67 research outputs found

    Input shaping-based control schemes for a three dimensional gantry crane

    Get PDF
    The motion induced sway of oscillatory systems such as gantry cranes may decrease the efficiency of production lines. In this thesis, modelling and development of input shaping-based control schemes for a three dimensional (3D) lab-scaled gantry crane are proposed. Several input shaping schemes are investigated in open and closed-loop systems. The controller performances are investigated in terms of trolley position and sway responses of the 3D crane. Firstly, a new distributed Delay Zero Vibration (DZV) shaper is implemented and compared with Zero Vibration (ZV) shaper and Zero Vibration Derivative (ZVD) shaper. Simulation and experimental results show that all the shapers are able to reduce payload sway significantly while maintaining desired position response specifications. Robustness tests with ยฑ20% error in natural frequency show that DZV shaper exhibits asymmetric robustness behaviour as compared to ZV and ZVD shapers. Secondly, as analytical technique could only provide good performance for linear systems, meta-heuristic based input shaper is proposed to reduce sway of a gantry crane which is a nonlinear system. The results show that designing meta-heuristic-based input shapers provides 30% to 50% improvement as compared to the analytical-based shapers. Subsequently, a particle swarm optimization based optimal performance control scheme is developed in closed-loop system. Simulation and experimental results demonstrate that the controller gives zero overshoot with 60% and 20% improvements in settling time and integrated absolute error value of position response respectively, as compared to a specific designed PID-PID anti swing controller for the lab-scaled gantry crane. It is found that crane control with changing cable length is still a problem to be solved. An adaptive input shaping control scheme that can adapt to variation of cableโ€™s length is developed. Simulation with real crane dimensions and experimental results verify that the controller provides 50% reduction in payload sway for different operational commands with hoisting as compared to the average travel length approach

    Nonlinear optimal control for the 4-DOF underactuated robotic tower crane

    Get PDF
    Tower cranes find wide use in construction works, in ports and in several loading and unloading procedures met in industry. A nonlinear optimal control approach is proposed for the dynamic model of the 4-DOF underactuated tower crane. The dynamic model of the robotic crane undergoes approximate linearization around a temporary operating point that is recomputed at each time-step of the control method. The linearization relies on Taylor series expansion and on the associated Jacobian matrices. For the linearized state-space model of the system a stabilizing optimal (H-infinity) feedback controller is designed. To compute the controllerโ€™s feedback gains an algebraic Riccati equation is repetitively solved at each iteration of the control algorithm. The stability properties of the control method are proven through Lyapunov analysis. The proposed control approach is advantageous because: (i) unlike the popular computed torque method for robotic manipulators, the new control approach is characterized by optimality and is also applicable when the number of control inputs is not equal to the robotโ€™s number of DOFs, (ii) it achieves fast and accurate tracking of reference setpoints under minimal energy consumption by the robotโ€™s actuators, (iii) unlike the popular Nonlinear Model Predictive Control method, the articleโ€™s nonlinear optimal control scheme is of proven global stability and convergence to the optimum.This research work has been partially supported by Grant Ref. โ€œCSP contract 040322โ€โ€”โ€œNonlinear control, estimation and fault diagnosis for electric power generation and electric traction/propulsion systemsโ€ of the Unit of Industrial Automation of the Industrial Systems Institute

    Modelling And Fuzzy Logic Control Of An Underactuated Tower Crane System

    Get PDF
    Tower crane is one of the flexible maneuvering systems that has been applied pervasively as a powerful big-scale construction machine. The under-actuated tower crane system has nonlinearity behavior with a coupling between translational and slew motions which increases the crane control challenge. In practical applications, most of the tower cranes are operated by a human operator which lead to unsatisfactory control tasks. Motivated to overcome the issues, this paper proposes a fuzzy logic controller based on single input rule modules dynamically connected fuzzy inference system for slew/translational positioning and swing suppressions of a 3 degree-of-freedom tower crane system. The proposed method can reduce the number of rules significantly, resulting in a simpler controller design. The proposed method achieves higher suppressions of at least 56% and 81% in the overall in-plane and out-plane swing responses, respectively as compared to PSO based PID+PD control

    Position Control of Overhead Cranes Using fuzzy Controller

    Get PDF
    ABSTRACT:A Fuzzy Controller is used for the antisway tracking control of overhead cranes. Fuzzy Logic Controllers have been designed to deal with problems and situations where conventional control theories have failed. Fuzzy Logic Controllers have the capability of transforming linguistic information and expert knowledge into control signals. One of the main advantage is that its implementation process is comparatively simpler than conventional methods as it works on certain set of predefined rules which are simple if-then statements which are simple to understand as they are in common English language. The input parameters after being read from the sensors are fuzzified as per the membership function of the respective variables. These membership function curves are utilized to come to a solution and finally defuzzification is done to obtain a crisp output. KEYWORDS:Antisway Tracking Control, fuzzy Logic Controllers, linguistic information, Defuzzification, Fuzzification Overhead crane systems have been widely used for material transportation in many I.INTRODUCTION industrial fields, due to their low cost, easy assembly and maintenance. But its severely nonlinear properties bring about undesired swings, especially at take-off and arrival. Thus its automization create severe problem as they belong to a class of under actuated mechanical systems, i.e., they have fewer actuators than degrees of freedom. Overhead crane systems belong to the category of incomplete control systems, which only allow a limited number of inputs to control more outputs. Such uncontrolled oscillations cause both stability and safety problems. This drawback strongly constrains the operational efficiency and the application domain.For example, 2-D overhead cranes have one control input (a trolley driving force) and two system variables to be controlled (a horizontal trolley position and a load swing angle). This underactuation property results in a coupling effect between the load sway motion and the trolley travelling motion. In addition, uncontrolled load sway dynamics causes safety problems in crane systems, which makes it much more challenging to control them. Crane control systems have beendeveloped in such a way that the trolley is moved to a desired position as fast as possible while adequately suppressing the load swing angle II.LITERATURE SURVEY Since fuzzy logic controller can mimic human behaviour, many researchers applied fuzzy logic controller to control either overhead crane, gantry crane as well as rotary crane. A thorough literature overview was done on the usage of fuzzy logic controller as applied to the various crane systems. Lee, H. H. and Cho, S. K. This system is an incomplete control system because it has a smaller number of actuators than the number of controlled variables In order to simplify the modelling complexity, several assumptions have first to be made: Plastic deformation inthe system is ignored. The cable is treated as a weightless rigid body. The moment of inertia of the load is ignored and the load becomes a point mass. Therefore, the overhead crane system can be simplified to a cart-pendulum model with a variable pendulum length, as shown i

    Adaptive fuzzy observer based hierarchical sliding mode control for uncertain 2D overhead cranes

    Full text link
    ยฉ 2019, ยฉ 2019 Informa UK Limited, trading as Taylor & Francis Group. This paper proposes a new approach to robustly control a 2D under-actuated overhead crane system, where a payload is effectively transported to a destination in real time with small sway angles, given its inherent uncertainties such as actuator nonlinearities and external disturbances. The control law is proposed to be developed by the use of the robust hierarchical sliding mode control (HSMC) structure in which a second-level sliding surface is formulated by two first-level sliding surfaces drawn on both actuated and under-actuated outputs of the crane. The unknown and uncertain parameters of the proposed control scheme are then adaptively estimated by the fuzzy observer (FO), where the adaptation mechanism is derived from the Lyapunov theory. More importantly, stability of the proposed strategy is theoretically proved. Effectiveness of the proposed adaptive FO-based HSMC approach was extensively validated by implementing the algorithm in both synthetic simulations and real-life experiments, where the results obtained by our method are highly promising

    Fuzzy Controllers for a Gantry Crane System with Experimental Verifications

    Get PDF
    The control problem of gantry cranes has attracted the attention of many researchers because of the various applications of these cranes in the industry. In this paper we propose two fuzzy controllers to control the position of the cart of a gantry crane while suppressing the swing angle of the payload. Firstly, we propose a dual PD fuzzy controller where the parameters of each PD controller change as the cart moves toward its desired position, while maintaining a small swing angle of the payload. This controller uses two fuzzy subsystems. Then, we propose a fuzzy controller which is based on heuristics. The rules of this controller are obtained taking into account the knowledge of an experienced crane operator. This controller is unique in that it uses only one fuzzy system to achieve the control objective. The validity of the designed controllers is tested through extensive MATLAB simulations as well as experimental results on a laboratory gantry crane apparatus. The simulation results as well as the experimental results indicate that the proposed fuzzy controllers work well. Moreover, the simulation and the experimental results demonstrate the robustness of the proposed control schemes against output disturbances as well as against uncertainty in some of the parameters of the crane

    ํ•ด์–‘ ์ž‘์—… ์ง€์›์„ ์˜ ์ž์œจ ์šดํ•ญ ๋ฐ ์„ค์น˜ ์ž‘์—… ์ง€์›์„ ์œ„ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐฉ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์กฐ์„ ํ•ด์–‘๊ณตํ•™๊ณผ, 2019. 2. ๋…ธ๋ช…์ผ.Autonomous ships have gained a huge amount of interest in recent years, like their counterparts on land{autonomous cars, because of their potential to significantly lower the cost of operation, attract seagoing professionals and increase transportation safety. Technologies developed for the autonomous ships have potential to notably reduce maritime accidents where 75% cases can be attributed to human error and a significant proportion of these are caused by fatigue and attention deficit. However, developing a high-level autonomous system which can operate in an unstructured and unpredictable environment is still a challenging task. When the autonomous ships are operating in the congested waterway with other manned or unmanned vessels, the collision avoidance algorithm is the crucial point in keeping the safety of both the own ship and any encountered ships. Instead of developing new traffic rules for the autonomous ships to avoid collisions with each other, autonomous ships are expected to follow the existing guidelines based on the International Regulations for Preventing Collisions at Sea (COLREGs). Furthermore, when using the crane on the autonomous ship to transfer and install subsea equipment to the seabed, the heave and swaying phenomenon of the subsea equipment at the end of flexible wire ropes makes its positioning at an exact position is very difficult. As a result, an Anti-Motion Control (AMC) system for the crane is necessary to ensure the successful installation operation. The autonomous ship is highly relying on the effectiveness of autonomous systems such as autonomous path following system, collision avoidance system, crane control system and so on. During the previous two decades, considerable attention has been paid to develop robust autonomous systems. However, several are facing challenges and it is worthwhile devoting much effort to this. First of all, the development and testing of the proposed control algorithms should be adapted across a variety of environmental conditions including wave, wind, and current. This is one of the challenges of this work aimed at creating an autonomous path following and collision avoidance system in the ship. Secondly, the collision avoidance system has to comply with the regulations and rules in developing an autonomous ship. Thirdly, AMC system with anti-sway abilities for a knuckle boom crane remains problems regarding its under-actuated mechanism. At last, the performance of the control system should be evaluated in advance of the operation to perform its function successfully. In particular, such performance analysis is often very costly and time-consuming, and realistic conditions are typically impossible to establish in a testing environment. Consequently, to address these issues, we proposed a simulation framework with the following scenarios, which including the autonomous navigation scenario and crane operation scenario. The research object of this study is an autonomous offshore support vessel (OSV), which provides support services to offshore oil and gas field development such as offshore drilling, pipe laying, and oil producing assets (production platforms and FPSOs) utilized in EP (Exploration Production) activities. Assume that the autonomous OSV confronts an urgent mission under the harsh environmental conditions: on the way to an imperative offshore construction site, the autonomous OSV has to avoid target ships while following a predefined path. When arriving at the construction site, it starts to install a piece of subsea equipment on the seabed. So what technologies are needed, what should be invested for ensuring the autonomous OSV could robustly kilometers from shore, and how can an autonomous OSV be made at least as safe as the conventional ship. In this dissertation, we focus on the above critical activities for answering the above questions. In the general context of the autonomous navigation and crane control problem, the objective of this dissertation is thus fivefold: โ€ข Developing a COLREGs-compliant collision avoidance system. โ€ข Building a robust path following and collision avoidance system which can handle the unknown and complicated environment. โ€ข Investigating an efficient multi-ship collision avoidance method enable it easy to extend. โ€ข Proposing a hardware-in-the-loop simulation environment for the AHC system. โ€ข Solving the anti-sway problem of the knuckle boom crane on an autonomous OSV. First of all, we propose a novel deep reinforcement learning (RL) algorithm to achieve effective and efficient capabilities of the path following and collision avoidance system. To perform and verify the proposed algorithm, we conducted simulations for an autonomous ship under unknown environmental disturbance iiito adjust its heading in real-time. A three-degree-of-freedom dynamic model of the autonomous ship was developed, and the Line-of-sight (LOS) guidance system was used to converge the autonomous ship to follow the predefined path. Then, a proximal policy optimization (PPO) algorithm was implemented on the problem. By applying the advanced deep RL method, in which the autonomous OSV learns the best behavior through repeated trials to determine a safe and economical avoidance behavior in various circumstances. The simulation results showed that the proposed algorithm has the capabilities to guarantee collision avoidance of moving encountered ships while ensuring following a predefined path. Also, the algorithm demonstrated that it could manage complex scenarios with various encountered ships in compliance with COLREGs and have the excellent adaptability to the unknown, sophisticated environment. Next, the AMC system includes Anti-Heave Control (AHC) and Anti-Sway Control (ASC), which is applied to install subsea equipment in regular and irregular for performance analysis. We used the proportional-integral-derivative (PID) control method and the sliding mode control method respectively to achieve the control objective. The simulation results show that heave and sway motion could be significantly reduced by the proposed control methods during the construction. Moreover, to evaluate the proposed control system, we have constructed the HILS environment for the AHC system, then conducted a performance analysis of it. The simulation results show the AHC system could be evaluated effectively within the HILS environment. We can conclude that the proposed or adopted methods solve the problems issued in autonomous system design.ํ•ด์–‘ ์ž‘์—… ์ง€์›์„  (Offshore Support Vessel: OSV)์˜ ๊ฒฝ์šฐ ๊ทนํ•œ์˜ ํ™˜๊ฒฝ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ถœํ•ญํ•˜์—ฌ ํ•ด์ƒ์—์„œ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์œ„ํ—˜์—์˜ ๋…ธ์ถœ์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ์ž์œจ ์šดํ•ญ์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์—ฌ๊ธฐ์„œ์˜ ์ž์œจ ์šดํ•ญ์€ ์„ ๋ฐ•์ด ์ถœ๋ฐœ์ง€์—์„œ ๋ชฉ์ ์ง€๊นŒ์ง€ ์‚ฌ๋žŒ์˜ ๋„์›€ ์—†์ด ์ด๋™ํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ์ž์œจ ์šดํ•ญ ๋ฐฉ๋ฒ•์€ ๊ฒฝ๋กœ ์ถ”์ข… ๋ฐฉ๋ฒ•๊ณผ ์ถฉ๋Œ ํšŒํ”ผ ๋ฐฉ๋ฒ•์„ ํฌํ•จํ•œ๋‹ค. ์šฐ์„ , ์šดํ•ญ ๋ฐ ์ž‘์—… ์ค‘ ํ™˜๊ฒฝ ํ•˜์ค‘ (๋ฐ”๋žŒ, ํŒŒ๋„, ์กฐ๋ฅ˜ ๋“ฑ)์— ๋Œ€ํ•œ ๊ณ ๋ ค๋ฅผ ํ•ด์•ผ ํ•˜๊ณ , ๊ตญ์ œ ํ•ด์ƒ ์ถฉ๋Œ ์˜ˆ๋ฐฉ ๊ทœ์น™ (Convention of the International Regulations for Preventing Collisions at Sea, COLREGs)์— ์˜ํ•œ ์„ ๋ฐ•๊ฐ„์˜ ํ•ญ๋ฒ• ๊ทœ์ •์„ ๊ณ ๋ คํ•˜์—ฌ ์ถฉ๋Œ ํšŒํ”ผ ๊ทœ์น™์„ ์ค€์ˆ˜ํ•ด์•ผ ํ•œ๋‹ค. ํŠนํžˆ ์—ฐ๊ทผํ•ด์˜ ๋ณต์žกํ•œ ํ•ด์—ญ์—์„œ๋Š” ๋งŽ์€ ์„ ๋ฐ•์„ ์ž๋™์œผ๋กœ ํšŒํ”ผํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๊ธฐ์กด์˜ ํ•ด์„์ ์ธ ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์„ ๋ฐ•๋“ค์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ์‹œ์Šคํ…œ ๋ชจ๋ธ๋ง์ด ๋˜์–ด์•ผ ํ•˜๋ฉฐ, ๊ทธ ๊ณผ์ •์—์„œ ๊ฒฝํ—˜ (experience)์— ์˜์กดํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋˜ํ•œ, ํšŒํ”ผํ•ด์•ผ ํ•  ์„ ๋ฐ• ์ˆ˜๊ฐ€ ๋งŽ์•„์งˆ ๊ฒฝ์šฐ ์‹œ์Šคํ…œ ๋ชจ๋ธ์ด ์ปค์ง€๊ฒŒ ๋˜๊ณ  ๊ณ„์‚ฐ ์–‘๊ณผ ๊ณ„์‚ฐ ์‹œ๊ฐ„์ด ๋Š˜์–ด๋‚˜ ์‹ค์‹œ๊ฐ„ ์ ์šฉ์ด ์–ด๋ ต๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๋˜ํ•œ, ๊ฒฝ๋กœ ์ถ”์ข… ๋ฐ ์ถฉ๋Œ ํšŒํ”ผ๋ฅผ ํฌํ•จํ•˜์—ฌ ์ž์œจ ์šดํ•ญ ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ•ํ™” ํ•™์Šต (Reinforcement Learning: RL) ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๊ธฐ์กด ํ•ด์„์ ์ธ ๋ฐฉ๋ฒ•์˜ ๋ฌธ์ œ์ ์„ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ฒฝ๋กœ๋ฅผ ์ถ”์ข…ํ•˜๋Š” ์„ ๋ฐ• (agent)์€ ์™ธ๋ถ€ ํ™˜๊ฒฝ (environment)๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜๋ฉด์„œ ํ•™์Šต์„ ์ง„ํ–‰ํ•œ๋‹ค. State S_0 (์„ ๋ฐ•์˜ ์›€์ง์ž„๊ณผ ๊ด€๋ จ๋œ ๊ฐ์ข… ์ƒํƒœ) ๊ฐ€์ง€๋Š” agent๋Š” policy (ํ˜„์žฌ ์œ„์น˜์—์„œ ์–ด๋–ค ์›€์ง์ž„์„ ์„ ํƒํ•  ๊ฒƒ์ธ๊ฐ€)์— ๋”ฐ๋ผ action A_0 (์›€์ง์ผ ๋ฐฉํ–ฅ) ์ทจํ•œ๋‹ค. ์ด์— environment๋Š” agent์˜ ๋‹ค์Œ state S_1 ์„ ๊ณ„์‚ฐํ•˜๊ณ , ๊ทธ์— ๋”ฐ๋ฅธ ๋ณด์ƒ R_0 (ํ•ด๋‹น ์›€์ง์ž„์˜ ์ ํ•ฉ์„ฑ)์„ ๊ฒฐ์ •ํ•˜์—ฌ agent์—๊ฒŒ ์ „๋‹ฌํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ž‘์—…์„ ๋ฐ˜๋ณตํ•˜๋ฉด์„œ ๋ณด์ƒ์ด ์ตœ๋Œ€๊ฐ€ ๋˜๋„๋ก policy๋ฅผ ํ•™์Šตํ•˜๊ฒŒ ๋œ๋‹ค. ํ•œํŽธ, ํ•ด์ƒ์—์„œ ํฌ๋ ˆ์ธ์„ ์ด์šฉํ•œ ์žฅ๋น„์˜ ์ด๋™์ด๋‚˜ ์„ค์น˜ ์ž‘์—… ์‹œ ์œ„ํ—˜์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ํฌ๋ ˆ์ธ์˜ ๊ฑฐ๋™ ์ œ์–ด์— ๋Œ€ํ•œ ์š”๊ตฌ๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ํ•ด์ƒ์—์„œ๋Š” ์„ ๋ฐ•์˜ ์šด๋™์— ์˜ํ•ด ํฌ๋ ˆ์ธ์— ๋งค๋‹ฌ๋ฆฐ ๋ฌผ์ฒด๊ฐ€ ์ƒํ•˜ ๋™์š” (heave)์™€ ํฌ๋ ˆ์ธ์„ ๊ธฐ์ค€์œผ๋กœ ์ขŒ์šฐ ๋™์š” (sway)๊ฐ€ ๋ฐœ์ƒํ•˜๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์šด๋™์€ ์ž‘์—…์„ ์ง€์—ฐ์‹œํ‚ค๊ณ , ์ •ํ™•ํ•œ ์œ„์น˜์— ๋ฌผ์ฒด๋ฅผ ๋†“์ง€ ๋ชปํ•˜๊ฒŒ ํ•˜๋ฉฐ, ์ž์นซ ์ฃผ๋ณ€ ๊ตฌ์กฐ๋ฌผ๊ณผ์˜ ์ถฉ๋Œ์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ๋™์š”๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” Anti-Motion Control (AMC) ์‹œ์Šคํ…œ์€ Anti-Heave Control (AHC)๊ณผ Anti-Sway Control (ASC)์„ ํฌํ•จํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•ด์–‘ ์ž‘์—… ์ง€์›์„ ์— ์ ํ•ฉํ•œ AMC ์‹œ์Šคํ…œ์˜ ์„ค๊ณ„ ๋ฐ ๊ฒ€์ฆ ๋ฐฉ๋ฒ•์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๋จผ์ € ์ƒํ•˜ ๋™์š”๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํฌ๋ ˆ์ธ์˜ ์™€์ด์–ด ๊ธธ์ด๋ฅผ ๋Šฅ๋™์ ์œผ๋กœ ์กฐ์ •ํ•˜๋Š” AHC ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๊ธฐ์กด์˜ ์ œ์–ด ์‹œ์Šคํ…œ์˜ ๊ฒ€์ฆ ๋ฐฉ๋ฒ•์€ ์‹ค์ œ ์„ ๋ฐ•์ด๋‚˜ ํ•ด์–‘ ๊ตฌ์กฐ๋ฌผ์— ํ•ด๋‹น ์ œ์–ด ์‹œ์Šคํ…œ์„ ์ง์ ‘ ์„ค์น˜ํ•˜๊ธฐ ์ „์—๋Š” ๊ทธ ์„ฑ๋Šฅ์„ ํ…Œ์ŠคํŠธํ•˜๊ธฐ๊ฐ€ ํž˜๋“ค์—ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Hardware-In-the-Loop Simulation (HILS) ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ AHC ์‹œ์Šคํ…œ์˜ ๊ฒ€์ฆ ๋ฐฉ๋ฒ•์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๋˜ํ•œ, ASC ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•  ๋•Œ ์ œ์–ด ๋Œ€์ƒ์ด under-actuated ์‹œ์Šคํ…œ์ด๊ธฐ ๋•Œ๋ฌธ์— ์ œ์–ดํ•˜๊ธฐ๊ฐ€ ๋งค์šฐ ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” sliding mode control ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜๋ฉฐ ๋‹ค๊ด€์ ˆ ํฌ๋ ˆ์ธ (knuckle boom crane)์˜ ๊ด€์ ˆ (joint) ๊ฐ๋„๋ฅผ ์ œ์–ดํ•˜์—ฌ ์ขŒ์šฐ ๋™์š”๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋Š” ASC ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค.Chapter 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 1 1.2 Requirements for Autonomous Operation . . . . . . . . . . . . . 5 1.2.1 Path Following for Autonomous Ship . . . . . . . . . . . . 5 1.2.2 Collision Avoidance for Autonomous Ship . . . . . . . . . 5 1.2.3 Anti-Motion Control System for Autonomous Ship . . . . 6 1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.1 Related Work for Path Following System . . . . . . . . . 9 1.3.2 Related Work for Collision Avoidance System . . . . . . . 9 1.3.3 Related Work for Anti-Heave Control System . . . . . . . 13 1.3.4 Related Work for Anti-Sway Control System . . . . . . . 14 1.4 Configuration of Simulation Framework . . . . . . . . . . . . . . 16 1.4.1 Application Layer . . . . . . . . . . . . . . . . . . . . . . 16 1.4.2 Autonomous Ship Design Layer . . . . . . . . . . . . . . . 17 1.4.3 General Technique Layer . . . . . . . . . . . . . . . . . . 17 1.5 Contributions (Originality) . . . . . . . . . . . . . . . . . . . . . 19 Chapter 2 Theoretical Backgrounds 20 2.1 Maneuvering Model for Autonomous Ship . . . . . . . . . . . . . 20 2.1.1 Kinematic Equation for Autonomous Ship . . . . . . . . . 20 2.1.2 Kinetic Equation for Autonomous Ship . . . . . . . . . . 21 2.2 Multibody Dynamics Model for Knuckle Boom Crane of Autonomous Ship. . . 25 2.2.1 Embedding Techniques . . . . . . . . . . . . . . . . . . . . 25 2.3 Control System Design . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 Proportional-Integral-Derivative (PID) Control . . . . . . 31 2.3.2 Sliding Mode Control . . . . . . . . . . . . . . . . . . . . 31 2.4 Deep Reinforcement Learning Algorithm . . . . . . . . . . . . . . 34 2.4.1 Value Based Learning Method . . . . . . . . . . . . . . . 36 2.4.2 Policy Based Learning Method . . . . . . . . . . . . . . . 37 2.4.3 Actor-Critic Method . . . . . . . . . . . . . . . . . . . . . 41 2.5 Hardware-in-the-Loop Simulation . . . . . . . . . . . . . . . . . . 43 2.5.1 Integrated Simulation Method . . . . . . . . . . . . . . . 43 Chapter 3 Path Following Method for Autonomous OSV 46 3.1 Guidance System . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.1 Line-of-sight Guidance System . . . . . . . . . . . . . . . 46 3.2 Deep Reinforcement Learning for Path Following System . . . . . 50 3.2.1 Deep Reinforcement Learning Setup . . . . . . . . . . . . 50 3.2.2 Neural Network Architecture . . . . . . . . . . . . . . . . 56 3.2.3 Training Process . . . . . . . . . . . . . . . . . . . . . . . 58 3.3 Implementation and Simulation Result . . . . . . . . . . . . . . . 62 3.3.1 Implementation for Path Following System . . . . . . . . 62 3.3.2 Simulation Result . . . . . . . . . . . . . . . . . . . . . . 65 3.4 Comparison Results . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.4.1 Comparison Result of PPO with PID . . . . . . . . . . . 83 3.4.2 Comparison Result of PPO with Deep Q-Network (DQN) 87 Chapter 4 Collision Avoidance Method for Autonomous OSV 89 4.1 Deep Reinforcement Learning for Collision Avoidance System . . 89 4.1.1 Deep Reinforcement Learning Setup . . . . . . . . . . . . 89 4.1.2 Neural Network Architecture . . . . . . . . . . . . . . . . 93 4.1.3 Training Process . . . . . . . . . . . . . . . . . . . . . . . 94 4.2 Implementation and Simulation Result . . . . . . . . . . . . . . . 95 4.2.1 Implementation for Collision Avoidance System . . . . . . 95 4.2.2 Simulation Result . . . . . . . . . . . . . . . . . . . . . . 100 4.3 Implementation and Simulation Result for Multi-ship Collision Avoidance Method . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.1 Limitations of Multi-ship Collision Avoidance Method - 1 107 4.3.2 Limitations of Multi-ship Collision Avoidance Method - 2 108 4.3.3 Implementation of Multi-ship Collision Avoidance Method 110 4.3.4 Simulation Result of Multi-ship Collision Avoidance Method 118 Chapter 5 Anti-Motion Control Method for Knuckle Boom Crane 129 5.1 Configuration of HILS for Anti-Heave Control System . . . . . . 129 5.1.1 Virtual Mechanical System . . . . . . . . . . . . . . . . . 132 5.1.2 Virtual Sensor and Actuator . . . . . . . . . . . . . . . . 138 5.1.3 Control System Design . . . . . . . . . . . . . . . . . . . . 141 5.1.4 Integrated Simulation Interface . . . . . . . . . . . . . . . 142 5.2 Implementation and Simulation Result of HILS for Anti-Heave Control System . . . . . . . . 145 5.2.1 Implementation of HILS for Anti-Heave Control System . 145 5.2.2 Simulation Result of HILS for Anti-Heave Control System 146 5.3 Validation of HILS for Anti-Heave Control System . . . . . . . . 159 5.3.1 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . 159 5.3.2 Comparison Result . . . . . . . . . . . . . . . . . . . . . . 161 5.4 Configuration of Anti-Sway Control System . . . . . . . . . . . . 162 5.4.1 Mechanical System for Knuckle Boom Crane . . . . . . . 162 5.4.2 Anti-Sway Control System Design . . . . . . . . . . . . . 165 5.4.3 Implementation and Simulation Result of Anti-Sway Control . . . . . . . . . . . . . . 168 Chapter 6 Conclusions and Future Works 176 Bibliography 178 Chapter A Appendix 186 ๊ตญ๋ฌธ์ดˆ๋ก 188Docto
    • โ€ฆ
    corecore