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Abstract
Tower cranes find wide use in construction works, in ports and in several loading and unloading procedures met in
industry. A nonlinear optimal control approach is proposed for the dynamic model of the 4-DOF underactuated
tower crane. The dynamic model of the robotic crane undergoes approximate linearization around a temporary
operating point that is recomputed at each time-step of the control method. The linearization relies on Taylor series
expansion and on the associated Jacobian matrices. For the linearized state-space model of the system a stabilizing
optimal (H-infinity) feedback controller is designed. To compute the controller’s feedback gains an algebraic Riccati
equation is repetitively solved at each iteration of the control algorithm. The stability properties of the control
method are proven through Lyapunov analysis. The proposed control approach is advantageous because: (i) unlike
the popular computed torque method for robotic manipulators, the new control approach is characterized by
optimality and is also applicable when the number of control inputs is not equal to the robot’s number of DOFs, (ii) it
achieves fast and accurate tracking of reference setpoints under minimal energy consumption by the robot’s
actuators, (iii) unlike the popular Nonlinear Model Predictive Control method, the article’s nonlinear optimal control
scheme is of proven global stability and convergence to the optimum.

Keywords: Tower cranes, Underactuated robotic manipulators, 4-DOF robotic tower crane, Nonlinear H-infinity
control, Taylor series expansion, Jacobian matrices, Riccati equation, Global stability

1 Introduction
Tower-cranes are complicated mechatronic systems which
are widely used for the transportation of payloads in a large
workspace and at large height [1–3]. Tower cranes can
accomplish accurate transport and positioning of heavy
items in construction sites, in multi-storey building erec-
tion,in loading and unloading of cargos in ports and in
storage tasks for the logistics industry [4–6]. Tower cranes
exhibit the advantages of simple structure, convenient in-
stallation, low cost, high payload capacity and low energy
consumption [7–9]. Tower cranes usually consist of an ac-
tuated jib arm, an actuated translational trolley and an
unactuated payload below the trolley [3, 10, 11]. Tower
cranes have a complicated and strongly nonlinear dynam-
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ics and are also subject to underactuation [12–14]. Major
issues in the precise and safe operation of tower cranes are
the accurate trajectory tracking about the cranes’ moving
parts, as well as the suppression of the swinging and sway
motion of the payload which can emerge when large and
fast manoeuvres take place [15–17]. Under such operating
conditions tower cranes are also exposed to bending and
torsional deformations therefore their operation is a de-
manding and delicate task [18, 19]. Even nowadays most
cranes are manually operated by skilled personnel. How-
ever, for human operators it is often difficult to achieve
precise positioning and suppression of swinging and sway-
ing phenomena [20, 21]. Operational mistakes occur fre-
quently when pursuing highly repetitive tasks under time-
pressure. To avoid the deficiencies of the human opera-
tion of cranes, automation of such systems has become a
pre-requisite and to this end elaborated nonlinear control
methods have been developed [22, 23].

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1007/s43684-022-00040-4
https://crossmark.crossref.org/dialog/?doi=10.1007/s43684-022-00040-4&domain=pdf
https://orcid.org/0000-0002-2972-7030
mailto:grigat@ieee.org
http://creativecommons.org/licenses/by/4.0/


Rigatos et al. Autonomous Intelligent Systems            (2022) 2:21 Page 2 of 30

The use of robotic tower cranes is rapidly deploying in
several construction, industrial and supply-chain applica-
tions and the treatment of the associated nonlinear control
problems has become a necessity. To this end new results
have been recently developed. In [24] a neural adaptive
control method is introducted for 4-DOF tower cranes. In
[25] a 2-DOF overhead and a 4-DOF rotary crane are con-
trolled through a neural adaptive control scheme. In [26]
a control method is presented about vibrations suppres-
sion in a 4-DOF tower crane with a flexible jib. In [27] a
neural adaptive control scheme is developed for a double-
pendulum tower crane. In [27] a 4-DOF tower crane is
controlled by a nonlinear controller that consists of a PD
control part and a sliding-mode control part. In [28] an
input-shaping control technique is applied to suppress os-
cillations in the 4-DOF underactuated robotic crane. Fi-
nally, in [29] an adaptive control scheme is proposed for
an underactuated 2-DOF overhead crane.

In the present article, a nonlinear optimal control
method is proposed for the 4-DOF nonlinear and underac-
tuated model of tower cranes [30, 31]. The dynamic model
of the 4-DOF underactuated tower crane undergoes first
approximate linearization around a temporary operating
point which is updated at each sampling instance. This op-
erating point is defined by the present value of the crane’s
state vector and by the last sampled value of the control in-
puts vector. The linearization process relies on first-order
Taylor series expansion and on the computation of the as-
sociated Jacobian matrices [32–34]. The modelling error
which is due to the truncation of higher-order terms in the
Taylor series expansion, is proven to be small and is asymp-
totically compensated by the robustness of the control al-
gorithm. For the approximately linearized state-space de-
scription of the system a stabilizing H-infinity feedback
controller is defined.

The proposed H-infinity controller achieves the solu-
tion of the optimal control problem for the tower crane
under model uncertainty and external perturbations [16].
Actually, it represents a min-max differential game which
takes place between the control inputs of the system that
try to minimize a cost function comprising a quadratic
term of the state vector’s tracking error and the model
uncertainty or exogenous perturbation terms which try
to maximize this cost function. To compute the stabiliz-
ing feedback gains of this controller an algebraic Riccati
equation has to be also solved at each time-step of the
control method [35–37]. The global stability properties of
the control scheme are proven through Lyapunov analy-
sis. First, it is proven that the control loop satisfies the H-
infinity tracking performance criterion [16, 38]. Next, it is
proven that under moderate conditions, global asymptotic
stability of the control loop is ensured. To implement state
estimation-based control without need to measure the en-
tire state vector of the system the H-infinity Kalman Fil-

ter is used as a robust state estimator. The nonlinear opti-
mal control method retains the advantages of linear opti-
mal control, that is fast and accurate tracking of reference
setpoints under moderate variations of the control inputs
[16].

The article has also a meaningful contribution to the area
of nonlinear control. One can point out the advantages
of the nonlinear optimal control method against Nonlin-
ear Model Predictive Control (NMPC) [16]. In NMPC
the stability properties of the control scheme remain un-
proven and the convergence of the iterative search for an
optimum often depends on initialization and parameter
values’ selection. It is also noteworthy that the nonlin-
ear optimal control method is applicable to a wider class
of dynamical systems than approaches based on the so-
lution of State Dependent Riccati Equations (SDRE). The
SDRE approaches can be applied only to dynamical sys-
tems which can be transformed to the Linear Parameter
Varying (LPV) form. Besides, the nonlinear optimal con-
trol method performs better than nonlinear optimal con-
trol schemes which use approximation of the solution of
the Hamilton–Jacobi–Bellman equation by Galerkin series
expansions. The stability properties of the Galerkin series
expansion-based optimal control are still unproven.

The structure of the paper is as follows: In Sect. 2 the dy-
namic model of the tower crane is given and the associated
state-space model is formulated in the affine-in-the-input
nonlinear state-space form. In Sect. 3 the dynamic model
of the robotic crane undergoes approximate linearization
through Taylor series expansion and with the computa-
tion of the associated Jacobian matrices. In Sect. 4 the H-
infinity optimal control problem for the dynamic model of
the tower crane is analyzed. In Sect. 5 the global stabil-
ity properties of the H-infinity control scheme are proven
through Lyapunov analysis. Besides, the H-infinity Kalman
Filter is introduced as a robust state estimator. In Sect. 6
the accuracy of setpoints tracking by the state variables
of the robotic crane, under the nonlinear optimal control
method, is further confirmed through Simulation experi-
ments. Finally, in Sect. 7 concluding remarks are stated.

2 Dynamic model of the robotic tower crane
2.1 State-of-the-art in the control of underactuated robotic

cranes
As noted, robotic cranes can find use in construction
works, in buildings erection, in loading and unloading of
cargo-ships in ports, in heavy material lifting for several
industrial tasks and in heavy items pick-and-place tasks
in logistics. The solution of the nonlinear optimal control
problem for underactuated robotic cranes is important
for ensuring the reliable performance of robotic cranes in
such applications. In the following, the state-of-the-art in
the control of underactuated robotic cranes is outlined.
To this end, indicative results are overviewed about (a) the
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use of established model-based and model-free control ap-
proaches in robotics, (b) the use of the proposed nonlinear
optimal control methods in specific types of autonomous
cranes.

There exist several recent results showing the perfor-
mance of advanced nonlinear control techniques to the
stabilization and trajectory tracking problem of robotic
cranes. In [39] Lyapunov stability analysis is used to se-
lect the gains of a PID-type conntroller so as to ensure
global stability for an overhead robotic crane. In [27] a
feedback controller which comprises a PID-type control
part and an SMC-type control part is proposed for a 4-
DOF robotic tower crane. Lyapunov stability analysis is
used to select the feedback gains of the controller and to
ensure global stability of the control loop. In [40] an adap-
tive fuzzy controller jointly with a disturbances estimator
are used to stabilize an offshore boom crane. The con-
troller’s feedback gains are chosen through Lyapunov sta-
bility analysis so as to ensure global stability for the control
loop. In [41] an adaptive PID-type controller is developed
for dual rotary cranes. The selection of the controller’s
gains is performed through the system’s Lyapunov analysis.
Global stability is proven through the Lyapunov technique
and LaSalle’s invariance principle. In [42] adaptive output
feedback control is proposed for a double-pendulum ship-
mounted crane while also considering uncertainty about
the cargo’s mass. The controller’s gains and the adaptation
law which are used for compensating for the model’s un-
certainty are chosen through Lyapunov analysis. In [29] a
state-variables transformation and the backstepping con-
trol technique are used for treating the stabilization of a 2-
DOF crane. The stability properties of the control method
are proven through Lyapunov analysis. In [43] an energy-
based control method is proposed for the dynamic model
of a large gantry crane which comprises also elements that
are subjected to elastic deformation. Stability properties
are demonstrated with the use of Lyapunov analysis. In
[44] a knuckle boom crane is controlled by a cascade con-
troller where the inner control loop is designed to damp
out the pendulum oscillation, and the crane tip is con-
trolled by the outer loop. An extended Kalman filter is used
for the estimation of payload angles and angular veloc-
ity. In [45] modified tracking error variables and Lyapunov
stability analysis are used to define a feedback controller
that finally stabilizes a 4-DOF overhead crane. The global
stability proof makes use of LaSalle’s invariance principle.
Moreover, in [46] the dynamic model of a knuckle boom
crane is considered and a stabilizing feedback controller
is designed about it using the Nonlinear Model Predictive
Control concept and a Lyapunov analysis-based auxiliary
controller.

In particular, the proposed nonlinear optimal control
method is suitable for use in a variety of autonomous
robotic cranes and several related results have been ob-
tained [1, 16, 17]. Thus, one can note nonlinear optimal

Figure 1 Diagram of the 4-DOF robotic tower crane

control for (i) the 4-DOF overhead crane, (ii) offshore
boom cranes, (iii) the double-pendulum overhead crane,
(iv) the 4-DOF tower crane and (v) quay-side cranes. The
use of the nonlinear optimal control method in robotic
systems is not limited into specific state-space forms (e.g.,
canonical forms, strict feedback or pure feedback forms).
The computational complexity of the nonlinear optimal
control method remains also moderate because (a) it does
not require complicated changes of state variables and
transformations of the cranes’ state-space representation,
(b) it does not rely on matrices for computing the robots’
control inputs and consequently it avoids the risk of sin-
gularities, (c) it performs linearization around one single
operating point which is easy to define, (d) it does not re-
quire the solution of multiple Riccati equations or LMIs,
(e) it avoids the deadlocks of pole-placement techniques
which arise in the case of underactuation.

2.2 State-space model of the tower crane
The diagram of the 4-DOF robotic tower crane in depicted
in Fig. 1. The tower crane consists of an actuated jib arm,
an actuated translational trolley and an unactuated pay-
load below the trolley. The trolley of mass M can perform
an one-dimensional motion along the jib. The load mass
m is suspended from the vehicle with a rope of length L.
The jib can rotate around the vertical axis. The state vari-
ables of the tower-crane are defined as follows: (i) φ is the
turn angle of the crane, (ii) φ̇ is the rate of change of the
turn angle of the crane, (iii) η is the displacement of the
trolley along the jib, (iv) η̇ is the velocity of the jib, (v) δ1 is
the primary projection angle of the link that connects the



Rigatos et al. Autonomous Intelligent Systems            (2022) 2:21 Page 4 of 30

trolley with the suspended load (swinging angle), (vi) δ̇1 is
the rate of change of the primary projection angle, (vii) δ2
is the secondary projection angle of the link that connects
the trolley with the suspended load (sway angle), (viii) δ̇2 is
the rate of change of the secondary projection angle [2, 3].

The vector of the main variables of the robotic tower
crane is defined as q = [φ,η, δ1, δ2]T . The dynamic model
of the crane is given by [1, 2, 16]

M(q)q̈ + C(q, q̇)q̇ + G(q) = T – d̃. (1)

The inertia matrix of the crane M(q) is symmetric and
positive definite and is defined as [2, 3]

M(q) =

⎛
⎜⎜⎝

m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

⎞
⎟⎟⎠ , (2)

where m11 = m(sin2(δ1) cos2(δ2) + sin2(δ2))L2 + 2mLη ×
cos(δ2) sin(δ2) + (m + M)η2 + J , m12 = m21 = –mL sin(δ2),
m13 = m31 = –mL2 cos(δ2) cos(δ2) sin(δ2), m14 = m41 =
mL(η cos(δ2) + L sin(δ2)), m22 = m + M, m23 = m32 = mL ×
cos(δ1) cos(δ2), m24 = m42 = –mL sin(δ1) sin(δ2), m33 =
mL2 cos(δ2), m34 = m43 = –mL sin(δ1) sin(δ2), m44 = mL2.

The Coriolis and centrifugal forces matrix of the crane is
[2, 3]

C̃(q, q̇) =

⎛
⎜⎜⎝

c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

⎞
⎟⎟⎠ , (3)

where

c11 = (m + M)ηη̇ + mLη cos(δ1) cos(δ2)δ̇1

– mLη cos(δ1) sin(δ2)δ̇2

– mL sin(δ1) sin(δ2)η̇

+ mL2 sin(δ1) cos(δ1) cos2(δ2)δ̇1

+ mL2 cos2(δ1) sin(δ2) cos(δ2)δ̇2,

c12 = mL sin(δ1) cos(δ2)φ̇ + (m + M)ηφ̇,

c13 = mLη cos(δ1) cos(δ2)φ̇

+ mL2 sin(δ1) sin(δ2) cos(δ2)δ̇1

+ mL2 sin(δ1) cos(δ1) cos2(δ2)φ̇

+ mL2 cos(δ1) sin2(δ2)δ̇2,

c14 = –mLη sin(δ1) sin(δ2)φ̇ – mLη sin(δ2)δ̇2

+ mL2 cos2(δ1) sin(δ2) cos(δ2)φ̇

+ mL2 cos(δ1) sin2(δ2)δ̇2,

c21 = – (m + M)ηφ̇ – mL sin(δ1) cos(δ2)φ̇

– mL cos(δ2)δ̇2,

c22 = 0,

c23 = –mL
(
sin(δ1) cos(δ2)δ̇1 + cos(δ1) sin(δ2)δ̇2

)
,

c24 = – mL
(
cos(δ1) sin(δ2)δ̇1 + sin(δ1) cos(δ2)δ̇2

+ cos(δ2)φ̇
)
,

c31 = –mL cos(δ1) cos(δ2)
(
η + L cos(δ1) cos(δ2)

)
φ̇

– mL2 cos(δ1) cos2(δ2)δ̇2,

c32 = 0,

c33 = – mL2 sin(δ2) cos(δ2)δ̇2,

c34 = –mL2(cos(δ1) cos2(δ2)φ̇ + sin(δ2) cos(δ2)δ̇1
)
,

c41 = mL
(
η sin(δ1) sin(δ2) – L cos2(δ1) sin(δ2) cos(δ2)

)
φ̇

+ mL2 cos(δ1) cos2(δ2)δ̇1 + mL cos(δ2)η̇,

c42 = mL cos(δ2)φ̇,

c43 = mL2(cos(δ1) cos2(δ2)φ̇ + sin(δ2) cos(δ2)δ̇1
)
,

c44 = 0.

The gravitational vector of the robotic crane is defined
as [2, 3]

G =

⎛
⎜⎜⎝

g1
g2
g3
g4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0

gmL sin(δ1) sin(δ2)
gmL cos(δ1) sin(δ2)

⎞
⎟⎟⎠ . (4)

The disturbances and friction vector of the robotic crane
is defined as

d̃ =

⎛
⎜⎜⎝

d1
d2
d3
d4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

–w1φ̇

–w2η̇

–w3δ̇1
–w4δ̇2

⎞
⎟⎟⎠ . (5)

The complexity of the dynamics of the model of the
tower-crane can be partially alleviated by considering
moderate (small angle) swinging or sway motion for the
load. In such a case the associated sinusoidal and cosinu-
soidal variables sin(δi) and cos(δi), i = 1, 2 can be substi-
tuted by the first terms of the related Taylor series expan-
sions. Next, the inverse of the inertia matrix M is defined
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as

N–1 =
1

det M

⎛
⎜⎜⎝

M11 –M21 M31 –M41
–M12 M22 –M32 M42
M13 –M23 M33 –M43

–M14 M24 –M34 M44

⎞
⎟⎟⎠ , (6)

where the above noted subdeterminants Mij for i = 1, 2, 3, 4
and j = 1, 2, 3, 4 are defined as

M11 = m22(m33m44 – m43m34)

– m23(m32m44 – m43m34)

+ m24(m32m43 – m42m33),

M12 = m21(m33m44 – m43m34)

– m23(m31m44 – m41m34)

+ m24(m31m43 – m41m33),

M13 = m21(m32m44 – m42m34)

– m22(m31m44 – m41m34)

+ m24(m31m43 – m41m33),

M14 = m21(m32m43 – m42m33)

– m22(m31m43 – m41m33)

+ m23(m31m42 – m41m32),

M21 = m12(m33m44 – m43m34)

– m13(m32m44 – m42m34)

+ m14(m32m43 – m42m33),

M22 = m11(m33m44 – m43m34)

– m13(m31m44 – m41m34)

+ m14(m31m43 – m41m33),

M23 = m11(m32m44 – m42m34)

– m12(m31m44 – m41m34)

+ m14(m31m42 – m41m32),

M24 = m11(m32m43 – m42m33)

– m12(m31m43 – m41m33)

+ m13(m31m42 – m41m32),

M31 = m12(m23m44 – m43m24)

– m13(m22m44 – m42m24)

+ m14(m22m43 – m42m23),

M32 = m11(m23m44 – m43m24)

– m13(m21m44 – m41m24)

+ m14(m21m43 – m41m23),

M33 = m11(m22m44 – m42m24)

– m12(m21m44 – m41m24)

+ m14(m41m22 – m21m42),

M34 = m11(m22m43 – m42m23)

– m12(m21m43 – m41m23)

+ m13(m21m42 – m41m22),

M41 = m12(m23m34 – m33m24)

– m13(m22m34 – m32m24)

+ m14(m22m33 – m32m23),

M42 = m11(m23m34 – m33m44)

– m13(m21m34 – m31m24)

+ m14(m21m33 – m31m23),

M43 = m11(m22m34 – m32m24)

– m12(m21m34 – m31m24)

+ m14(m21m32 – m31m22),

M44 = m11(m22m33 – m32m23)

– m12(m21m33 – m31m23)

+ m13(m21m32 – m31m22).

The determinant of matrix M is

det M = m11M11 – m12M12 + m13M13 – m14M14.

For the dynamic model of the robotic crane that was ini-
tially written in the form

M(q)q̈ + C̃(q, q̇)q̇ + G(q) + d̃ = T . (7)

It holds that

C̃(q, q̇)q̇ =

⎛
⎜⎜⎝

c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

φ̇

η̇

δ̇1
δ̇2

⎞
⎟⎟⎠ (8)

or equivalently

C(q, q̇) =

⎛
⎜⎜⎝

c1
c2
c3
c4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

c11φ̇ c12η̇ c13δ̇1 c14δ̇2
c21φ̇ c22η̇ c23δ̇1 c24δ̇2
c31φ̇ c32η̇ c33δ̇1 c34δ̇2
c41φ̇ c42η̇ c43δ̇1 c44δ̇2

⎞
⎟⎟⎠ . (9)
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Consequently, the dynamic model of the robot can be
written as

M(q)q̈ + C(q, q̇) + G(q) + d̃ = T ⇒
q̈ + M–1(q)C(q, q̇) + M–1(q)G(q) + M–1(q)d̃

= M–1(q)T ⇒
q̈ = –M–1(q)C(q, q̇) – M–1(q)G(q)

– M–1(q)d̃ + M–1(q)T ⇒
q̈ = –M–1(q)

[
C(q, q̇) – G(q) + d̃

]
+ M–1(q)T .

(10)

Next, the dynamic model of the robotic crane is written
as

⎛
⎜⎜⎝

φ̈

η̈

δ̈1
δ̈2

⎞
⎟⎟⎠ = –

1
det M

⎛
⎜⎜⎝

M11 –M21 M31 –M41
–M12 M22 –M32 M42
M13 –M23 M33 –M43

–M14 M24 –M34 M44

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

c1 + g1 + d1
c2 + g2 + d2
c3 + g3 + d3
c4 + g4 + d4

⎞
⎟⎟⎠

+
1

det M

⎛
⎜⎜⎝

M11 –M21 M31 –M41
–M12 M22 –M32 M42
M13 –M23 M33 –M43

–M14 M24 –M34 M44

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

τ1
τ2
0
0

⎞
⎟⎟⎠ . (11)

Equivalently, the dynamic model of the robotic crane is
written as

⎛
⎜⎜⎝

φ̈

η̈

δ̈1
δ̈2

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

–M11(c1+g1+d1)+M21(c2+g2+d2)–M31(c3+g3+d3)+M41(c4+g4+d4)
det M

M12(c1+g1+d1)–M22(c2+g2+d2)+M32(c3+g3+d3)–M42(c4+g4+d4)
det M

–M13(c1+g1+d1)+M23(c2+g2+d2)–M33(c3+g3+d3)+M43(c4+g4+d4)
det M

M14(c1+g1+d1)–M24(c2+g2+d2)+M34(c3+g3+d3)–M44(c4+g4+d4)
det M

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎝

M11
det M – M21

det M
– M12

det M
M22
det M

M13
det M – M23

det M
– M14

det M
M24
det M

⎞
⎟⎟⎠

(
v1
v2

)
. (12)

The state vector of the robotic crane is

x = [x1, x2, x3, x4, x5, x6, x7, x8]T ⇒
x = [φ, φ̇,η, η̇, δ1, δ̇1, δ2, δ̇2]T .

(13)

Moreover, the following functions are defined

f1(x) = x2,

f2(x) =
(
–M11(c1 + g1 + d1) + M21(c2 + g2 + d2)

– M31(c3 + g3 + d3) + M41(c4 + g4 + d4)
)

/det M,

f3(x) = x4,

f4(x) =
(
M12(c1 + g1 + d1) – M22(c2 + g2 + d2)

+ M32(c3 + g3 + d3) – M42(c4 + g4 + d4)
)

/det M,

f5(x) = x6,

f6(x) =
(
–M13(c1 + g1 + d1) + M23(c2 + g2 + d2)

– M33(c3 + g3 + d3) + M43(c4 + g4 + d4)
)

/det M,

f7(x) = x8,

f8(x) =
(
M14(c1 + g1 + d1) – M24(c2 + g2 + d2)

+ M34(c3 + g3 + d3) – M44(c4 + g4 + d4)
)

/det M,

g11(x) = 0, g12(x) = 0,

g21(x) =
M11

det M
, g22(x) = –

M21

det M
,

g31(x) = 0, g32(x) = 0,

g41(x) = –
M12

det M
, g42(x) =

M22

det M
,

g51(x) = 0, g52(x) = 0,

g61(x) =
M13

det M
, g62(x) = –

M23

det M
,

g71(x) = 0, g72(x) = 0,

g81(x) = –
M14

det M
, g82(x) =

M24

det M
.
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Thus, the state-space model of the tower-crane is written
as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ẋ8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(x)
f2(x)
f3(x)
f4(x)
f5(x)
f6(x)
f7(x)
f8(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g11(x) g12(x)
g21(x) g22(x)
g31(x) g32(x)
g41(x) g42(x)
g51(x) g52(x)
g61(x) g62(x)
g71(x) g72(x)
g81(x) g82(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
τ1
τ2

)
(14)

or in concise form one has the affine-in-the-input nonlin-
ear state-space model

ẋ = f (x) + g(x)u, (15)

where x ∈ R8×1, f (x) ∈ R8×1, g(x) ∈ R8×2, and u ∈ R2×1. It
is noted that the underactuated tower crane is not a 0-flat
system. To be brought to a differentially flat form the dy-
namic extension approach has to be applied [36].

3 Approximate linearization of the dynamic model
of the robotic crane

3.1 Approximate linearization with Taylor series expansion
The dynamic model of the tower crane being initially ex-
pressed in the state-space form

ẋ = f (x) + g(x)u (16)

undergoes approximate linearization at each sampling
instance around the temporary operating point (x∗, u∗),
where x∗ is the present value of the system’s state vector
and u∗ is the last sampled value of the control inputs vec-
tor. The linearization process is based on Taylor series ex-
pansion and gives

ẋ = Ax + Bu + d̃, (17)

where d̃ is the cumulative disturbances vector which may
be due to truncation of higher-order terms from the Tay-
lor series expansion, exogenous perturbations, and sensor
measurements noise of any distribution. Matrices A and B
are Jacobian matrices of the Taylor series expansion which
are defined as:

A = ∇x
[
f (x) + g(x)u

]|(x∗ ,u∗) ⇒
A = ∇xf (x)|(x∗ ,u∗) + ∇xg1(x)u|(x∗ ,u∗)

+ ∇xg2(x)u|(x∗ ,u∗), (18)

B = ∇u
[
f (x) + g(x)u

]|(x∗ ,u∗) ⇒
B = g(x)|(x∗ ,u∗). (19)

This linearization approach which has been followed for
implementing the nonlinear optimal control scheme re-
sults into a quite accurate model of the system’s dynam-
ics. Consider for instance the following affine-in-the-input
state-space model

ẋ = f (x) + g(x)u ⇒
ẋ =

[
f
(
x∗) + ∇xf (x)|x∗

(
x – x∗)]

+
[
g
(
x∗) + ∇xg(x)|x∗

(
x – x∗)]u∗ + g

(
x∗)u∗

+ g
(
x∗)(u – u∗) + d̃1 ⇒

ẋ =
[∇xf (x)|x∗ + ∇xg(x)|x∗u∗]x

+ g
(
x∗)u –

[∇xf (x)|x∗ + ∇xg(x)|x∗u∗]x∗

+ f
(
x∗) + g

(
x∗)u∗ + d̃1, (20)

where d̃1 is the modelling error due to truncation of higher
order terms in the Taylor series expansion of f (x) and g(x).
Next, by defining A = [∇xf (x)|x∗ + ∇xg(x)|x∗u∗], B = g(x∗)
one obtains

ẋ = Ax + Bu – Ax∗ + f
(
x∗) + g

(
x∗)u∗ + d̃1. (21)

Moreover by denoting d̃ = –Ax∗ + f (x∗) + g(x∗)u∗ + d̃1
about the cumulative modelling error term in the Taylor
series expansion procedure one has

ẋ = Ax + Bu + d̃, (22)

which is the approximately linearized model of the dynam-
ics of the system of Eq. (17). The term f (x∗) + g(x∗)u∗ is the
derivative of the state vector at (x∗, u∗) which is almost an-
nihilated by –Ax∗.

3.2 Computation of Jacobian matrices
The computation of the Jacobian matrices A and B pro-
ceeds as follows:

Computation of the Jacobian matrix ∇xf (x)|(x∗ ,u∗).
First row of the Jacobian matrix ∇xf (x)|(x∗ ,u∗): ∂f1

∂x1
= 0,

∂f1
∂x2

= 1, ∂f1
∂x3

= 0, ∂f1
∂x4

= 0, ∂f1
∂x5

= 0, ∂f1
∂x6

= 0, ∂f1
∂x7

= 0 and ∂f1
∂x8

= 0.
Second row of the Jacobian matrix ∇xf (x)|(x∗ ,u∗): It holds

that f2(x) = f2,num
f2,den

with f2,num = –M11(c1 + g1 + d + 1) +
M21(c2 + g2 + d2) – M31(c3 + g3 + d3) + M41(c4 + g4 + d4) and
f2,den = det M. Thus, for i = 1, 2, . . . , 8 one has

∂f2,num

∂x1

= –
∂M11

∂xi
(c1 + g1 + d1) – M11

(
∂c1

∂xi
+

∂g1

∂xi
+

∂d1

∂xi

)

+
∂M21

∂xi
(c2 + g2 + d2) + M21

(
∂c2

∂xi
+

∂g2

∂xi
+

∂d2

∂xi

)
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–
∂M31

∂xi
(c3 + g3 + d3) – M31

(
∂c3

∂xi
+

∂g3

∂xi
+

∂d3

∂xi

)

+
∂M41

∂xi
(c4 + g4 + d4)

+ M41

(
∂c4

∂xi
+

∂g4

∂xi
+

∂d4

∂xi

)
(23)

and also

∂f2,den

∂xi
=

∂ det M
∂xi

(24)

and finally

∂f2

∂xi
=

∂f2,num
∂xi

f2,den – f2,num
∂f2,den

∂xi

det M2 . (25)

Third row of the Jacobian matrix ∇xf (x)|(x∗ ,u∗): ∂f3
∂x1

= 0,
∂f3
∂x2

= 0, ∂f3
∂x3

= 0, ∂f3
∂x4

= 1, ∂f3
∂x5

= 0, ∂f3
∂x6

= 0, ∂f3
∂x7

= 0 and ∂f3
∂x8

= 0.
Fourth row of the Jacobian matrix ∇xf (x)|(x∗ ,u∗): It holds

that f4(x) = f4,num
f4,den

with f4,num = M12(c1 +g1 +d +1)–M22(c2 +
g2 + d2) + M32(c3 + g3 + d3) – M42(c4 + g4 + d4) and f4,den =
det M. Thus, for i = 1, 2, . . . , 8 one has

∂f4,num

∂x1

=
∂M12

∂xi
(c1 + g1 + d1) + M12

(
∂c1

∂xi
+

∂g1

∂xi
+

∂d1

∂xi

)

–
∂M22

∂xi
(c2 + g2 + d2) – M22

(
∂c2

∂xi
+

∂g2

∂xi
+

∂d2

∂xi

)

–
∂M32

∂xi
(c3 + g3 + d3) + M32

(
∂c3

∂xi
+

∂g3

∂xi
+

∂d3

∂xi

)

–
∂M42

∂xi
(c4 + g4 + d4)

– M42

(
∂c4

∂xi
+

∂g4

∂xi
+

∂d4

∂xi

)
(26)

and also

∂f4,den

∂xi
=

∂ det M
∂xi

(27)

and finally

∂f4

∂xi
=

∂f4,num
∂xi

f4,den – f4,num
∂f4,den

∂xi

det M2 . (28)

Fifth row of the Jacobian matrix ∇xf (x)|(x∗ ,u∗): ∂f5
∂x1

= 0,
∂f5
∂x2

= 0, ∂f5
∂x3

= 0, ∂f5
∂x4

= 0, ∂f5
∂x5

= 0, ∂f5
∂x6

= 1, ∂f5
∂x7

= 0 and ∂f5
∂x8

= 0.
Sixth row of the Jacobian matrix ∇xf (x)|(x∗ ,u∗): It holds

that f6(x) = f6,num
f6,den

with f6,num = –M13(c1 + g1 + d + 1) +

M23(c2 + g2 + d2) – M33(c3 + g3 + d3) + M43(c4 + g4 + d4) and
f6,den = det M. Thus, for i = 1, 2, . . . , 8 one has

∂f6,num

∂x1

= –
∂M13

∂xi
(c1 + g1 + d1) – M13

(
∂c1

∂xi
+

∂g1

∂xi
+

∂d1

∂xi

)

+
∂M23

∂xi
(c2 + g2 + d2) + M23

(
∂c2

∂xi
+

∂g2

∂xi
+

∂d2

∂xi

)

–
∂M33

∂xi
(c3 + g3 + d3) – M33

(
∂c3

∂xi
+

∂g3

∂xi
+

∂d3

∂xi

)

+
∂M43

∂xi
(c4 + g4 + d4)

+ M43

(
∂c4

∂xi
+

∂g4

∂xi
+

∂d4

∂xi

)
(29)

and also

∂f6,den

∂xi
=

∂ det M
∂xi

(30)

and finally

∂f6

∂xi
=

∂f6,num
∂xi

f6,den – f6,num
∂f6,den

∂xi

det M2 . (31)

Seventh row of the Jacobian matrix ∇xf (x)|(x∗ ,u∗): ∂f7
∂x1

= 0,
∂f7
∂x2

= 0, ∂f7
∂x3

= 0, ∂f7
∂x4

= 0, ∂f7
∂x5

= 0, ∂f7
∂x6

= 0, ∂f7
∂x7

= 0 and ∂f7
∂x8

= 0.
Eighth row of the Jacobian matrix ∇xf (x)|(x∗ ,u∗): It holds

that f4(x) = f8,num
f8,den

with f8,num = M14(c1 +g1 +d +1)–M24(c2 +
g2 + d2) + M34(c3 + g3 + d3) – M44(c4 + g4 + d4) and f8,den =
det M. Thus, for i = 1, 2, . . . , 8 one has

∂f8,num

∂x1

=
∂M14

∂xi
(c1 + g1 + d1) + M14

(
∂c1

∂xi
+

∂g1

∂xi
+

∂d1

∂xi

)

–
∂M24

∂xi
(c2 + g2 + d2) – M24

(
∂c2

∂xi
+

∂g2

∂xi
+

∂d2

∂xi

)

–
∂M34

∂xi
(c3 + g3 + d3) + M34

(
∂c3

∂xi
+

∂g3

∂xi
+

∂d3

∂xi

)

–
∂M44

∂xi
(c4 + g4 + d4)

– M44

(
∂c4

∂xi
+

∂g4

∂xi
+

∂d4

∂xi

)
(32)

and also

∂f8,den

∂xi
=

∂ det M
∂xi

(33)
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and finally

∂f8

∂xi
=

∂f8,num
∂xi

f8,den – f8,num
∂f8,den

∂xi

det M2 . (34)

Computation of the Jacobian matrix ∇xg1(x)|(x∗ ,u∗).
First row of the Jacobian matrix ∇xg1(x)|(x∗ ,u∗): ∂g11(x)

∂x1
= 0

for i = 1, 2, . . . , 8.
Second row of the Jacobian matrix ∇xg1(x)|(x∗ ,u∗): ∂g21(x)

∂xi
=

∂M11
∂xi

det M–M11
∂ det M

∂xi
det M2 , for i = 1, 2, . . . , 8.

Third row of the Jacobian matrix ∇xg1(x)|(x∗ ,u∗): ∂g31(x)
∂xi

=
0, for i = 1, 2, . . . , 8.

Fourth row of the Jacobian matrix ∇xg1(x)|(x∗ ,u∗): ∂g41(x)
∂xi

=
– ∂M12

∂xi
det M+M12

∂ det M
∂xi

det M2 , for i = 1, 2, . . . , 8.
Fifth row of the Jacobian matrix ∇xg1(x)|(x∗ ,u∗): ∂g51(x)

∂xi
= 0,

for i = 1, 2, . . . , 8.
Sixth row of the Jacobian matrix ∇xg1(x)|(x∗ ,u∗): ∂g61(x)

∂xi
=

∂M13
∂xi

det M–M13
∂ det M

∂xi
det M2 , for i = 1, 2, . . . , 8.

Seventh row of the Jacobian matrix ∇xg1(x)|(x∗ ,u∗):
∂g71(x)

∂xi
= 0, for i = 1, 2, . . . , 8.

Eighth row of the Jacobian matrix ∇xg1(x)|(x∗ ,u∗): ∂g81(x)
∂xi

=
– ∂M14

∂xi
det M+M14

∂ det M
∂xi

det M2 , for i = 1, 2, . . . , 8.
Computation of the Jacobian matrix ∇xg2(x)|(x∗ ,u∗).
First row of the Jacobian matrix ∇xg2(x)|(x∗ ,u∗): ∂g12(x)

∂x1
= 0

for i = 1, 2, . . . , 8.
Second row of the Jacobian matrix ∇xg2(x)|(x∗ ,u∗): ∂g22(x)

∂xi
=

– ∂M21
∂xi

det M+M21
∂ det M

∂xi
det M2 , for i = 1, 2, . . . , 8.

Third row of the Jacobian matrix ∇xg2(x)|(x∗ ,u∗): ∂g32(x)
∂xi

=
0, for i = 1, 2, . . . , 8.

Fourth row of the Jacobian matrix ∇xg2(x)|(x∗ ,u∗): ∂g42(x)
∂xi

=
∂M22
∂xi

det M–M22
∂ det M

∂xi
det M2 , for i = 1, 2, . . . , 8.

Fifth row of the Jacobian matrix ∇xg2(x)|(x∗ ,u∗): ∂g52(x)
∂xi

= 0,
for i = 1, 2, . . . , 8.

Sixth row of the Jacobian matrix ∇xg2(x)|(x∗ ,u∗): ∂g62(x)
∂xi

=
– ∂M23

∂xi
det M+M23

∂ det M
∂xi

det M2 , for i = 1, 2, . . . , 8.
Seventh row of the Jacobian matrix ∇xg2(x)|(x∗ ,u∗):

∂g72(x)
∂xi

= 0, for i = 1, 2, . . . , 8.
Eighth row of the Jacobian matrix ∇xg2(x)|(x∗ ,u∗): ∂g82(x)

∂xi
=

∂M24
∂xi

det M–M24
∂ det M

∂xi
det M2 , for i = 1, 2, . . . , 8.

Next, one computes the partial derivatives of the sub-
determinants Mij and of the determinant det M:

∂M11

∂xi
=

∂m22

∂xi
(m33m44 – m43m34)

+ m22

(
∂m33

∂xi
m44 + m33

∂m44

∂xi

–
∂m43

∂xi
m34 – m43

∂m34

∂xi

)

–
∂m23

∂xi
(m32m44 – m42m34)

– m23

(
∂m33

∂xi
m44 + m32

∂m44

∂xi

–
∂m42

∂xi
m34 – m42

∂m34

∂xi

)

+
∂m24

∂xi
(m32m43 – m42m33)

+ m24

(
∂m32

∂xi
m43 + m32

∂m43

∂xi

–
∂m42

∂xi
m33 – m42

∂m33

∂xi

)
. (35)

Equivalently, one has

∂M12

∂xi

=
∂m21

∂xi
(m33m44 – m43m34)

+ m21

(
∂m13

∂xi
m44 + m13

∂m44

∂xi

–
∂m43

∂xi
m34 – m43

∂m34

∂xi

)

–
∂m23

∂xi
(m31m44 – m41m34)

– m23

(
∂m31

∂xi
m44 + m31

∂m44

∂xi

–
∂m41

∂xi
m34 – m41

∂m34

∂xi

)

+
∂m24

∂xi
(m31m43 – m41m33)

+ m24

(
∂m31

∂xi
m43 + m31

∂m43

∂xi

–
∂m41

∂xi
m33 – m41

∂m33

∂xi

)
. (36)

Moreover, it holds that

∂M13

∂xi

=
∂m21

∂xi
(m32m44 – m42m34)

+ m21

(
∂m32

∂xi
m44 + m32

∂m44

∂xi
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–
∂m43

∂xi
m34 – m43

∂m34

∂xi

)

–
∂m23

∂xi
(m31m44 – m41m34)

– m23

(
∂m31

∂xi
m44 + m31

∂m44

∂xi

–
∂m41

∂xi
m34 – m41

∂m34

∂xi

)

+
∂m24

∂xi
(m31m42 – m41m32)

+ m24

(
∂m31

∂xi
m42 + m31

∂m42

∂xi

–
∂m41

∂xi
m32 – m41

∂m32

∂xi

)
. (37)

Additionally, it holds that

∂M14

∂xi

=
∂m21

∂xi
(m32m43 – m42m33)

+ m21

(
∂m32

∂xi
m43 + m32

∂m43

∂xi

–
∂m44

∂xi
m33 – m42

∂m32

∂xi

)

–
∂m22

∂xi
(m31m43 – m41m33)

– m22

(
∂m31

∂xi
m43 + m31

∂m43

∂xi

–
∂m33

∂xi
m33 – m41

∂m33

∂xi

)

+
∂m23

∂xi
(m31m42 – m41m32)

+ m23

(
∂m31

∂xi
m42 + m31

∂m42

∂xi

–
∂m41

∂xi
m32 – m41

∂m32

∂xi

)
. (38)

In a similar manner one obtains

∂M21

∂xi

=
∂m12

∂xi
(m33m44 – m43m34)

+ m12

(
∂m33

∂xi
m44 + m33

∂m44

∂xi

–
∂m43

∂xi
m33 – m43

∂m34

∂xi

)

–
∂m13

∂xi
(m32m44 – m42m34)

– m13

(
∂m32

∂xi
m44 + m32

∂m44

∂xi

–
∂m42

∂xi
m34 – m42

∂m34

∂xi

)

+
∂m14

∂xi
(m32m43 – m42m33)

+ m14

(
∂m32

∂xi
m43 + m32

∂m43

∂xi

–
∂m42

∂xi
m33 – m42

∂m33

∂xi

)
. (39)

Equivalently one has

∂M22

∂xi

=
∂m11

∂xi
(m33m44 – m43m34)

+ m11

(
∂m33

∂xi
m44 + m33

∂m44

∂xi

–
∂m43

∂xi
m34 – m43

∂m34

∂xi

)

–
∂m13

∂xi
(m31m44 – m41m24)

– m13

(
∂m31

∂xi
m44 + m31

∂m44

∂xi

–
∂m41

∂xi
m24 – m41

∂m24

∂xi

)

+
∂m14

∂xi
(m31m43 – m41m23)

+ m14

(
∂m31

∂xi
m43 + m31

∂m43

∂xi

–
∂m41

∂xi
m23 – m41

∂m23

∂xi

)
. (40)

Following this procedure one gets

∂M23

∂xi

=
∂m11

∂xi
(m32m44 – m42m34)

+ m11

(
∂m32

∂xi
m44 + m32

∂m44

∂xi
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–
∂m42

∂xi
m34 – m42

∂m34

∂xi

)

–
∂m12

∂xi
(m31m43 – m41m33)

– m12

(
∂m31

∂xi
m43 + m31

∂m43

∂xi

–
∂m41

∂xi
m33 – m41

∂m33

∂xi

)

+
∂m14

∂xi
(m31m42 – m41m32)

+ m14

(
∂m31

∂xi
m43 + m31

∂m43

∂xi

–
∂m41

∂xi
m32 – m41

∂m32

∂xi

)
. (41)

Additionally, it holds that

∂M24

∂xi

=
∂m11

∂xi
(m32m43 – m42m33)

+ m11

(
∂m32

∂xi
m43 + m32

∂m43

∂xi

–
∂m42

∂xi
m33 – m42

∂m33

∂xi

)

–
∂m12

∂xi
(m31m43 – m41m33)

– m12

(
∂m31

∂xi
m43 + m31

∂m43

∂xi

–
∂m41

∂xi
m33 – m41

∂m33

∂xi

)

+
∂m13

∂xi
(m31m42 – m41m22)

+ m13

(
∂m31

∂xi
m42 + m31

∂m42

∂xi

–
∂m41

∂xi
m22 – m41

∂m22

∂xi

)
. (42)

In this context one obtains

∂M31

∂xi
=

∂m12

∂xi
(m23m44 – m43m24)

+ m12

(
∂m23

∂xi
m44 + m23

∂m44

∂xi

–
∂m43

∂xi
m24 – m43

∂m24

∂xi

)

–
∂m13

∂xi
(m22m44 – m42m24)

– m13

(
∂m22

∂xi
m44 + m22

∂m44

∂xi

–
∂m42

∂xi
m24 – m42

∂m24

∂xi

)

+
∂m14

∂xi
(m22m43 – m42m23)

+ m14

(
∂m32

∂xi
m43 + m22

∂m43

∂xi

–
∂m42

∂xi
m23 – m42

∂m23

∂xi

)
. (43)

Additionally, one has

∂M32

∂xi
=

∂m11

∂xi
(m23m44 – m43m24)

+ m11

(
∂m23

∂xi
m44 + m23

∂m44

∂xi

–
∂m43

∂xi
m24 – m43

∂m24

∂xi

)

–
∂m13

∂xi
(m21m44 – m41m24)

– m13

(
∂m21

∂xi
m44 + m21

∂m44

∂xi

–
∂m41

∂xi
m24 – m41

∂m24

∂xi

)

+
∂m14

∂xi
(m12m43 – m41m23)

+ m14

(
∂m12

∂xi
m43 + m12

∂m43

∂xi

–
∂m41

∂xi
m23 – m41

∂m23

∂xi

)
. (44)

Furthermore, one has

∂M33

∂xi
=

∂m11

∂xi
(m22m44 – m42m24)

+ m11

(
∂m22

∂xi
m44 + m22

∂m44

∂xi

–
∂m42

∂xi
m24 – m42

∂m24

∂xi

)

–
∂m12

∂xi
(m21m44 – m41m24)

– m12

(
∂m21

∂xi
m44 + m21

∂m44

∂xi
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–
∂m41

∂xi
m24 – m41

∂m24

∂xi

)

+
∂m14

∂xi
(m41m22 – m21m42)

+ m14

(
∂m41

∂xi
m22 + m41

∂m22

∂xi

–
∂m21

∂xi
m42 – m21

∂m42

∂xi

)
. (45)

Continuing in this manner one gets

∂M34

∂xi
=

∂m11

∂xi
(m22m43 – m42m23)

+ m11

(
∂m22

∂xi
m43 + m22

∂m43

∂xi

–
∂m42

∂xi
m23 – m42

∂m23

∂xi

)

–
∂m12

∂xi
(m21m43 – m41m23)

– m12

(
∂m21

∂xi
m43 + m21

∂m43

∂xi

–
∂m41

∂xi
m23 – m41

∂m23

∂xi

)

+
∂m13

∂xi
(m21m42 – m41m22)

+ m13

(
∂m22

∂xi
m42 + m22

∂m42

∂xi

–
∂m41

∂xi
m22 – m41

∂m22

∂xi

)
. (46)

Besides, one has

∂M41

∂xi
=

∂m12

∂xi
(m22m34 – m33m24)

+ m12

(
∂m22

∂xi
m34 + m22

∂m34

∂xi

–
∂m33

∂xi
m24 – m33

∂m24

∂xi

)

–
∂m13

∂xi
(m22m34 – m32m24)

– m13

(
∂m22

∂xi
m34 + m22

∂m34

∂xi

–
∂m32

∂xi
m24 – m32

∂m24

∂xi

)

+
∂m14

∂xi
(m22m33 – m32m23)

+ m14

(
∂m22

∂xi
m33 + m22

∂m33

∂xi

–
∂m32

∂xi
m23 – m32

∂m23

∂xi

)
. (47)

Equivalently, one obtains

∂M42

∂xi
=

∂m11

∂xi
(m23m34 – m33m24)

+ m11

(
∂m23

∂xi
m34 + m23

∂m34

∂xi

–
∂m33

∂xi
m24 – m33

∂m24

∂xi

)

–
∂m13

∂xi
(m21m34 – m31m24)

– m13

(
∂m21

∂xi
m34 + m21

∂m34

∂xi

–
∂m31

∂xi
m24 – m31

∂m24

∂xi

)

+
∂m14

∂xi
(m21m33 – m31m23)

+ m14

(
∂m21

∂xi
m33 + m21

∂m33

∂xi

–
∂m31

∂xi
m23 – m31

∂m23

∂xi

)
. (48)

In a similar manner one gets

∂M43

∂xi
=

∂m11

∂xi
(m22m34 – m32m24)

+ m11

(
∂m22

∂xi
m34 + m22

∂m34

∂xi

–
∂m32

∂xi
m24 – m32

∂m24

∂xi

)

–
∂m12

∂xi
(m21m34 – m31m24)

– m12

(
∂m21

∂xi
m34 + m21

∂m34

∂xi

–
∂m31

∂xi
m24 – m31

∂m24

∂xi

)

+
∂m14

∂xi
(m21m32 – m31m22)

+ m14

(
∂m21

∂xi
m32 + m21

∂m32

∂xi

–
∂m31

∂xi
m22 – m31

∂m22

∂xi

)
. (49)
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Finally, one has that

∂M44

∂xi
=

∂m22

∂xi
(m22m33 – m32m23)

+ m11

(
∂m22

∂xi
m33 + m22

∂m33

∂xi

–
∂m32

∂xi
m23 – m32

∂m23

∂xi

)

–
∂m12

∂xi
(m22m33 – m31m23)

– m12

(
∂m22

∂xi
m33 + m23

∂m33

∂xi

–
∂m31

∂xi
m23 – m31

∂m23

∂xi

)

+
∂m13

∂xi
(m21m32 – m31m22)

+ m13

(
∂m21

∂xi
m32 + m21

∂m32

∂xi

–
∂m31

∂xi
m22 – m31

∂m22

∂xi

)
. (50)

About the partial derivatives of the determinant det M
one has for i = 1, 2, . . . , 8

∂ det M
∂xi

=
∂m11

∂xi
M11 + m11

∂M11

∂xi
–

∂m12

∂xi
M12

– m12
∂M12

∂xi
+

∂m13

∂xi
M13

+ m13
∂M13

∂xi
–

∂m14

∂xi
M14 – m14

∂M14

∂xi
. (51)

Next, the derivatives of the elements of the inertia matrix
M are computed.

It holds that m11 = m(sin2(x3) cos2(x7) + sin2(x7))L2 +
2mLx3 cos(x7) sin(x3) + (m + M)x2

3 + J . Thus one has:

∂m11

∂x1
= 0,

∂m11

∂x2
= 0,

∂m11

∂x3
= 2mL cos(x7) sin(x5) + 2(m + M)x3,

∂m11

∂x4
= 0,

∂m11

∂x5
= m

(
2 sin(x5) cos(x5) cos2(x7)

)
L2

+ 2mLx3 cos(x7) cos(x5),

∂m11

∂x6
= 0,

∂m11

∂x7
= m

(
–2 sin2(x5) cos(x7) sin(x7)

+ 2 sin(x7) cos(x7)
)
L2

– 2mLx3 sin(x7) sin(x5),
∂m11

∂x8
= 0.

Besides, it holds that m12 = m21 = –mL sin(x7), thus
∂m12
∂xi

= ∂m21
∂xi

= 0 if i = 1, 2, . . . , 8 and i�=7, ∂m12
∂x7

= ∂m21
∂x7

=
–mL cos(x7).

Moreover, it holds that m13 = m31 = –mL cos(x5) ×
cos(x7) sin(x7), thus ∂m13

∂xi
= ∂m31

∂xi
= 0 if i = 1, 2, . . . , 8 and

i�=5, 7, ∂m13
∂x5

= ∂m31
∂x5

= mL2 sin(x5) cos(x7) sin(x7), ∂m13
∂x7

=
∂m31
∂x7

= –mL2 cos(x5)[– sin2(x7) + cos2(x7)].
Additionally, it holds that m14 = m41 = mL(x3 cos(x7) +

L sin(x5)), thus ∂m14
∂xi

= ∂m41
∂xi

= 0 for i = 1, 2, . . . , 8. and i�=3, 5,
7, ∂m14

∂x3
= ∂m41

∂x3
= mL cos(x7) = mL cos(x7), ∂m14

∂x5
= ∂m41

∂x5
=

mL cos(x7) = mL2 cos(x5), ∂m14
∂x7

= ∂m41
∂x7

= mL cos(x7) =
–mLx3 sin(x7).

Furthermore, it holds that m23 = m32 = mL cos(x5) ×
cos(x7), thus ∂m23

∂xi
= ∂m23

∂xi
= 0 for i = 1, 2, . . . , 8. and i�=5, 7,

∂m23
∂xi

= ∂m32
∂xi

= –mL sin(x5) cos(x7), ∂m23
∂x7

= ∂m32
∂x7

=
–mL cos(x5) sin(x7).

Additionally, it holds that m34 = m43 = –mL sin(x5) ×
cos(x7), thus ∂m34

∂xi
= ∂m43

∂xi
= 0, for i = 1, 2, . . . , 8. and i�=5, 7,

∂m34
∂x5

= ∂m43
∂x5

= –mL cos(x5) cos(x7), ∂m34
∂x7

= ∂m43
∂x7

=
mL sin(x5) sin(x7).

Finally, about the computation of the partial derivatives
of the Coriolis forces vector one has

C(q, q̇) =

⎛
⎜⎜⎝

c11x2 + c12x4 + c13x6 + c14x8
c21x2 + c22x4 + c23x6 + c24x8
c31x2 + c22x4 + c23x6 + c24x8
c41x2 + c42x4 + c43x6 + c44x8

⎞
⎟⎟⎠ . (52)

It holds that for i = 1.3, 5, 7

∂c1

∂xi
=

∂c11

∂xi
x2 +

∂c12

∂xi
x4 +

∂c13

∂xi
x6 +

∂c14

∂xi
x8 (53)

and also

∂c1

∂x2
=

∂c11

∂x2
x2 + c11 +

∂c12

∂x2
x4 +

∂c13

∂x2
x6 +

∂c14

∂x2
x8, (54)

∂c1

∂x4
=

∂c11

∂x4
x2 +

∂c12

∂x4
x4 + c12 +

∂c13

∂x4
x6 +

∂c14

∂x4
x8, (55)

∂c1

∂x6
=

∂c11

∂x6
x2 +

∂c12

∂x6
x4 +

∂c13

∂x6
x6 + c13 +

∂c14

∂x6
x8, (56)

∂c1

∂x8
=

∂c11

∂x8
x2 +

∂c12

∂x8
x4 +

∂c13

∂x8
x6 +

∂c14

∂x8
x8 + c14. (57)
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Equivalently it holds that for i = 1.3, 5, 7

∂c2

∂xi
=

∂c21

∂xi
x2 +

∂c22

∂xi
x4 +

∂c23

∂xi
x6 +

∂c24

∂xi
x8 (58)

and also

∂c2

∂x2
=

∂c21

∂x2
x2 + c21 +

∂c22

∂x2
x4 +

∂c23

∂x2
x6 +

∂c24

∂x2
x8, (59)

∂c2

∂x4
=

∂c21

∂x4
x2 +

∂c22

∂x4
x4 + c22 +

∂c23

∂x4
x6 +

∂c24

∂x4
x82, (60)

∂c2

∂x6
=

∂c1

∂x6
x2 +

∂c22

∂x6
x4 +

∂c23

∂x6
x6 + c23 +

∂c24

∂x6
x8, (61)

∂c2

∂x8
=

∂c21

∂x8
x2 +

∂c22

∂x8
x4 +

∂c23

∂x8
x6 +

∂c24

∂x8
x8 + c24. (62)

Similarly, it holds that for i = 1.3, 5, 7

∂c3

∂xi
=

∂c31

∂xi
x2 +

∂c32

∂xi
x4 +

∂c33

∂xi
x6 +

∂c34

∂xi
x8 (63)

and also

∂c3

∂x2
=

∂c31

∂x2
x2 + c31 +

∂c32

∂x2
x4 +

∂c33

∂x2
x6 +

∂c34

∂x2
x8, (64)

∂c3

∂x4
=

∂c31

∂x4
x2 +

∂c32

∂x4
x4 + c32 +

∂c33

∂x4
x6 +

∂c34

∂x4
x8, (65)

∂c3

∂x6
=

∂c3

∂x6
x2 +

∂c32

∂x6
x4 +

∂c33

∂x6
x6 + c33 +

∂c34

∂x6
x8, (66)

∂c3

∂x8
=

∂c31

∂x8
x2 +

∂c32

∂x8
x4 +

∂c33

∂x8
x6 +

∂c34

∂x8
x8 + c34. (67)

Finally, it holds that for i = 1.3, 5, 7

∂c4

∂xi
=

∂c41

∂xi
x2 +

∂c42

∂xi
x4 +

∂c43

∂xi
x6 +

∂c44

∂xi
x8 (68)

and also

∂c4

∂x2
=

∂c41

∂x2
x2 + c41 +

∂c42

∂x2
x4 +

∂c43

∂x2
x6 +

∂c44

∂x2
x8, (69)

∂c4

∂x4
=

∂c41

∂x4
x2 +

∂c42

∂x4
x4 + c42 +

∂c43

∂x4
x6 +

∂c44

∂x4
x8, (70)

∂c4

∂x6
=

∂c4

∂x6
x2 +

∂c42

∂x6
x4 +

∂c43

∂x6
x6 + c43 +

∂c44

∂x6
x8, (71)

∂c4

∂x8
=

∂c41

∂x8
x2 +

∂c42

∂x8
x4 +

∂c43

∂x8
x6 +

∂c44

∂x8
x8 + c44. (72)

Next, the following partial derivatives of the elements cij
i = 1, 2, 3, 4 and j = 1, 2, 3, 4 of the Coriolis matrix are com-
puted. It holds

c11 = (m + M)x3x4 + mLx3 cos(x5) cos(x7)x6

– mLx3 sin(x5) sin(x7)x8

+ mL sin(x5) sin(x7)x4

+ mL2 sin(x5) cos(x5) cos2(x7)x6

+ mL2 cos2(x5) sin(x7) cos(x7)x8. (73)

Thus, ∂c11
∂x1

= 0, ∂c11
∂x2

= 0, ∂c11
∂x3

= (m + M)x4 +
mL cos(x5) cos(x7)x6 – mL sin(x5) sin(x7)x8, ∂c11

∂x4
=

(m + M)x3 + mL sin(x5) sin(x7), ∂c11
∂x5

= –mLx3 sin(x5) ×
cos(x7)x6 – mLx3 cos(x5) sin(x7)x8 + mL cos(x5) sin(x7)x4 +
mL2[cos2(x5) – sin2(x5)] cos2(x7)x6 – mL2[–2 cos(x5) ×
sin(x5) sin(x7) cos(x7)]x8, ∂c11

∂x6
= mLx3 cos(x5) cos(x7) +

mL2 sin(x5) cos(x5) cos2(x7), ∂c11
∂x7

= –mLx3 cos(x5) ×
sin(x7)x6 –mLx3 sin(x5) ·cos(x7)x8 +–mL sin(x5) cos(x7)x4 +
mL2 sin(x5) cos(x5)[–2 cos(x7) sin(x7)]x6 – mL2 cos2(x5) ×
[cos2(x7) – sin2(x7)]x8, ∂c11

∂x8
= –mLx3 sin(x5) sin(x7) +

mL2 cos2(x5) sin(x7) cos(x7).
Additionally, it holds that

c12 = mL sin(x5) cos(x7)x2 + (m + M)x3x2. (74)

Thus, ∂c12
∂x7

= 0, ∂c11
∂x2

= mL sin(x5) cos(x7) + (m + M)x3,
∂c12
∂x3

= (m + M)x2, ∂c12
∂x4

= 0, ∂c12
∂x5

= mL cos(x5) cos(x7)x2,
∂c12
∂x6

= 0, ∂c12
∂x7

= –mL sin(x5) sin(x7)x2, ∂c11
∂x8

= 0.
Moreover, it holds that

c13 = mLx3 cos(x5) cos(x7)x2

+ mL2 sin(x5) sin(x7) cos(x7)x6

+ mL2 sin(x5) cos(x5) cos2(x7)x2

+ mL2 cos(x5) sin2(x7)x8. (75)

Thus, ∂c13
∂x1

= 0, ∂c13
∂x1

= mLx3 cos(x5) cos(x7) +
mL2 sin(x5) cos(x5) cos2(x7), ∂c13

∂x3
= mL cos(x5) · cos(x7)x2,

∂c13
∂x4

= 0, ∂c13
∂x5

= –mLx3 sin(x5) cos(x7)x2 – mL2 cos(x5) ×
sin(x7) cos(x7)x6 + mL2[cos2(x5) – sin2(x5)] cos2(x7)x2 –
mL2 sin(x5) sin2(x7)x8, ∂c13

∂x6
= mL2 sin(x5) sin(x7) cos(x7),

∂c13
∂x7

= –mLx3 cos(x5) · sin(x7)x2 + mL2 sin(x5) cos(x5) ·
[–2 cos(x7) sin(x7)]x2 + mL2 cos(x5)[2 sin(x7) cos(x7)]x8,
∂c13
∂x8

= mL2 cos(x5) · sin2(x7).
Additionally, it holds that

c14 = –mLx3 sin(x5) sin(x7)x2 – mLx3 sin(x7)x8

+ mL2 cos2(x5) sin(x7) cos(x7)x2

+ mL2 cos(x5) sin2(x7)x6. (76)

Thus, one obtains ∂c14
∂x1

= 0, ∂c14
∂x2

= –mLx3 sin(x5) sin(x7) +
mL2 cos2(x5) sin(x7) cos(x7), ∂c14

∂x3
= –mL · sin(x5) sin(x7)x2 –
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mL sin(x7)x8, ∂c14
∂x4

= 0, ∂c14
∂x5

= –mLx3 · cos(x5) sin(x7)x2 +
mL2[–2 cos(x5) sin(x5)] · sin(x7) cos(x7)x2 – mL2 sin(x5) ×
sin2(x7)x6, ∂c14

∂x6
= mL2 cos(x5) sin2(x7), ∂c14

∂x7
= –mLx3 ×

sin(x5) cos(x7)x2 – mLx3 cos(x7)x8 – mL2 cos2(x5)[cos2(x7) –
sin2(x7)]x2 + mL2 cos(x5)[2 sin(x7) cos(x7)]x6, ∂c14

∂x8
=

–mLx3 sin(x7).
Additionally, it holds that

c21 = – (m + M)x2x3 – mL sin(x5) cos(x7)x2

– mL cos(x7)x8. (77)

Thus, ∂c21
∂x1

= 0, ∂c21
∂x2

= –(m + M)x3 – mL sin(x7) cos(x7),
∂c21
∂x3

= –(m + M)x2, ∂c21
∂x4

= 0, ∂c21
∂x5

= –mL cos(x5) cos(x7)x2,
∂c21
∂x6

= 0, ∂c21
∂x7

= mL sin(x5) sin(x7)x2 + mL sin(x7)x8, ∂c21
∂x8

=
–mL cos(x7).

Furthermore, it holds that c22 = 0. Thus, one obtains
∂c22
∂xi

= 0, for i = 1, 2, . . . , 8.
Moreover, it holds that

c23 = –mL
(
sin(x5) cos(x7)x6 + cos(x5) sin(x7)x8

)
. (78)

Thus, ∂c23
∂x1

= 0, ∂c23
∂x2

= 0, ∂c23
∂x3

= 0, ∂c23
∂x4

= 0, ∂c23
∂x5

=
–mL(cos(x5) cos(x7)x6 – sin(x5) sin(x7)x8), ∂c23

∂x6
= –mL ×

sin(x5) cos(x7), ∂c23
∂x7

= –mL(– sin(x5) sin(x7)x6 + cos(x5) ×
cos(x7)x8), ∂c23

∂x8
= –mL cos(x5) sin(x7).

Furthermore, it holds that

c24 = –mL
(
cos(x5) sin(x7)x6 + sin(x5) cos(x7)x8

+ cos(x7)x2
)
. (79)

Thus, one obtains ∂c24
∂x1

= 0, ∂c24
∂x2

= –mL cos(x7), ∂c24
∂x3

= 0,
∂c24
∂x4

= 0, ∂c24
∂x5

= –mL(– sin(x5) sin(x7)x6 + cos(x5) cos(x7)x8),
∂c24
∂x6

= –mL cos(x5) sin(x7), ∂c24
∂x7

= –mL(cos(x5) cos(x7)x6 –
sin(x5) sin(x7)x8) – sin(x7)x2, ∂c24

∂x8
= –mL sin(x5) cos(x7).

Additionally, one has that

c31 = –mL cos(x5) cos(x7)
(
x3 + L sin(x5) cos(x7)

)
x2

– mL2 cos(x5) cos2(x7)x8. (80)

Thus, ∂c31
∂x1

= 0, ∂c31
∂x2

= –mL cos(x5) cos(x7)(x3 + L sin(x5) ×
cos(x7)), ∂c31

∂x3
= –mL cos(x5) cos(x7)x2, ∂c31

∂x4
= 0, ∂c31

∂x5
=

–mL(– sin(x5)) cos(x7)(x3 + L sin(x5) cos(x7))x2 + mL ×
cos(x5) cos(x7)(L cos(x5) cos(x7))x2 + mL2 sin(x5) cos(x7)x8,
∂c31
∂x6

= 0, ∂c31
∂x7

= mL cos(x5) sin(x7)(x3 + L sin(x5) cos(x7))x2 +
mL cos(x5) cos(x7) · (L sin(x5) sin(x7)) + mL2 cos(x5) ×
(2 cos(x7) sin(x7))x8, ∂c31

∂x8
= –mL2 cos(x5) cos2(x7).

Furthermore, it holds that c32 = 0. Thus, one obtains
∂c32
∂xi

= 0, for i = 1, 2, . . . , 8.

Moreover, it holds that

c33 = –mL2 sin(x7) cos(x7)x8. (81)

Thus, ∂c33
∂x1

= 0, ∂c33
∂x2

= 0, ∂c33
∂x3

= 0, ∂c33
∂x4

= 0, ∂c33
∂x5

= 0, ∂c33
∂x6

=
0, ∂c33

∂x7
= –mL2[cos2(x7) – sin2(x7)]x8, ∂c33

∂x8
= –mL2 sin(x7) ×

cos(x7).
Additionally, it holds that

c34 = –mL2(cos(x5) cos2(x7)x2 + sin(x5) cos(x7)x6
)
. (82)

Thus, ∂c34
∂x1

= 0, ∂c34
∂x2

= –mL2 cos(x5) cos2(x7), ∂c34
∂x3

= 0,
∂c34
∂x4

= 0, ∂c34
∂x5

= –mL2(– sin(x5) cos2(x7)x2 – cos(x5) ×
cos(x7)x6), ∂c34

∂x6
= –mL2(sin(x5) cos(x7)), ∂c37

∂x7
=

–mL2(–2 cos(x5) cos(x7) sin(x7)x2 – sin(x5) sin(x7)x6), ∂c34
∂x8

=
0.

Furthermore, one has that

c41 = mL
(
m sin(x5) sin(x7)

– L cos2(x5) sin(x7) cos(x7)
)
x2

+ mL2 cos(x5) cos2(x7)x2 + mL cos(x7)x4. (83)

Thus, ∂c41
∂x1

= 0, ∂c41
∂x1

= mL(m sin(x5) sin(x7) – L cos2(x5) ×
sin(x7) cos(x7)) + mL2 cos(x5) cos( x7), ∂c41

∂x3
= 0, ∂c41

∂x4
=

mL cos(x7), ∂c41
∂x5

= mL(m cos(x5) sin(x7) – 2L cos(x5) ×
sin(x5) sin(x7) cos(x7))x2 – mL2 · sin(x5) cos2(x7)x2, ∂c41

∂x6
= 0,

∂c41
∂x7

= mL(m sin(x5) cos(x7) – L cos2(x5))[cos2(x7) –
sin2(x7)]x2 – 2mL2 cos(x5) · cos(x7) sin(x7)x2 – mL sin(x7)x4,
∂c41
∂x8

= 0.
Moreover, it holds that

c42 = mL cos(x7)x2. (84)

Thus, ∂c42
∂x1

= 0, ∂c42
∂x2

= mL cos(x7), ∂c42
∂x3

= 0, ∂c42
∂x4

= 0, ∂c42
∂x5

=
0, ∂c42

∂x6
= 0, ∂c42

∂x7
= –mL sin(x7)x2, ∂c42

∂x8
= 0.

Furthermore, it holds that

c43 = mL2(cos(x5) cos2(x7)x2 + sin(x5) cos(x7)x6
)
. (85)

Thus, ∂c43
∂x1

= 0, ∂c43
∂x2

= mL2 cos(x5) cos2(x7), ∂c43
∂x3

= 0, ∂c43
∂x4

=
0, ∂c43

∂x5
= mL2(– sin(x5) cos2(x7)x2 +cos(x5) cos(x7)x6), ∂c43

∂x6
=

mL2(sin(x5) cos(x7)), ∂c43
∂x7

= mL2(–2 cos(x5) cos(x7) sin(x7) –
sin(x5) sin(x7)x6), ∂c43

∂x8
= 0.

Finally, it holds that c44 = 0. Thus, one obtains ∂c44
∂xi

= 0,
for i = 1, 2, . . . , 8.

In a similar manner one computes the partial derivatives
of the elements of the gravitational forces matrix. It holds
that g11 = 0 that one obtains ∂g11

∂xi
= 0, for i = 1, 2, . . . , 8.
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Additionally, it holds that g21 = 0 that one obtains ∂g21
∂xi

=
0, for i = 1, 2, . . . , 8.

Moreover it holds that

g31 = gmL sin(x5) sin(x7). (86)

Thus, one obtains ∂g31
∂x1

= 0, ∂g31
∂x2

= 0, ∂g31
∂x3

= 0, ∂g31
∂x4

= 0,
∂g31
∂x5

= gmL cos(x5) sin(x7), ∂g31
∂x6

= 0, ∂g31
∂x7

= gmL sin(x5) ×
cos(x7), ∂g31

∂x8
= 0.

Finally it holds that

g41 = gL cos(x5) sin(x7). (87)

Thus, one obtains ∂g41
∂x1

= 0, ∂g41
∂x2

= 0, ∂g41
∂x3

= 0, ∂g41
∂x4

= 0,
∂g41
∂x5

= –gmL sin(x5) sin(x7), ∂g41
∂x6

= 0, ∂g41
∂x7

= gmL cos(x5) ×
cos(x7), ∂g41

∂x8
= 0.

4 Design of an H-infinity nonlinear feedback
controller

4.1 Equivalent linearized dynamics of the tower crane
After linearization around its current operating point, the
dynamic model for the tower crane is written as

ẋ = Ax + Bu + d1. (88)

Parameter d1 stands for the linearization error in the
tower crane’s model that was given previously in Eq. (17).
The reference setpoints for the state vector of the afore-
mentioned dynamic model are denoted by xd = [xd

1 , . . . , xd
8].

Tracking of this trajectory is achieved after applying the
control input u∗. At every time instant the control input
u∗ is assumed to differ from the control input u appearing
in Eq. (88) by an amount equal to �u, that is u∗ = u + �u

ẋd = Axd + Bu∗ + d2. (89)

The dynamics of the controlled system described in
Eq. (88) can be also written as

ẋ = Ax + Bu + Bu∗ – Bu∗ + d1 (90)

and by denoting d3 = –Bu∗ +d1 as an aggregate disturbance
term one obtains

ẋ = Ax + Bu + Bu∗ + d3. (91)

By subtracting Eq. (89) from Eq. (91) one has

ẋ – ẋd = A(x – xd) + Bu + d3 – d2. (92)

By denoting the tracking error as e = x – xd and the ag-
gregate disturbance term as d̃ = d3 – d2, the tracking error
dynamics becomes

ė = Ae + Bu + d̃. (93)

The above linearized form of the tower crane’s model
can be efficiently controlled after applying an H-infinity
feedback control scheme.

4.2 The nonlinear H-infinity control
The initial nonlinear model of the tower crane is in the
form

ẋ = f (x, u)x ∈ Rn, u ∈ Rm. (94)

Linearization of the model of the tower crane is per-
formed at each iteration of the control algorithm around
its present operating point (x∗, u∗) = (x(t), u(t – Ts)). The
linearized equivalent of the system is described by

ẋ = Ax + Bu + Ld̃ x ∈ Rn, u ∈ Rm, d̃ ∈ Rq, (95)

where matrices A and B are obtained from the computa-
tion of the previously defined Jacobians and vector d̃ de-
notes disturbance terms due to linearization errors. The
problem of disturbance rejection for the linearized model
that is described by

ẋ = Ax + Bu + Ld̃,

y = Cx,
(96)

where x ∈ Rn, u ∈ Rm, d̃ ∈ Rq and y ∈ Rp, cannot be handled
efficiently if the classical LQR control scheme is applied.
This is because of the existence of the perturbation term
d̃. The disturbance term d̃ apart from modeling (paramet-
ric) uncertainty and external perturbation terms can also
represent noise terms of any distribution.

In the H∞ control approach, a feedback control scheme
is designed for trajectory tracking by the system’s state vec-
tor and simultaneous disturbance rejection, considering
that the disturbance affects the system in the worst possi-
ble manner. The disturbances’ effects are incorporated in
the following quadratic cost function:

J(t) =
1
2

∫ T

0

[
yT (t)y(t) + ruT (t)u(t) – ρ2d̃T (t)d̃(t)

]
dt,

r,ρ > 0. (97)

The significance of the negative sign in the cost func-
tion’s term that is associated with the perturbation variable
d̃(t) is that the disturbance tries to maximize the cost func-
tion J(t) while the control signal u(t) tries to minimize it.
The physical meaning of the relation given above is that the
control signal and the disturbances compete to each other
within a min-max differential game. This problem of min-
max optimization can be written as minumaxd̃J(u, d̃).

The objective of the optimization procedure is to com-
pute a control signal u(t) which can compensate for the
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Figure 2 Diagram of the control scheme for the 4-DOF underactuated tower crane

worst possible disturbance, that is externally imposed to
the tower crane. However, the solution to the min-max op-
timization problem is directly related to the value of the
parameter ρ . This means that there is an upper bound in
the disturbances magnitude that can be annihilated by the
control signal.

4.3 Computation of the feedback control gains
For the linearized system given by Eq. (96) the cost func-
tion of Eq. (97) is defined, where coefficient r determines
the penalization of the control input and weight coeffi-
cient ρ determines the reward of the disturbances’ ef-
fects. It is assumed that (i) The energy that is trans-
ferred from the disturbances signal d̃(t) is bounded, that
is

∫ ∞
0 d̃T (t)d̃(t) dt < ∞, (ii) matrices [A, B] and [A, L] are

stabilizable, (iii) matrix [A, C] is detectable. In the case of a
tracking problem the optimal feedback control law is given
by

u(t) = –Ke(t) (98)

with e = x – xd to be the tracking error, and K = 1
r BT P

where P is a positive definite symmetric matrix. As it will
be proven in Sect. 5, matrix P is obtained from the solution
of the Riccati equation

AT P + PA + Q – P
(

2
r

BBT –
1
ρ2 LLT

)
P = 0, (99)

where Q is a positive semi-definite symmetric matrix. The
worst case disturbance is given by

d̃(t) =
1
ρ2 LT Pe(t). (100)

The solution of the H-infinity feedback control problem
for the tower crane and the computation of the worst case
disturbance that the related controller can sustain, comes
from superposition of Bellman’s optimality principle when
considering that the robotic crane is affected by two sepa-
rate inputs: the control input u and the cumulative distur-
bance input d̃(t). Solving the optimal control problem for
u, that is for the minimum variation (optimal) control in-
put that achieves elimination of the state vector’s tracking
error, gives u = – 1

r BT Pe. Equivalently, solving the optimal
control problem for d̃, that is for the worst case disturbance
that the control loop can sustain gives d̃ = 1

ρ2 LT Pe.
The diagram of the considered control loop for the tower

crane is depicted in Fig. 2.

5 Lyapunov stability analysis
5.1 Stability proof
Through Lyapunov stability analysis it will be shown that
the proposed nonlinear control scheme assures H∞ track-
ing performance for the underactuated tower crane, and
that in case of bounded disturbance terms asymptotic con-
vergence to the reference setpoints is achieved. The track-
ing error dynamics for the tower crane is written in the
form

ė = Ae + Bu + Ld̃, (101)

where in the tower crane’s case L =∈ R8×8 to be the distur-
bance inputs gain matrix. Variable d̃ denotes model un-
certainties and external disturbances of the tower crane’s
model. The following Lyapunov equation is considered

V =
1
2

eT Pe, (102)
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where e = x–xd is the tracking error. By differentiating with
respect to time one obtains

V̇ =
1
2

ėT Pe +
1
2

ePė ⇒

V̇ =
1
2

[Ae + Bu + Ld̃]T Pe

+
1
2

eT P[Ae + Bu + Ld̃] ⇒ (103)

V̇ =
1
2
[
eT AT + uT BT + d̃T LT]

Pe

+
1
2

eT P[Ae + Bu + Ld̃] ⇒ (104)

V̇ =
1
2

eT AT Pe +
1
2

uT BT Pe +
1
2

d̃T LT Pe

+
1
2

eT PAe +
1
2

eT PBu +
1
2

eT PLd̃. (105)

The previous equation is rewritten as

V̇ =
1
2

eT(
AT P + PA

)
e +

(
1
2

uT BT Pe +
1
2

eT PBu
)

+
(

1
2

d̃T LT Pe +
1
2

eT PLd̃
)

. (106)

Assumption For given positive definite matrix Q and co-
efficients r and ρ there exists a positive definite matrix P,
which is the solution of the following matrix equation

AT P + PA = –Q + P
(

2
r

BBT –
1
ρ2 LLT

)
P. (107)

Moreover, the following feedback control law is applied
to the system

u = –
1
r

BT Pe. (108)

By substituting Eq. (107) and Eq. (108) one obtains

V̇ =
1
2

eT
[

–Q + P
(

2
r

BBT –
1
ρ2 LLT

)
P
]

e

+ eT PB
(

–
1
r

BT Pe
)

+ eT PLd̃ ⇒ (109)

V̇ = –
1
2

eT Qe +
1
r

eT PBBT Pe –
1

2ρ2 eT PLLT Pe

–
1
r

eT PBBT Pe + eT PLd̃, (110)

which after intermediate operations gives

V̇ = –
1
2

eT Qe –
1

2ρ2 eT PLLT Pe + eT PLd̃ (111)

or, equivalently

V̇ = –
1
2

eT Qe –
1

2ρ2 eT PLLT Pe

+
1
2

eT PLd̃ +
1
2

d̃T LT Pe. (112)

Lemma The following inequality holds

1
2

eT Ld̃ +
1
2

d̃LT Pe –
1

2ρ2 eT PLLT Pe ≤ 1
2
ρ2d̃T d̃. (113)

Proof The binomial (ρα – 1
ρ

b)2 is considered. Expanding
the left part of the above inequality one gets

ρ2a2 +
1
ρ2 b2 – 2ab ≥ 0 ⇒

1
2
ρ2a2 +

1
2ρ2 b2 – ab ≥ 0 ⇒

ab –
1

2ρ2 b2 ≤ 1
2
ρ2a2 ⇒

1
2

ab +
1
2

ab –
1

2ρ2 b2 ≤ 1
2
ρ2a2.

(114)

The following substitutions are carried out: a = d̃ and
b = eT PL and the previous relation becomes

1
2

d̃T LT Pe +
1
2

eT PLd̃ –
1

2ρ2 eT PLLT Pe≤1
2
ρ2d̃T d̃. (115)

Equation (115) is substituted in Eq. (112) and the in-
equality is enforced, thus giving

V̇ ≤ –
1
2

eT Qe +
1
2
ρ2d̃T d̃. (116)

Equation (116) shows that the H∞ tracking performance
criterion is satisfied. The integration of V̇ from 0 to T gives

∫ T

0
V̇ (t) dt

≤ –
1
2

∫ T

0
‖e‖2

Q dt +
1
2
ρ2

∫ T

0
‖d̃‖2 dt ⇒

2V (T) +
∫ T

0
‖e‖2

Q dt

≤ 2V (0) + ρ2
∫ T

0
‖d̃‖2 dt.

(117)

Moreover, if there exists a positive constant Md > 0 such
that

∫ ∞

0
‖d̃‖2 dt ≤ Md (118)
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then one gets

∫ ∞

0
‖e‖2

Q dt ≤ 2V (0) + ρ2Md. (119)

Thus, the integral
∫ ∞

0 ‖e‖2
Q dt is bounded. Moreover,

V (T) is bounded and from the definition of the Lyapunov
function V in Eq. (102) it becomes clear that e(t) will be
also bounded since e(t) ∈ 
e = {e|eT Pe ≤ 2V (0) + ρ2Md}.
According to the above and with the use of Barbalat’s
Lemma one obtains limt→∞ e(t) = 0.

After following the stages of the stability proof one ar-
rives at Eq. (116) which shows that the H-infinity tracking
performance criterion holds. By selecting the attenuation
coefficient ρ to be sufficiently small and in particular to sat-
isfy ρ2 < ‖e‖2

Q/‖d̃‖2 one has that the first derivative of the
Lyapunov function is upper bounded by 0. This condition
holds at each sampling instance and consequently global
stability for the control loop can be concluded. �

5.2 Robust state estimation with the use of the H∞ Kalman
filter

The control loop has to be implemented with the use of
information provided by a small number of sensors and by
processing only a small number of state variables. To re-
construct the missing information about the state vector
of the tower crane it is proposed to use a filtering scheme
and based on it to apply state estimation-based control
[1, 36]. By denoting as A(k), B(k) and C(k) the discrete-
time equivalents of matrices A, B and C of the linearized
state-space model of the system, the recursion of the H∞
Kalman Filter for the model of the tower crane, can be for-
mulated in terms of a measurement update and a time up-
date part.

Measurement update:

D(k) =
[
I – θW (k)P–(k) + CT (k)R(k)–1C(k)P–(k)

]–1,

K(k) = P–(k)D(k)CT (k)R(k)–1, (120)

x̂(k) = x̂–(k) + K(k)
[
y(k) – Cx̂–(k)

]
.

Time update:

x̂–(k + 1) = A(k)x(k) + B(k)u(k),

P–(k + 1) = A(k)P–(k)D(k)AT (k) + Q(k),
(121)

where it is assumed that parameter θ is sufficiently small
to assure that the covariance matrix P–(k)–1 – θW (k) +
CT (k)R(k)–1C(k) will be positive definite. When θ = 0 the
H∞ Kalman Filter becomes equivalent to the standard
Kalman Filter. One can measure only a part of the state
vector of the crane, for instance state variables x1, x3, x5,

and x7 and can estimate through filtering the rest of the
state vector elements (rate of change of φ, η, δ1 and δ2).
Moreover, the proposed Kalman filtering method can be
used for sensor fusion purposes.

6 Simulation tests
The global stability properties of the control method and
the elimination of the state vector’s tracking error which
were previously proven through Lyapunov analysis are fur-
ther confirmed through simulation experiments. To com-
pute the stabilizing feedback gains of the controller, the al-
gebraic Riccati equation of Eq. (107) had to be repetitively
solved at each iteration of the control algorithm. The pa-
rameters of the dynamic model of the tower crane which
have been used in the simulation experiments were ac-
cording to [2, 3]. All parameters and variables of the crane’s
model are measured in SI units. The obtained results are
depicted in Fig. 3 to Fig. 18. The real values of the state
variables of the tower crane are printed in blue, their es-
timates which are provided by the H-infinity Kalman Fil-
ter are printed in green colour while the associated set-
points are printed in red. The performance of the non-
linear optimal control method was very satisfactory. Actu-
ally, through all test cases it has been shown that the con-
trol method can achieve fast and accurate tracking of ref-
erence trajectories (setpoints) under moderate variations
of the control inputs. The simulation tests come to con-
firm that the control method has global (and not local)
stability properties. Under the nonlinear optimal control
method the state variables of the tower crane can track pre-
cisely setpoints with fast and abrupt changes. Moreover,
the convergence to these setpoints is independent from
initial conditions.

Regarding the selection of values for the controller gains
it can be noted that parameters r, ρ and Q which appear
in the method’s algebraic Riccati equations are assigned
offline constant values, where the gains vector K is up-
dated at each sampling instance, based on the positive def-
inite and symmetric matrix P which is the solution of the
method’s algebraic Riccati equation. The tracking accuracy
and the transient performance of the control scheme de-
pends on the values of coefficients r, ρ and on the values
of the elements of the diagonal matrix Q. Actually, for rela-
tively small values of r one achieves elimination of the state
vector’s tracking error one. Moreover, for relatively high
values of the diagonal elements of matrix Q one achieves
fast convergence the state variables’ reference trajectories,
Finally, the smallest value of the attenuation coefficient ρ

that results into a valid solution of the method’s Riccati
equation in the form of the positive definite and symmet-
ric matrix P, it the one that provides the control loop with
maximum robustness.

Comparing to past attempts for solving the H-infinity
control problem for nonlinear dynamical systems, the ar-
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Figure 3 Tracking of setpoint 1 for the tower crane (a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue
line: real value, green line: estimated value), (b) convergence of state variables x5 to x8 to their reference setpoints

Figure 4 Tracking of setpoint 1 for the tower crane (a) control inputs u1, u2 applied to crane, (b) tracking error variables e1, e3, e5, e7 of the tower
crane

ticle’s control approach is substantially different [16]. Pre-
ceding results on the use of H-infinity control to nonlin-
ear dynamical systems were limited to the case of affine-

in-the-input systems with drift-only dynamics and con-
sidered that the control inputs gain matrix is not depen-
dent on the values of the system’s state vector. Moreover, in
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Figure 5 Tracking of setpoint 2 for the tower crane (a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue
line: real value, green line: estimated value), (b) convergence of state variables x5 to x8 to their reference setpoints

Figure 6 Tracking of setpoint 2 for the tower crane (a) control inputs u1, u2 applied to crane, (b) tracking error variables e1, e3, e5, e7 of the tower
crane

these approaches the linearization was performed around
points of the desirable trajectory whereas in the present ar-
ticle’s control method the linearization points are related

with the value of the state vector at each sampling instant
as well as with the last sampled value of the control inputs
vector. The Riccati equation which has been proposed for
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Figure 7 Tracking of setpoint 3 for the tower crane (a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue
line: real value, green line: estimated value), (b) convergence of state variables x5 to x8 to their reference setpoints

Figure 8 Tracking of setpoint 3 for the tower crane (a) control inputs u1, u2 applied to crane, (b) tracking error variables e1, e3, e5, e7 of the tower
crane

computing the feedback gains of the controller is novel, so
is the presented global stability proof through Lyapunov
analysis.

The proposed H-infinity (optimal) control method for
the robotic tower crane exhibits several advantages when
compared against other linear or nonlinear control

schemes [16]. For instance: (i) In contrast to global
linearization-based control schemes (Lie algebra-based
control and differential flatness theory-based control) it
does not need complicated changes of state-variables (dif-
feomorphisms) and does not come against singularity
problems in the computation of the control inputs, (ii)
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Figure 9 Tracking of setpoint 4 for the tower crane (a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue
line: real value, green line: estimated value), (b) convergence of state variables x5 to x8 to their reference setpoints

Figure 10 Tracking of setpoint 4 for the tower crane (a) control inputs u1, u2 applied to crane, (b) tracking error variables e1, e3, e5, e7 of the tower
crane

In contrast to sliding-mode control or to backstepping
control the proposed nonlinear optimal control scheme
does not require the state-space model of the system to
be in a specific form (e.g. triangular, canonical, etc.) (iii)

In contrast to PID control the proposed nonlinear opti-
mal control method is globally stable and functions well
at changes of operating points, (iv) In contrast to multi-
models based control and linearization around multiple
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Figure 11 Tracking of setpoint 5 for the tower crane (a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue
line: real value, green line: estimated value), (b) convergence of state variables x5 to x8 to their reference setpoints

Figure 12 Tracking of setpoint 5 for the tower crane (a) control inputs u1, u2 applied to crane, (b) tracking error variables e1, e3, e5, e7 of the tower
crane

operating points, the nonlinear optimal control scheme re-
quires linearization around one single operating point and
thus it avoids the computational load for solving multiple
Riccati equations or LMIs.

To elaborate on the tracking performance and on the
robustness of the proposed nonlinear optimal control

method for the ball and plate system the following Tables
are given: (i) Table 1 which provides information about the
accuracy of tracking of the reference setpoints by the state
variables of the tower crane’s state-space model, (ii) Ta-
ble 2 which provides information about the robustness of
the control method to parametric changes in the model of
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Figure 13 Tracking of setpoint 6 for the tower crane (a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue
line: real value, green line: estimated value), (b) convergence of state variables x5 to x8 to their reference setpoints

Figure 14 Tracking of setpoint 6 for the tower crane (a) control inputs u1, u2 applied to crane, (b) tracking error variables e1, e3, e5, e7 of the tower
crane

the tower crane’s dynamics (change �a% in the mass M of
the trolley), (iii) Table 3 which provides information about
the precision in state variables’ estimation that is achieved

by the H-infinity Kalman Filter, (iv) Table 4 which provides
the approximate convergence times of the tower crane’s
state variables to the associated setpoints.
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Figure 15 Tracking of setpoint 7 for the tower crane (a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue
line: real value, green line: estimated value), (b) convergence of state variables x5 to x8 to their reference setpoints

Figure 16 Tracking of setpoint 7 for the tower crane (a) control inputs u1, u2 applied to crane, (b) tracking error variables e1, e3, e5, e7 of the tower
crane

7 Conclusions
Tower cranes are mechatronic systems with complicated
nonlinear and multivariable dynamics which exhibit also

underactuation. They are also exposed to undesirable
swinging and swaying motions of the payload and such
phenomena may prevent the precise positioning of the
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Figure 17 Tracking of setpoint 8 for the tower crane (a) convergence of state variables x1 to x4 to their reference setpoints (red line: setpoint, blue
line: real value, green line: estimated value), (b) convergence of state variables x5 to x8 to their reference setpoints

Figure 18 Tracking of setpoint 8 for the tower crane (a) control inputs u1, u2 applied to crane, (b) tracking error variables e1, e3, e5, e7 of the tower
crane

transferred cargos or may slow down the execution and
completion of load transport tasks. To circumvent such
deficiencies, full automation of tower cranes’ operation has
been pursued with the development of elaborated nonlin-
ear control algorithms. In the present article a novel non-
linear optimal control approach has been proposed for the

dynamic model of the 4-DOF underactuated tower crane.
At a first-stage the tower crane’s dynamic model undergoes
approximate linearization with the use of the first-order
Taylor series expansion and through the computation of
the associated Jacobian matrices. The linearization point
is updated at each sampling instance and is defined by the
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Table 1 Tracking RMSE ×10–3 for the robotic tower crane in the disturbance-free case

RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6 RMSEx7 RMSEx8
test1 0.7736 0.1027 0.6684 0.4821 0.8536 0.1755 0.1200 0.2835
test2 0.9319 0.2061 0.3084 0.8815 0.6038 0.3178 0.2670 0.6294
test3 0.6769 0.2049 0.3693 0.9328 0.4161 0.3288 0.1986 0.4701
test4 0.0022 0.0006 0.0011 0.0030 0.0005 0.0011 0.0002 0.0006
test5 0.4018 0.8466 0.6952 1.3000 1.2000 0.4137 0.7493 1.7000
test6 0.6761 0.6045 0.7306 1.8000 0.4931 0.6634 0.7388 1.7000
test7 0.2752 0.1154 0.9856 0.2283 1.3000 0.1076 0.0545 0.0965
test8 0.3918 0.9022 1.2000 1.9000 1.6000 0.7703 0.7506 1.7000

Table 2 Tracking RMSE ×10–3 for the robotic tower crane in the case of disturbances

�a% RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6 RMSEx7 RMSEx8
0% 0.4018 0.8466 0.6952 1.3000 1.2000 0.4137 0.7473 1.7000
10% 0.4251 0.8356 0.6932 1.3000 1.0000 0.4039 0.7817 1.8000
20% 0.4697 0.8444 0.6851 1.3000 0.9222 0.4029 0.8072 1.9000
30% 0.5290 0.8559 0.7287 1.5000 0.6807 0.4809 0.8065 1.9000
40% 0.5837 0.8371 0.7505 1.6000 0.6174 0.5169 0.8197 1.7000
50% 0.5841 0.8270 0.6983 1.2000 0.8771 0.3646 0.9044 2.1000
60% 0.5765 1.0000 1.2000 1.4000 1.1000 0.4371 1.1000 2.5000

Table 3 RMSE ×10–3 for the estimation performed by the H-infinity KF

RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6 RMSEx7 RMSEx8
test1 0.0113 0.3017 0.0107 0.2893 0.0009 0.0010 0.0010 0.0010
test2 0.0115 0.3018 0.0107 0.2891 0.0010 0.0010 0.0009 0.0009
test3 0.0111 0.3015 0.0108 0.2894 0.0011 0.0010 0.0011 0.0009
test4 0.0115 0.3027 0.0110 0.2886 0.0011 0.0010 0.0011 0.0011
test5 0.0115 0.3017 0.0109 0.2892 0.0010 0.0010 0.0009 0.0010
test6 0.0115 0.3036 0.0107 0.2875 0.0010 0.0010 0.0009 0.0010
test7 0.0111 0.3024 0.0104 0.2888 0.0009 0.0010 0.0010 0.0010
test8 0.0114 0.3028 0.0111 0.2887 0.0010 0.0009 0.0009 0.0010

Table 4 Convergence time (sec) for the robotic tower crane’s state variables

Tsx1 Tsx2 Tsx3 Tsx4 Tsx5 Tsx6 Tsx7 Tsx8

test1 10.0 8.0 7.0 7.0 12.0 8.0 8.0 10.0
test2 10.0 8.0 6.0 7.0 12.0 7.0 8.0 10.0
test3 10.0 10.0 8.0 7.0 10.0 7.0 8.0 10.0
test4 10.0 7.0 8.0 7.0 12.0 7.0 8.0 10.0
test5 8.0 7.0 7.0 6.0 10.0 6.0 6.0 9.0
test6 8.0 8.0 9.0 8.0 12.0 7.0 8.0 12.0
test7 8.0 10.0 8.0 7.0 12.0 7.0 8.0 12.0
test8 8.0 9.0 10.0 7.0 12.0 7.0 8.0 11.0

present value of the system’s state vector and by the last
sampled value of the control inputs vector.

At a second stage a stabilizing H-infinity feedback con-
troller is designed. To compute the stabilizing feedback
gains of the H-infinity controller an algebraic Riccati equa-
tion had to be repetitively solved at each time-step of the
control algorithm. The global stability properties of the
control scheme have been proven through Lyapunov anal-
ysis. To implement state estimation-based control, the H-
infinity Kalman Filter has been used as a robust state es-

timator. The nonlinear optimal control approach retains
the advantages of the standard linear optimal control, that
is fast and accurate tracking of reference setpoints un-
der moderate variations of the control inputs. Finally, it
is noted that the nonlinear optimal control method is of
generic use and can be applied to a variety of robotic
cranes, such as 4-DOF underactuated overhead (moving
bridge and trolley) cranes, offshore boom cranes, double-
pendulum overhead cranes, 4-DOF underactuated tower
cranes, and quay-side cranes and so on.
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