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a b s t r a c t

Suppose G is a graph, k is a non-negative integer. We say G is weighted-k-antimagic if for
any vertex weight function w : V → N, there is an injection f : E → {1, 2, . . . , | E | +k}
such that for any two distinct vertices u and v,


e∈E(v) f (e)+w(v) ≠


e∈E(u) f (e)+w(u).

There are connected graphs G ≠ K2 which are not weighted-1-antimagic. It was asked in
Wong and Zhu (in press) [13] whether every connected graph other than K2 is weighted-2-
antimagic, and whether every connected graph on an odd number of vertices is weighted-
1-antimagic. It was proved inWong and Zhu (in press) [13] that if a connected graphG has a
universal vertex, then G is weighted-2-antimagic, and moreover if G has an odd number of
vertices, thenG isweighted-1-antimagic. In this paper, by restricting to graphs of oddprime
power order, we improve this result in two directions: if G has odd prime power order pz
and has total domination number 2 with the degree of one vertex in the total dominating
set not a multiple of p, then G is weighted-1-antimagic. If G has odd prime power order pz ,
p ≠ 3 and has maximum degree at least | V (G) | −3, then G is weighted-1-antimagic.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Assume G is a graph with vertex set {0, 1, . . . , n − 1} and edge set {e1, e2, . . . , em}. A labeling f of the edges of G with
distinct integer labels is called antimagic if for any two distinct vertices i and j,


e∈E(i) f (e) ≠


e∈E(j) f (e), where E(i) is the

set of edges incident to vertex i. If G has an antimagic labeling using labels {1, 2, . . . ,m + k}, then G is called k-antimagic.
We call G antimagic if G is 0-antimagic. Hartsfield and Ringel [5] introduced the concept of antimagic labeling of graphs
in 1990, and conjectured that every connected graph other than K2 is antimagic. Alon et al. [2] proved that graphs G with
minimum degree δ(G) ≥ C log |V (G)| (for some absolute constant C) or with maximum degree ∆(G) ≥ |V (G)| − 2 are
antimagic. Kaplan et al. [8] proved that if a tree T has at most one vertex of degree 2, then T is antimagic (cf. [9]). The
Cartesian products of various graphs are shown to be antimagic in [3,4,11,12].

In the study of antimagic labeling of graphs, Hefetz [6] introduced the concept of (w, k)-antimagic labeling of graphs.
Suppose G is a graph and w : V (G) → N is a vertex weight function, which assigns to each vertex v a weight w(v). A
labeling f of the edges of G with distinct integer labels is called a w-antimagic labeling of G if for any two distinct vertices
i and j,


e∈E(i) f (e) + w(i) ≠


e∈E(j) f (e) + w(j). The sum


e∈E(i) f (e) + w(i) is called the vertex sum at i (with respect to
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labeling f and w). Suppose k is a non-negative integer. A (w, k)-antimagic labeling of G is a w-antimagic labeling of G such
that f (e) ∈ {1, 2, . . . ,m + k} for every edge e. We say G is weighted-k-antimagic if for any vertex weight function w, G has
a (w, k)-antimagic labeling.

Observe that if G has a spanning subgraphH which is weighted-k-antimagic, then G itself is weighted-k-antimagic. It was
proved in [6] that if H has a 2-factor consisting of circuits of length 3, and the total number of vertices is n = 3k for some
positive integer k, then H is weighted-0-antimagic. As a consequence, if a graph G has n = 3k vertices and has a 2-factor
consisting of circuits of length 3, then G is antimagic. This result is further improved in [7], where the number 3 is replaced
with any prime number. I.e., if p is a prime, the number of vertices of G is a power of p, and G has a 2-factor consisting of
circuits of length p, then G is weighted-0-antimagic. In particular, if G has a Hamilton cycle and its order is a prime, then G
is weighted-0-antimagic, and hence antimagic.

The proof of Alon et al. [2] actually shows that graphs G with minimum degree δ(G) ≥ C log |V (G)| are weighted-0-
antimagic.

Nevertheless, not every connected graph G ≠ K2 is weighted-0-antimagic. It is observed in [13] that any star is not
weighted-0-antimagic, and any star on an even number of vertices is not weighted-1-antimagic. Then they asked the
following questions.

Question 1. Is it true that every connected graph G ≠ K2 is weighted-2-antimagic?

Question 2. Is it true that every connected graph G on an odd number of vertices is weighted-1-antimagic?

In [13], it is proved that if G has an odd number of vertices and has domination number 1 (i.e., has a universal vertex),
then G is weighted-1-antimagic; if G ≠ K2 has an even number of vertices and has domination number 1, then G is weighted
2-antimagic; if G has a prime number of vertices and having a Hamilton path, then G is weighted-1-antimagic.

A set X of V (G) is called a total dominating set if every vertex of V (G) (including vertices in X) is adjacent to some vertex
in X . The total domination number of G is the cardinality of a smallest total dominating set. In this paper, by restricting to
graphs of prime power order, we improve the result in [13] about graphs having a universal vertex in two directions: assume
G has prime power number of vertices. If G has total domination number 2, then G is weighted-1-antimagic if the degree of
one vertex in the total dominating set is not a multiple of p. If G is a graph on pz vertices, where p ≥ 5 is a prime and z is an
integer, whose maximum degree is at least |V (G)| − 3, then G is weighted-1-antimagic.

2. Preliminaries

We associate to each edge ej of G a variable xj. For each vertex i of G, let vG,x⃗(i) =


ej∈E(i) xj. Let w be a vertex weight
function of G, where wi is the weight of i. Let QG,w be the polynomial defined as

QG,w(x1, x2, . . . , xm) =


1≤i<j≤m

(xi − xj)


0≤i<j≤n−1

(vG,x⃗(i) + wi − vG,x⃗(j) − wj).

It is obvious that a mapping f : E(G) → N is a w-antimagic labeling of G if and only if QG,w(f (e1), f (e2), . . . , f (em)) ≠ 0. So
to find a w-antimagic labeling of G is equivalent to finding a non-zero assignment for the polynomial QG,w . For the purpose
of proving the existence of such an assignment, we use Combinatorial Nullstellensatz.

Theorem 3 ([1]). Let F be a field and let P(x1, x2, . . . , xm) be a polynomial in F [x1, x2, . . . , xm]. Suppose the degree of P is
equal to

m
j=1 tj and the coefficient of

m
j=1 x

tj
j in the expansion of P is nonzero. Then for any subsets S1, S2, . . . , Sm of F with

|Sj| = tj + 1, there exist s1 ∈ S1, s2 ∈ S2, . . . , sm ∈ Sm so that

P(s1, s2, . . . , sm) ≠ 0.

The polynomial QG,w has degree
 n
2


+
m

2


. By Theorem 3, if

 n
2


+
m

2


=
m

i=1 ti and the monomial
m

i=1 x
ti
i in the

expansion of QG,w has nonzero coefficient, then for any list assignment Lwhich assigns to ei a set L(ei) of ti + 1 permissible
labels, there is a w-antimagic labeling f of Gwith f (e) ∈ L(e) for every edge e. Let

QG(x1, x2, . . . , xm) =


1≤i<j≤m

(xi − xj)


0≤i<j≤n−1

(vG,x⃗(i) − vG,x⃗(j)).

If
 n
2


+
m

2


=
m

i=1 ti, then the monomial
m

i=1 x
ti
i has the same coefficient in QG,w and QG. Thus we have the following

lemma.

Lemma 4. Let QG be the polynomial defined as above. If there is a monomial
m

i=1 x
ti
i with

m
i=1 ti =

 n
2


+
m

2


and whose

coefficient in the expansion of QG is nonzero, then for any vertex weight function w and for any list assignment L such that
|L(ei)| ≥ ti + 1, there is a w-antimagic labeling f of G with f (e) ∈ L(e) for every edge e.



2164 P.-Y. Huang et al. / Discrete Mathematics 312 (2012) 2162–2169

Assume that G is a tree. Hence the number of edges is n − 1.
Let a be the coefficient of the monomial

n−1
j=1 xn−1

j in QG(x1, x2, . . . , xn−1). By Lemma 4, if a ≠ 0, then G is weighted-1-
antimagic.

To calculate the coefficient a, we use the following lemma proved in [10].

Lemma 5. If P(x1, x2, . . . , xn−1) ∈ R[x1, x2, . . . , xn−1] is of degree≤ s1+s2+· · ·+sn−1, where s1, s2, . . . , sn−1 are nonnegative
integers, then

∂

∂x1

s1  ∂

∂x2

s2
· · ·


∂

∂xn−1

sn−1

P(x1, x2, . . . , xn−1)

=

s1
a1=0

· · ·

sn−1
an−1=0

(−1)s1+a1


s1
a1


· · · (−1)sn−1+an−1


sn−1

an−1


P(a1, . . . , an−1).

Apply Lemma 5 to the polynomial QG with si = n − 1 for every 1 ≤ i ≤ n − 1, we conclude that the coefficient a of the
monomial

n−1
j=1 xn−1

j in QG satisfies the following equality.

a · ((n − 1)!)n−1
=


∂

∂x1

n−1

· · ·


∂

∂xn−1

n−1

QG(x1, . . . , xn−1)

=

n−1
a1=0

· · ·

n−1
an−1=0

(−1)n−1+a1+···+an−1


n − 1
a1


· · ·


n − 1
an−1


QG(a1, . . . , an−1)

=


σ

(−1)n−1+σ(1)+···+σ(n−1)

n − 1
σ(1)


· · ·


n − 1

σ(n − 1)


QG(σ (1), . . . , σ (n − 1)),

where the last sum runs over all the mappings σ : {1, 2, . . . , n − 1} → {0, 1, 2, . . . , n − 1}. However, if σ is not injective,
then QG(σ (1), σ (2), . . . , σ (n−1)) = 0, so the sum can be taken to run over all injective mappings σ : {1, 2, . . . , n−1} →

{0, 1, 2, . . . , n − 1}.
Let Γ be the set of injective mappings from {1, 2, . . . , n − 1} to {0, 1, 2, . . . , n − 1}. For σ ∈ Γ , let

vG,σ (i) =


ej∈E(i)

σ(j),

a(σ ) =


0≤i<j≤n−1

(vG,σ (i) − vG,σ (j)),

b(σ ) =


n − 1
σ(1)


· · ·


n − 1

σ(n − 1)

 
1≤i<j≤n−1

(σ (i) − σ(j)).

The coefficient a of the monomial
n−1

j=1 xn−1
j is non-zero if and only if

σ∈Γ

(−1)σ(1)+σ(2)+···+σ(n−1)b(σ )a(σ ) ≠ 0. (A)

Let V ′ be the set of leaves of G. Let E ′ be the set of edges incident to V ′. Assume |V \ V ′
| = k. Let the vertices in V ′ be

labeled by k, k + 1, . . . , n − 1 and let the edge of E ′ incident to i ∈ V ′ be labeled by ei. For i ∈ {k, k + 1, . . . , n − 1}, vertex i
is incident to ei only, i.e., E(i) = {ei}. Hence for σ ∈ Γ , for i ∈ {k, k + 1, . . . , n − 1}, σ(i) = vG,σ (i).

Let Θ be the subgroup of the automorphism group Aut(G) of G that fix every non-leaf vertex of G. Thus each
automorphism inΘ is a permutation of {0, 1, . . . , n−1}which fixes 0, 1, . . . , k−1. Given apermutation τ of {1, 2, . . . , n−1}
that fixes {1, 2, . . . , k − 1}, let vτ be the permutation of {0, 1, . . . , n − 1} that fixes {0, 1, . . . , k − 1} and equals to τ on
{k, k + 1, . . . , n − 1}. It is obvious that if vτ ∈ Θ and σ ∈ Γ , then vG,σ◦τ = vG,σ ◦ vτ . Moreover, it is easy to see that

a(σ ◦ τ) = sign(τ )a(σ ),

b(σ ◦ τ) = sign(τ )b(σ ).

Consequently,
b(σ ◦ τ)a(σ ◦ τ) = b(σ )a(σ ).

For σ ∈ Γ , let [σ ] = {σ ◦ τ : vτ ∈ Θ}. Then {[σ ] : σ ∈ Γ } partitions Γ into parts of cardinality |Θ|. Thus
σ∈Γ

(−1)σ(1)+σ(2)+···+σ(n−1)b(σ )a(σ ) = |Θ|


[σ ]

(−1)σ(1)+σ(2)+···+σ(n−1)b(σ )a(σ ),

where the second summation runs over all the equivalence classes {[σ ] : σ ∈ Γ }.
In the following, we assume that n = pz is an odd prime power. For σ ∈ Γ , we define the sign of σ as (−1) to the power

of the number of pairs i < j such that σ(i) > σ(j).
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Lemma 6. For any σ ∈ Γ , b(σ ) = sign(σ )c for some constant c.

Proof. Assume the range of σ is {0, 1, . . . , n − 1} \ {ℓ}. Then

b(σ ) = sign(σ )

n−1
i=0


n − 1

i

 
0≤i<j≤n−1

(i − j)


n − 1
ℓ


ℓ!(n − 1 − ℓ)!

−1

= sign(σ )

n−1
i=0


n − 1

i

 
0≤i<j≤n−1

(i − j) ((n − 1)!)−1 . �

To prove (A), it is equivalent to prove that
[σ ]

(−1)σ(1)+σ(2)+···+σ(n−1)sign(σ )a(σ ) =
1

|Θ|


σ∈Γ

(−1)σ(1)+σ(2)+···+σ(n−1)sign(σ )a(σ )

≠ 0.

For an integer q, the order of qwith respect to p is

ord(q) = max{j : pj|q}.

Let s = ord


0≤i<j≤n−1(i − j)

. Instead of proving the inequality above directly, we prove the following stronger statement.

1
|Θ|


σ∈Γ

(−1)σ(1)+σ(2)+···+σ(n−1)sign(σ )a(σ ) ≢ 0 (mod ps+1). (B)

Lemma 7. For σ ∈ Γ ,

ord

 
0≤i<j≤n−1

(vG,σ (i) − vG,σ (j))


≥ s

and equality holds if and only if vG,σ (i) ≢ vG,σ (j) (mod n) for all i ≠ j.

Proof. Assume σ ∈ Γ . For i = 1, 2, . . . and j = 0, 1, . . . , pi − 1, let

αi,j = |{t : vG,σ (t) ≡ j (mod pi)}|.

Then

ord

 
0≤i<j≤n−1

(vG,σ (i) − vG,σ (j))


=

∞
i=1

pi−1
j=0

αi,j

2


.

For each i ≥ 1,
pi−1

j=0 αi,j = n = pz . It is obvious that the order

ord

 
0≤i<j≤n−1

(vG,σ (i) − vG,σ (j))


is minimum if and only if for any i, αi,j = n/pi = pz−i is a constant for all j. This happens if and only if vG,σ (i) ≢

vG,σ (j) (mod n) for every i ≠ j. In this case,

ord

 
0≤i<j≤n−1

(vG,σ (i) − vG,σ (j))


= s. �

A mapping σ ∈ Γ is called faithful if vG,σ (i) ≢ vG,σ (j) (mod n) for any two distinct vertices i and j of G.
Let

Ω = {σ ∈ Γ : σ is faithful}.

By Lemma 7, the summation in (B) can be restricted to faithful σ ’s in Γ , i.e., (B) is equivalent to

1
|Θ|


σ∈Ω

(−1)σ(1)+σ(2)+···+σ(n−1)sign(σ )a(σ ) ≢ 0 (mod ps+1). (C)
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Claim 1. If σ is faithful, then σ is a permutation of {1, 2, . . . , n − 1}.

Proof. As σ ∈ Γ is an injection from {1, 2, . . . , n−1} to {0, 1, . . . , n−1}, there is exactly one element i ∈ {0, 1, . . . , n−1}
which is not in the range of σ . As n is odd, we have

1 + 2 + · · · + (n − 1) ≡ 0 (mod n),

and hence
n−1

j=1 σ(j) ≡ −i (mod n). Since σ is faithful,

n−1
j=0

vG,σ (j) ≡ 0 (mod n).

On the other hand,
n−1
j=0

vG,σ (j) = 2
n−1
j=1

σ(j) ≡ −2i (mod n).

As n is odd, we have i = 0. Hence σ is a permutation of {1, 2, . . . , n − 1}. �

For σ ∈ Ω , let v∗

G,σ (i) ≡ vG,σ (i) (mod n). Then v∗

G,σ is a permutation of {0, 1, . . . , n − 1} and σ is a permutation of
{1, 2, . . . , n − 1}. By Lemma 7, to prove (C), it suffices to show that

1
|Θ|


σ∈Ω

sign(σ )sign(v∗

G,σ ) ≢ 0 (mod p). (D)

Extend σ to a permutation of {0, 1, . . . , n − 1} by letting σ(0) = 0. Then
sign(σ )sign(v∗

G,σ ) = sign(σ−1
◦ v∗

G,σ ).

By our labeling of the vertices and edges of G, we know that σ(i) = v∗

G,σ (i) for i ∈ {k, k + 1, . . . , n − 1}. Hence, the
restriction of σ−1

◦ v∗

G,σ to {k, k + 1, . . . , n − 1} is identity, and the restriction of σ−1
◦ v∗

G,σ to {0, 1, . . . , k − 1}, which we
denote by σ ∗, is a permutation of {0, 1, . . . , k − 1}. Moreover,

sign(σ−1
◦ v∗

G,σ ) = sign(σ ∗).

To prove the coefficient a is nonzero, it suffices to show that

1
|Θ|


σ∈Ω

sign(σ ∗) ≢ 0 (mod p). (E)

3. Double star

A tree whose non-leaf vertices induces a K2 is called a double star. This section proves the following theorem.

Theorem 8. If G is a double star of prime power order n = pz and the degree of one non-leaf vertex (and hence of both non-leaf
vertices) is relatively prime to n, then G is weighted-1-antimagic.

Proof. Assume G is a double star with exactly two non-leaf vertices: 0 and 1.
For σ ∈ Ω , let σ ∗ be the permutation over {0, 1} defined as in the previous section.
Let T1 = {σ ∈ Ω : σ ∗(i) = i for i = 0, 1}, and T2 = {σ ∈ Ω : σ ∗(i) = 1 − i for i = 0, 1}. So sign(σ ∗) = 1 if σ ∈ T1 and

sign(σ ∗) = −1 if σ ∈ T2. To prove (E), we need to show that

1
|Θ|

(|T1| − |T2|) ≢ 0 (mod p).

Let U1 = {2, 3, . . . , k} be the set of leaves adjacent to 0, and let U2 = {k + 1, k + 2, . . . , n − 1} be the set of leaves
adjacent to 1. Then |Θ| = (k − 1)!(n − k − 1)!.

For σ ∈ Ω , let Xσ =


i∈U1
σ(i) and Yσ =


i∈U2

σ(i). Since σ ∈ Ω , σ(i) ≠ 0 for every 1 ≤ i ≤ n − 1. Therefore
Xσ + Yσ + σ(1) = 1 + 2 + · · · + n − 1 ≡ 0 (mod n).

Observe that σ ∗(0) = 0 means that v∗

G,σ (0) = σ(0) = 0, i.e.,


ej∈E(0) σ(j) = Xσ + σ(1) ∼= 0 (mod n). This is equivalent
to Yσ

∼= 0 (mod n), as Xσ + Yσ + σ(1) = 1 + 2 + · · · + n − 1 ≡ 0 (mod n). So the following equalities are equivalent:

σ ∗(0) = 0
Xσ + σ(1) ≡ 0 (mod n)
Yσ ≡ 0 (mod n)
σ ∗(1) = 1.

Hence σ ∈ T1 if and only if Xσ + σ(1) ≡ 0 (mod n). Similarly, σ ∈ T2 if and only if Xσ ≡ 0 (mod n).
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For j = 1, 2, . . . , n − 1, let Aj be the set of solutions to the equation

y1 + y2 + · · · + yj ≡ 0 (mod n)

subject to the condition that yi ∈ {1, 2, . . . , n − 1} and yi are pairwise distinct. Let αj = |Aj|.
If σ(1), σ (2), . . . , σ (k) are chosen so that Xσ + σ(1) ≡ 0 (mod n), then arbitrary assigning {1, 2, . . . , n − 1} \

{σ(1), σ (2), . . . , σ (k)} to σ(k + 1), σ (k + 2), . . . , σ (n − 1), we obtain an element of T1. So

|T1| = αk · (n − 1 − k)!.

Similarly, we have

|T2| = αk−1 · (n − k)!

and hence

|T2| − |T1| = (n − k − 1)!((n − k)αk−1 − αk).

Observe that αk−1 is a multiple of (k − 1)!, because given a solution to the equation y1 + y2 + · · · + yk−1 ≡ 0 (mod n)
with yi pairwise distinct, any permutation of y1, y2, . . . , yk−1 is also a solution. So

nαk−1

(k − 1)!
≡ 0 (mod p).

Hence

1
|Θ|

(|T2| − |T1|) =
1

(k − 1)!(n − k − 1)!
(|T2| − |T1|) ≢ 0 (mod p)

if and only if

1
(k − 1)!

(kαk−1 + αk) ≢ 0 (mod p).

Instead of calculating αj directly, we consider a slightly different parameter. Let Bj be the set of solutions to the equation

y1 + y2 + · · · + yj ≡ 0 (mod n)

subject to the condition that yi ∈ {0, 1, . . . , n − 1} and yi are pairwise distinct. Let βj = |Bj|. There is a simple formula for
βj. Let

Ψ (j) = {(y1, y2, . . . , yj) : yi ∈ {0, 1, . . . , n − 1}, and yi are pairwise distinct}.

Then |Ψ (j)| = n(n − 1) . . . (n − j + 1).
Let ∼ be the equivalence relation on Ψ (j) defined as (y1, y2, . . . , yj) ∼ (y′

1, y
′

2, . . . , y
′

j) if there is a constant d such that
yi ≡ y′

i + d (mod n) for i = 1, 2, . . . , j. Observe that if (y1, y2, . . . , yj) and (y′

1, y
′

2, . . . , y
′

j) are equivalent but distinct, thenj
i=1 yi ≡

j
i=1 y

′

i + jd (mod n) for some 0 < d ≤ n − 1. If j and n are coprime, then there is no such d. Hence each
equivalence class of ∼ contains exactly one j-tuple of Bj. As each equivalence class contains n tuples, we have

βj = |Bj| = |Ψ (j)|/n = (n − 1)(n − 2) . . . (n − j + 1).

If (y1, y2, . . . , yj) ∈ Bj, then either none of the yi’s is equal to 0, and hence (y1, y2, . . . , yj) ∈ Aj or exactly one of yi’s is 0.
If yi = 0, then (y1, y2, . . . , yi−1, yi+1, . . . , yj) ∈ Aj−1. Therefore

βj = αj + jαj−1.

Since, by assumption, (k, n) = 1, we have

1
(k − 1)!

(kαk−1 + αk) =
1

(k − 1)!
βk =

(n − 1)(n − 2) . . . (n − k + 1)
(k − 1)!

≢ 0 (mod p)

The last inequality holds because for 1 ≤ i ≤ n−1, we have ord(i) = ord(n− i). This completes the proof of Theorem 8. �

Corollary 9. If G is of prime power order pz and has a spanning tree which is a double star such that the degree of one non-
leaf vertex is relatively prime to n, then G is weighted-1-antimagic. In particular, if G is of prime order and has total domination
number 2, then G is weighted-1-antimagic.
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4. Graphs with large maximum degree

It was proved in [2] that graphs G of order n and maximum degree at least n − 2 are antimagic, i.e., 0-antimagic. It was
proved in [6] that for k ≥ 3, graphs G of order n and maximum degree at least n − k are (3k − 7)-antimagic. In this section,
we assume that p ≥ 5 is a prime and z is an integer. We prove that if G is a graph of order n = pz and whose maximum
degree is at least n − 3, then G is weighted-1-antimagic.

Lemma 10. Assume G is a tree with vertices {0, 1, . . . , n − 1} and edges ei = 0i for i = 4, 5, . . . , n − 1 and e1 = 01, e2 =

12, e3 = 23. Then G is weighted-1-antimagic.

Proof. Given σ ∈ Ω , let Xσ =
n−1

i=4 σ(i). Then

v∗

G,σ (0) ≡ Xσ + σ(1) (mod n),

v∗

G,σ (1) ≡ σ(1) + σ(2) (mod n),

v∗

G,σ (2) ≡ σ(2) + σ(3) (mod n).

As σ is faithful and v∗

G,σ (i) = σ(i) for i = 3, 4, . . . , n − 1, we know that

{v∗

G,σ (0), v∗

G,σ (1), v∗

G,σ (2)} = {0, σ (1), σ (2)}.

Since none of σ(1), σ (2) is congruent to 0 modulo n, we conclude that v∗

G,σ (1) ≠ σ(1), σ (2), and hence v∗

G,σ (1) = 0. Thus
σ(1) = n − σ(2). As σ(3) is not congruent to 0 modulo n, we know that v∗

G,σ (2) ≠ σ(2) and hence

v∗

G,σ (2) = σ(1), v∗

G,σ (0) = σ(2).

This implies that for any σ ∈ Ω , σ ∗
= (210). Moreover, we have σ(3) ≡ 2σ(1) (mod n). As p ≠ 3, for any a ∈ Zn \ {0},

a, n − a, 2a (mod n) are distinct elements. By assigning a to σ(1), n − a to σ(2) and 2a (mod n) to σ(3), and arbitrarily
assigning the n−4 remaining elements in {1, 2, . . . , n−1} to the remaining edges, we obtain an element σ ofΩ . Therefore
|Ω| = (n − 1) · (n − 4)!. As |Θ| = (n − 4)!, we conclude that


σ∈Ω

1
|Θ|

sign(σ ∗) ≢ 0 (mod p). Hence G is weighted-1-
antimagic. �

Lemma 11. Assume G is a tree with vertices {0, 1, . . . , n − 1} and edges ei = 0i for i = 5, 6, . . . , n − 1 and e1 = 01, e2 =

02, e3 = 13, e4 = 24. Then G is weighted-1-antimagic.

Proof. Given σ ∈ Ω , let Xσ =
n−1

i=5 σ(i). Then

v∗

G,σ (0) ≡ Xσ + σ(1) + σ(2) (mod n)

v∗

G,σ (1) ≡ σ(1) + σ(3) (mod n)

v∗

G,σ (2) ≡ σ(2) + σ(4) (mod n).

Again, we have

{v∗

G,σ (0), v∗

G,σ (1), v∗

G,σ (2)} = {σ(1), σ (2), 0}.

Similarly as in the previous lemma, we know that v∗

G,σ (1) ≠ σ(1) and v∗

G,σ (2) ≠ σ(2). In other words, the permutation σ ∗

over {0, 1, 2} satisfies σ ∗(1) ≠ 1 and σ ∗(2) ≠ 2. Therefore, σ ∗ has three possibilities:
(1) σ ∗

= (021); (2) σ ∗
= (012); (3) σ ∗

= (12).
It is straightforward to verify that σ ∗ is of type (1) if and only if for some a, b ∈ {1, 2, . . . , n − 1} such that b ≢

a, −a, −2a, − 1
2a (mod n), the following hold

σ(1) ≡ a + b (mod n),
σ (2) = a,
σ (3) ≡ −(a + b) (mod n),
σ (4) = b.

Since p ≥ 5 is a prime and n = pz for a positive integer z, for any a ∈ {1, 2, . . . , n − 1}, the four elements
a, −a (mod n), −2a (mod n), − 1

2a (mod n) are distinct. So a has n − 1 choices, and b has n − 5 choices, implying that
there are (n − 1)(n − 5)(n − 5)! permutations σ ∈ Ω of type (1). Type (1) and type (2) are symmetric. So there are
(n − 1)(n − 5)(n − 5)! permutations σ ∈ Ω are of type (2). A permutation σ ∈ Ω is of type (3) if and only if for some
a, b ∈ {1, 2, . . . , n − 1} such that b ≢ a, −a, −2a (mod n), the following hold

σ(1) ≡ a + b (mod n),
σ (2) = b,
σ (3) ≡ −a (mod n),
σ (4) = a.
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As p ≥ 5, for any a ∈ {1, 2, . . . , n− 1}, the three elements a, −a (mod n), −2a (mod n) are distinct. So a has n− 1 choices,
and b has n − 4 choices, implying that there are (n − 1)(n − 4)(n − 5)! permutations σ ∈ Ω are of type (3).

For σ of type (1) and type (2), sign(σ ∗) = 1. For σ of type (3), sign(σ ∗) = −1. Therefore
σ∈Ω

1
|Θ|

sign(σ ∗) = (n − 1) (2 · (n − 5) − (n − 4)) ≡ (n − 1)(n − 6) ≢ 0 (mod p).

This completes the proof of Lemma 11. �

Theorem 12. If p ≥ 5 is a prime, G is a connected graph of order n = pz for some integer z and has maximum degree at least
n − 3, then G is weighted-1-antimagic.

Proof. If G is a connected graph of maximum degree at least n − 3, then G has a spanning tree which is either a star or a
double star with one vertex of degree 2 or 3, or a tree as described in Lemma 10 or in Lemma 11. The results above show
that such a tree is weighted-1-antimagic. Therefore G itself is weighted-1-antimagic. �

Remark. We may define a graph G to be weighted-k-antimagic choosable if the following hold: for any list assignment L
which assigns to each edge e a set L(e) of |E|+ k permissible weights (integers) and for any weight function w on the vertex
set of G, there is a mapping f which assigns to each edge e a distinct weight f (e) ∈ L(e) so that for any two vertices i, j,

e∈E(i) f (e)+w(i) ≠


e∈E(j) f (e)+w(j). The graphs proved to beweighted-1-antimagic are actuallyweighted-1-antimagic
choosable graphs.
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