{A}
\end{equation*}
$$

Let V^{\prime} be the set of leaves of G. Let E^{\prime} be the set of edges incident to V^{\prime}. Assume $\left|V \backslash V^{\prime}\right|=k$. Let the vertices in V^{\prime} be labeled by $k, k+1, \ldots, n-1$ and let the edge of E^{\prime} incident to $i \in V^{\prime}$ be labeled by e_{i}. For $i \in\{k, k+1, \ldots, n-1\}$, vertex i is incident to e_{i} only, i.e., $E(i)=\left\{e_{i}\right\}$. Hence for $\sigma \in \Gamma$, for $i \in\{k, k+1, \ldots, n-1\}, \sigma(i)=v_{G, \sigma}(i)$.

Let Θ be the subgroup of the automorphism group $\operatorname{Aut}(G)$ of G that fix every non-leaf vertex of G. Thus each automorphism in Θ is a permutation of $\{0,1, \ldots, n-1\}$ which fixes $0,1, \ldots, k-1$. Given a permutation τ of $\{1,2, \ldots, n-1\}$ that fixes $\{1,2, \ldots, k-1\}$, let v_{τ} be the permutation of $\{0,1, \ldots, n-1\}$ that fixes $\{0,1, \ldots, k-1\}$ and equals to τ on $\{k, k+1, \ldots, n-1\}$. It is obvious that if $v_{\tau} \in \Theta$ and $\sigma \in \Gamma$, then $v_{G, \sigma \circ \tau}=v_{G, \sigma} \circ v_{\tau}$. Moreover, it is easy to see that

$$
\begin{aligned}
& a(\sigma \circ \tau)=\operatorname{sign}(\tau) a(\sigma) \\
& b(\sigma \circ \tau)=\operatorname{sign}(\tau) b(\sigma)
\end{aligned}
$$

Consequently,

$$
b(\sigma \circ \tau) a(\sigma \circ \tau)=b(\sigma) a(\sigma)
$$

For $\sigma \in \Gamma$, let $[\sigma]=\left\{\sigma \circ \tau: v_{\tau} \in \Theta\right\}$. Then $\{[\sigma]: \sigma \in \Gamma\}$ partitions Γ into parts of cardinality $|\Theta|$. Thus

$$
\sum_{\sigma \in \Gamma}(-1)^{\sigma(1)+\sigma(2)+\cdots+\sigma(n-1)} b(\sigma) a(\sigma)=|\Theta| \sum_{[\sigma]}(-1)^{\sigma(1)+\sigma(2)+\cdots+\sigma(n-1)} b(\sigma) a(\sigma),
$$

where the second summation runs over all the equivalence classes $\{[\sigma]: \sigma \in \Gamma\}$.
In the following, we assume that $n=p^{z}$ is an odd prime power. For $\sigma \in \Gamma$, we define the sign of σ as (-1) to the power of the number of pairs $i<j$ such that $\sigma(i)>\sigma(j)$.

Lemma 6. For any $\sigma \in \Gamma, b(\sigma)=\operatorname{sign}(\sigma) c$ for some constant c.
Proof. Assume the range of σ is $\{0,1, \ldots, n-1\} \backslash\{\ell\}$. Then

$$
\begin{aligned}
b(\sigma) & =\operatorname{sign}(\sigma) \prod_{i=0}^{n-1}\binom{n-1}{i} \prod_{0 \leq i<j \leq n-1}(i-j)\left(\binom{n-1}{\ell} \ell!(n-1-\ell)!\right)^{-1} \\
& =\operatorname{sign}(\sigma) \prod_{i=0}^{n-1}\binom{n-1}{i} \prod_{0 \leq i<j \leq n-1}(i-j)((n-1)!)^{-1} .
\end{aligned}
$$

To prove (A), it is equivalent to prove that

$$
\begin{aligned}
\sum_{[\sigma]}(-1)^{\sigma(1)+\sigma(2)+\cdots+\sigma(n-1)} \operatorname{sign}(\sigma) a(\sigma) & =\frac{1}{|\Theta|} \sum_{\sigma \in \Gamma}(-1)^{\sigma(1)+\sigma(2)+\cdots+\sigma(n-1)} \operatorname{sign}(\sigma) a(\sigma) \\
& \neq 0 .
\end{aligned}
$$

For an integer q, the order of q with respect to p is

$$
\operatorname{ord}(q)=\max \left\{j: p^{j} \mid q\right\} .
$$

Let $s=\operatorname{ord}\left(\prod_{0 \leq i<j \leq n-1}(i-j)\right)$. Instead of proving the inequality above directly, we prove the following stronger statement.

$$
\begin{equation*}
\frac{1}{|\Theta|} \sum_{\sigma \in \Gamma}(-1)^{\sigma(1)+\sigma(2)+\cdots+\sigma(n-1)} \operatorname{sign}(\sigma) a(\sigma) \not \equiv 0\left(\bmod p^{s+1}\right) . \tag{B}
\end{equation*}
$$

Lemma 7. For $\sigma \in \Gamma$,

$$
\operatorname{ord}\left(\prod_{0 \leq i<j \leq n-1}\left(v_{G, \sigma}(i)-v_{G, \sigma}(j)\right)\right) \geq s
$$

and equality holds if and only if $v_{G, \sigma}(i) \not \equiv v_{G, \sigma}(j)(\bmod n)$ for all $i \neq j$.
Proof. Assume $\sigma \in \Gamma$. For $i=1,2, \ldots$ and $j=0,1, \ldots, p^{i}-1$, let

$$
\alpha_{i, j}=\left|\left\{t: v_{G, \sigma}(t) \equiv j\left(\bmod p^{i}\right)\right\}\right| .
$$

Then

$$
\operatorname{ord}\left(\prod_{0 \leq i<j \leq n-1}\left(v_{G, \sigma}(i)-v_{G, \sigma}(j)\right)\right)=\sum_{i=1}^{\infty} \sum_{j=0}^{p^{i}-1}\binom{\alpha_{i, j}}{2} .
$$

For each $i \geq 1, \sum_{j=0}^{p^{i}-1} \alpha_{i, j}=n=p^{z}$. It is obvious that the order

$$
\operatorname{ord}\left(\prod_{0 \leq i<j \leq n-1}\left(v_{G, \sigma}(i)-v_{G, \sigma}(j)\right)\right)
$$

is minimum if and only if for any $i, \alpha_{i, j}=n / p^{i}=p^{z-i}$ is a constant for all j. This happens if and only if $v_{G, \sigma}(i) \not \equiv$ $v_{G, \sigma}(j)(\bmod n)$ for every $i \neq j$. In this case,

$$
\operatorname{ord}\left(\prod_{0 \leq i<j \leq n-1}\left(v_{G, \sigma}(i)-v_{G, \sigma}(j)\right)\right)=s
$$

A mapping $\sigma \in \Gamma$ is called faithful if $v_{G, \sigma}(i) \not \equiv v_{G, \sigma}(j)(\bmod n)$ for any two distinct vertices i and j of G.
Let

$$
\Omega=\{\sigma \in \Gamma: \sigma \text { is faithful }\} .
$$

By Lemma 7, the summation in (B) can be restricted to faithful σ 's in Γ, i.e., (B) is equivalent to

$$
\begin{equation*}
\frac{1}{|\Theta|} \sum_{\sigma \in \Omega}(-1)^{\sigma(1)+\sigma(2)+\cdots+\sigma(n-1)} \operatorname{sign}(\sigma) a(\sigma) \not \equiv 0\left(\bmod p^{s+1}\right) . \tag{C}
\end{equation*}
$$

Claim 1. If σ is faithful, then σ is a permutation of $\{1,2, \ldots, n-1\}$.
Proof. As $\sigma \in \Gamma$ is an injection from $\{1,2, \ldots, n-1\}$ to $\{0,1, \ldots, n-1\}$, there is exactly one element $i \in\{0,1, \ldots, n-1\}$ which is not in the range of σ. As n is odd, we have

$$
1+2+\cdots+(n-1) \equiv 0(\bmod n)
$$

and hence $\sum_{j=1}^{n-1} \sigma(j) \equiv-i(\bmod n)$. Since σ is faithful,

$$
\sum_{j=0}^{n-1} v_{G, \sigma}(j) \equiv 0(\bmod n)
$$

On the other hand,

$$
\sum_{j=0}^{n-1} v_{G, \sigma}(j)=2 \sum_{j=1}^{n-1} \sigma(j) \equiv-2 i(\bmod n)
$$

As n is odd, we have $i=0$. Hence σ is a permutation of $\{1,2, \ldots, n-1\}$.
For $\sigma \in \Omega$, let $v_{G, \sigma}^{*}(i) \equiv v_{G, \sigma}(i)(\bmod n)$. Then $v_{G, \sigma}^{*}$ is a permutation of $\{0,1, \ldots, n-1\}$ and σ is a permutation of $\{1,2, \ldots, n-1\}$. By Lemma 7, to prove (C), it suffices to show that

$$
\begin{equation*}
\frac{1}{|\Theta|} \sum_{\sigma \in \Omega} \operatorname{sign}(\sigma) \operatorname{sign}\left(v_{G, \sigma}^{*}\right) \not \equiv 0(\bmod p) \tag{D}
\end{equation*}
$$

Extend σ to a permutation of $\{0,1, \ldots, n-1\}$ by letting $\sigma(0)=0$. Then

$$
\operatorname{sign}(\sigma) \operatorname{sign}\left(v_{G, \sigma}^{*}\right)=\operatorname{sign}\left(\sigma^{-1} \circ v_{G, \sigma}^{*}\right)
$$

By our labeling of the vertices and edges of G, we know that $\sigma(i)=v_{G, \sigma}^{*}(i)$ for $i \in\{k, k+1, \ldots, n-1\}$. Hence, the restriction of $\sigma^{-1} \circ v_{G, \sigma}^{*}$ to $\{k, k+1, \ldots, n-1\}$ is identity, and the restriction of $\sigma^{-1} \circ v_{G, \sigma}^{*}$ to $\{0,1, \ldots, k-1\}$, which we denote by σ^{*}, is a permutation of $\{0,1, \ldots, k-1\}$. Moreover,

$$
\operatorname{sign}\left(\sigma^{-1} \circ v_{G, \sigma}^{*}\right)=\operatorname{sign}\left(\sigma^{*}\right)
$$

To prove the coefficient a is nonzero, it suffices to show that

$$
\begin{equation*}
\frac{1}{|\Theta|} \sum_{\sigma \in \Omega} \operatorname{sign}\left(\sigma^{*}\right) \not \equiv 0(\bmod p) \tag{E}
\end{equation*}
$$

3. Double star

A tree whose non-leaf vertices induces a K_{2} is called a double star. This section proves the following theorem.
Theorem 8. If G is a double star of prime power order $n=p^{z}$ and the degree of one non-leaf vertex (and hence of both non-leaf vertices) is relatively prime to n, then G is weighted-1-antimagic.
Proof. Assume G is a double star with exactly two non-leaf vertices: 0 and 1.
For $\sigma \in \Omega$, let σ^{*} be the permutation over $\{0,1\}$ defined as in the previous section.
Let $T_{1}=\left\{\sigma \in \Omega: \sigma^{*}(i)=i\right.$ for $\left.i=0,1\right\}$, and $T_{2}=\left\{\sigma \in \Omega: \sigma^{*}(i)=1-i\right.$ for $\left.i=0,1\right\}$. So $\operatorname{sign}\left(\sigma^{*}\right)=1$ if $\sigma \in T_{1}$ and $\operatorname{sign}\left(\sigma^{*}\right)=-1$ if $\sigma \in T_{2}$. To prove (E), we need to show that

$$
\frac{1}{|\Theta|}\left(\left|T_{1}\right|-\left|T_{2}\right|\right) \not \equiv 0(\bmod p)
$$

Let $U_{1}=\{2,3, \ldots, k\}$ be the set of leaves adjacent to 0 , and let $U_{2}=\{k+1, k+2, \ldots, n-1\}$ be the set of leaves adjacent to 1 . Then $|\Theta|=(k-1)!(n-k-1)$!.

For $\sigma \in \Omega$, let $X_{\sigma}=\sum_{i \in U_{1}} \sigma(i)$ and $Y_{\sigma}=\sum_{i \in U_{2}} \sigma(i)$. Since $\sigma \in \Omega, \sigma(i) \neq 0$ for every $1 \leq i \leq n-1$. Therefore $X_{\sigma}+Y_{\sigma}+\sigma(1)=1+2+\cdots+n-1 \equiv 0(\bmod n)$.

Observe that $\sigma^{*}(0)=0$ means that $v_{G, \sigma}^{*}(0)=\sigma(0)=0$, i.e., $\sum_{e_{j} \in E(0)} \sigma(j)=X_{\sigma}+\sigma(1) \cong 0(\bmod n)$. This is equivalent to $Y_{\sigma} \cong 0(\bmod n)$, as $X_{\sigma}+Y_{\sigma}+\sigma(1)=1+2+\cdots+n-1 \equiv 0(\bmod n)$. So the following equalities are equivalent:

$$
\begin{aligned}
& \sigma^{*}(0)=0 \\
& X_{\sigma}+\sigma(1) \equiv 0(\bmod n) \\
& Y_{\sigma} \equiv 0(\bmod n) \\
& \sigma^{*}(1)=1
\end{aligned}
$$

Hence $\sigma \in T_{1}$ if and only if $X_{\sigma}+\sigma(1) \equiv 0(\bmod n)$. Similarly, $\sigma \in T_{2}$ if and only if $X_{\sigma} \equiv 0(\bmod n)$.

For $j=1,2, \ldots, n-1$, let A_{j} be the set of solutions to the equation

$$
y_{1}+y_{2}+\cdots+y_{j} \equiv 0(\bmod n)
$$

subject to the condition that $y_{i} \in\{1,2, \ldots, n-1\}$ and y_{i} are pairwise distinct. Let $\alpha_{j}=\left|A_{j}\right|$.
If $\sigma(1), \sigma(2), \ldots, \sigma(k)$ are chosen so that $X_{\sigma}+\sigma(1) \equiv 0(\bmod n)$, then arbitrary assigning $\{1,2, \ldots, n-1\} \backslash$ $\{\sigma(1), \sigma(2), \ldots, \sigma(k)\}$ to $\sigma(k+1), \sigma(k+2), \ldots, \sigma(n-1)$, we obtain an element of T_{1}. So

$$
\left|T_{1}\right|=\alpha_{k} \cdot(n-1-k)!
$$

Similarly, we have

$$
\left|T_{2}\right|=\alpha_{k-1} \cdot(n-k)!
$$

and hence

$$
\left|T_{2}\right|-\left|T_{1}\right|=(n-k-1)!\left((n-k) \alpha_{k-1}-\alpha_{k}\right)
$$

Observe that α_{k-1} is a multiple of $(k-1)$!, because given a solution to the equation $y_{1}+y_{2}+\cdots+y_{k-1} \equiv 0(\bmod n)$ with y_{i} pairwise distinct, any permutation of $y_{1}, y_{2}, \ldots, y_{k-1}$ is also a solution. So

$$
\frac{n \alpha_{k-1}}{(k-1)!} \equiv 0(\bmod p)
$$

Hence

$$
\frac{1}{|\Theta|}\left(\left|T_{2}\right|-\left|T_{1}\right|\right)=\frac{1}{(k-1)!(n-k-1)!}\left(\left|T_{2}\right|-\left|T_{1}\right|\right) \not \equiv \equiv 0(\bmod p)
$$

if and only if

$$
\frac{1}{(k-1)!}\left(k \alpha_{k-1}+\alpha_{k}\right) \not \equiv 0(\bmod p) .
$$

Instead of calculating α_{j} directly, we consider a slightly different parameter. Let B_{j} be the set of solutions to the equation

$$
y_{1}+y_{2}+\cdots+y_{j} \equiv 0(\bmod n)
$$

subject to the condition that $y_{i} \in\{0,1, \ldots, n-1\}$ and y_{i} are pairwise distinct. Let $\beta_{j}=\left|B_{j}\right|$. There is a simple formula for β_{j}. Let

$$
\Psi(j)=\left\{\left(y_{1}, y_{2}, \ldots, y_{j}\right): y_{i} \in\{0,1, \ldots, n-1\}, \text { and } y_{i} \text { are pairwise distinct }\right\} .
$$

Then $|\Psi(j)|=n(n-1) \ldots(n-j+1)$.
Let \sim be the equivalence relation on $\Psi(j)$ defined as $\left(y_{1}, y_{2}, \ldots, y_{j}\right) \sim\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{j}^{\prime}\right)$ if there is a constant d such that $y_{i} \equiv y_{i}^{\prime}+d(\bmod n)$ for $i=1,2, \ldots, j$. Observe that if $\left(y_{1}, y_{2}, \ldots, y_{j}\right)$ and $\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{j}^{\prime}\right)$ are equivalent but distinct, then $\sum_{i=1}^{j} y_{i} \equiv \sum_{i=1}^{j} y_{i}^{\prime}+j d(\bmod n)$ for some $0<d \leq n-1$. If j and n are coprime, then there is no such d. Hence each equivalence class of \sim contains exactly one j-tuple of B_{j}. As each equivalence class contains n tuples, we have

$$
\beta_{j}=\left|B_{j}\right|=|\Psi(j)| / n=(n-1)(n-2) \ldots(n-j+1) .
$$

If $\left(y_{1}, y_{2}, \ldots, y_{j}\right) \in B_{j}$, then either none of the y_{i} 's is equal to 0 , and hence $\left(y_{1}, y_{2}, \ldots, y_{j}\right) \in A_{j}$ or exactly one of y_{i} 's is 0 . If $y_{i}=0$, then $\left(y_{1}, y_{2}, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{j}\right) \in A_{j-1}$. Therefore

$$
\beta_{j}=\alpha_{j}+j \alpha_{j-1}
$$

Since, by assumption, $(k, n)=1$, we have

$$
\frac{1}{(k-1)!}\left(k \alpha_{k-1}+\alpha_{k}\right)=\frac{1}{(k-1)!} \beta_{k}=\frac{(n-1)(n-2) \ldots(n-k+1)}{(k-1)!} \not \equiv 0(\bmod p)
$$

The last inequality holds because for $1 \leq i \leq n-1$, we have $\operatorname{ord}(i)=\operatorname{ord}(n-i)$. This completes the proof of Theorem 8 .
Corollary 9. If G is of prime power order p^{z} and has a spanning tree which is a double star such that the degree of one nonleaf vertex is relatively prime to n, then G is weighted-1-antimagic. In particular, if G is of prime order and has total domination number 2 , then G is weighted-1-antimagic.

4. Graphs with large maximum degree

It was proved in [2] that graphs G of order n and maximum degree at least $n-2$ are antimagic, i.e., 0 -antimagic. It was proved in [6] that for $k \geq 3$, graphs G of order n and maximum degree at least $n-k$ are $(3 k-7)$-antimagic. In this section, we assume that $p \geq 5$ is a prime and z is an integer. We prove that if G is a graph of order $n=p^{z}$ and whose maximum degree is at least $n-3$, then G is weighted-1-antimagic.

Lemma 10. Assume G is a tree with vertices $\{0,1, \ldots, n-1\}$ and edges $e_{i}=0$ for $i=4,5, \ldots, n-1$ and $e_{1}=01, e_{2}=$ $12, e_{3}=23$. Then G is weighted-1-antimagic.
Proof. Given $\sigma \in \Omega$, let $X_{\sigma}=\sum_{i=4}^{n-1} \sigma(i)$. Then

$$
\begin{aligned}
& v_{G, \sigma}^{*}(0) \equiv X_{\sigma}+\sigma(1)(\bmod n), \\
& v_{G, \sigma}^{*}(1) \equiv \sigma(1)+\sigma(2)(\bmod n), \\
& v_{G, \sigma}^{*}(2) \equiv \sigma(2)+\sigma(3)(\bmod n) .
\end{aligned}
$$

As σ is faithful and $v_{G, \sigma}^{*}(i)=\sigma(i)$ for $i=3,4, \ldots, n-1$, we know that

$$
\left\{v_{G, \sigma}^{*}(0), v_{G, \sigma}^{*}(1), v_{G, \sigma}^{*}(2)\right\}=\{0, \sigma(1), \sigma(2)\}
$$

Since none of $\sigma(1), \sigma(2)$ is congruent to 0 modulo n, we conclude that $v_{G, \sigma}^{*}(1) \neq \sigma(1), \sigma(2)$, and hence $v_{G, \sigma}^{*}(1)=0$. Thus $\sigma(1)=n-\sigma(2)$. As $\sigma(3)$ is not congruent to 0 modulo n, we know that $v_{G, \sigma}^{*}(2) \neq \sigma(2)$ and hence

$$
v_{G, \sigma}^{*}(2)=\sigma(1), \quad v_{G, \sigma}^{*}(0)=\sigma(2)
$$

This implies that for any $\sigma \in \Omega, \sigma^{*}=(210)$. Moreover, we have $\sigma(3) \equiv 2 \sigma(1)(\bmod n)$. As $p \neq 3$, for any $a \in \mathbb{Z}_{n} \backslash\{0\}$, $a, n-a, 2 a(\bmod n)$ are distinct elements. By assigning a to $\sigma(1), n-a$ to $\sigma(2)$ and $2 a(\bmod n)$ to $\sigma(3)$, and arbitrarily assigning the $n-4$ remaining elements in $\{1,2, \ldots, n-1\}$ to the remaining edges, we obtain an element σ of Ω. Therefore $|\Omega|=(n-1) \cdot(n-4)$!. As $|\Theta|=(n-4)$!, we conclude that $\sum_{\sigma \in \Omega} \frac{1}{|\Theta|} \operatorname{sign}\left(\sigma^{*}\right) \not \equiv 0(\bmod p)$. Hence G is weighted-1antimagic.

Lemma 11. Assume G is a tree with vertices $\{0,1, \ldots, n-1\}$ and edges $e_{i}=0 i$ for $i=5,6, \ldots, n-1$ and $e_{1}=01, e_{2}=$ $02, e_{3}=13, e_{4}=24$. Then G is weighted-1-antimagic.
Proof. Given $\sigma \in \Omega$, let $X_{\sigma}=\sum_{i=5}^{n-1} \sigma(i)$. Then

$$
\begin{aligned}
v_{G, \sigma}^{*}(0) & \equiv X_{\sigma}+\sigma(1)+\sigma(2)(\bmod n) \\
v_{G, \sigma}^{*}(1) & \equiv \sigma(1)+\sigma(3)(\bmod n) \\
v_{G, \sigma}^{*}(2) & \equiv \sigma(2)+\sigma(4)(\bmod n) .
\end{aligned}
$$

Again, we have

$$
\left\{v_{G, \sigma}^{*}(0), v_{G, \sigma}^{*}(1), v_{G, \sigma}^{*}(2)\right\}=\{\sigma(1), \sigma(2), 0\} .
$$

Similarly as in the previous lemma, we know that $v_{G, \sigma}^{*}(1) \neq \sigma(1)$ and $v_{G, \sigma}^{*}(2) \neq \sigma(2)$. In other words, the permutation σ^{*} over $\{0,1,2\}$ satisfies $\sigma^{*}(1) \neq 1$ and $\sigma^{*}(2) \neq 2$. Therefore, σ^{*} has three possibilities:
(1) $\sigma^{*}=(021) ;(2) \sigma^{*}=(012) ;$ (3) $\sigma^{*}=(12)$.

It is straightforward to verify that σ^{*} is of type (1) if and only if for some $a, b \in\{1,2, \ldots, n-1\}$ such that $b \not \equiv$ $a,-a,-2 a,-\frac{1}{2} a(\bmod n)$, the following hold

$$
\begin{aligned}
& \sigma(1) \equiv a+b(\bmod n), \\
& \sigma(2)=a, \\
& \sigma(3) \equiv-(a+b)(\bmod n), \\
& \sigma(4)=b
\end{aligned}
$$

Since $p \geq 5$ is a prime and $n=p^{z}$ for a positive integer z, for any $a \in\{1,2, \ldots, n-1\}$, the four elements $a,-a(\bmod n),-2 a(\bmod n),-\frac{1}{2} a(\bmod n)$ are distinct. So a has $n-1$ choices, and b has $n-5$ choices, implying that there are $(n-1)(n-5)(n-5)$! permutations $\sigma \in \Omega$ of type (1). Type (1) and type (2) are symmetric. So there are $(n-1)(n-5)(n-5)$! permutations $\sigma \in \Omega$ are of type (2). A permutation $\sigma \in \Omega$ is of type (3) if and only if for some $a, b \in\{1,2, \ldots, n-1\}$ such that $b \not \equiv a,-a,-2 a(\bmod n)$, the following hold

$$
\begin{aligned}
& \sigma(1) \equiv a+b(\bmod n) \\
& \sigma(2)=b \\
& \sigma(3) \equiv-a(\bmod n) \\
& \sigma(4)=a
\end{aligned}
$$

As $p \geq 5$, for any $a \in\{1,2, \ldots, n-1\}$, the three elements $a,-a(\bmod n),-2 a(\bmod n)$ are distinct. So a has $n-1$ choices, and b has $n-4$ choices, implying that there are $(n-1)(n-4)(n-5)$! permutations $\sigma \in \Omega$ are of type (3).

For σ of type (1) and type (2), $\operatorname{sign}\left(\sigma^{*}\right)=1$. For σ of type (3), $\operatorname{sign}\left(\sigma^{*}\right)=-1$. Therefore

$$
\sum_{\sigma \in \Omega} \frac{1}{|\Theta|} \operatorname{sign}\left(\sigma^{*}\right)=(n-1)(2 \cdot(n-5)-(n-4)) \equiv(n-1)(n-6) \not \equiv 0(\bmod p)
$$

This completes the proof of Lemma 11.
Theorem 12. If $p \geq 5$ is a prime, G is a connected graph of order $n=p^{z}$ for some integer z and has maximum degree at least $n-3$, then G is weighted-1-antimagic.

Proof. If G is a connected graph of maximum degree at least $n-3$, then G has a spanning tree which is either a star or a double star with one vertex of degree 2 or 3, or a tree as described in Lemma 10 or in Lemma 11 . The results above show that such a tree is weighted-1-antimagic. Therefore G itself is weighted-1-antimagic.

Remark. We may define a graph G to be weighted-k-antimagic choosable if the following hold: for any list assignment L which assigns to each edge e a set $L(e)$ of $|E|+k$ permissible weights (integers) and for any weight function w on the vertex set of G, there is a mapping f which assigns to each edge e a distinct weight $f(e) \in L(e)$ so that for any two vertices i, j, $\sum_{e \in E(i)} f(e)+w(i) \neq \sum_{e \in E(j)} f(e)+w(j)$. The graphs proved to be weighted-1-antimagic are actually weighted-1-antimagic choosable graphs.

References

[1] N. Alon, Combinatorial nullstellensatz, Probability and Computing 8 (1999) 7-29.
[2] N. Alon, G. Kaplan, A. Lev, Y. Roditty, R. Yuster, Dense graphs are antimagic, Journal of Graph Theory 47 (2004) 297-309.
[3] Y. Cheng, Lattice grids and prisms are antimagic, Theoretical Computer Science 374 (2007) 66-73.
[4] Y. Cheng, Cartesian products of regular graphs are antimagic, arXiv:math/0602319v2 [math.CO].
[5] N. Hartsfield, G. Ringel, Pearls in Graph Theory, Academic Press, Inc., Boston, 1990, pp. 108-109. Revised version 1994.
[6] D. Hefetz, Anti-magic graphs via the combinatorial nullstellensatz, Journal of Graph Theory 50 (2005) 263-272.
[7] D. Hefetz, H.T.T. Tran, A. Saluz, An application of the Combinatorial Nullstellensatz to a graph labelling problem, Journal of Graph Theory 65 (2010) 70-82. doi:10.1002/jgt.20466. Published Online: 4 December 2009.
[8] G. Kaplan, A. Lev, Y. Roditty, On zero-sum partitions and antimagic trees, Discrete Mathematics 309 (2009) 2010-2014.
[9] Y. Liang, T. Wong, X. Zhu, Antimagic trees, manuscript, 2009.
[10] D.E. Scheim, The number of edge 3-colorings of a planar cubic graph as a permanent, Discrete Mathematics 8 (1974) 377-382.
[11] T.M. Wang, Toroidal grids are antimagic, in: Computing and Combinatorics, in: Lecture Notes in Comput. Sci., vol. 3595, Springer, Berlin, 2005, pp. 671-679.
[12] T.M. Wang, C.C. Hsiao, On animagic labeling for graph products, Discrete Mathematics 308 (2008) 3624-3633.
[13] T. Wong, X. Zhu, Antimagic labeling of vertex weighted graphs, Journal of Graph Theory, in press (doi:10.1002/jgt.20624). Published online: 22 July 2011.

[^0]: * Corresponding author.

 E-mail addresses: zhu@math.nsysu.edu.tw, xudingzhu@gmail.com (X. Zhu).
 1 Grant number: NSC99-2115-M-006-006.
 2 Grant number: NSC99-2115-M-110-001-MY3.
 3 Grant number: ZJNSF No. Z6110786.

